Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

Abstract

Near-infrared diffuse optical tomography imaging (DOT) suffers from a poor depth resolution due to the depth sensitivity decreases markedly in tissues. In this paper, an intelligent method, which is called layered maximum-singular-values adjustment (LMA), is proposed to compensate the decrease of sensitivity in depth dimension, and hence obtain improved depth resolution of DOT imaging. Simulations are performed with a semi-infinite model, and the simulated results for objects located in different depths demonstrate that the LMA technique can improve significantly the depth resolution of reconstructed objects. The positional errors of less than 3 mm can be obtained in the depth dimension for all depths from -1 cm to -3 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pogue, B.W., Testorf, M., Mcbride, T., et al.: Instrumentation and Design of a Frequency Domain Diffuse Optical Tomography Imager for Breast Cancer Detection. Opt. Exp. 13, 391–403 (1997)

    Article  Google Scholar 

  2. Hebden, J.C., Gibson, A., Yusof, R.M., Everdell, N., et al.: Three-dimensional Optical Tomography of the Premature Infant Brain. Phys. Med. Biol. 47, 4155–4166 (2002)

    Article  Google Scholar 

  3. Bluestone, A.Y., Abdoulaev, G., et al.: Three Dimensional Optical Tomography of Hemodynamics in the Human Head. Opt. Exp. 9, 272–286 (2001)

    Google Scholar 

  4. Peters, V.G., Wyman, D.R., et al.: Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared. Phys. Med. Biol. 35, 1317–1334 (1990)

    Article  Google Scholar 

  5. Douiri, A., Schweiger, R.M.J., Arridge, S.: Local Diffusion Regularization Method for Optical Tomography Reconstruction by Using Robust Statistics. Opt. Lett. 30, 2439–3441 (2005)

    Article  Google Scholar 

  6. Joseph, D.K., Huppert, T.J., et al.: Diffuse Optical Tomography System to Image Brain Activation with Improved Spatial Resolution and Validation with Functional Magnetic Resonance Imaging. Appl. Opt. 45, 8142–8151 (2006)

    Article  Google Scholar 

  7. Niu, H.J., Guo, P., Ji, L., Jiang, T.: Improving Diffuse Optical Tomography Imaging with Adaptive Regularization Method. In: Proc. SPIE, vol. 6789 K, pp. 1–7 (2007)

    Google Scholar 

  8. Pogue, B.W., McBride, T.O., et al.: Spatially Variant Regularization Improves Diffuse Optical Tomography. App. Opt. 38, 2950–2961 (1999)

    Article  Google Scholar 

  9. Zhao, Q., Ji, L., Jiang, T.: Improving Depth Resolution of Diffuse Optical Tomography with a Layer-based Sigmoid Adjustment Method. Opt. Exp. 15, 4018–4029 (2007)

    Article  Google Scholar 

  10. Paulsen, K.D., Jiang, H.: Spatially Varying Optical Property Reconstruction Using a Finite Element Diffusion Equation Approximation. Med. Phys. 22, 691–701 (1995)

    Article  Google Scholar 

  11. Ishimaru, A., Schweiger, M., Arridge, S.R.: The Finite-element Method for the Propagation of Light in Scattering Media: Frequency Domain Case. Med. Phys. 24, 895–902 (1997)

    Article  Google Scholar 

  12. Delpy, D.T., Cope, M., et al.: Estimation of Optical Pathlength Through Tissue From Direct Time of Flight Measurement. Phys. Med. Biol. 33, 1433–1442 (1988)

    Article  Google Scholar 

  13. Zhao, Q., Ji, L., Jiang, T.: Improving Performance of Reflectance Diffuse Optical Imaging Using a Multiple Centered Mode. J. Biomed. Opt. 11, 064019, 1–8 (2006)

    Article  Google Scholar 

  14. Arridge, S.R.: Optical Tomography in Medical Imaging. Inverse Probl. Eng. 15, R41-R93 (1999)

    Article  MathSciNet  Google Scholar 

  15. Boas, D.A., Dale, A.M.: Simulation Study of Magnetic Resonance Imaging-guided Cortically Constrained Diffuse Optical Tomography of Human Brain Function. Appl. Opt. 44, 1957–1968 (2005)

    Article  Google Scholar 

  16. Song, X., Pogue, B.W., et al.: Automated Region Detection Based on the Contrast-to-noise Ratio in Near-infrared Tomography. Appl. Opt. 43, 1053–1062 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niu, HJ., Guo, P., Jiang, TZ. (2008). Improving Depth Resolution of Diffuse Optical Tomography with Intelligent Method. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics