Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

Abstract

A number of cortex-like hierarchical models of object recognition have been proposed these years. In this paper, we improve them by introducing supervision during forming combined local features. The traditional cortex-like hierarchical models always contain three layers which imitate the functions of neurons in ventral visual stream of primates. The bottom layer detects orientation information in a local area. Then the middle layer combines these information to form combined features. Finally, the top layer integrates combined features to form global features which are input into a classifier. In these models, three stages to form global features are all unsupervised. The supervision procedure only occurs after global features are generated, which is implemented by the classifier. But we think the supervision should occurs earlier. For a particular object recognition task, the second stage of generating global features is also supervised because only task relevant combinations are useful. In our paper, we analyze why introducing supervision in this stage is necessary. And we explain task relevant combined local features can be extracted by some feature selection algorithms. We also apply this improved system to a series of object classification problems and compare it with traditional models. The simulation results show that our improvement really boosts object recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roelfsema, P.R.: Cortical Algorithms for Perceptual Grouping. Annual Review of Neuroscience 29, 203–227 (2006)

    Article  Google Scholar 

  2. Hubel, D., Wiesel, T.: Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex. The Journal of Physiology 160, 106–154 (1962)

    Google Scholar 

  3. Kobatake, E., Tanaka, K.: Neuronal Selectivities to Complex Object Features in the Venral Visual Pathway of the Macaque Cerebral Cortex. Jounal of Neurophysiology 71, 856–867 (1994)

    Google Scholar 

  4. Logothetis, N.K., Sheinberg, D.L.: Visual Object Recognition. Annual Review of Neuroscience 19, 577–621 (1996)

    Article  Google Scholar 

  5. Tanaka, K.: Inferotemporal Cortex and Object Vision. Annual Review of Neuroscience 19, 109–139 (1996)

    Article  Google Scholar 

  6. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant Visual Representation by Single Neurons in the Human Brain. Nature 435(7045), 1102–1107 (2005)

    Article  Google Scholar 

  7. Fukushima, K.: Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  8. Perrett, D.I., Oram, M.: Neurophysiology of Shape Processing. Image and Vision Computing 11, 317–333 (1993)

    Article  Google Scholar 

  9. Wallis, G., Rolls, E.T.: A Model of Invariant Object Recognition in the Visual System. Progress in Neurobiology 51, 167–194 (1996)

    Article  Google Scholar 

  10. Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  11. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition with Cortex-like Mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 411–426 (2007)

    Article  Google Scholar 

  12. Hyvarinen, A., Hoyer, P.O.: Topographic Independent Component Analysis as a Model of V1, Organization and Receptive fields. Neurocomputing 38, 1307–1315 (2001)

    Article  Google Scholar 

  13. Olshausen, B.A., Field, D.J.: Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  14. Inza, I., Larranaga, P., Etxeberria, R., Sierra, B.: Feature Subset Selection by Bayesian Network-based Optimization. Artificial Intelligence 123(1-2), 157–184 (2000)

    Article  MATH  Google Scholar 

  15. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  16. Kwak, N., Choi, C.H.: Input Feature Selection by Mutual Information Based on Parzen Window. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1667–1671 (2002)

    Article  Google Scholar 

  17. Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid Genetic Algorithms for Feature Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1424–1437 (2004)

    Article  Google Scholar 

  18. Verikas, A., Bacauskiene, M.: Feature Selection with Neural Networks. Pattern Recognition Letters 23(11), 1323–1335 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, W., Zhang, L. (2008). Object Recognition with Task Relevant Combined Local Features. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics