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Abstract. Adaptive star grammars generalize well-known graph gram-
mar formalisms based on hyperedge and node replacement while retain-
ing, e.g., parseability and the commutativity and associativity of rule
application. In this paper, we study how these grammars can be put to
practical use for the definition of graph models. We show how to use
adaptive star grammars to specify program graphs, models of object-
oriented programs that have been devised for investigating refactoring
operations. For this, we introduce notational enhancements and one
proper extension (application conditions). The program graphs gener-
ated by the grammar comprise not only the nested composition of enti-
ties, but also scope rules for their declarations. Such properties cannot
easily be defined by meta-models like Uml class diagrams. In contrast,
adaptive star grammars cover several aspects of class diagrams.

1 Introduction

Graphs have always been used for visual communication, in science and beyond.
In computer science, graph models gained a new quality since the Unified Mod-
eling Language Uml emerged: when models drive the development of object-
oriented software, they must be processed by computers, and need to be defined
precisely. In this paper we investigate how graph models can be specified by graph
grammars. As a case study, we choose program graphs, a language-independent
model for object-oriented programs that has been devised for defining and ana-
lyzing refactoring operations [15,20]. Program graphs have a particular structure:
They are composed in a nested fashion according to a context-free syntax, and
contain references from entities to their declarations that respect specific scope
rules. We define program graphs by adaptive star grammars [4], an extension
of the well-known hyperedge and node replacement grammars [11]. We further
extend these grammars to enhance the definition and understanding of rules.
One of these extensions, application conditions, increases the generative power
of the formalism. Without it, the syntax and scope rules of program graphs could
probably not have been defined completely. When we compare the grammar to
common model definitions by meta-models, it turns out that the grammar allows
to infer the structural information about incidences and multiplicities of edges
that is specified, e.g., in Uml class diagrams. The syntax and scope rules for
program graphs, however, could only be specified by logical predicates, e.g., in
the object constraint language Ocl of Uml.
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In Section 2, we recall the definition of adaptive star grammars and add
some extensions that enhance their practical use as a specification language. We
introduce program graphs in Section 3, explain their adaptive star grammar, and
describe their general properties and parsing. In Section 4, we discuss the relation
of our grammatical formalism to object-oriented meta-models. We conclude with
a discussion of related and future work in Section 5.

2 Adaptive Star Grammars and Their Extensions

Graph grammars generalize the idea of Chomsky grammars to graphs: A set
of graph transformation rules defines how the graphs of the language can be
derived by applying them successively to a given start symbol.

Node replacement and hyperedge replacement [11] have been studied most
thoroughly as grammars for deriving graph languages. Their rules remove a
nonterminal node, and attach a replacement graph to its neighbor nodes. The
sort (i.e., the label) and the direction of the edge connecting a neighbor to the
nonterminal determine completely how the neighbor is attached to the replace-
ment graph; in hyperedge replacement, the number of neighbors is even fixed
for every nonterminal. Both formalisms can specify context-free compositions of
graphs in the sense of [3], but fail to define simple languages such as the language
of all graphs. Adaptive star grammars [4] overcome these limitations by means
of a cloning mechanism that makes its rules more powerful.

2.1 Adaptive Star Grammars

Let us briefly define the concepts needed; for more detailed definitions, see [4].

Graphs. Let S, the set of sorts, be the disjoint union of countably infinite
disjoint sets Ṡ and S̄, which will be used as node and edge labels, resp. For the
sake of clarity, subsets S of S may be specified as pairs (Ṡ, S̄) = (S ∩ Ṡ, S ∩ S̄).

A graph G = 〈Ġ, Ḡ, sG, tG, �̇G, �̄G〉 consists of

– finite sets Ġ and Ḡ of nodes and edges, resp.,
– source and target functions sG, tG : Ḡ → Ġ, and
– functions �̇G : Ġ → Ṡ and �̄G : Ḡ → S̄ assigning a sort to each node and edge,

resp.

For a node x in G, the subgraph consisting of x and its adjacent nodes and
incident edges is denoted by G(x). A border node of x is a node in Ġ(x) \ {x}.
In addition, we use common terminology regarding graphs, such as subgraph,
disjoint union and isomorphism, assuming that the reader is familiar with them.

Rules and Replacement. Adaptive star grammars are based upon a simple
kind of graph transformation that replaces a subgraph of the form G(x) by
another graph. For this, define a rule r = 〈y, R〉 to be a pair consisting of a
graph R and a distinguished node y ∈ Ṙ. We call R(y) and R \ {y} the left- and
right-hand side of r, resp.
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Let G be a graph and x ∈ Ġ such that G(x) ∼=g R(y) for some isomorphism
g. Then the graph H = G[x /g r] is obtained from the disjoint union of G and R
by identifying R(y) with G(x) according to the isomorphism g and removing x
and its incident edges. In the following, we simply write H = G[x/r] instead of
G[x /g r]. (But note that x and r do not necessarily determine g uniquely, and
we may have G[x /g r] �∼= G[x /h r] for h �= g.)

In the following, we assume that Ṡ is divided into two infinite disjoint sets ṠN
and Ṡ \ ṠN of nonterminals and terminals, resp. For each rule r as above, y will
be a nonterminal node, i.e., �R(y) ∈ ṠN, and its border nodes will be terminal.

Multiple Nodes. To make rules adaptive, we invent multiple nodes, similar
to the set nodes of [19]. A multiple node x represents any number of ordinary
nodes, the clones of x. Formally, multiple nodes are designated by special sorts.
For this, we assume that Ṡ\ṠN is partitioned into a set of singular node sorts and
a set S̈ of multiple node sorts, where the latter is made up of pairwise distinct
copies of the singular node sorts. For a singular node sort a, its copy in S̈ is
denoted by ä. Likewise, the set of multiple nodes of a graph G is denoted by G̈.
In figures, a multiple node of sort ä is distinguished by drawing it with a dashed
line and a “shade” (see Figure 2 on page 450), but labeled with the singular
sort a. A graph that does not contain any multiple node is said to be a singular
graph. Note that there are no multiple nonterminal nodes.

Cloning. Let G be a graph. A function μ : G̈ → N is a multiplicity for G. The
graph Gμ is obtained from G by cloning each node x ∈ G̈ according to μ, as
follows. If �̇G(x) = ä, then x and its incident edges are replicated μ(x) times,
where the sort of the copies is changed into a, i.e., clones are always singular. If
μ(x) = 0, then x and its incident edges are simply deleted.

Adaptive Star Grammars. Call a graph well formed if it contains neither
adjacent nonterminal nodes nor indistinguishable edges, i.e., parallel edges with
identical sorts. A star is a graph of the form G(x) that contains neither loops
nor parallel edges, such that x is nonterminal and its border nodes are terminal.
An adaptive star rule over S ⊆ S is a rule r = 〈y, R〉, where R is a well-formed
graph with sorts in S, and R(y) is a star. A clone of r is a rule 〈y, R′〉 such that

– R′ is well formed, and
– there is a multiplicity μ for R such that R′ can be obtained from Rμ by

identifying some of the border nodes of y with each other (where, of course,
only nodes of the same sort can be identified).

An adaptive star grammar is a system Γ = 〈S, P , Z〉, where S ⊆ S is a finite set
of sorts, P is a finite set of adaptive star rules, and Z is the initial star (all sorts
being taken from S). Given a graph G, we write G =⇒P H if H = G[x /r] for
some node x ∈ G and a clone r of an adaptive star rule in P . The adaptive star
language generated by Γ is the set of all terminal graphs G that can be derived
from Z:

L(Γ ) = {G | Z =⇒+
P G and �̇G(x) ∈ S \ ṠN for all x ∈ Ġ},

where =⇒+
P denotes the transitive closure of =⇒P .
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Example 1 (The Language of Unlabeled Graphs). To depict a rule 〈y, R〉 in a
readable and space-efficient manner, we use the following drawing conventions
inspired by [13]; see also [11]. The node y designating the left-hand side of the
rule is drawn as a large rectangle covering all other nodes of R as well as the
edges between them. Edges connecting y with its border nodes attach to the
rectangle from the outside. The label of y is written in the upper left corner of
the rectangle.

As an example, consider the adaptive star grammar Γ which is given by
Γ = (({◦, ◦̈,A}, {-}), R, Z), where

R =

⎧
⎪⎪⎨

⎪⎪⎩

A A

,

A A

,

A
⎫
⎪⎪⎬

⎪⎪⎭

and Z = A .

It derives arbitrary graphs without loops over the “invisible” sorts ◦ and -, that
is, the class of finite unlabeled graphs. Starting with Z, the first rule makes
it possible to add an arbitrary number of border nodes. The second rule adds
edges between border nodes, and the third removes the nonterminal node. A
more conventional way to draw the second rule can be obtained by “unfolding”
it in two steps, like this:

A A A
::=

A

Moving out the right-hand side Separating the sides

Let us briefly discuss the two main differences between the definition of adap-
tive star grammars used here and the one in [4]. Firstly, using the terminology
of [4], we have restricted ourselves to early cloning, i.e., cloning produces only
singular nodes. As shown in [4], this does not restrict the generative power of
adaptive star grammars. Secondly, rules can be applied to subgraphs G(x) that
are not stars, but contain parallel edges. Note that, although the left-hand side
R(y) of an adaptive star rule r = 〈y, R〉 is a star, cloning it prior to applica-
tion may involve taking a quotient that identifies border nodes of y in Rμ with
each other. This may sound alarming, as it was shown for quite a similar type
of adaptive star grammars in [5] that all recursively enumerable languages can
be generated. However, note that we restrict this ability to the case where the
resulting right-hand side R′ is well formed. In particular, R′ must not contain
indistinguishable edges. As a consequence, adaptive star grammars of the sort
defined above can be simulated by ordinary ones (i.e., those in [4]) by using
subsets of S̄ to label edges in stars and turning every rule into a finite number
of rules (corresponding to the allowed quotients).
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2.2 Extensions of Adaptive Star Grammars

We now introduce and discuss three extensions of adaptive star grammars that
turn out to be useful when writing complex grammars. The first two extensions
do not increase the generative power, but are nevertheless important in order to
keep the grammars readable, because they lead to a considerable reduction of
the number of rules.

Extension 1 (Subsorting). In order to avoid the necessity to draw lots of
similar rules, we enrich the set S with additional abstract sorts and equip the
so-enlarged sets Ṡ and S̄ with subsort relations, partial orders denoted by “�”.
For ä, b̈ ∈ S̈, we require that ä � b̈ if and only if a � b.

Sorts that are not abstract are concrete. For graphs G, H , we write G � H if
H and G are equal up to their node and edge sorts and, for all x ∈ Ġ, e ∈ Ḡ, we
have �̇G(x) � �̇H(x) and �̄G(e) � �̄H(e). A graph is concrete if it contains only
concrete sorts as labels, and abstract otherwise.

Now, every adaptive star rule 〈y, R〉 stands for the set of all 〈y, R′〉 such that R′

is a concrete graph with R � R′. Clearly, this extension does not make adaptive
star grammars more powerful, since the set of all such graphs R′ is finite for any
given R (as S is finite). However, it can help to avoid a combinatorial explosion
of the number of rules that have to be drawn.

Extension 2 (Multiple Subgraphs, Options, and Repetitions). We ex-
tend the notion of multiple nodes, as follows. In a rule r = 〈y, R〉, an induced
subgraph M with y /∈ Ṁ may be designated as a multiple subgraph. Thus,
the multiple subgraph consists of the nodes in Ṁ and all edges e ∈ R̄ with
sR(e), tR(e) ∈ Ṁ . Distinct multiple subgraphs must either be disjoint or prop-
erly nested. Graphically, we indicate a multiple subgraph by enclosing it in a
dashed box with a dashed shade (see Figure 2). A multiple subgraph may be
cloned any number of times prior to rule application. Here, cloning means to
choose a multiple subgraph M not contained inside another multiple subgraph,
and replacing it with n � 0 isomorphic copies. Each of the copies is connected
to the border nodes of M (i.e., the nodes in Ṙ \ Ṁ which are adjacent to nodes
in Ṁ) by copies of the edges that connect M with its border nodes. The cloning
procedure is repeated until there are no multiple subgraphs left.

In addition to multiple subgraphs, it is useful to introduce optional subgraphs,
drawn with dashed borders without a dashed shade, which may have n ∈ {0, 1}
clones, and repeated subgraphs, drawn with solid borders and a dashed shade,
which may have n � 1 clones. If an optional or repeated subgraph consists of a
single node, we apply these drawing conventions to the node itself rather than
adding a box around it. (Thus, for multiple, optional, and repeated nodes, this
is the notation known from Progres [19].)

The reader may have noticed that multiple, optional, and repeated nodes
and subgraphs lift the use of regular expressions “E∗”, “E?”, and “E+” in the
extended Backus-Naur form of context-free rules to the graph case, thus avoiding
the necessity to use clumsy auxiliary rules. Similar to the case of context-free
grammars, the expressive power of adaptive star grammars is not affected. To see
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this, note that a multiple subgraph M in a rule r as above may be implemented
as follows. We remove M from R, except for the border nodes of y that are
contained in M . Singular border nodes of y in M become multiple. Now, we add
a new nonterminal x (labeled with a new sort), which is connected to all border
nodes of M as well as to the border nodes of y contained in M , by edges labeled
with pairwise different sorts. This yields the modified rule 〈y, R′〉. Finally, two
new rules are added to the grammar, which generate any number of copies of
the multiple subgraph by iteration. The terminating rule is 〈x, R′(x) − Ṁ〉. We
leave the straightforward definition of the iteration rule to the reader.

Extension 3 (Application Conditions). The example presented in the next
section shows that the power of adaptive star rules suffices to express almost
all the important structural properties of program graphs. Nevertheless, in some
cases, the subgraph derived by a rule is subject to a condition which we do
not know how to capture by adaptive star rules. Therefore, we extend them by
allowing required or forbidden terminal subgraphs to be attached to the border
nodes in the left-hand side of a rule. In fact, we only need required and forbidden
edges between border nodes. We emphasize these edges by underlaying them in
grey, and cross them out if they are forbidden.

Note that we cannot offer a formal proof for the necessity of application
conditions. In particular, the three uses of application conditions in Fig. 2 can
perhaps be avoided by a more ingenious grammar. However, we have not been
able to come up with such a solution. Finding it or disproving its existence
remains a subject for future work.

3 A Grammar for Program Graphs

Program graphs have been devised in [15], as a language-independent represen-
tation of object-oriented code for studying refactoring operations. They capture
concepts that are common to many object-oriented languages, like single inheri-
tance and method overriding. The simplified graphs defined here represent only
the data flow of programs. See [20] for a specification of program graphs that
covers their control flow as well.

A Sample Program Graph. Figure 1 shows a program graph for the follow-
ing rudimentary program:

class Cell is

var cts: Any;

method get() Any is
return cts;

method set(const n: Any) is
cts := n

subclass ReCell of Cell is

var backup: Any;

method restore() is
cts := backup;

override set(const n: Any) is
backup := cts;
super.set(n)

The node sorts C, M, K, V, B, E distinguish program entities: classes, method
signatures, constants, variables, bodies (of methods), and expressions. In the fig-
ure, some nodes are annotated with the names of the entities they represent.
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Fig. 1. A program graph

(Note that there are three nodes of sort C, rather than two, the leftmost one
representing the predefined root class Any.) Edge sorts distinguish relations be-
tween program entities. Arrows drawn as “ ” represent the composition of
entities, and arrows of the form “ x ”, with x ∈ {t, b, c, u, w}, represent refer-
ences of entities to declarations: the typing of features by classes, the binding of
bodies to the signatures of methods, the call of methods within expressions, the
use of constant and variable values in expressions, and the writing of values of
expressions to variables in assignments.

For instance, the node of sort C representing the class ReCell is composed of
four entities. The leftmost node among these four, of sort B, represents the body
overriding the body of set in Cell. In turn, the nodes beneath this node represent
the expressions (and constants) occurring in the body, as well as the ways in
which they call, use, or write to other visible entities.

Program graphs have a particular structure: Their composition follows the
syntax of the underlying program texts, whereas their references obey the scope
rules for the visibility of declarations in programs. Due to this structural com-
plexity, the generative power of ordinary context-free graph grammars does not
suffice to specify the set of all program graphs. Instead, this is now done using
an adaptive star grammar, with the extensions introduced in Subsection 2.2.

The Concrete Sorts. The nonterminal node sorts Prg, Hy, Cls, Fea, Sig,
Bdy, Exp, and Act label placeholders for the program, a class hierarchy, a class
or feature definition, the signature or body of a method, an expression, or ac-
tual parameters, respectively. In rules, nonterminal nodes are connected to their
border nodes by edges of different sort and direction. Every nonterminal node x
is incident with one or two anchor edges, drawn as “ ”, and may be incident
with scope edges of the form “ v ”, with v ∈ {g, h, i}. Sort and direction of such
an edge indicate the role of the node at the other end in the derivations of x:
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– An anchor edge points to the program entity, represented by a singular node,
the components of which are being defined by x. (The only situation in which
a nonterminal node has two anchor edges is when a method consisting of a
signature and a body is being defined.)

– Ingoing scope edges connect nodes representing declarations within the scope
of x; these nodes represent the declarations of constants, variables, methods,
and classes that may be referred to in the program entity defined by x.

– Outgoing scope edges connect the nonterminals Hy, Cls, and Sig to the set
of declarations that are made visible by the program entities defined by these
nonterminals.

The edge sorts g, h, and i classify the visibility of declarations as global, heredi-
tary, and internal, respectively. (In our program graphs, classes are always global,
and for the example program above, we assume that all method declarations are
global, whereas attribute declarations are internal to a class.) Further edges of
sort s connect “selected” nodes of type M to nonterminals Bdy, Exp, and Act,
and nodes of type K to nonterminals Act. The major purpose of these edges is
to keep track of a method signature when deriving a body for it.

The Abstract Sorts and Subsort Relation. In addition to the sorts men-
tioned above, we use abstract node sorts D, F, and A, together with the following
subsort hierarchy on the declarations: A declaration D is either a class C, or a
feature F, which in turn is either a method M, or an attribute A, which in turn
is either a constant K, or a variable V. Moreover, the scope sorts g, h, and i
are subsorts of an abstract scope sort that is just drawn as “ ”. See the sort
graphs in Figure 3(a) and (b).

The Rules. The adaptive star rules defining program graphs are shown in
Figure 2, and will be explained in the following paragraphs.

Start Rule. The rule start initiates the derivation of a class hierarchy. It applies
to the initial star of the grammar, which consists of the nonterminal Prg with an
anchor node representing the root Any of the class hierarchy. Together with the
root node, the clones of the multiple D-node represent all globally visible decla-
rations of the program. All of them are connected to the Hy-labeled nonterminal,
say x, by in- and outgoing g-edges. Intuitively, this means that they are passed
to the rule hy as declarations that are both visible and going to be defined by the
derivation of x. Thus, these nodes play two roles in the derivations of x. Note
that, in hy, these roles are split as its left-hand side does not contain parallel
edges (as required by the definition of adaptive star rules). Thus, quotients will
have to be taken in order to apply this rule.

Class Hierarchy. The rule hy defines a class hierarchy, consisting of a root class,
plus n � 0 sub-hierarchies. The root classes of the sub-hierarchies are direct sub-
classes of the root class. The root class defines sets of features of different visi-
bilities: Its internal features are only visible within itself, whereas its hereditary
features are also visible to its sub-hierarchies. Its global declarations, together
with those of its sub-hierarchies, are the global declarations of the whole hier-
archy. The global method declarations are furthermore passed as “hereditary”
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Fig. 2. The rules deriving program graphs
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to the sub-hierarchies, because only such methods may be overridden. These
methods are thus visible to the sub-hierarchies in two roles, since they are also
contained, as “global”, in the visible declarations.

Class Definitions. The rule cls derives a set of features as members of a class.
Note that the derived features that may have global, hereditary, or internal
visibility, depending on which subsort of the abstract derived scope sort is used.
The multiple K-node represents the parameters of all methods in the class; they
are passed around as global, so that they can be accessed when their method is
used. (See the rules for expressions below, which contain application conditions
to make sure that the visibility rules are obeyed.)

Feature Definitions. The rules for Fea derive the features that may be defined
in a class: either a (constant or variable) attribute (rule att), a new method
(rule method), or a method overriding a hereditary method (rule override). The
new method is abstract if its optional body is missing. In rules method and over-
ride, the M-node being defined or overridden is passed as a “selected” entity to
Bdy (and further on to Exp and Act) in order to access the parameters of the
signature in expressions.

Method Signatures and Bodies. The rules result and par derive signatures of
methods. Methods have an optional result type, and any number of formal pa-
rameters. The type of a result or a parameter is the class represented by the
target of a t-edge. The rule bdy derives method bodies, each consisting of a set
of expressions.

Expressions. The rules use, usep, assign, and call specify four kinds of expres-
sions: the use of a visible attribute value, the use of a parameter of a method
within its body, an assignment writing the value of an expression to a variable,
and the call of a method with a list of actual parameters. Each of these rules
inserts a reference to a declaration that is visible in the expression. The appli-
cation conditions in use and usep make sure that an attribute is visible only if
it is not the (constant) parameter of a method, and that a parameter is visible
only within the method it belongs to, i.e., the selected one. In rule call, the ap-
plication conditions make sure that all parameters of the method to be called
are subsumed under the multiple K-node – there are no edges to other nodes in
the set of visible entities.

Actual Parameters. The rules no and more generate as many expressions (actual
parameters) as there are formal parameters of the method being called. To see
this, not that each application of more “releases” one K-node.

Properties of Program Graphs. The rules given in Figure 2 have been
designed so that the program graph grammar and the language it derives have
the following properties:

– The composition edges induce a syntax tree. This is a spanning tree of the
program graph. (Thus, program graphs are connected.)
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– The composition and anchor edges of the rules induce syntactic sub-rules of
the grammar, yielding a hyperedge replacement grammar that generates the
syntax trees in a purely context-free manner.1

– The outgoing scope edges of a nonterminal n point to declaration nodes that
are contained in the syntax tree derived by the syntactic sub-rule of n. These
border nodes are uniquely determined by the underlying syntax tree.

– The ingoing scope edges of a nonterminal n connect it to the subset of
declaration nodes that are method parameters, or visible in the syntax tree
generated by n.

– The rules for a nonterminal n may insert reference edges to the ingoing
declaration nodes that are visible. Thus terminal program graphs are syntax
trees with references from entities to declarations that are visible to these
entities.

The reader may have noticed that the program graph grammar has been de-
signed with attribute grammars [14] in mind, a formalism that has been devised
for specifying the contextual analysis and translation of (textual) programming
languages. More precisely, the grammar corresponds to an attribute grammar
with a semantic basis that has sets of syntax tree nodes as values, and set oper-
ations as semantic functions (like set union, and member selection). The anchor
edges indicate what would be the underlying syntax of the attribute grammar,
and the scope edges specify the values of its (inherited and synthesized) at-
tributes.

Parsing. A parsing algorithm for adaptive star grammars has been developed
in [17,4]. However, the rules given above must be transformed in order to make
them acceptable for the algorithm:

– Optional, multiple, and repeated nodes and subgraphs can be defined as
outlined in Extension 2.

– Empty rules, i.e., rules where the replacement just consists of the border
nodes of their distinguished node, are also forbidden. In the program graph
grammar, this occurs when the multiple subgraph in rule cls has no clone, or
when the optional class node in rule result is missing. Empty rules can also
be removed, by a transformation similar to the removal of empty rules from
context-free word grammars [4].

As mentioned above, application conditions are a real extension of the formal-
ism. Consequently, it is not clear whether adaptive star grammars with applica-
tion conditions have a decidable membership problem in general. However, for
“attribute-grammar-like” rules like the one presented here, a parsing algorithm
can take advantage of the structure of such rules. First, the syntax tree can be
parsed. Then the outgoing declaration nodes of the nonterminal stars can be
determined, thus defining the ingoing declaration nodes. This, finally, allows to
check whether the references are in place. During this process, it is easy to check
whether the application conditions are fulfilled.
1 The auxiliary rules defining the multiple subgraphs in the sub-rules become tree-

generating hyperedge replacement rules as well.
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4 Adaptive Star Grammars and Meta-models

The static structure of object-oriented software is commonly described by meta-
models like Uml class diagrams. A class diagram contains specifications of three
kinds of properties:

– Inheritances describe “is-a” relationships between classes.
– Incidences specify which associations may exist between which classes.
– Multiplicities define how many associations of some kind may leave and enter

some class, thus distinguishing “1:1”, “1:n”, “n:1”, and “n:m” relationships.

For an adaptive star grammar like that of program graphs, label subsorting
does already specify the inheritances of a meta-model. Incidences can then be
determined by constructing a sort graph as follows:

– Form the disjoint union of the start graph with all graphs of all rules, where
all multiple node labels are turned into singular ones.

– Identify all equally labeled nodes with each other.
– Insert all inheritance edges in that graph. (This requires “meta-edges” be-

tween edges.)
– For some edge e labeled �, remove all edges that are parallel to e and labeled

by � or a subsort of �.
– If a node may have equally labeled edges to (or from) every direct sub-node

of some node n, replace these edges by a single edge to n.

In Figure 3, the sort graph for program graphs is shown in three pieces: the left-
hand side shows the subgraph induced by its composition and reference edge
sorts, whereas the subgraph on the right-hand side is induced by its anchor and
visibility edge sorts. In the middle, we depict the subsort relation on edge sorts.
Altogether, the graphs in Figure 3 correspond to schema graphs in Progres [19],
and to type graphs with inheritance in algebraic graph transformation [8].

The multiplicities known from Uml class diagrams could be inferred by a
similar, yet slightly more complicated procedure. For instance, rules start and hy
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imply that composition edges incident with C-nodes have the source multiplic-
ity 0 � n and the target multiplicity 0 � m � 1, i.e., a C-node has at most one
ingoing composition edge indicating its supertype, and may have any number of
outgoing composition edges that indicate its subtypes. In the notation of Uml

class diagrams, this could be specified by annotating the loop edge at the node
C in Figure 3 with “∗ ?”. Most of the composition edges have the multiplicity
“∗ 1”, saying that n � 0 edges may leave, and one edge enters a node.2 Ref-
erence edges have the multiplicity “? ∗”, saying that n ∈ {0, 1} of these edges
may leave, and n � 0 of these edges may enter a node.

However, even a class diagram with multiplicities is not as precise as the
program graph grammar. The scope rules for programs specified in the rules
cannot be described by incidences and multiplicities alone. In an object-oriented
meta model, they could be specified by logical formulas written in, e.g., Ocl,
the logical language of Uml.

Vice versa, adaptive star grammars do not specify attributes for nodes and
edges. However, this could be added in a straightforward way; if needed, their
values could be determined by attribute functions. For instance, an attribute arity
of B-nodes could be initialized to 0 in rules method and override, and increased
in rule par.

In summary, one may say that adaptive star grammars provide a generative
alternative to the use of meta models combined with logics. It is certainly a
matter of debate which one appears more natural and is easier to use. However,
as argued in [6], general graph transformation rules can conveniently describe
model transformations, such as refactoring operations. This means that software
refactoring systems based on graph transformation could make use of adaptive
star grammars for specifying the models to be transformed, and of general graph
transformation rules to specify the actual transformations. This avoids the need
to mix different paradigms, one of them being used for the specification of the
models and the other one for the description and implementation of valid trans-
formations.

5 Conclusions

Adaptive star grammars are rather straightforward extensions of hyperedge and
node replacement, and still have some properties of context-free grammars, e.g.,
nondeterministic versions of associativity and confluence. Adaptive star gram-
mars allow to derive graph languages that define rather advanced software mod-
els, specifying properties as they are typically needed to represent programming
languages.

The correctness of the grammar presented in Section 3 has not been proved
formally. Nevertheless, such a proof should be rather straightforward (though
technically tedious), exploiting the similarity of this particular example with at-
tribute grammars pointed out earlier. This would formally support our claim
that the power of adaptive star grammars is close to what is necessary for being
2 Composition edges leaving nodes of sort B have the multiplicity “+ 1” .
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able to specify program graphs and similar structures. However, without applica-
tion conditions, adaptive star grammars seem to be unable to cope with complex
constraints like the correspondence of actual to formal parameters of methods.
It is also open whether other constraints, like the type rules for expressions, can
be expressed with adaptive star grammars.

In this paper, we have omitted certain features of the program graphs de-
scribed in [20]. There, method bodies may contain local declarations and control
flow. These features can be captured by refining and extending the rule set
presented here. The nodes in [20] do also have attributes, for instance strings
representing the identifier of a declaration, or numbers representing the arity
of a method. Attributes are convenient to have; they cannot be handled by the
grammatical formalism itself, but have to be evaluated while applying a rule,
somewhat similar to the way in which application conditions are handled.

Certainly, some properties of models should not be described by the grammat-
ical formalism. For instance, type rules could probably be specified by adaptive
rules (with application conditions) as well, but only in a rather complicated way.
Generally, attribute values and their dependencies, and negative conditions on
the structure should rather be defined by predicates, e.g., in Ocl.

So far, grammars, in particular graph grammars, have hardly been consid-
ered for defining software models. Graph grammars have been primarily used to
define semantics of models or model transformation. Hölscher et al. [12] specify
the semantics of some UML diagram types by graph grammars. They specify,
among others, state charts and interaction diagrams, i.e., the behavior of object-
oriented software. However, graph grammars are used to specify the behavior in
terms of the modeling diagrams, and not the syntactic structure of a program
as described here. Syntax, in particular abstract syntax, is now usually repre-
sented by meta-models together with additional constraints. Typical examples
of this approach are based on meta-modeling frameworks MOF [18] or EMF [10].
Moflon [1] allows to specify the abstract syntax of domain specific languages and
their implementation using MOF and OCL. Graph transformation systems are
used for model transformation and model integration. Tiger [9] uses EMF for
specifying the abstract syntax of visual languages by a meta-model. Graph trans-
formations are used to specify editing operations, i.e., behavior of a generated
visual editor. While (graph) grammars had been the main approach to specify
syntax of (visual) languages (e.g., [16]) in the past, they are now mostly used for
behavior specification. Syntax specification by meta-modeling has become the
more popular approach, probably since meta-models appear to be easier to build
and understand than graph grammars. However, we think that more complex
languages, like software models as described in this paper, can be described by
graph grammars in a better and more concise manner.

The survey paper [7] has discussed the general scenario of transforming be-
tween different graph models. This allows to prove a kind of commutativity
between the model transformations and the rules of the graph grammars defin-
ing the models concerned. However, it gives no means to check the integrity of
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the models themselves, as there is no parsing algorithm for the general graph
grammar rules considered there.

In the graph reduction specifications proposed by Bakewell et al. [2], the
inverses of the rules have convergent reductions that supply a parsing algorithm.
However, they have only be used to specify the shape of data structures involving
pointers so far.

Adaptive star grammars are used for shaped generic graph transformation [6].
The rules proposed there may contain variable nodes as placeholders for graphs
(and also multiple nodes). Adaptive star grammars are used to specify the legal
substitutions for variables. We plan to refine generic transformation so that it its
is “shape-preserving”: the transformed graphs shall be shaped according to an
adaptive star grammar, and rules replace one well-shaped subgraph by another
well-shaped graph. This will then allow to define model transformations that may
not only be shown to preserve incidence constraints, but the shape of models as
well.

In order to use adaptive star grammars in practice, we need a graph systems
wherein they can be edited, transformed, and parsers for them can be generated.
Such a system is under way. Furthermore, we are interested in the following
methodical question: Can grammars be systematically developed from a context-
free “kernel” defining spanning trees, as this has been done for program graphs?
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9. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
eclipse plug-ins. In: ASE 2005: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pp. 134–143. ACM Press, New
York (2005)

10. EMF, Eclipse Modeling Framework web page (2006),
http://www.eclipse.org/emf/

11. Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, Beyond Words, vol. 3, pp. 125–213. Springer,
Heidelberg (1999)

12. Hölscher, K., Ziemann, P., Gogolla, M.: On translating uml models into graph
transformation systems. J. Vis. Lang. Comput. 17(1), 78–105 (2006)

13. Kaul, M.: Syntaxanalyse von Graphen bei Präzedenz–Graph–Grammatiken. Dis-
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