Skip to main content

Minimal Trellis Construction for Finite Support Convolutional Ring Codes

  • Conference paper
Coding Theory and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5228))

Abstract

We address the concept of “minimal polynomial encoder” for finite support linear convolutional codes over \({\mathbb Z}_{p^r}\). These codes can be interpreted as polynomial modules which enables us to apply results from the 2007-paper [8] to introduce the notions of “p-encoder” and “minimal p-encoder”. Here the latter notion is the ring analogon of a row reduced polynomial encoder from the field case. We show how to construct a minimal trellis representation of a delay-free finite support convolutional code from a minimal p-encoder. We express its number of trellis states in terms of a degree invariant of the code. The latter expression generalizes the wellknown expression in terms of the degree of a delay-free finite support convolutional code over a field to the ring case. The results are also applicable to block trellis realization of polynomial block codes over \({\mathbb Z}_{p^r}\), such as CRC codes over \({\mathbb Z}_{p^r}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calderbank, A.R., Sloane, N.J.A.: Modular and p-adic cyclic codes. Designs, Codes and Cryptography 6, 21–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clark, G.C., Cain, J.B.: Error-Correction Coding for Digital Communications. Plenum Press, New York (1981)

    Google Scholar 

  3. Fornasini, E., Pinto, R.: Matrix fraction descriptions in convolutional coding. Linear Algebra and its Applications 392, 119–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Forney, G.D., Trott, M.D.: The dynamics of group codes: state spaces, trellis diagrams, and canonical encoders. IEEE Trans. Inf. Th. 39, 1491–1513 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gluesing-Luersen, H., Schneider, G.: State space realizations and monomial equivalence for convolutional codes. Linear Algebra and its Applications 425, 518–533 (2007)

    Article  MathSciNet  Google Scholar 

  6. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z 4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Th. 40, 301–319 (1994)

    Article  MATH  Google Scholar 

  7. Kailath, T.: Linear Systems. Prentice Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  8. Kuijper, M., Pinto, R., Polderman, J.W.: The predictable degree property and row reducedness for systems over a finite ring. Linear Algebra and its Applications 425, 776–796 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kuijper, M., Pinto, R.: On minimality of convolutional ring encoders (submitted; av), http://arxiv.org/abs/0801.3703

  10. Loeliger, H.-A., Forney Jr., G.D., Mittelholzer, T., Trott, M.D.: Minimality and observability of group systems. Linear Algebra and its Applications 205-206, 937–963 (1994)

    Article  MathSciNet  Google Scholar 

  11. Loeliger, H.-A., Mittelholzer, T.: Convolutional codes over groups. IEEE Trans. Inf. Th. IT-42, 1660–1686 (1996)

    Article  MathSciNet  Google Scholar 

  12. Manganiello, F.: Computation of the weight distribution of CRC codes (2006), http://archiv.org/abs/cs/0607068

  13. Mittelholzer, T.: Minimal encoders for convolutional codes over rings. In: Honory, B., Darnell, M., Farell, P.G. (eds.) Communications Theory and Applications, pp. 30–36. HW Comm. Ltd (1993)

    Google Scholar 

  14. Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over Z 4. IEEE Trans. Inf. Th. 42, 1594–1600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rosenthal, J., Schumacher, J.M., York, E.V.: On behaviors and convolutional codes. IEEE Trans. Inf. Th. 42, 1881–1891 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Appl. Algebra Engrg. Comm. Comput. 10(1), 15–32 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Solé, P., Sison, V.: Quaternary convolutional codes from linear block codes over galois rings. IEEE Trans. Inf. Th. 53, 2267–2270 (2007)

    Article  Google Scholar 

  18. Vazirani, V.V., Saran, H., Rajan, B.S.: An efficient algorithm for constructing minimal trellises for codes over finite abelian groups. IEEE Trans. Inf. Th. 42, 1839–1854 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Willems, J.C.: Models for dynamics. Dynamics Rep. 2, 171–282 (1988)

    MathSciNet  Google Scholar 

  20. Wittenmark, E.: An Encounter with Convolutional Codes over Rings. PhD dissertation, Lund University, Lund, Sweden (1998)

    Google Scholar 

  21. Wittenmark, E.: Minimal trellises for convolutional codes over rings. In: Proceedings 1998 IEEE International Symposium in Information Theory (ISIT 1998), Cambridge, USA, p. 15 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ángela Barbero

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuijper, M., Pinto, R. (2008). Minimal Trellis Construction for Finite Support Convolutional Ring Codes. In: Barbero, Á. (eds) Coding Theory and Applications. Lecture Notes in Computer Science, vol 5228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87448-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87448-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87447-8

  • Online ISBN: 978-3-540-87448-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics