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On the Almighty Wand?

Rémi Brochenin & Stéphane Demri & Etienne Lozes

LSV, ENS Cachan, CNRS, INRIA Saclay, France

Abstract. We investigate decidability, complexity and expressive power issues
for (first-order) separation logic with one record field (herein called SL) and its
fragments. SL can specify properties about the memory heap of programs with
singly-linked lists. Separation logic with two record fields is known to be unde-
cidable by reduction of finite satisfiability for classical predicate logic with one
binary relation. Surprisingly, we show that second-order logic is as expressive
as SL and as a by-product we get undecidability of SL. This is refined by show-
ing that SL without the separating conjunction is as expressive as SL, whence
undecidable too. As a consequence of this deep result, in SL the magic wand
can simulate the separating conjunction. By contrast, we establish that SL with-
out the magic wand is decidable with non-elementary complexity by reduction
from satisfiability for the first-order theory over finite words. Equivalence be-
tween second-order logic and separation logic extends to the case with more than
one selector.

1 Introduction

Separation logic. Programming languages with pointer variables have seldom mecha-
nisms to detect errors. An inappropriate management of memory is the source of nu-
merous security holes. Prominent logics for analysing such pointer programs include
separation logic [Rey02], pointer assertion logic PAL [JJKS97], TVLA [LAS00], alias
logic [BIL04], BI (Bunched Implication) [IO01] and LRP (logic of reachable pat-
terns) [YRS+05] to quote a few examples. Separation logic is an assertion language
used in Hoare-like proof systems [Rey02] that are dedicated to verify programs manip-
ulating heaps. Any procedure mechanizing the proof search requires subroutines that
check satisfiability of formulae from the assertion language. The main concern of the
paper is to analyze the expressive power of the assertion language and its decidability
status. Recall that separation logic contains a structural separation connective and its
adjoint (the separating implication −−∗, also known as the magic wand). Concise and
modular proofs can be derived using these connectives, since they can express prop-
erties such as non-aliasing and disjoint concurrency. In this perspective, the models
of separation logic are pairs made of a store (variable valuation) and a memory heap
(partial function with finite domain) that are understood as memory states.

The decidability of the satisfiability problem for separation logic has been inten-
sively studied so far: first-order separation logic with at least two selectors (record
fields) is known to be undecidable [CYO01b] by reduction of finite satisfiability for
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classical predicate logic with one binary relation [Tra50] (even with no separating con-
nectives). Decidable fragments have been introduced and investigated, see e.g. [BCO04];
such fragments involve some specialized predicates for lists or trees, and some restric-
tions on first-order quantification. The complexity of various quantifier-free fragments
has also been characterized in the past, see e.g. [CYO01b,CYO01a,Rey02,BDL07].
As far as the expressive power is concerned, propositional separation logic can be
naturally reduced to propositional calculus or to a fragment to Presburger arithmetic,
see [Loz04,CGH05]. On several spatial logics, the adjunct elimination property holds
in the absence of first-order quantification, but does not extend to the first-order case,
see e.g. [DGG04,Loz05]. To summarize, all the proof techniques used in these works do
not adapt to first-order separation logic over the class of models with only one selector,
for which both decidability status and the characterization of expressiveness are open.
Our motivations. A long-standing question about separation logic is how it compares
with second-order logic. This is a very natural question since separating conjunction and
its adjoint are essentially second-order connectives (see also a similar concern on graphs
with spatial logics [DGG07]). Moreover, many properties on heaps require second-
order logic, for instance to express recursive predicates, or lists and trees properties. In
a sense, being able to distinguish the expressive power of these two logical formalisms
would justify the use of separation logic. An attempt to make such a comparison can be
found in [KR04] but the models are quite different from those considered herein (rela-
tional structures with no constraint on the finiteness of the domain of relations). In this
paper, our aim is to investigate decidability, complexity and expressive power issues for
first-order separation logic with one selector (record field) and its fragments when the
models are the standard memory states.
Our contributions. We show that first-order separation logic with one selector (called
herein SL) is as expressive as second-order logic over the class of memory states. As
a by product, we get that even in presence of a unique selector, 1) first-order separa-
tion logic is undecidable (solving an open problem stated in [GM08]), 2) it may ex-
press heap properties involving several selectors (passing via second-order logic). This
is refined by showing that SL without the separating conjunction is as expressive as
SL, whence undecidable too. Our proof also shows that the two formalisms have the
same conciseness modulo logspace translations. As a consequence of this deep result,
in SL the magic wand can simulate the separating conjunction. So, the magic wand
is very powerful, which is interesting because very often this connective, that is not
very natural we admit, is excluded from studied fragments of separation logic. Equiv-
alence between second-order logic and separation logic extends to the case with more
than one selector by simple adaptation of the one selector case. By contrast, in [KR04],
the separating conjunction is sufficient to capture second-order logic but on a different
class of models. We also establish that SL without the magic wand is decidable with
non-elementary complexity by reduction from satisfiability for the first-order theory
over finite words [Sto74] (this result holds already with three variables). Decidability is
shown by reduction into weak monadic second-order theory of one unary function that
is shown decidable in [Rab69]. It is worth noting that even though the first-order theory
of one unary function is known to be not elementary recursive [BGG97], we cannot
take advantage of this result since in our models the domain of the unary function is



necessarily finite and finiteness cannot be expressed in most first-order dialects. As a
by-product, we obtain that the entailment problem considered in [BCO04] for a frag-
ment of separation logic with one selector is decidable.
Related work. As seen previously, heap properties are formalized in various logical lan-
guages [JJKS97,LAS00,Rey02,BIL04,YRS+05] and separation logic is just one promi-
nent of these logics. Verification methods and logics for verifying programs with singly-
linked lists can be found for instance in [BCO04,BHMV05,RZ06]. From another per-
spective, the relationships between logics on graphs with separating features and second-
order logic can be found in [DGG07]. Finally, we would like to mention that sabotage
modal logics (SML), see e.g. in [LR03], have also the ability to modify the model under
evaluation. So far, we are not aware of any work relating separation logic and SML.

Omitted proofs can be found in [BDL08].

2 Preliminaries

In this section, we recall the definition of first-order separation logic with one selector
(called herein SL) and second-order logic (SO) over the same class of structures. We
introduce a formal notion of expressiveness, provide examples of properties that can be
expressed in SL and present a straightforward encoding of SL into a fragment of SO.

2.1 Separation logic and second-order logic

Memory states. Memory states are models for all the logical formalisms we consider
herein. They represent the states of the memory for programs manipulating lists. Let
Loc be a countably infinite set of locations ranged over with l, l′, . . . that represents
the set of addresses. A memory state is composed of a pair made of a store and a heap.
Let Var be a countably infinite set of (first-order) variables x, y, z, . . . . A memory state
(also called a model in the rest of the document) is a pair (s, h) such that

– s is a variable valuation of the form s : Var→Loc (store),
– h is a partial function h : Loc ⇀ Loc with finite domain (heap). We write dom(h)

to denote its domain and ran(h) to denote its range.

Given a finite set X of variables (for instance occurring in a given formula), we can as-
sume that a model is finite by restricting the domain of the store to X . The variables in
Var can be viewed as programming variables, the domain of h as the set of addresses of
allocated cells, and h(l) as the value held by the cell at the address l. Two heaps h1, h2

are said to be disjoint, noted h1⊥h2, if their domains are disjoint; when this holds, we
write h1 ∗ h2 to denote the disjoint union h1 ] h2. Given a memory state (s, h) and a
location l we write ]̃l to denote the cardinal of the set {l′ ∈ Loc : h(l′) = l} (number
of predecessors of the location l in (s, h)). A location l′ is a descendant of l if there is
n ≥ 0 such that hn(l) = l′ (hn(l) is not always defined).
Formulae in SL and SO. Formulae of first-order separation logic with one selector SL
are defined by the grammar φ := ¬φ |φ ∧ φ | ∃x.φ | x ↪→ y | x = y |φ ∗ φ |φ −−∗ φ.
The connective ∗ is called separating conjunction whereas the adjoint operator −−∗ is



usually called the magic wand. We will make use of standard notations for the de-
rived connectives ∀,∨,⇒,⇔... We also introduce a slight variant of the dual connec-
tive for the magic wand, also called the septraction: φ −−∗¬ ψ is defined as the formula
¬((φ) −−∗ (¬(ψ))). We write FV(φ) to denote the set of free variables occurring in φ
and SL(∗) [resp. SL(−−∗)] to denote the restriction of SL without the magic wand [resp.
the separating conjunction].

In order to define formulae in SO, we consider a family VAR = (VARi)i≥0 of second-
order variables, denoted by P, Q, R, . . . that will be interpreted as finite relations over
Loc (= Val = N). Each variable in VARi is interpreted as an i-ary relation. An environ-
ment E is an interpretation of the second-order variables such that for every P ∈ VARi,
E(P) is a finite subset of Loci. Since we require finiteness of models, the version of
second-order logics we shall consider is usually called weak.

Formulae of (weak) second-order logic SO are defined by the grammar φ := ¬φ |φ∧
φ | ∃x.φ | x ↪→ y | x = y | ∃P.φ | Q(x1, . . . , xn), where P, Q are second-order variables
and Q ∈ VARn. We write MSO [resp. DSO] to denote the restriction of SO to second-order
variables in VAR1 [resp. VAR2]. As usual, a sentence is defined as a formula with no free
occurrence of second-order variables.
Satisfaction relations for SL and SO. The logics SL and SO share the same class of
models, namely the set of memory states. The satisfaction relation for SO is defined
below with argument an environment E (below P ∈ VARn).

(s, h), E |= ∃P. φ iff there is a finite subsetR of Locn,
such that (s, h), E [P 7→ R] |= φ

(s, h), E |= P(x1, · · · , xn)
iff (s(x1), . . . , s(xn)) ∈ E(P)

(s, h), E |= ¬φ iff not (s, h), E |= φ
(s, h), E |= φ ∧ ψ iff (s, h), E |= φ and (s, h), E |= ψ
(s, h), E |= ∃x. φ iff there is l ∈ Loc such that (s[x 7→ l], h), E |= φ
(s, h), E |= x ↪→ y iff h(s(x)) = s(y)
(s, h), E |= x = y iff s(x) = s(y)

As usual, when φ is a sentence, we write (s, h) |= φ to denote (s, h), E |= φ for
any environment E since E has no influence on the satisfaction of φ. The satisfaction
relation for SL is defined without any environment (or equivalently with no influence of
the environment) whereas the clauses that are specific to SL are the following ones:

(s, h) |= φ1 ∗ φ2 iff there are two heaps h1, h2

such that h = h1 ∗ h2 and (s, hi) |= φi (i = 1, 2)
(s, h) |= φ1 −−∗ φ2 iff for all heaps h′⊥h,

if (s, h′) |= φ1 then (s, h′ ∗ h) |= φ2.

So, (s, h) |= φ1 −−∗¬ φ2 iff there is h′ ⊥ h such that (s, h′) |= φ1 and (s, h ∗ h′) |= φ2.
Validity and satisfiability problems are defined in the usual way. The connective −−∗ is
the adjunct of ∗, meaning that (φ ∗ ψ)⇒ ϕ is valid iff φ⇒ (ψ −−∗ ϕ) is valid. Observe
that ∗ and−−∗ are not interdefinable since typically the formula ((φ ∗ψ)⇒ ϕ)⇔ (φ⇒
(ψ −−∗ ϕ)) is not valid. This shall be strengthened in the sequel by establishing that
SL(∗) is decidable whereas SL(−−∗) is not.



Let F and F′ be two fragments of SL or SO. We say that F′ is at least as expressive
as F (written F v F′) whenever for every sentence φ ∈ F, there is φ′ ∈ F′ such that
for every model (s, h), we have (s, h) |= φ iff (s, h) |= φ′. We write F ≡ F′ if F v F′

and F′ v F. A translation from F to F′ is a computable function t : F → F′ such that
for every sentence φ ∈ F, for every model (s, h), we have (s, h) |= φ iff (s, h) |= t(φ).
Arithmetical constraints. Observe that SL does not contain explicitly arithmetical con-
straints as in [KR03,MBCC07,BIP08]. However, in Section 4 we show how to compare
number of predecessors. Similar developments can be performed to compare lengths of
lists but this will come as a corollary of the equivalence between SL and SO.
Another model with data. A more realistic approach to model lists consists in consid-
ering two selectors. However, SL behaves as separation logic with two selectors for
which one selector is never used. Indeed, we already know that an unrestricted use
of the two selectors leads to undecidability. In the paper, we show that even SL sat-
isfiability/validity is already undecidable. It is open how to refer to data values while
preserving the decidable results for SL fragments. Possible directions consist either in
imposing syntactic restrictions (like the guarded fragment for classical predicate logic)
or in forbidding a direct access to data values but allowing predicates of the form “there
is a list from x to y with increasing data values” for instance.
More than one selector. It is easy to extend the above definitions to the case with k ≥ 1
selectors that is also used in the literature. A heap h becomes then a partial function
h : Loc ⇀ Lock with finite domain and atomic formulae of the form x ↪→ y are re-
placed by x ↪→ y1, . . . , yk. We write kSL [resp. kSO] to denote the variant of SL [resp.
SO] with k selectors. Obviously 1SL [resp. 1SO] corresponds to SL [resp. SO]. We write
kSOk

′
to denote the restriction of kSO to second-order variables in VARk

′
.

2.2 A selection of properties

We present below a series of properties that can be expressed in SL(∗).

– The value of x is in the domain of the heap: alloc (x) , ∃y.x ↪→ y.
– The domain of the heap is restricted to the value of x, and maps it to that of y:
x 7→ y , x ↪→ y ∧ ¬∃y.y 6= x ∧ alloc (y).

– The domain of the heap is empty: emp , ¬∃x.alloc (x).

Predecessors and special nodes. A predecessor of the variable x in the model (s, h) is
a location l such that h(l) = s(x). There are formulae in SL(∗), namely ]x ≥ n and
]x = n, such that ]x ≥ n [resp. ]x = n] holds true exactly in models such that x
has more than n predecessors [resp. exactly n predecessors]. For instance, ]x ≥ n can
defined in the following ways:

n times︷ ︸︸ ︷
(∃y. y ↪→ x) ∗ · · · ∗ (∃y. y ↪→ x) ∗> or ∃x1, . . . , xn.

∧
i 6=j

xi 6= xj ∧
n∧
i=1

xi ↪→ x

We define an extremity as a location l in a model such that l has at least one predecessor
and no predecessor of l has a precedessor. The following formula states that s(x) is an
extremity: extr(x) , (¬∃y. y ↪→ x ∧ ∃z.z ↪→ y) ∧ ∃y. y ↪→ x.



Reachability and list predicates Reachability in a graph is a standard property that can
be expressed in monadic second-order logic. In separation logic, very often a built-in
predicate for lists is added, sometimes noted ls(x, y). Adapting some technique used in
the graph logics [DGG07], we show below how this very predicate can be expressed in
SL(∗) as well as the reachability predicate x→∗y.

A cyclic list in a model (s, h) is a non-empty finite sequence l1, . . . , ln (n ≥ 1)
of locations such that h(ln) = l1 and for every i ∈ {1, . . . , n − 1}, h(li) = li+1. A
model (s, h) is a list segment between x and y if there are locations l1, . . . , ln (n ≥ 2)
such that s(x) = l1, s(y) = ln, l1 6= ln, dom(h) = {l1, . . . , ln−1}, and for every
i ∈ {1, . . . , n− 1}, h(li) = li+1. Consider the formula below

x
	−→

+
y , ]x = 0 ∧ alloc (x) ∧ ]y = 1 ∧ ¬alloc (y)

∧∀z. z 6= y⇒ (]z = 1⇒ alloc (z)) ∧ ∀z. ]z ≤ 1

Lemma 1. Let (s, h) be a model. (s, h) |= x
	−→

+
y iff h is undefined for s(y) and

there are unique heaps h1, h2 such that h1 ∗ h2 = h, (s, h1) is a list segment between
x and y and (s, h2) can be decomposed uniquely as a set of cyclic lists.

We introduce additional formulae: ls(x, y) , x
	−→

+
y ∧ ¬(x 	−→

+
y ∗ ¬emp),

x →+ y , > ∗ ls(x, y) and x→∗y , x = y ∨ x →+ y. They express the properties
below.

Lemma 2. Let (s, h) be a model. (I) (s, h) |= ls(x, y) iff (s, h) is a list segment between
x and y. (II) (s, h) |= x→∗y [resp. (s, h) |= x→+y ] iff y is a descendant [resp. strict
descendant] of x.

2.3 Preliminary translations

Before showing advanced results in the forthcoming sections, we show below how SL
can be encoded into SO by simply mimicking the original semantics and how SO can be
encoded in its fragment DSO by representing multiedges by finite sets of edges.

Proposition 3. SL v SO ≡ DSO via logspace translations.

Sections 4 and 5 are devoted to prove that DSO v SL(−−∗). We will obtain that
SL(−−∗), SL, DSO and SO have the same expressive power (via logspace translations).
Consequently, this implies undecidability of the validity problem for any of these logics
by the undecidability of classical predicate logic with one binary relation [Tra50]. By
contrast, we prove below that SL(∗) is decidable.

3 On the complexity of SL(∗)

In this section, we show that SL(∗) satisfiability is decidable but with non-elementary
recursive complexity (by reduction from first-order theory over finite words).

Lemma 4. MSO satisfiability is decidable.



The proof is based on [Rab69,BGG97]. Using a technique similar to the proof of
Lemma 4, we can translate SL(∗) into MSO.

Proposition 5. SL(∗) v MSO via a logspace translation.

We conjecture that MSO is strictly more expressive than SL(∗), see the related pa-
per [Mar06].

Corollary 6. SL(∗) satisfiability is decidable.

In order to show that satisfiability in SL(∗) is not elementary recursive, we explain
below how to encode finite words as memory states. Let Σ = {a1, . . . , an} be a finite
alphabet. A finite word w = ai1 · ai2 · · · aim is usually represented as the first-order
structure ({1, . . . ,m}, <, (Pa)a∈Σ) where Pa is the set of positions labelled by the letter
a. Similarly, the word w can be represented as a memory state (sw, hw) in which

– xbeg→+xend for which xbeg and xend are distinguished variables marking respec-
tively, the beginning and the end of the encoding of w,

– the list segment induced from the satisfaction of xbeg→+xend has exactlym+2 lo-
cations, and any location l of position j ∈ {2, . . . ,m+1} in the list segment (hence
excluding sw(xbeg) and sw(xend)) has exactly ij predecessors. Since sw(xbeg) and
sw(xend) do not encode any position in w, there is no constraint on them.

Similarly, any memory state (s, h) containing a list segment between xbeg and xend and
such that any location on the list segment that is different from s(xbeg) and s(xend) has
at most |Σ | predecessors corresponds to a unique finite word with the above encoding.
In this direction, the memory state may contain other dummy locations but they are
irrelevant for the representation of the finite word. Moreover, a memory state can encode
only one word since xbeg and xend are end-markers.

Proposition 7. SL(∗) is not elementary recursive (even its restriction with 5 variables).

The proof uses the predicate x→+y from Section 2.2. As a corollary, we obtain an
alternative decidability proof of the entailment problem for the fragment of SL consid-
ered in [BCO04]. We have established decidability for a fragment of SL larger than the
one considered in [BCO04] (for which the entailment problem is shown in coNP) but of
higher complexity.

It is probable that the number of variables can be reduced further while preserving
non-elementarity, but it is not very essential at this point, for instance by identifying the
limits of the words by patterns (see e.g. Section 4) instead of distinguished variables.

4 Advanced arithmetic constraints

In this section, we show how SL(−−∗) can express properties of the form ]̃x 1 ]̃y + c

for any c ∈ N and for any relation 1∈ {=,≥,≤} where ]̃x denotes the number of
predecessors of s(x) in a model. Note that ]̃x 1 c can be easily expressed in SL(−−∗),
even without magic wand. By contrast, expressing a constraint ]̃x 1 ]̃y+ c is natural in



Figure 1 Some examples of markers, marked locations, and possible aliasing.

x y ... ...

c times(a) (b) (c) (d) (e)

second-order logic. We show below that this can be done also in SL(−−∗). In the sequel,
we assume that the current model is denoted by (s, h).

A marker in a model (s, h) is a specific pattern in the memory heap that we will
intensively use. Formally, a [resp. strict] marker in (s, h) is a sequence of distinct lo-
cations l, l0, . . . , ln for some n ≥ 0 such that (a) h(l0) = l [resp. and dom(h) =
{l0, . . . , ln}], (b) for i ∈ {1, . . . , n}, h(li) = l0 and ]̃li = 0 and (c) ]̃l0 = n. We say
that this marker is of degree n with endpoint l. Markers should be thought graphically.
Figure 1(a) represents a marker of degree 2 with endpoint s(y).

A model (s, h) is said to be k-marked whenever there is no location in dom(h)
that does not belong to a marker of degree k. Moreover it is strictly k-marked when
no distinct markers share the same endpoint. A model (s, h) is segmented whenever
dom(h) ∩ ran(h) = ∅ and no location has strictly more than one predecessor. Finally,
(s, h) is drown when no location has one or two predecessors. The lemma below states
that many properties involving these notions can be expressed in SL(−−∗).

Lemma 8. There are formulae drown, seg, preM2(x) and (one | two[c]) (c ≥ 0) in SL
with no separating connectives such that for every model (s, h)

(I) (s, h) |= drown iff (s, h) is drown, (II) (s, h) |= seg iff (s, h) is segmented,
(III) (s, h) |= preM2(x) iff the predecessors of s(x) are endpoints of markers of degree

2,
(IV) (s, h) |= (one | two[c]) iff there are h1, h2 such that h = h1 ∗ h2, (s, h1) is 1-

marked and (s, h2) is strictly 2-marked with exactly c distinct 2-markers.

Figure 1(e) contains a model satisfying (one | two[c]) whereas Figure 1(d) presents
a location s(x) satisfying preM2(x). The above formulae allow to insert in a drown
model markers of degree strictly less than 3 and still to safely identify them as markers
in the new model. Actually, any location with less than 2 predecessors will necessarily
be part of a newly introduced marker. We will assume for now that we are working
with a drown model, and later reduce the general case to this one. Observe also if h1 is
segmented and h2 contains 1-markers, we can obtain 2-markers in h1 ∗ h2.

We say that two heaps h1, h2 are completely disjoint if (dom(h1) ∪ ran(h1)) ∩
(dom(h2) ∪ ran(h2)) = ∅. Now assume that h1 is segmented with | dom(h1) | = n,
h2 is drown and, h1 and h2 are completely disjoint. Then, there is a 1-marked heap h′1
such that all the predecessors of s(x) are endpoints of 2-markers iff ]̃x ≤ n (in h2).
If we have the possibility to add to h′1 a strict 2-marked heap with exactly c distinct
2-markers then all the predecessors of s(x) are endpoints of 2-markers iff ]̃x ≤ c + n.
This is formalized below.



Lemma 9. Let s be a store and h1, h2 be two completely disjoint heaps such that
(s, h1) � drown ∧ ]x = i and (s, h2) � seg ∧ ]x = 0. Then, (i) (s, h1 ∗ h2) |=
(one | two[c]) −−∗¬ preM2(x) iff (ii) | dom(h2) | ≥ (i− c).

So we may test that the number of extra arrows that satisfy seg is less than ]̃x. Call n
the number of these extra arrows, then this scenario says ]̃x − c ≤ n. Now, in order
to express properties of the form ]̃x 1 ]̃y + c, it is sufficient to express properties of
the form ]̃x + c ≤ ]̃y + c′ (c, c′ ∈ N) thanks to Boolean connectives. Note moreover
that this constraint is equivalent to: for all n ∈ N, ]̃y − c ≤ n implies ]̃x − c′ ≤ n.
This suggests a contest between two players: Spoiler that aims at disproving that the
constraint holds, and Duplicator tries to prove it. The contest is the following:

1. Spoiler reduces to the case of a drown model - this will be formalized later.
2. Spoiler picks a segmented heap h′ with | dom(h′) | = n.
3. He proves that ]̃y− c ≤ n using the previous scenario.
4. Then Duplicator must prove ]̃x− c′ ≤ n playing with the same scenario.

Figure 2 summarizes a contest with a successful outcome for Duplicator.

Figure 2 A contest won by Duplicator. n = 3, c = c′ = 0

x y x y

x y

x yx y

1 2

3 4

Let ϕTD be the formula that specifies that if a model is not drown then it is only
due to the fact that it contains a segmented subheap that is not drown:

(∀x, y. (x ↪→ y ∧ ]y = 1)⇒ (]x = 0 ∧ ¬alloc (y))) ∧ (¬(∃x. ]x = 2))

The formula contest(x, y, c, c′) defines a contest (essential to establish Theorem 10).

drown∧((seg∧]x = 0∧]y = 0) −−∗ ϕT D ⇒ (((one | two[c]) −−∗¬ preM
2
(y)) ⇒ ((one | two[c]) −−∗¬ preM

2
(x))).

Theorem 10. For c, c′ ≥ 0, there is a formula φ in SL(−−∗) of quadratic size in c + c′

such that for every model (s, h), we have (s, h) |= φ iff ]̃x + c ≤ ]̃y + c′.



The proof contains a simple case analysis depending whether the model can be trans-
formed into a drown one (in order to use contest(x, y, c, c′)) without altering the num-
ber of precedessors for s(x) and s(y). In Section 5, constraints ]̃x + c ≤ ]̃y + c′ with
c, c′ ≤ 3 shall be used.

5 SL(−−∗) is equivalent to SO

By Proposition 3, we know that SL v DSO and there is a logspace translation from SL
into DSO (logspace reductions are closed under compositions). Now, we show the con-
verse. In the sequel, without any loss of generality we require that the sentences in DSO
satisfy the Barendregt convention as far as the second-order variables are concerned.
Assuming that a sentence contains the second-order variables P1, . . . , Pn, quantifica-
tions over Pi can only occur in the scope of quantifications over P1, . . . , Pi−1 (we call
this restriction the extended Barendregt convention). Typically, we exclude sentences of
the form ∃P2 ∃P1 φ. Observe that any sentence in DSO can be transformed in logspace
into an equivalent sentence verifying this convention. The quantifier depth of the occur-
rence of a subformula ψ in φ is therefore the maximal i such that this occurrence is in
the scope of ∃Pi (by convention it is zero if it is not in the scope of any quantification).

Before defining the translation of a DSO sentence φ (with second-order variables
P1, . . . , Pn), let us explain how environments can be encoded in SL which is the key
point to simulate second-order quantification. An environment is encoded as part of the
memory heap with a specific shape. The interpretation of each variable Pi is performed
as follows. A pair (l, l′) is in the interpretation of Pi iff there are markers with respec-
tive endpoint l and l′ whose degrees are consecutive values strictly between some fixed
values ]̃zmi and ]̃zMi . Here, the distinguished variables zmi and zMi are interpreted as
locations that are not in the domain of the original memory heap. In order to avoid con-
fusions between the original memory heap and the part that is dedicated to the encoding
of the environment, ]̃zmi is strictly greater than the degree of any location in the original
memory heap. In other words, instead of making the original model drown and using
small markers, the model is unchanged and large markers are used.

The translation of the formula φ, written T (φ), is defined with the help of the trans-
lation tj where j records the quantifier depth.

T (φ) , ∃zm
0 z

M
0 . isol(z

M
0 ) ∧ isol(z

m
0 )∧

[((∀x. alloc (x) ⇒ (x ↪→ z
M
0 ∨ x ↪→ z

m
0 ∨ x = z

M
0 ∨ x = z

m
0 )) ∧ alloc (z

M
0 ) ∧ alloc (z

m
0 )) −−∗¬

(∀x.x 6= z
M
0 ∧ x 6= z

m
0 ⇒ (]z

m
0 > 2 + ]x)) ∧ (]z

M
0 = 2 + ]z

m
0 ) ∧ extr(z

m
0 ) ∧ extr(z

M
0 ) ∧ t0(φ))]

The formula isol(x) is an abbreviation for ¬∃y. (x ↪→ y)∨ (y ↪→ x). Any location
with number of predecessors greater than ]̃zM0 is useful to encode a pair of locations
for the interpretation of some second-order variable (except the interpretation of distin-
guished variables of the form either zmi or zMi ). The translation of the atomic formula
Pj(x, y) in the scope of the quantifications over P1, . . . , Pi (j ≤ i) is defined below:

ti(Pj(x, y)) , ∃z, z′ (z ↪→ x)∧ (z
′
↪→ y)∧ (]z > ]z

m
j )∧ (]z < ]z

M
j )∧ (]z

′
= 1+]z)∧ extr(z)∧ extr(z

′
)



So (s(x), s(y)) belongs to the interpretation of Pj when s(x) and s(y) are endpoints

of markers with consecutive degrees between ]̃zmj and ]̃zMj . However, in order to avoid
interferences between the encoding of the environment and the original memory heap,
we require that the new memory heap satisfies structural properties described below.

Proposition 11. There is a formula envir(z, z′) such that (s, h) |= envir iff ]̃z < ]̃z′,
]̃z ≡ ]̃z′ + 2 [3] and for all i in []̃z, . . . , ]̃z′],

– if i ≡ ]̃z + 1 [3] then there is no extremity l in (s, h) such that ]̃l = i,
– if i 6≡ ]̃z + 1 [3] then there is exactly one location l such that l is an extremity and
]̃l = i. This unique location l belongs to dom(h).

An i-well-formed model, defined below, can be divided into two disjoint parts such
that one part encodes the interpretation of the second-order variables P1, . . . , Pi.

Definition 12. A memory state (s, h) is i-well-formed for some i ≥ 0 iff there are
heaps h1, h2 with h = h1 ∗ h2 satisfying the properties below:

(I) for every variable x in {zm1 , . . . , zmi } ∪ {zM0 , . . . , zMi−1}, s(x) is an extremity in

(s, h) and ]̃zm0 < ]̃x < ]̃zMi ,

(II) when i ≥ j > 0, ]̃zMj−1 + 1 = ]̃zmj ,

(III) there is no location l such that ]̃l in (s, h1) is strictly greater than ]̃zm0 − 2 in
(s, h),

(IV) if l ∈ dom(h2) then there is l′ ∈ {l, h2(l)} such that l′ is an extremity in h2,
(V) any extremity l in the model (s, h2) satisfies (1) l 6∈ ran(h1), (2) l is an extremity

in (s, h), (3) ]̃zm0 ≤ ]̃l ≤ ]̃zMi and (4) h(l) /∈ dom(h2).
(VI) (s, h2) |= envir(zm0 , z

M
i ).

(s, h1) is called the base part and (s, h2) the environment part.

Note that in any such decomposition, we have dom(h2) ∩ ran(h1) = ∅. Moreover,
any extremity in h with more than ]̃zm0 predecessors has all predecessors in dom(h2).
The above decomposition is indeed unique.

Lemma 13. Whenever (s, h) is i-well-formed with base part h1 and environment part
h2, there is no (h′1, h

′
2) 6= (h1, h2) such that (s, h) is i-well-formed with base part h′1

and environment part h′2.

The spectrum of an i-well-formed memory state is defined as the set of numbers of
predecessors in the environment part that are greater than 3. Hence such a spectrum has
the following shape • ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦• corresponding
to a finite sequence of successive integers where • indicates the presence of the integer
and ◦ its absence. The smallest value is ]̃zm0 and the greatest value is ]̃zMi . Two consec-
utive values in the sequence encode one pair from the interpretation of a second-order
variable. Observe that the concatenation of two spectra is still a spectrum. The formula
relationi,X defined below states that part of the memory is 0-well-formed and can
serve to encode the interpretation of the variable Pi.



Proposition 14. Given i ≥ 0 and X a finite set of variables disjoint from the set of
auxiliary variables {zm0 , zM0 , . . . , zmi , z

M
i }, there is a formula relationi,X such that

for every model (s, h), we have (s, h) |= relationi,X iff (s[zm0 7→ s(zmi ), zM0 7→
s(zMi )], h) is 0-well-formed, its base part is empty and for every x ∈ X , s(x) 6∈ dom(h).

In order to translate the subformula ∃Pi. ψ, we introduce two locations whose
numbers of predecessors determine the bounds for the degrees for any marker used
to encode a pair for the interpretation of Pi. There is a way to add markers (expressed
thanks to the connective −−∗¬) that guarantees that the new part of the heap encodes the
interpretation of the variable Pi by using the above formula relationi,X . The trans-
lation of ∃Pi. ψ at the (i − 1) quantification depth, noted ti−1(∃Pi, ψ), is defined by
∃zmi , zMi . isol(zmi )∧isol(zMi )∧(relationi,FV(ψ) −−∗¬ (envir(zm0 , z

M
i )∧]zMi−1+1 =

]zmi ∧ ti(ψ))).

Definition 15. Let (s, h) be an i-well-formed model with environment part (s, h2). An
environment E extracted from (s, h) satisfies for j ∈ {1, . . . , i}, E(Pj) = Rj with

Rj = {(h2(l), h2(l′)) : ]̃zmj < ]̃l, ]̃l + 1 = ]̃l′, ]̃l′ < ]̃zMj in h2}.

The map ti is homomorphic for Boolean connectives, and is the identity for atomic
formulae of the form either x = y or x ↪→ y. It remains to treat the case for first-order
quantification. The main difficulty is to guarantee that first-order variables are not in-
terpreted as locations used in markers encoding second-order quantification. Typically,
the number of predecessors of s(x) and h(s(x)) (if its exists) should be less than ]̃zM0
and none of these locations is an extremity. The formula notonenv is introduced for
this purpose: notonenv(x) , ¬(∃y. (y = x ∨ x ↪→ y) ∧ (]y ≥ ]zm0 ) ∧ extr(y)). The
main reason for introducing notonenv(x) is to be able to identify locations from the
environment part of i-well-formed models, as stated below.

Lemma 16. Let (s, h) be an i-well-formed with environment part h2. Then (s, h) |=
notonenv(x) iff s(x) 6∈ dom(h2).

The translation ti(∃x. ψ) is defined as ∃x. notonenv(x)∧ti(ψ). Observe that T (φ)
and φ have the same first-order free variables. Correctness of T (·) is based on Proposi-
tion 17.

Proposition 17. Let φ be a DSO formula with second-order variables {P1, . . . , Pn} us-
ing the extended Barendregt convention. Let ψ be a subformula of φ which occurs un-
der the scope of P1, . . . , Pj (0 ≤ j ≤ n) with quantified second-order variables in
{Pj+1, . . . , Pn}. Let (s, h) be a j-well-formed model with base part h1 and environ-
ment part h2 such that for each x ∈ FV(ψ), s(x) 6∈ dom(h2). Let Ej be an environ-
ment extracted from (s, h) ({P1 7→ R1, . . . , Pj 7→ Rj}). Then, (s, h) |= tj(ψ) iff
(s, h1), Ej |= ψ.

Full proof of Proposition 17 can be found in [BDL08]. We present below simple
cases in the analysis. This will entail our main result (Theorem 18).
Proof (sketch with simple cases) Let us start by a preliminary definition. We say that
a location l occurs in a binary relation R when there is a location l′ such that either
(l, l′) ∈ R or (l′, l) ∈ R. Let φ be a DSO sentence satisfying the extended Barendregt
convention. We want to show by induction on ψ that given:



– ψ is a subformula of φ which occurs under the scope of P1, . . . , Pj , and with
second-order quantifications over elements from {Pj+1, . . . , Pn},

– (s, h) is j-well-formed with base part h1 and environment part h2 such that for
every variable x ∈ FV(ψ), we have s(x) /∈ dom(h2),

– Ej is the environment {P1 7→ R1, . . . , Pj 7→ Rj} extracted from h2,
– no location occurring inR1 ∪ · · · ∪ Rj belongs to dom(h2),

we have (s, h) |= tj(ψ) iff (s, h1), Ej |= ψ.
Base case 1: ψ = Pk(x, y) with k ≤ j.
(→) Suppose that (s, h) |= tj(Pk(x, y)). Then, s(x) and s(y) have predecessors in
h that are extremities, let us call them respectively lx and ly. In the heap h, we have

]̃zmk < ]̃lx = ]̃ly − 1 < ]̃zMk − 1. By Definition 12, both lx and ly have predecessors in
dom(h2) and all of their predecessors are also in dom(h2). Since zmk and zMk have also all

of their predecessors in dom(h2), we have ]̃zmk < ]̃lx, ]̃lx+1 = ]̃ly and ]̃ly < ]̃zMk in h2.
By Definition 15, we get (h(lx), h(ly)) ∈ Rk, that is (s(x), s(y)) ∈ Rk. Consequently,
(s, h1), Ej |= Pk(x, y).
(←) Suppose that (s, h1), Ej |= Pk(x, y). By definition of |= and Ej , (s(x), s(y)) ∈ Rk.
So s(x) and s(y) have respectively predecessors lx and ly in dom(h2). In the heap h2,

lx and ly are extremities and ]̃zmk < ]̃lx = ]̃ly − 1 < ]̃zMk − 1. By Definition 12, the
predecessors of any locations among s(zmk ), lx, ly and s(zMk ) belong to dom(h2). So
the above inequalities and equality are also true in h. By Definition 12, the locations
s(zmk ), lx, ly and s(zMk ) are extremities in h. So (s, h) |= tj(Pk(x, y)).
The other base cases are by an easy verification.
Induction step – Case 1: ψ = ∃x. ψ′. The statements below are equivalent:

(0) (s, h) |= tj(∃x ψ′),
(1) there is l ∈ Loc such that (s′, h) |= tj(ψ′) and (s′, h) |= notonenv(x) with

s′ = s[x 7→ l] (by definition of tj),
(2) there is l ∈ Loc such that (s′, h) |= tj(ψ′) and l 6∈ dom(h2) with s′ = s[x 7→ l] (by

Lemma 16),
(3) there is l ∈ Loc such that (s′, h1), Ej |= ψ′ and l 6∈ dom(h2) with s′ = s[x 7→ l]

(by induction hypothesis since FV(ψ′) ⊆ FV(∃x. ψ′) ∪ {x}),
(4) there is l ∈ Loc such that (s′, h1), Ej |= ψ′ with s′ = s[x 7→ l],
(5) (s, h1), Ej |= ψ (by definition of |=).

Let us justify below why (4) implies (3). Suppose (4) and l ∈ dom(h2). Since (s, h) is
i-well-formed, l /∈ (dom(h1)∪ ran(h1)). Since Loc is an infinite set, there is a location
l′ ∈ (Loc\(dom(h1)∪ran(h1)∪dom(h2)) such that l′ does not occur in (R1∪· · ·∪Rj).
By equivariance shown in [BDL08], we get (s[x 7→ l′], h1), Ej [l ← l′] |= ψ′. Suppose
ad absurdum that l occurs in Rk for some 1 ≤ k ≤ j. So, l has a predecessor that
is an extremity in dom(h2) and by Definition 12(V(4)), l 6∈ dom(h2), which leads to a
contradiction. Hence, Ej [l ← l′] = Ej . We have established that (s[x 7→ l′], h1), Ej |=
ψ′ and l′ 6∈ dom(h2). �

Theorem 18. SL(−−∗) ≡ SL ≡ SO ≡ DSO.



DSO v SL stems from Proposition 17. Observe that all the equivalences are obtained
with logspace translations. Consequently,

Corollary 19. SL(−−∗) validity problem is undecidable.

Undecidability of SL(−−∗) can be obtained more easily by encoding the halting prob-
lem for Minsky machines by using the fact that ]x = ]y and ]x = ]y + 1 can be
expressed in SL(−−∗) (Section 4).

6 Concluding remarks

We have shown that first-order separation logic with one selector is as expressive as
second-order logic over the class of memory states, whence undecidable too. More-
over, the restriction to the magic wand preserves the expressive power. This solves
two central open problems: the decidability status of SL and the characterization of its
expressive power. Additionnally, we have proved that SL without the magic wand is
decidable with non-elementary complexity whereas SL restricted to the magic wand is
also undecidable. By adapting the above developments, a generalization in presence of
k > 1 selectors (see Section 2.1) is possible.

Theorem 20. For every k ≥ 1, kSL ≡ kSL(−−∗) ≡ kSO.

The case k = 1 requires a lot of care but a simpler direct proof is possible for k 6= 1.
Indeed, for k = 1 the identification of auxiliary memory cells is performed thanks
to structural properties whereas for k 6= 1, this can be done by simply checking the
presence of distinguished values.
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