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Abstract. Fault-tolerance protocols play an important role in today
long runtime scientific parallel applications. The probability of a failure
may be important due to the number of unreliable components involved
during an execution. In this paper we present our approach and prelim-
inary results about a new checkpoint/rollback protocol based on a coor-
dinated scheme. One feature of this protocol is that fault recovery only
requires a partial restart of other processes thanks to the availability of
an abstract representation of the execution. Simulations on a domain de-
composition application show that the amount of computations required
to restart and the number of involved processes are reduced compared
to the classical global rollback protocol.
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1 Introduction

Since few years, fault-tolerance has been studied in the context of high-per-
formance parallel applications that makes use of large scale clusters or grids
(i.e. simulation of complex phenomena) [1–6]. Due to the number of unreliable
components involved during the computation, the apparition of faults is not
an exceptional event [7, 8]: the system or the middleware should provide fault-
tolerance protocols in order to mask failures. Moreover, some applications require
an important computation time to complete (like a week running on a thousand
processors [9]). Exclusive reservation of computing resources during such a pe-
riod conflicts with reservation policies aiming at fairness between users on short
periods. In this case, fault-tolerance allows to split a large computation and run
it during many shorter separated reservations [10, 11].

This subject has been well studied in the context of distributed systems
and distributed middlewares [1, 2, 12, 13]. Optimising performance on large scale



architectures becomes a major objective. Recent propositions study the applica-
tions runtime behaviour in order to specialise or extend published protocols [5,
6, 14, 15]. This is the context of our paper.

In our document the specialisation of fault-tolerance protocol is done using
an abstract representation of the execution offering important optimisations at
runtime. We implemented this work in the framework of Kaapi [4, 14, 16], where
the abstract representation of execution was firstly designed to plug scheduling
algorithms independently of applications. In [4, 6], it was shown that this abstract
representation is well suited for defining the local process checkpoint. In this
paper, this abstract representation is used to specialise a fault-tolerance protocol
for long runtime intensive iterative simulation where the communications versus
computing ratio is high.

Experiments carried out in [2, 5] show that coordinated checkpoint/rollback
protocols are efficient up to thousands of processors. In case of fault, all the
processors restart from their most recent checkpoint, even those which did not
failed. The two challenging problems about performances of coordinated check-
point/rollback protocols are:

1. How to speed up processes restart after the occurrence of a fault?
2. How to reduce the amount of computation time loss in case of fault?

In [2, 5] the solution to solve (1) is: each process keeps a local copy of its
checkpoint and sends another copy to either a stable storage [5] or a fixed number
of neighbour processes [2]. Within this approach, all processes except the failed
process, restart from their local copy of the most recent checkpoint.

Our contribution is mainly to propose a solution for (2). Thanks to the
abstract representation of execution of any Kaapi applications, it is possible to
compute the strictly required computation set which is the computation task
set that a processor have to re-execute to resend lost messages to the failed
processor. This optimisation reduces the amount of computation required to
restart the application. Furthermore, if the task set is parallel enough, it can be
scheduled over all the processors to speed up the restart.

The outline of the paper is the following. The next section deals with related
works. Section three presents the improved rollback of our coordinated check-
point/rollback protocol. It begins with an overview of the abstract representation
in Kaapi and the process state definition. Then we present the recovery step
and an analysis of its complexity is sketched. The next section presents a study
case on a domain decomposition application and simulations of its restart. The
conclusion ends the paper.

2 Related works

In this paper we deal with long runtime of parallel applications with a high ratio
communication versus computation. Such kind of applications appear during it-
erative simulation of physical phenomena: for instance molecular dynamics [17],



virtual reality [18]. Parallelisation of such applications uses domain decomposi-
tion method: the simulation domain is splitted into smaller subdomains. During
an iteration, each processor communicates with its neighbours according to sub-
domain relationship.

Fault-tolerance protocols have been classified in three categories [1]: those
based on duplication to introduce redundancy of computations [12, 19]; proto-
cols based on event logging [20] and protocols based on checkpoint/rollback
approach [1, 21].

Protocols based on duplication only tolerate a fixed number of faults and may
consume lots of resources [19]. Since the main criteria for the considered applica-
tions is the performance, and moreover, an interruption during the computation
can be tolerated, they are not selected.

Log-based protocols assume that the state of the system evolves accord-
ing to non-deterministic events. These events are logged in order to rollback
from a previous saved checkpoint [1]. In our case, non-deterministic events are
communications between subdomains which represent a large amount of data.
So these protocols are not selected, they require too many resources (memory,
bandwidth) [3].

Checkpoint/rollback protocols periodically save the local process state of the
applications and have few overhead with respect to the communications. They
come in three forms depending on the way they build a coherent global state for
the application restart [1]. Uncoordinated protocols make no assumption about
the coherency of the global state captured and may be impacted by the domino
effect: in worst case, the application is required to rollback at the beginning [22].
Coordinated protocols are based on global synchronisation to ensure that the set
of local checkpoints forms a coherent global state [21]. Communication-induced
checkpointing protocols [23] are a mix between coordinated and uncoordinated
protocols where forced checkpoints are computed on reception of some messages.

Coordinated checkpoint/rollback protocols have the advantage of having a
low overhead towards application communications [2, 5]. However, they produce
a large communication volume due to the checkpoints size which are sent si-
multaneously to the checkpoints servers. This can be amortised by choosing a
suitable checkpoint period [3] or using incremental checkpoints [24].

3 Improved coordinated checkpoint/rollback protocol

The idea of the Coordinated Checkpointing in Kaapi (CCK) protocol is to build
after fault occurrence, the computations of every processes that are strictly re-
quired to resend messages to the failed processor. Thanks to Kaapi, the amount
of computation to re-execute is less than in classical and improved coordinated
protocols [1, 2, 5] for which all the processors restart from their last checkpoint.

This section presents how to reduce the number of instruction to re-execute
using the execution abstract representation provided by Kaapi. We first describe
the execution model and the abstract representation of Kaapi. Then we deal
with the optimised recovery.



3.1 Execution model and abstract representation

Kaapi1 [16] is a middleware that allows to execute distributed and/or parallel
applications. It offers a high level parallel programming model. The programmer
writes his program describing potential parallelism independently of the target
architecture, using for example the Athapascan [25, 26] programming interface.

With Athapascan, the parallelism is defined with two simple concepts:
shared data and tasks. A shared data is a data in global memory that a task
can produce or consume. A task is an indivisible instruction set that declares
an access mode to a shared data (read or write). With this description, Kaapi
can execute the application according to the precedence constraints which are
dynamically detected.

The set {tasks, shared data, precedence constraints} builds the data flow
graph representing the application execution [26]. A data flow graph is defined
as a directed graph G = (V, E), where V is a finite vertex set (tasks and shared
data) and E is an edge set (precedence constraints) between vertices. This data
flow graph is called the abstract representation of the application. This repre-
sentation is causally connected to the (execution of the) application: any new
execution of an API instruction is reported by the creation of new vertices in
the data flow graph; and any modification in the data flow graph is rendered in
a modification in the application execution. For instance, the data flow graph is
distributed among the processes and the application execution reflects this by
having (generally) speedup in comparison to the sequential execution.

For the application aimed in this paper, we use the following approach, called
static scheduling [11], to execute the data flow graph. First, a pluggable library
like SCOTCH [27] or METIS [28] partitions the data flow graph of one iteration
in N data flow subgraphs where N is the wanted processor number to run on.
For each subgraph, the static scheduling Kaapi engine automatically generates
the tasks for the required communications. Then data flow subgraphs are dis-
tributed over all the processors and they execute their subgraph iteratively. If
no modification of the data flow graph occurs between iterations then subgraphs
are reused without recomputing them.

3.2 Definition of a checkpoint

The application state is represented by the state of all its processes and by the
state of communication channels. Because the communication channels’ state
is not available, the principle of coordinated protocols is the synchronise all
the processes and to flush all in-transit messages in order to checkpoint the
application. Under this condition, the application state is made of the union of
all the process local states [21].

The process state can be save using its abstract representation as a data flow
graph Gi (which is composed of the graph and its input data). Moreover, this
state is independent of the computer executing the process (hardware, operating
system) if it is saved between the execution of two tasks.
1 http://kaapi.gforge.inria.fr



Definition 1. The checkpoint Gi of process Pi is composed of its data flow
graph, i.e. its tasks and their associated inputs. It does not depend on the task
execution state on the processor itself.

Finally, a coherent global state G of the application is the set of all the local
checkpoints Gi which are saved during the same coordination step.

The checkpointing step of CCK protocol implemented in Kaapi is based
on the classical coordinated checkpointing protocol presented in [21] and on
optimisations proposed in [29]. It is fully detailled in [30, 31].

3.3 Recovery after failures

When one or many processes fail during the computation, the role of a check-
point/rollback protocol is to restart the application in a state that could happen
in a normal execution (i.e. without failure). At the failure time, the application
is composed of two kind of processes: failed processes and non-failed processes.
The last checkpoint of all processes is available and all these checkpoints form
a coherent global state of the application before the failure. Furthermore, the
current state of the non-failed processes is known.

In the case of the classical rollback protocol [21], all processes would restart
from their last checkpoint (failed processors are replaced using spare processors).
However, all computations performed on all the processes since the last check-
point step are lost. This waste can be important specially when a large processor
number is used.

The CCK rollback protocol try to reduce this waste. The substituting pro-
cesses that replace failed processes have to restart from the last checkpoint
because the failure made failed processes loose their current state. As for the
non-failed processes, they keep their ongoing computation. Because the global
state made of the states of substituting processes and non-failed processes is not
coherent, the computation can’t continue from this state. Analysing the execu-
tion abstract representation as a data flow graph allow us to identify, among the
last checkpoint of non-failed processes, the strictly required computation set that
need to be re-executed so as to guarantee that this global state is coherent.

Definition 2. The strictly required computation set for a process Pi with
respect to a process Pk is the minimal task set stored in the previous checkpoint
of Pi which have already been executed on Pi and which produce, directly or
indirectly, a data that will be send to Pk.

The distributed algorithm that determines the strictly required computation
set to re-execute is detailed in [31]. This algorithm computes the task set which
produces data that will be send to failed processes by analysing the data flow
graph stored in the previous checkpoint of each process. The demonstration that
all lost messages is re-send is based on the properties of Kaapi execution model
and data flow graph’s. The coordination flushes all in-transit messages which
imply that the set of local checkpoints is a coherent global state; so if a failed
process Pfailed should have received a message from process Pi, then there is a
task in Pi that will produce the data consumed by task in Pfailed.



3.4 Complexity analysis

In this section we analyse the execution complexity with a fault in comparison
to the complexity of classical coordinated checkpoint protocol [21] that restart
all processes when one is faulty.

The worst case for our protocol is the case where the strictly required com-
putation set of Pi with respect to Pfailed contains all executed tasks on Pi. If it
is true for all processes Pi, then our protocol’s complexity is the traditional pro-
tocols’ complexity plus the complexity to analyse the data flow graph in order
to compute the strictly required computation set. This latter complexity corre-
sponds to the computation of transitive closures on the graphs, which is linear
with respect to the task number in the data flow graph to analyse because they
are acyclic and directed [32].

Nevertheless, for the considered class of parallel applications, our algorithm’s
complexity is lesser than the classical coordinated protocol on two points:

1. The number of involved processes in the restart of Pfailed is less that the
total number of processes that have to restart for the classical protocol.
Moreover, this number may be a constant.

2. The task number in the strictly required computation set is generally less
than the executed tasks.

The point 1 is due to the fact that the knowledge of the data flow graph
permits to know the communications between processes. The point 2 is due
to the nature of the dependencies on some applications, especially in domain
decomposition applications that exhibit good locality of (remote) data accesses
because most of the computations use data from the process itself, only a few
computations require data from other processes. These processes are bordering
processes (according to subdomain relationship) and are in constant number.

4 Simulations

In this section we present simulations of the recovery step of CCK after one pro-
cess failed. We consider an application that solves the Poisson problem on a large
domain to study gains with a large processor number. The application uses the
Jacobi method on a three dimensional domain. The size of the domain is 2, 0483

(64 GB) split in 643 subdomains of 32 KB size. For each computation iteration,
a subdomain update corresponds to one computation task. The execution of this
task requires the neighbour subdomains. On a reference computer (Bi-Opteron
2 GHz CPU with a 2 GB memory), the execution of one computation task lasts
10 ms.

4.1 Checkpoint period influence

For this simulation, the 643 submains are distributed on 1,024 processors, so
there are 256 subdomains (64 MB) for each process. In this case, the execution
of one iteration (i.e. the update of all the subdomains) last about 2.5 seconds.
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Fig. 1. Proportion in the worst case of tasks to re-execute and of involved processes
for CCK restart with respect to the classical protocol

The figure 1 shows the proportion, with respect to the classical protocol, of
tasks to re-execute and of involved processes for the CCK restart in relation
to the checkpoint period. The curve shows the worst case values, i.e. when the
failure happens just before the next checkpoint. With a 60-second period, less
than 30 % of the processes are involved and only 6 % of the tasks have to be
re-executed with respect to the classical protocol.

In order to reduce the restart time, the task set to re-execute can be dis-
tributed on all the processors. In this case, the estimated restart time is 3.6
seconds for CCK instead of 60 seconds for the global restart of the classical pro-
tocol. To this time, we have to add the time to identify and to distribute the
strictly required task set. These will be evaluated in future experimentations.

4.2 Processor number influence

The two next simulations show the processor number influence on the CCK
restart. The figure 2 shows the proportion of tasks to re-execute in comparison
with the global restart for many checkpoint periods. On the figure 3 is the number
of involved processes. For the scenario application run on 8,192 processors, a 10-
seconds checkpoint period gives less than 10 % of tasks to re-execute and less
than 2,500 involved processes (over 8,192).

Between two checkpoints, the amount of computation and the iteration num-
ber increase proportionally with the processor number. When the processor num-
ber increases, the proportion of tasks to re-execute and the number of involved
processes also increase because the application graph is bigger and holds more
dependencies. To preserve the protocol performances, it is required to decrease
the checkpoint period when the processor number increases. Moreover, it guar-
antee that in case of failure, the lost computation will not be too big [3].
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Fig. 2. Proportion of tasks to re-execute with CCK restart with respect to the classical
protocol for many checkpoint periods in relation to the process number
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Fig. 3. Number of involved processes with CCK restart with respect to the classical
protocol for many checkpoint periods in relation to the process number

5 Conclusion

In this paper we presented the CCK protocol, an improved coordinated check-
point/rollback protocol for parallel applications. Our work originality comes from
the abstract representation provided by the Kaapi library for any applications’
parallel execution. The main contribution is to show how to improve classical
coordinated checkpoint protocol by using a better knowledge of the application
and especially about the dependencies between processes due to communications.
We improved the application restart after failure: 1/ the number of processes in-
volved in the restart is smaller; 2/ the restart time for this partial restart is
shorter. This work is still in progress, additional evaluations and experiments at
grid scale are planned. The final purpose is to provide a framework that adapts
dynamically to available resources [11] using the CCK fault-tolerance protocol.
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