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2 · K. Chatterjee et al.

1. INTRODUCTION

The automata-theoretic approach to verification is boolean. To check that a system
satisfies a specification, we construct a finite automaton A to model the system and
a finite (usually nondeterministic) automaton B for the specification. The language
L(A) of A contains all behaviors of the system, and L(B) contains all behaviors
allowed by the specification. The language of an automaton A can be seen as a
boolean function LA that assigns 1 (or true) to words in L(A), and 0 (or false) to
words not in L(A). The verification problem “does the system satisfy the specifica-
tion?” is then formalized as the language-inclusion problem “is L(A) ⊆ L(B)?”, or
equivalently, “is LA(w) ≤ LB(w) for all words w?”. We investigate a natural gen-
eralization of this framework: a quantitative language L is a function that assigns
a real-numbered value L(w) to each (finite or infinite) word w. With quantita-
tive languages, systems and specifications can be formalized more accurately. For
example, a system may use a varying amount of some resource (e.g., memory con-
sumption, or power consumption) depending on its behavior, and a specification
may assign a maximal amount of available resource to each behavior, or fix the
long-run average available use of the resource. The quantitative language-inclusion
problem “is LA(w) ≤ LB(w) for all words w?” can then be used to check, say, if
for each behavior, the peak power used by the system lies below the bound given
by the specification; or if for each behavior, the long-run average response time of
the system lies below the specified average response requirement.

In the boolean automaton setting, the value of a word w in L(A) is the maximal
value of a run of A over w (if A is nondeterministic, then there may be many runs
of A over w), and the value of a run is a function that depends on the class of
automata: for automata over finite words, the value of a run is true if the last state
of the run is accepting; for Büchi automata, the value is true if an accepting state
is visited infinitely often; etc. To define quantitative languages, we use automata
with weights on transitions. We again set the value of a word w as the maximal
value of all runs over w, and the value of a run r is a function of the (finite or in-
finite) sequence of weights that appear along r. This approach is well-known from
the theory of weighted automata and in this work we consider several new ways
for computing the values of runs. We consider functions, such as Max and Sum
of weights for finite runs, and Sup, LimSup, LimInf, limit average, and discounted
sum of weights for infinite runs. For example, peak power consumption can be
modeled as the maximum of a sequence of weights representing power usage; en-
ergy use can be modeled as the sum; average response time as the limit average
[Chakrabarti et al. 2005; Chakrabarti et al. 2003]. Quantitative languages have
also been used to specify and verify reliability requirements: if a special symbol ⊥
is used to denote failure and has weight 1, while the other symbols have weight 0,
one can use a limit-average automaton to specify a bound on the rate of failure
in the long run [Chatterjee et al. 2008]. Alternatively, the discounted sum can be
used to specify that failures happening later are less important than those hap-
pening soon [de Alfaro et al. 2003]. It should be noted that LimSup and LimInf
automata generalize Büchi and coBüchi automata, respectively. Functions such
as limit average (or mean payoff) and discounted sum are classical in game the-
ory [Shapley 1953]; they have been studied extensively as quantitative objectives in

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Quantitative Languages · 3

OFF ON

off

0 on, slow

10

on

2

off, slow

10

(a) Limit-average automaton A.

OFF ON

SLOW

off

0 on, 10

slow
5

on

2

off, 10

slow
5

slow

1

off
5

on
5

(b) Limit-average automaton B.

Fig. 1. Specifications for the energy consumption of a motor (B refines A).

the branching-time context of games played on graphs [Ehrenfeucht and Mycielski
1979; Condon 1992; Chakrabarti et al. 2003; Gimbert 2006].

The linear-time setting of automata and languages provides a uniform way to de-
scribe quantitative specifications (e.g., quantitative objectives as monitors in games)
using the above functions, and allows to compare their expressive power and study
their reducibility relationship. It is therefore natural to consider the same functions
in the linear-time context of automata and languages that have been widely studied
in the branching-time context of games.

Example. We illustrate the use of limit-average automata to model the energy
consumption of a motor. Energy-aware design has emerged as an important topic
in the recent years, and our work could be used in that direction, as illustrated by
the example. Since we consider energy consumption in the long-run, it is natural
to accumulate the weights as limit-average (the total energy consumed is the sum
of the amounts of consumed energy). The automaton A in Figure 1(a) specifies
the maximal allowed energy consumption to maintain the motor on or off, and the
maximal consumption for a mode change. The specification abstracts away that a
mode change can occur smoothly with the slow command. A refined specification B

is given in Figure 1(b) where the effect of slowing down is captured by a third
state. One can check that B refines A, i.e. LB(w) ≤ LA(w) for all words w ∈
{on, off , slow}ω, hence the limit-average consumption in B always satisfies the
bound specified by A.

We make the following remarks about this example. First, to check that B

refines A, it would not be sufficient to check locally that transitions in B have
smaller weight than corresponding transitions in A. For instance, the word slow ·onω

visits the sequences of weights 10, 2, 2, 2, . . . in A and 5, 5, 2, 2, . . . in B, the second
weight in the sequences being larger in B than in A. The algorithmic problem of
deciding whether refinement holds is discussed in Section 3 (for instance, Theorem 5
shows that refinement can be decided in polynomial time for deterministic limit-
average automata). Second, if we would assign to an infinite run the supremum of
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its weights instead of the limit-average, then the automaton B would still refine A

as the word off ω would have value 0 in both A and B, and for all other words w,
we would have LA(w) = 10 and LB(w) ≤ 10. Now, if we assign weight 4 to
the transition from ON to OFF in A, then the refinement of A by B still holds
if we use Sup-automata (by exactly the same argument as before), but it fails for
limit-average (e.g., for w = (on · off )ω, we have LB(w) = 10 and LA(w) = 7 < 10).

We attempt a systematic study of quantitative languages defined by weighted
automata. The main novelties concern quantitative languages of infinite words,
and especially those that have no boolean counterparts (i.e., limit-average and
discounted-sum languages). In the first part of this paper, we consider generaliza-
tions of the boolean decision problems of emptiness, universality, language inclu-
sion, and language equivalence. The quantitative emptiness problem asks, given
a weighted automaton A and a rational number ν, whether there exists a word w

such that LA(w) ≥ ν. This problem can be reduced to a one-player game with a
quantitative objective and is therefore solvable in polynomial time. The quantita-
tive universality problem asks whether LA(w) ≥ ν for all words w. This problem
can be formulated as a two-player game (one player choosing input letters and the
other player choosing successor states) with imperfect information (the first player,
whose goal is to construct a word w such that LA(w) < ν, is not allowed to see the
state chosen by the second player). The problem is PSPACE-complete for simple
functions like Sup, LimSup, and LimInf, but we do not know if it is decidable for
limit-average or discounted-sum automata (the corresponding games of imperfect
information are not known to be decidable either). The same situation holds for
the quantitative language-inclusion and language-equivalence problems, which ask,
given two weighted automata A and B, if LA(w) ≤ LB(w) (resp. LA(w) = LB(w))
for all words w. Therefore we introduce a notion of quantitative simulation between
weighted automata, which generalizes boolean simulation relations, is decidable,
and implies language inclusion. Simulation corresponds to a weaker version of the
above game, where the first player has perfect information about the state of the
game. In particular, this implies that quantitative simulation can be decided in NP
∩ coNP for limit-average and discounted-sum automata.

In the second part of this paper, we present a complete characterization of the
expressive power of the various classes of weighted automata, by comparing the
classes of quantitative languages they can define. The complete picture relating the
expressive powers of weighted automata is shown in Figure 9 and Table III. For in-
stance, the results for LimSup and LimInf are analogous to the special boolean cases
of Büchi and coBüchi (nondeterminism is strictly more expressive for LimSup, but
not for LimInf). In the limit-average and discounted-sum cases, nondeterministic
automata are strictly more expressive than their deterministic counterparts. Also,
one of our results shows that nondeterministic limit-average automata are not as
expressive as deterministic Büchi automata (and vice versa). It may be noted that
deterministic Büchi languages are complete for the second level of the Borel hier-
archy [Thomas 1997], and deterministic limit-average languages are complete for
the third level [Chatterjee 2007a]; so there is a Wadge reduction [Wadge 1984] from
deterministic Büchi languages to deterministic limit-average languages. Our result
shows that Wadge reductions are not captured by automata, and in particular, that
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the Wadge reduction from Büchi to limit-average languages is not regular.

Related works. In the literature, there is a wealth of results on weighted automata on
finite and infinite words. We now describe the differences to the setting presented in
this paper. The lattice automata of [Kupferman and Lustig 2007] map finite words
to values from a finite lattice. Roughly speaking, the value of a run is the meet
(greatest lower bound) of its transition weights, and the value of a word w is the
join (least upper bound) of the values of all runs over w. This corresponds to Min
and Inf automata in our setting, and for infinite words, the Büchi lattice automata
of [Kupferman and Lustig 2007] are analogous to our LimSup automata. However,
the other classes of weighted automata (Sum, limit-average, discounted-sum) cannot
be defined using operations on finite lattices. The complexity of the emptiness
and universality problems for lattice automata is given in [Kupferman and Lustig
2007] (and implies our results for LimSup automata), while their generalization of
language inclusion differs from ours. They define the implication value v(A, B) of
two lattice automata A and B as the meet over all words w of the join of ¬LA(w) and
LB(w), while we would define implication value as v(A, B) = minw(LB(w)−LA(w))
since min is the meet operation (and defining negation as multiplication by −1, but
using + instead of join), and say that B refines A if v(A, B) ≥ 0.

In classical weighted automata [Schützenberger 1961; Mohri 1997] and semiring
automata [Kuich and Salomaa 1986], the value of a finite word is defined using the
two algebraic operations + and · of a semiring as the sum of the product of the tran-
sition weights of the runs over the word. In that case, quantitative languages are
called formal power series. Over infinite words, weighted automata with discounted
sum were first investigated in [Droste and Kuske 2003]. Researchers have also con-
sidered other quantitative generalizations of languages over finite words [Droste
and Gastin 2007], over trees [Droste et al. 2008], and using finite lattices [Gurfinkel
and Chechik 2003]. However, these works do not address the quantitative decision
problems, nor do they compare the relative expressive powers of weighted automata
over infinite words, as we do here. The work of [Culik and Karhumäki 1994] studies
the decision problems for weighted automata but for different notion of behav-
iors (different value functions). The works of [Karianto 2005; Seidl et al. 2004]
consider quantitative counting properties, and the works of [Klaedtke and Rueß
2003] consider the cardinality properties in monadic second order logic, but the
value functions we consider are different from the counting and cardinality prop-
erties. The works [Seidl et al. 2003; Dal-Zilio and Lugiez 2003] consider numerical
properties of documents such as XML that are very different from the quantitative
properties we consider. In [Chakrabarti et al. 2005], a quantitative generalization of
languages is defined by discrete functions (the value of a word is an integer) and the
decision problems only involve the extremal value of a language, which corresponds
to emptiness.

In models that use transition weights as probabilities, such as probabilistic Ra-
bin automata [Paz 1971], one does not consider values of individual infinite runs
(which would usually have a value, or measure, of 0), but only measurable sets of
infinite runs (where basic open sets are defined as extensions of finite runs). Our
quantitative setting is orthogonal to the probabilistic framework: we assign quan-
titative values (e.g., peak power consumption, average response time, failure rate)
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to individual infinite behaviors, not probabilities to finite behaviors.

2. BOOLEAN AND QUANTITATIVE LANGUAGES

We recall the classical automata-theoretic description of boolean languages, and
introduce an automata-theoretic description of several classes of quantitative lan-
guages.

2.1 Boolean Languages

A boolean language over a finite alphabet Σ is either a set L ⊆ Σ∗ of finite words or
a set L ⊆ Σω of infinite words. Alternatively, we can view these sets as functions
in [Σ∗ → {0, 1}] and [Σω → {0, 1}], respectively.

Boolean automata. A (finite) automaton is a tuple A = 〈Q, qI , Σ, δ〉 where:

—Q is a finite set of states, and qI ∈ Q is the initial state;

—Σ is a finite alphabet;

—δ ⊆ Q × Σ × Q is a finite set of labeled transitions.

The automaton A is total if for all q ∈ Q and σ ∈ Σ, there exists (q, σ, q′) ∈ δ for
at least one q′ ∈ Q. The automaton A is deterministic if for all q ∈ Q and σ ∈ Σ,
there exists (q, σ, q′) ∈ δ for exactly one q′ ∈ Q. We sometimes call automata
nondeterministic to emphasize that they are not necessarily deterministic.

A run of A over a finite (resp. infinite) word w = σ1σ2 . . . is a finite (resp.
infinite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) q0 = qI , and
(ii) (qi, σi+1, qi+1) ∈ δ for all 0 ≤ i < |w|. When the run r is finite, we denote by
Last(r) the last state in r. When r is infinite, we denote by Inf(r) the set of states
that occur infinitely many times in r. The prefix of length i of an infinite run r is
the prefix of r that contains the first i states.

Given a set F ⊆ Q of final (or accepting) states, the finite-word language defined
by the pair 〈A, F 〉 is Lf

A = {w ∈ Σ∗ | there exists a run r of A over w such that
Last(r) ∈ F}. The infinite-word languages defined by 〈A, F 〉 are as follows: if
〈A, F 〉 is interpreted as a Büchi automaton, then Lb

A = {w ∈ Σω | there exists
a run r of A over w such that Inf(r) ∩ F 6= ∅}, and if 〈A, F 〉 is interpreted as a
coBüchi automaton, then Lc

A = {w ∈ Σω | there exists a run r of A over w such that
Inf(r) ⊆ F}. In the sequel, we assume that the set F is given with the description
of the finite automaton A, and we often omit the superscripts in the notation Lf

A,
Lb

A, and Lc
A, assuming that automata have a type (finite-word, Büchi, or coBüchi)

that determines which language it defines.

Boolean decision problems. We recall the classical decision problems for au-
tomata, namely, emptiness, universality, language inclusion and language equiva-
lence. Given a finite automaton A, the boolean emptiness problem asks whether
LA = ∅, and the boolean universality problem asks whether LA = Σ∗ (for finite-
word language) or LA = Σω (for infinite-word language). Given two finite automata
A and B, the boolean language-inclusion problem asks whether LA ⊆ LB, and the
boolean language-equivalence problem asks whether LA = LB. It is well-known that
for both finite- and infinite-word languages, the emptiness problem is solvable in
polynomial time, while the universality, inclusion, and equivalence problems are
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PSPACE-complete [Meyer and Stockmeyer 1972; Sistla et al. 1987] (see also Ta-
ble I).

2.2 Quantitative Languages

A quantitative language L over a finite alphabet Σ is either a mapping L : Σ+ → R

or a mapping L : Σω → R, where R is the set of real numbers.

Weighted automata. A weighted automaton is a tuple A = 〈Q, qI , Σ, δ, γ〉
where:

—〈Q, qI , Σ, δ〉 is a total finite automaton, and

—γ : δ → Q is a weight function, where Q is the set of rational numbers.

Given a finite (resp. infinite) run r = q0σ1q1σ2 . . . of A over a finite (resp. infinite)
word w = σ1σ2 . . . , let γ(r) = v0v1 . . . be the sequence of weights defined by
vi = γ(qi, σi+1, qi+1) for all 0 ≤ i < |w|.

Given a value function Val : Q+ → R (resp. Val : Qω → R), the Val-automaton A

defines the quantitative language LA such that for all words w ∈ Σ+ (resp. w ∈ Σω),
we have LA(w) = sup{Val(γ(r)) | r is a run of A over w}. We assume that Val(v)
is bounded when the numbers in v are taken from a finite set (namely, the set of
weights in A), and since weighted automata are total, LA(w) is not infinite. All
value functions we consider in this paper satisfy this boundedness assumption.

Note that for boolean automata, if we assign value 1 to the accepting runs (either
those that end up in an accepting state, or visit an accepting state infinitely often,
or eventually visit accepting states only) and value 0 to the other runs, then the
function LA would be the characteristic function of the boolean language defined by
A. Hence, the sup operator is a natural generalization to the quantitative setting of
the way nondeterminism is dealt with in boolean automata. Other definitions can
be considered [Chatterjee et al. 2009], like choosing inf instead of sup which would
correspond to the so-called universal automata in the boolean case [Kupferman
and Vardi 2001].

In the sequel, we denote by n the number of states and by m the number of
transitions of a given automaton. We assume that rational numbers are given
as pairs of integers, encoded in binary. All time bounds we give in this paper
assume that the largest size of an integer in the input is a constant p. Without this
assumption, most complexity results would involve a polynomial factor in p, as they
require polynomially many operations of addition, multiplication, and comparison
of rational numbers, which are quadratic in p.

Quantitative decision problems. We now present quantitative generaliza-
tions of the classical decision problems for automata. Given two quantitative lan-
guages L1 and L2 over Σ, we write L1 ⊑ L2 if L1(w) ≤ L2(w) for all words
w ∈ Σ+ (resp. w ∈ Σω). Given a weighted automaton A and a rational num-
ber ν ∈ Q, the quantitative emptiness problem asks whether there exists a word
w ∈ Σ+ (resp. w ∈ Σω) such that LA(w) ≥ ν, and the quantitative universality
problem asks whether LA(w) ≥ ν for all words w ∈ Σ+ (resp. w ∈ Σω). Given
two weighted automata A and B, the quantitative language-inclusion problem asks
whether LA ⊑ LB, and the quantitative language-equivalence problem asks whether
LA = LB, that is, whether LA(w) = LB(w) for all w ∈ Σ+ (resp. w ∈ Σω). All
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∃ ∀ ⊆ =

Lf PTime PSpace PSpace PSpace

Lb PTime PSpace PSpace PSpace

Lc PTime PSpace PSpace PSpace

Table I. Complexity’s upper bound for boolean decision problems (∃) emptiness, (∀) universality,
(⊆) inclusion, and (=) equivalence.

results that we present in this paper also hold for the decision problems defined
above with inequalities replaced by strict inequalities.

Our purpose is the study of the quantitative decision problems for infinite-word
languages and the expressive power of weighted automata that define infinite-word
languages. We start with a brief overview of the corresponding results for finite-
word languages, most of which follow from classical results in automata theory.

Finite words. For finite words, we consider the value functions Last, Max, and
Sum such that for all finite sequences v = v1 . . . vn of rational numbers,

Last(v) = vn, Max(v) = max{vi | 1 ≤ i ≤ n}, Sum(v) =

n
∑

i=1

vi.

Note that Last generalizes the classical boolean acceptance condition for finite
words. One could also consider the value function Min = min{vi | 1 ≤ i ≤ n},
which roughly corresponds to lattice automata [Kupferman and Lustig 2007].

Theorem 1. The quantitative emptiness problem can be solved in linear time for
Last and Max-automata, and in quadratic time for Sum-automata. The quantitative
language-inclusion problem is PSPACE-complete for Last- and Max-automata.

Proof. We show that the quantitative language-inclusion problem is PSPACE-
complete for Last- and Max-automata.

1. Given two Last-automata A and B, it is easy to construct (in polynomial
time) for each weight v appearing in A or B the (boolean) finite automata A≥v

and B≥v that accept the finite words with a value at least v according to LA and
LB respectively. Then the quantitative language inclusion problem for A and B

is equivalent to check that Lf
A≥v ⊆ Lf

B≥v for each weight v appearing in A or B,
which can be done in polynomial space.

The hardness result is obtained by a straightforward reduction of the boolean
language inclusion problem for finite automata which is PSPACE-complete.

2. Given two Sup-automata A = 〈Q1, q
1
I , Σ, δ1, γ1〉, and B = 〈Q2, q

2
I , Σ, δ2, γ2〉,

we construct a (boolean) finite automaton C whose language is empty if and only if
LA ⊑ LB. The (N)PSPACE algorithm will explore this automaton on-the-fly. We
assume for i = 1, 2 that γi(e) = ⊥ for all e 6∈ δi, and let V1, V2 be the sets of weights
appearing on transitions of A and B respectively. We define C = 〈Q, qI , Σ, δ〉 as
follows:

—Q = 2Q1 ×Γ1 × 2Q2 ×Γ2 where Γi is the set of functions f : Qi → Vi for i = 1, 2;

—qI = ({q1
I}, f1, {q2

I}, f2) where fi(q) = min(Vi) for all q ∈ Qi and i = 1, 2;

—δ contains all tuples 〈(s1, f1, s2, f2), σ, (s′1, f
′
1, s

′
2, f

′
2)〉 such that (for i = 1, 2):

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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—s′i = {q′ ∈ Qi | ∃q ∈ si : (q, σ, q′) ∈ δi};
—for all q′ ∈ Qi, f ′

i(q
′) = max{fi(q) + γi(q, σ, q′) | q ∈ si} with the assumptions

that max∅ = ⊥ and n + ⊥ = ⊥ for all n ∈ Q;

The set of accepting states of C is FC = {(s1, f1, s2, f2) | ∃q1 ∈ s1 · ∀q2 ∈ s2 :
f1(q1) > f2(q2)}. It is easy to see that Lf

C 6= ∅ if and only if there is a finite word
w such that LA(w) > LB(w).

The hardness result is obtained by a straightforward reduction of the boolean
language inclusion problem for finite automata which is PSPACE-complete. �

The quantitative language-inclusion problem is undecidable for Sum-
automata [Krob 1992]. However, the quantitative language-inclusion problem for
deterministic Sum-automata can be solved in polynomial time using a product con-
struction. This naturally raises the question of the power of nondeterminism, which
we address through translations between weighted automata.

Expressiveness. A class C of weighted automata can be reduced to a class C′ of
weighted automata if for every A ∈ C there exists A′ ∈ C′ such that LA = LA′ . In
particular, a class of weighted automata can be determinized if it can be reduced
to its deterministic counterpart. All reductions that we present in this paper are
constructive: when C can be reduced to C′, we always show how to construct
an automaton A′ ∈ C′ that defines the same quantitative language as a given
automaton A ∈ C. We say that the cost of a reduction is O(f(n, m)) if for all
automata A ∈ C with n states and m transitions, the constructed automaton A′ ∈ C′

has at most O(f(n, m)) many states. For all reductions we present, the size of the
largest transition weight in A′ is linear in the size p of the largest weight in A

(however, the time needed to compute these weights may be quadratic in p).

Theorem 2 (see also [Mohri 1997]). Last- and Max-automata can be deter-
minized in O(2n) time; Sum-automata cannot be determinized. Deterministic Max-
automata can be reduced to deterministic Last-automata in O(n · m) time; deter-
ministic Last-automata can be reduced to deterministic Sum-automata in O(n · m)
time. Deterministic Sum-automata cannot be reduced to Last-automata; determin-
istic Last-automata cannot be reduced to Max-automata.

Results about determinizable sub-classes of Sum-automata can be found in [Mohri
1997; Kirsten and Mäurer 2005]. The results of Theorem 2 are summarized in
Figure 2.

Proof of Theorem 2. It is easy to show that Last- and Max-automata can be
determinized using a subset construction.

To show that Sum-automata cannot be determinized, consider the language
LN over Σ = {a, b} that assigns to each finite word w ∈ Σ+ the number
max{La(w), Lb(w)} where Lσ(w) is the number of occurrences of σ in w (for
σ ∈ {a, b}). Clearly LN is definable by a nondeterministic Sum-automaton. To ob-
tain a contradiction, assume that LN is defined by a deterministic Sum-automaton
A with n states. Consider the word w = an and let r = q0aq1a . . . aqn be the
unique run of A over w. There must exist 0 ≤ i < j ≤ n such that qi = qj , and
thus LA(ai) = LA(aj) since LA(aibn) = LA(ajbn) = n. This is a contradiction
since LN (ai) = i 6= j = LN(aj).
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NSum

DSum

N/DLast

N/DMax

N/DMax N/DLast DSum NSum

N/DMax · X X X

N/DLast × · X X

DSum × × · X

NSum × × × ·

Fig. 2. Reducibility relation. C is reducible to C′ if there is a path from C to C′ in the graph, and
if the entry (C, C′) is Xin the table.

We reduce Max-automata to Last-automata as follows. Given a deterministic
Max-automaton A = 〈Q, qI , Σ, δ, γ〉, we construct the deterministic Last-automaton
A′ = 〈Q′, q′I , Σ, δ′, γ′〉 as follows:

—Q′ = Q × V where V is the set of weights that appear on transitions of A;

—q′I = (qI , vmin) where vmin is the minimal weight in V ;

—δ′ contains all tuples 〈(q, v), σ, (q′, v′)〉 such that:

—(q, σ, q′) ∈ δ, and
—v′ = v if γ(q, σ, q′) ≤ v, and v′ = γ(q, σ, q′) otherwise;

—γ′(〈(q, v), σ, (q′, v′)〉) = v′ for all 〈(q, v), σ, (q′, v′)〉 ∈ δ′.

It is easy to see that the Last-automaton A′ defines the same language as A. To
show that the class of Last-automata is not reducible to the class of Max-automata,
observe that the language L defined by a Max-automaton is such that L(w1) ≤
L(w1.w2) for all w1, w2 ∈ Σ+. It is easy to construct a Last-automaton that violates
this property (consider a transition with weight v, followed by a transition with
weight v′ < v).

We reduce Last-automata to Sum-automata as follows. Given a deterministic
Last-automaton A = 〈Q, qI , Σ, δ, γ〉, we construct the deterministic Sum-automaton
A′ = 〈Q′, q′I , Σ, δ′, γ′〉 as follows:

—Q′ = Q × (V ∪ {0}) where V is the set of weights that appear on transitions of
A;

—q′I = (qI , 0);

—δ′ contains all tuples 〈(q, v), σ, (q′, v′)〉 for each v ∈ V ∪{0} such that: (q, σ, q′) ∈ δ

and v′ = γ(q, σ, q′);

—γ′(〈(q, v), σ, (q′, v′)〉) = v′ − v for all 〈(q, v), σ, (q′, v′)〉 ∈ δ′.

It is easy to see that the Sum-automaton A′ defines the same language as A. To
show that the class of Sum-automata is not reducible to the class of Last-automata,
observe that a Sum-automaton can define a language with infinitely many different
values (e.g. counting the number of a’s in words), while Last-automata can only
assign finitely many different values. �
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Infinite words. For infinite words, we consider the following classical value
functions from Qω to R. Given an infinite sequence v = v0v1 . . . of rational numbers
taken from a finite set V (i.e., vi ∈ V for all i ≥ 0), define

• Sup(v) = sup{vn | n ≥ 0};

• LimSup(v) = lim sup
n→∞

vn = lim
n→∞

sup{vi | i ≥ n};

• LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

• LimAvg(v) = lim inf
n→∞

1

n
·

n−1
∑

i=0

vi;

• given a discount factor 0 < λ < 1, Discλ(v) =

∞
∑

i=0

λi · vi.

Intuitively for a sequence v = v0v1 . . . of rational numbers from the finite set
V the Sup function chooses the maximal number that appear in v; the LimSup
function chooses the maximal number that appear infinitely often in v; the LimInf
function chooses the maximal number ℓ such that from some point on all numbers
that are visited are at least ℓ; the LimAvg functions gives the long-run average of
the numbers in v; and the Discλ gives the discounted sum of the numbers in v.
For decision problems, we always assume that the discount factor λ is a rational
number. Note that LimAvg(v) is defined using lim inf and is therefore well-defined;
all results of this paper hold also if the limit average of v is defined instead as

lim sup
n→∞

1

n
·

n−1
∑

i=0

vi. One could also consider the value function inf{vn | n ≥ 0} and

obtain results analogous to the Sup value function.

Significance of value functions. The value functions provide natural generalizations
of the classical boolean languages, they are complete for different levels of the Borel
hierarchy, and they have been well studied in the context of game theory.

(1) The Sup value function is the natural quantitative generalization of the reach-
ability condition and is complete for the first level of the Borel hierarchy.

(2) The LimSup and LimInf objectives are the natural quantitative generalizations
of the classical Büchi and coBüchi conditions. Moreover, the LimSup and LimInf
objectives are complete for the second level of the Borel hierarchy, and hence
important and canonical quantitative functions.

(3) The LimAvg and Discλ value functions have been studied in many different con-
texts in game theory. Discounted functions on graph games were introduced in
the seminal work of Shapley [Shapley 1953], and have been extensively stud-
ied in economics. Discounted conditions have also been studied for discount-
ing the future in systems theory [de Alfaro et al. 2003]. The LimAvg func-
tion has also been studied extensively in the context of games on graphs: the
works of Everett [Everett 1957], Liggett-Lippman [Liggett and Lippman 1969],
Hopfman-Karp [Hoffman and Karp 1966], Ehrenfeucht-Mycielski [Ehrenfeucht
and Mycielski 1979], Mertens-Neyman [Mertens and Neyman 1981], Zwick-
Paterson [Zwick and Paterson 1996] have studied different classes of games
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∃ ∀ ⊆ =

Sup PTime PSpace PSpace PSpace

LimSup PTime PSpace PSpace PSpace

LimInf PTime PSpace PSpace PSpace

LimAvg PTime ? ? ?

Deterministic LimAvg PTime PTime PTime PTime

Discλ PTime ? ? ?

Deterministic Discλ PTime PTime PTime PTime

Table II. Complexity’s upper bound for quantitative decision problems (∃) emptiness, (∀) univer-
sality, (⊆) inclusion and (=) equivalence.

with LimAvg objective. Also see the books [Filar and Vrieze 1997; Puterman
1994] for applications of discounted and limit-average value functions in the
context of games on graphs. Moreover, the LimAvg value function is complete
for the third level of the Borel hierarchy.

Hence the value functions considered are classical, canonical, and well-studied in
the branching-time framework of games on graphs, and we study them in the linear-
time framework of weighted automata.

Notation. Classes of weighted automata over infinite words are denoted with
acronyms of the form xy where x is either N(ondeterministic), D(eterministic), or
N/D (when deterministic and nondeterministic automata have the same expressive-
ness), and y is one of the following: Sup, Lsup (LimSup), Linf (LimInf), Lavg
(LimAvg), or Disc. For Büchi and coBüchi condition, we use BW and CW respec-
tively.

3. THE COMPLEXITY OF QUANTITATIVE DECISION PROBLEMS

We study the complexity of the quantitative decision problems for weighted au-
tomata over infinite words. The results are summarized in Table II.

Emptiness. The quantitative emptiness problem can be solved by reduction to
the problem of finding the maximal value of an infinite path in a graph. This is
decidable because pure memoryless strategies for resolving nondeterminism exist
for all quantitative objectives that we consider [Filar and Vrieze 1997; Karp 1978;
Andersson 2006].

Theorem 3. The quantitative emptiness problem is solvable in O(m + n) time
for Sup-, LimSup-, and LimInf-automata; in O(n · m) time for LimAvg-automata;
and in O(n2 · m) time for Disc-automata.

Proof sketch. Given a quantitative function Val and a weighted automaton A,
let

Val(A) = sup{Val(γ(r)) | w ∈ Σω, r is a run of A over w}.
It follows that the answer to the emptiness question is “Yes” iff Val(A) ≥ ν. Given
the quantitative function Val is Sup, LimSup, LimInf, LimAvg, or Discλ, the following
assertion holds: there exists a word ŵ such that ŵ = w1 · (w2)

ω , for finite words
w1 and w2 of length at most |Q| (i.e., ŵ is a lasso word), such that Val(A) =

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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sup{Val(γ(r)) | r is a run of A over ŵ}. This assertion is proved as follows: from
the automaton A we obtain a graph G with the same set of states and edges in
the graph represent the transitions of A, rewards on edges of the graph represent
the weight function. Then we use the following property about graphs with the
value functions. Given a graph with rewards on edges, and objectives defined by
Sup, LimSup, LimInf, LimAvg, or Discλ, pure memoryless optimal strategies exist.
The existence of pure memoryless optimal strategy implies that for graphs with
the Sup, LimSup, LimInf, LimAvg, or Discλ value functions there is an infinite path
that consists of a finite path in the graph that is cycle free, and then repeating a
cycle for ever, and the path yields the best possible value for the respective value
function. The result for existence of pure memoryless optimal strategies for Sup,
LimSup, and LimInf objectives in graphs are obtained by extending the result for
reachability, Büchi and coBüchi objectives, respectively, and the result for LimAvg
and Discλ can be obtained as a special case of the result known for Markov decision
processes [Filar and Vrieze 1997]. Given a weighted automaton A, let n and m

denote the size of Q and δ, respectively. Then the graph G obtained has n states
and m edges, and we obtain the answer to the decision problem by solving the
corresponding problem on graphs. The algorithms for computation of Val(A) is as
follows:

—If Val is Sup, then Val(A) can be computed in O(m + n) time, by classical reach-
ability of weights greater than (or equal to) ν;

—If Val is LimSup or LimInf, then Val(A) can be computed in O(m+n) time, by the
same algorithm as for Büchi and coBüchi (computing the maximal strongly con-
nected components, and reachability to strongly connected components) where
the ”accepting” edges are those with a weight greater than (or equal to) ν;

—If Val is LimAvg, then Val(A) can be computed in time O(nm) time by applying
the maximum mean cycle algorithm [Karp 1978];

—If Val is Discλ, then Val(A) can be computed in O(n2m) time by applying the algo-
rithm to solve discounted payoff objectives in graphs with rewards on edges [An-
dersson 2006].

Hence the desired result follows. �

Language inclusion. The following theorem relies on the analogous result for
finite automata.

Theorem 4. The quantitative language-inclusion problem is PSPACE-complete
for Sup-, LimSup-, and LimInf-automata.

To prove Theorem 4, we need the following lemmas.

Lemma 1. Given a Sup-automaton A = 〈Q1, q
1
I , Σ, δ1, γ1〉, we can construct in

linear time a LimSup-automaton B = 〈Q2, q
2
I , Σ, δ2, γ2〉 such that LA(w) = LB(w)

for all w ∈ Σω.

Proof. Let V1 = {γ1(e) | e ∈ δ1} be the (finite) set of weights that occur on some
transitions in A. The construction is as follows:
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—Q2 = Q1 ∪ (Q1 × V1);

—q2
I = q1

I ;

—δ2 = δ1 ∪ {(q, σ, (q′, v)) | (q, σ, q′) ∈ δ1 and γ1(q, σ, q′) = v} ∪ {((q, v), σ, (q, v)) |
q ∈ Q1, v ∈ V1 and σ ∈ Σ};

—γ2(e) = γ1(e) for all e ∈ δ1, and γ2(q2, σ, (q, v)) = v for all q2 ∈ Q2, σ ∈ Σ and
(q, v) ∈ Q1 × V1.

For every run r1 of A, we can easily construct a run r2 of B on the same word such
that Sup(γ(r1)) = LimSup(γ(r2)) by looping through a state of the form (q, v) where
v = Sup(γ(r1)) is the maximal value occurring in r1. Thus we have LA(w) ≤ LB(w)
for all w ∈ Σω.

Similarly, for every run r2 of B, we can construct a run r1 of A on the same word
such that LimSup(γ(r2)) ≤ Sup(γ(r1)). Indeed, either r2 is also a run of A or it is
looping through a state (q, v) ∈ Q1 × V1. In each case, r2 has a finite prefix which
can be executed in A and contains a transition with weight v = LimSup(γ(r2)). We
obtain r1 by prolonging this prefix in A. Hence, we have LB(w) ≤ LA(w) for all
w ∈ Σω. �

Lemma 2. Given a LimSup-automaton A = 〈Q, qI , Σ, δ, γ〉 and a rational number
v, we can construct in linear time a finite automaton A≥v with accepting states F≥v

such that Lb
A≥v = {w ∈ Σω | LA(w) ≥ v}.

Proof. We construct A≥v = 〈Q≥v, q
≥v
I , Σ, δ≥v〉 as follows:

—Q≥v = Q × {0, 1};
—q

≥v
I = (qI , 0);

—δ≥v contains all tuples ((q, i), σ, (q′, j)) such that (q, σ, q′) ∈ δ and

◦ i = 0 and j = 0 and γ(q, σ, q′) < v, or

◦ i = 0 and j = 1 and γ(q, σ, q′) ≥ v, or
◦ i = 1 and j = 0.

—F≥v = Q × {1}.

It is easy to see that for all infinite words w ∈ Σω , A has a run r over w with
Val(γ(r)) ≥ v if and only if A≥v has an accepting run over w. �

Proof of Theorem 4. We show that the quantitative language inclusion problem
for LimSup-automata is PSPACE-complete.

(1) In PSPACE. Let A = 〈Q1, q
1
I , Σ, δ1, γ1〉 and B = 〈Q2, q

2
I , Σ, δ2, γ2〉 be two

LimSup-automata. Let V1 be the (finite) set of weights that occur on some
transitions in δ1. Clearly, we have LA(w) ∈ V1 for all words w ∈ Σω. Consider
the finite automaton B≥v of Lemma 2. The quantitative language inclusion
problem A ⊑ B is equivalent to check that Lb

A≥v ⊆ Lb
B≥v for all v ∈ V1, and

thus it is in PSPACE. The proof for LimInf automata is similar, and the upper
bound for Sup-automata follows from Lemma 1.
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(2) PSPACE-hardness. We present the PSPACE-hardness for Sup-automata, and
the PSPACE-hardness for LimSup-automata follows from Lemma 1. The hard-
ness result for LimInf-automata is obtained in an analogous way. The hardness
result for Sup-automata is obtained by a simple reduction of the boolean lan-
guage inclusion problem for finite automata which is PSPACE-complete [Meyer
and Stockmeyer 1972]. It suffices to assign weight 1 to the transitions entering
an accepting state, and weight 0 to the other transitions. Thus the PSPACE-
hardness for the quantitative language inclusion problem for Sup-, LimSup- and
LimInf-automata follows.

The desired result follows. �

We do not know if the quantitative language-inclusion problem is decidable for
LimAvg- or Disc-automata. The special cases of deterministic automata are solved
using a product construction (see Theorem 5).

Theorem 5. The quantitative language-inclusion problems LA ⊑ LB for
LimAvg- and Disc-automata are decidable in polynomial time when B is determin-
istic.

To prove Theorem 5, we need the following lemma.

Lemma 3. For all sequences (an)n≥0 and (bn)n≥0 of real numbers, we have:

• lim sup
n→∞

an + bn ≤ lim sup
n→∞

an + lim sup
n→∞

bn

• lim sup
n→∞

an − bn ≥ lim sup
n→∞

an − lim sup
n→∞

bn

• lim inf
n→∞

an + bn ≥ lim inf
n→∞

an + lim inf
n→∞

bn

• lim inf
n→∞

an − bn ≤ lim inf
n→∞

an − lim inf
n→∞

bn

Proof. The first statement is well known. The second statement is obtained by
substituting in the first an with b′n, and bn with a′

n − b′n. The last two statements
follow from the first two by the equality lim sup

n→∞
an = − lim inf

n→∞
−an. �

Proof of Theorem 5. Given two weighted automata A = 〈Q1, q
1
I , Σ, δ1, γ1〉

and B = 〈Q2, q
2
I , Σ, δ2, γ2〉, we define the product weighted automaton as fol-

lows: A × B = 〈Q1 × Q2, (q
1
I , q2

I ), Σ, δ12, γ12〉, where ((q1, q2), σ, (q′1, q
′
2)) ∈ δ12

iff (q1, σ, q′1) ∈ δ1 and (q2, σ, q′2) ∈ δ2; and for ((q1, q2), σ, (q′1, q
′
2) ∈ δ12 we have

γ12((q1, q2), σ, (q′1, q
′
2)) = γ1((q1, σ, q′1)) − γ2((q2, σ, q′2)). The following assertion

holds: if B is deterministic, then the answer to the quantitative inclusion problem
is No iff Val(A × B) > 0 where

Val(A × B) = sup{Val(γ12(r12)) | w ∈ Σω, r12 is a run of A × B over w},
and Val is LimAvg or Discλ. We present both directions of the proof.

(1) We first show that if Val(A × B) > 0, then the answer to the quantitative
inclusion problem is “No”. If Val(A × B) > 0, then it follows from argu-
ments similar to Theorem 3, that there exists a lasso word ŵ = w1 · (w2)

ω

such that LA×B(ŵ) > 0. Consider a run r∗12 of A × B over ŵ such that
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Val(γ12(r
∗
12)) > 0. The run r∗12 can be decomposed as a run r∗1 of A over ŵ

and the unique run r∗2 of B over ŵ (the run r∗2 is unique since B is determinis-
tic). Let the sequence of numbers in γ1(r

∗
1) and γ2(r

∗
2) be v1

0 , v1
1 , v

1
2 , v1

3 , · · · , and
v2
0 , v

2
1 , v

2
2 , v2

3 , · · · , respectively (note that v1
0 , v1

1 , v
1
2 , v1

3 , · · · are weights defined
by γ1 in A and v2

0 , v
2
1 , v2

2 , v
2
3 , · · · are weights defined by γ2 in B). Then the

sequence of numbers in γ12(r
∗
12) is v1

0 − v2
0 , v

1
1 − v2

1 , v1
2 − v2

2 , v
1
3 − v2

3 , · · · .
—If Val = Discλ, then we have

Val(γ12(r
∗
12)) =

∞
∑

i=0

λi · (v1
i − v2

i ) =

∞
∑

i=0

λi · v1
i −

∞
∑

i=0

λi · v2
i .

Since r∗1 is a run of A over ŵ we have LA(ŵ) ≥ ∑∞
i=0 λi · v1

i , and since B

is deterministic we have LB(ŵ) =
∑∞

i=0 λi · v2
i . Since Val(γ12(r

∗
12)) > 0, it

follows that LA(ŵ) > LB(ŵ).
—If Val = LimAvg, then we have

Val(γ12(r
∗
12)) = lim inf

n→∞
1

n
·
n−1
∑

i=0

(v1
i −v2

i ) ≤ lim inf
n→∞

1

n
·
n−1
∑

i=0

v1
i −lim inf

n→∞
1

n
·
n−1
∑

i=0

v2
i .

The last inequality follows from Lemma 3. Since r∗1 is a run of A over ŵ we

have LA(ŵ) ≥ lim infn→∞
1
n
·
∑n−1

i=0 v1
i . Moreover, since B is deterministic

we have LB(ŵ) = lim infn→∞
1
n
·∑n−1

i=0 v2
i . Since Val(γ12(r

∗
12)) > 0, it follows

that LA(ŵ) > LB(ŵ).

—If Val is the lim sup version of LimAvg, i.e. Val(v0v1 . . .) = lim sup
n→∞

1

n
·
n−1
∑

i=0

vi,

then we have

Val(γ12(r
∗
12)) = lim sup

n→∞

1

n
·
n−1
∑

i=0

(v1
i −v2

i ) ≤ lim sup
n→∞

1

n
·
n−1
∑

i=0

v1
i −lim inf

n→∞
1

n
·
n−1
∑

i=0

v2
i .

The last inequality is obtained as follows: let an = 1
n
· ∑n−1

i=0 v1
i and bn =

1
n
· ∑n−1

i=0 (−v2
i ), then by Lemma 3 we have that lim supn→∞(an + bn) ≤

lim supn→∞ an+lim supn→∞ bn. Since lim supn→∞ bn = − lim infn→∞(−bn),
the desired inequality follows. Observe that the last term is lim inf in the
last inequality. Since the word ŵ is a lasso word, and B is deterministic, the
run r∗2 is a lasso run, and we have

lim sup
n→∞

1

n
·

n−1
∑

i=0

v2
i = lim inf

n→∞
1

n
·

n−1
∑

i=0

v2
i = lim

n→∞
1

n
·

n−1
∑

i=0

v2
i = LB(ŵ).

Since r∗1 is a run of A over ŵ we have LA(ŵ) ≥ lim supn→∞
1
n
· ∑n−1

i=0 v1
i .

Since Val(γ12(r
∗
12)) > 0, it follows that LA(ŵ) > LB(ŵ).

(2) We now prove the other direction.

—We first consider the case when Val = Discλ. If for some word ŵ we have
LA(ŵ) > LB(ŵ), then consider a run r∗1 of A over ŵ, and the unique run r∗2
of B over ŵ such that Val(γ1(r

∗
1)) > Val(γ2(r

∗
2)). For the run r∗12 composed

of the runs r∗1 and r∗2 we have Val(γ12(r
∗
12)) = Val(γ1(r

∗
1))−Val(γ2(r

∗
2)) (this
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holds for Val being Discλ and follows from arguments similar to the case
above). If follows that Val(γ12(r

∗
12)) > 0, and hence Val(A × B) > 0.

—We now consider the case when Val = LimAvg. If Val(A × B) ≤ 0, then we
show that for all words w we have LA(w) ≤ LB(w). Since Val(A × B) ≤ 0,
it follows that if we consider the graph with rewards on edges obtained from
A × B, then for all cycles C reachable from the state (q1

I , q2
I ) in the graph

the sum of rewards (obtained from the weights according to γ12) is at most
0; i.e., in C the sum of the weights according to γ2 is at least the sum of the
weights according to γ1. For a word w, let us consider a run r1 in A and the
unique run r2 in B. Let the sequence of weights in r1 and r2 be (v1

i )i≥0 and
(v2

i )i≥0, respectively. By the property of cycles in the graph obtained from
A × B (i.e., the sum of weights by γ2 in any cycle is at least the sum of the
weights by γ1), it follows that for all j ≥ 0 we have

j
∑

i=0

v1
i ≤

j
∑

i=0

v2
i + 2 · |Q1 × Q2| · β

where β = max((q1,q2),σ,(q′
1
,q′

2
))∈δ12

|γ1(q1, σ, q′1) − γ2(q2, σ, q′2)|. The above

inequality is obtained as follows: for j ≥ 0, if we consider
∑j

i=0(v
2
i − v1

i ),
then for the sum any cycles the sum is positive, and there may be a initial
prefix of length at most |Q1 × Q2| where the sum is at least −|Q1 × Q2| · β,
and there may be a trailing prefix of length at most |Q1×Q2| where the sum
is at least −|Q1 × Q2| · β (the rest can be decomposed as cycles where the

sum is non-negative). Hence it follows that
∑j

i=0(v
2
i −v1

i ) ≥ −2 · |Q1×Q2| ·β
and gives us the desired inequality. Thus we have

lim inf
n→∞

1

n
·
n−1
∑

i=0

v1
i ≤ lim inf

n→∞

(

1

n
·
n−1
∑

i=0

v2
i +

2 · |Q1| · |Q2| · β
n

)

= lim inf
n→∞

1

n
·
n−1
∑

i=0

v2
i .

The last equality follows since |Q1| · |Q2| · β is fixed, and as n → ∞ we have

limn→∞
2·|Q1|·|Q2|·β

n
= 0. The result follows.

—We consider the case when Val is the lim sup version of LimAvg. If for some
word ŵ we have LA(ŵ) > LB(ŵ), then consider a run r∗1 of A over ŵ, and
the unique run r∗2 of B over ŵ such that Val(γ1(r

∗
1)) > Val(γ2(r

∗
2)). For the

run r∗12 composed of the runs r∗1 and r∗2 we have

Val(γ12(r
∗
12)) ≥ Val(γ1(r

∗
1)) − Val(γ2(r

∗
2)).

The above inequality follows from Lemma 3. If follows that Val(γ12(r
∗
12)) > 0,

and hence Val(A × B) > 0.

It follows from above that the answer to the quantitative inclusion problem is
“No” iff Val(A × B) > 0. It Theorem 3 we have shown that given a weighted
automaton A, with the value functions Val as LimAvg or Discλ, the value Val(A)
can be computed in polynomial time (by using algorithms on graphs with the value
functions). It follows that Val(A × B) is computable in polynomial time, for Val
being LimAvg or Discλ. The desired result follows. �
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A

q1

B

q′1

q′2

q′3

a, b, 0

a, b, 0

a, b, 1

a, 2b, 0

a, 0b, 2

Fig. 3. Two nondeterministic limit-average automata A and B such that LA 6⊑ LB, but there is
no lasso-word w = w1 · wω

2 with LA(w) > LB(w).

When the LimAvg automaton B is not deterministic, the decidability of quanti-
tative language inclusion is open. We show that when language inclusion does not
hold, there may not exist simple words that witness this. A simple word is a word
of the form w1 · wω

2 for finite words w1, w2 (w2 nonempty), also called lasso-word.
This observation is in contrast with the case of boolean language inclusion for, e.g.,
parity automata, where non-inclusion is always witnessed by a lasso-word.

Lemma 4. There exist two LimAvg-automata A and B such that (i) LA 6⊑ LB

and (ii) there exists no lasso-word w such that LA(w) > LB(w).

Proof. Consider the two LimAvg-automata A and B shown in Figure 3, where
B is nondeterministic. For all words w ∈ Σω, we have LA(w) = 1. For a lasso-
word w = w1 · wω

2 , if in w2 there are more b’s than a’s, then B chooses q′3 from
q′1, and else chooses q′2 from q′1. Hence for all lasso-words w = w1 · wω

2 , we have
LB(w) ≥ 1. However LA 6⊑ LB. Consider the word w generated inductively such
that w0 is the empty word, and wi+1 is generated from wi as follows: (i) first
generate a long enough sequence w′

i+1 of a’s after wi such that the average number
of b’s in wi · w′

i+1 falls below 1
3 ; (ii) then generate a long enough sequence w′′

i+1 of
b’s such that the average number of a’s in wi · w′

i+1 · w′′
i+1 falls below 1

3 ; and (iii)
let wi+1 = wi · w′

i+1 · w′′
i+1. The infinite word w is the limit of this sequence. For

the word w, we have LB(w) = 2 · 1
3 = 2

3 < 1, and thus LA 6⊑ LB. �

For the quantitative language-inclusion problem for discounted sum automata we
have the following result.

Theorem 6. The quantitative language-inclusion problem for Disc-automata is
co-r.e.

Proof. For discounted-sum automata A and B, assume that there exists a finite
word w ∈ Σ∗ such that for some run r1 of A over w and for all runs r2 of B over
w, we have

vA
λ (r1) + v · λ|w|

1 − λ
> vB

λ (r2) + V · λ|w|

1 − λ
(1)
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where vA
λ (·) and vB

λ (·) compute the discounted sum (with discount factor λ) of runs
in A and B, and v (resp. V ) is the minimum (resp. maximum) weight in (the union
of) A and B. Then, we immediately have LA 6⊑ LB, as LA(w ·w′) > LB(w ·w′) for
all words w′ ∈ Σω. We say that w is a finite witness of LA 6⊑ LB. We claim that
there always exists a finite witness of LA 6⊑ LB. To see this, consider an infinite
word w∞ such that LA(w∞) = η1, LB(w∞) = η2, and η1 > η2. Let r1 be an
(infinite) run of A over w∞ whose value is η1. For i > 0, consider the prefix of w∞

of length i. Then, for all runs r2 of B over w∞, we have

vA
λ (ri

1) + V · λi

1 − λ
≥ η1 and vB

λ (ri
2) + v · λi

1 − λ
≤ η2

where ri
1 and ri

2 are the prefixes of length i of r1 and r2, respectively. Then, a prefix
of length i of w∞ is a finite witness of LA 6⊑ LB if

η1 − (V − v) · λi

1 − λ
> η2 + (V − v) · λi

1 − λ
,

which must hold for sufficiently large values of i.
Therefore, the following procedure terminates if LA 6⊑ LB: enumerate the finite

words over Σ (and all runs of A1 and A2 over these words) and check the condi-
tion (1) to get a finite witness of LA 6⊑ LB. �

Universality and language equivalence. All of the above results about lan-
guage inclusion hold for quantitative universality and language equivalence also.

Theorem 7. The quantitative universality problem for nondeterministic Sup-,
LimSup-, and LimInf-automata is PSPACE-complete.

Proof. (PSPACE upper bound). The quantitative universality problem for non-
deterministic Sup-, LimSup-, and LimInf-automata can be reduced in polynomial
time to respectively the boolean universality problem for finite-word languages, for
infinite-word Büchi languages, and for infinite-word co-Büchi languages.

(PSPACE lower bound). The boolean universality problem for finite word lan-
guages, for infinite word Büchi languages, and for infinite word co-Büchi languages
can be reduced in polynomial time to their quantitative counterparts by assigning
weight 1 to the transitions entering an accepting state, and weight 0 to the other
transitions, and taking the threshold ν = 1. �

Theorem 8. The quantitative universality problem for deterministic LimAvg-
and Disc-automata is decidable in polynomial time.

Proof. It follows from the results of Theorem 5. �

Theorem 9. The quantitative language equivalence problem for nondeterminis-
tic Sup-, LimSup-, and LimInf-automata is PSPACE-complete.
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Proof. (PSPACE upper bound). The results follow from Theorem 4.
(PSPACE lower bound). The boolean language equivalence problem for finite

word languages, for infinite word Büchi languages, and for infinite word co-Büchi
languages can be reduced in polynomial time to their quantitative counterparts by
assigning weight 1 to the transitions entering an accepting state, and weight 0 to
the other transitions. �

Theorem 10. The quantitative language equivalence problem for deterministic
LimAvg- and deterministic Disc-automata is decidable in polynomial time.

Proof. It follows from the results of Theorem 5. �

4. QUANTITATIVE SIMULATION

As the decidability of the quantitative language-inclusion problems for limit-average
and discounted-sum automata remain open, we introduce a notion of quantitative
simulation as a decidable approximation of language inclusion for weighted au-
tomata. The quantitative language-inclusion problem can be viewed as a game of
imperfect information, and we view the quantitative simulation problem as exactly
the same game, but with perfect information. For quantitative objectives, perfect-
information games can be solved much more efficiently than imperfect-information
games, and in some cases the solution of imperfect-information games with quanti-
tative objectives is not known. For example, perfect-information games with limit-
average and discounted-sum objectives can be decided in NP ∩ coNP, whereas the
solution for such imperfect-information games is not known. Second, quantitative
simulation implies quantitative language inclusion, because it is easier to win a
game when information is not hidden. Hence, as in the case of finite automata,
simulation can be used as a conservative and efficient approximation for language
inclusion.

Language-inclusion game. Let A and B be two weighted automata with
weight function γ1 and γ2, respectively, for which we want to check if LA ⊑ LB.
The language-inclusion game is played by a challenger and a simulator, for infinitely
many rounds. The goal of the simulator is to prove that LA ⊑ LB, while the chal-
lenger has the opposite objective. The position of the game in the initial round
is 〈q1

I , q2
I 〉 where q1

I and q2
I are the initial states of A and B, respectively. In each

round, if the current position is 〈q1, q2〉, first the challenger chooses a letter σ ∈ Σ
and a state q′1 such that (q1, σ, q′1) ∈ δ1, and then the simulator chooses a state q′2
such that (q2, σ, q′2) ∈ δ2. The position of the game in the next round is 〈q′1, q′2〉.
The outcome of the game is a pair (r1, r2) of runs of A and B, respectively, over
the same infinite word. The simulator wins the game if Val(γ2(r2)) ≥ Val(γ1(r1)).
To make this game equivalent to the language-inclusion problem, we require that
the challenger cannot observe the state of B in the position of the game.

Simulation game. The simulation game is the language-inclusion game without
the restriction on the vision of the challenger, that is, the challenger is allowed to
observe the full position of the game. Formally, given A = 〈Q1, q

1
I , Σ, δ1, γ1〉 and
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B = 〈Q2, q
2
I , Σ, δ2, γ2〉, a strategy τ for the challenger is a function from (Q1×Q2)

+

to Σ×Q1 such that for all π ∈ (Q1×Q2)
+, if τ(π) = (σ, q), then (Last(π|Q1

), σ, q) ∈
δ1, where π|Q1

is the projection of π on Q+
1 . A strategy τ for the challenger is blind

if τ(π) = τ(π′) for all sequences π, π′ ∈ (Q1 ×Q2)
∗ such that π|Q1

= π′
|Q1

. The set

of outcomes of a challenger strategy τ is the set of pairs (r1, r2) of runs such that
if r1 = q0σ1q1σ2 . . . and r2 = q′0σ1q

′
1σ2 . . . , then q0 = q1

I , q′0 = q2
I , and for all i ≥ 0,

we have (σi+1, qi+1) = τ((q0, q
′
0) . . . (qi, q

′
i)) and (q′i, σi+1, q

′
i+1) ∈ δ2. A strategy τ

for the challenger is winning if Val(γ1(r1)) > Val(γ2(r2)) for all outcomes (r1, r2)
of τ .

Theorem 11. For all value functions and weighted automata A and B, we have
LA ⊑ LB if and only if there is no blind winning strategy for the challenger in the
language-inclusion game for A and B.

Proof sketch. If the quantitative language-inclusion does not hold for A, B (i.e.,
LA 6⊑ LB), then there exists a word w = σ1σ2 . . . such that LA(w) > LB(w). Let
r = q0σ1q1σ2 . . . be a run of A over w such that Val(γA(r)) = LA(w). A blind
winning strategy for the challenger is to play (σi, qi) in the ith round of the game.
Analogously, given a blind winning strategy for the challenger, one can construct a
word w and a run r of A over w such that Val(γA(r)) > Val(γB(r′)) for all runs r′

of B over w. �

Given two weighted automata A and B, there is a quantitative simulation of A

by B if there exists no (not necessarily blind) winning strategy for the challenger
in the simulation game for A and B. We note that for the special cases of Büchi
and coBüchi automata, quantitative simulation coincides with fair simulation [Hen-
zinger et al. 1997].

Corollary 1. For all value functions and weighted automata A and B, if there
is a quantitative simulation of A by B, then LA ⊑ LB.

Given two weighted automata A and B, the quantitative simulation problem asks
if there is a quantitative simulation of A by B.

Theorem 12. The quantitative simulation problem for Sup-automata is solvable
in polynomial time. The quantitative simulation problem is in NP ∩ coNP for
LimSup-, LimInf-, LimAvg-, and Disc-automata.

The proof of Theorem 12 is obtained as follows. The quantitative simulation
problems for LimSup- and LimInf-automata is reduced to perfect-information parity
games; the quantitative simulation problem for LimAvg-automata is reduced to
perfect-information limit-average games; and the quantitative simulation problem
for Disc-automata is reduced to perfect-information discounted-sum games. All
reductions are polynomial time, and the resulting games can all be solved in NP ∩
coNP.

Proof of Theorem 12. First, we consider Sup-, LimSup- and LimInf-automata.
Let A = 〈Q1, q

1
I , Σ, δ1, γ1〉 and B = 〈Q2, q

2
I , Σ, δ2, γ2〉 be two Sup-automata (or

two LimSup-automata, or two LimInf-automata). Let v1 < v2 < · · · < vk be
the weights that occur in A. We construct the graph G(A, B) = 〈Qchallenger ∪
Qsimulator , qI , E, p〉 where:
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—Qchallenger = Q1 × Q2;

—Qsimulator = Q1 × Q2 × Σ;

—qI = (q1
I , q2

I );

—E = {((q1, q2), (q
′
1, q2, σ)) | (q1, σ, q′1) ∈ δ1} ∪ {((q1, q2, σ), (q1, q

′
2)) | (q2, σ, q′2) ∈

δ2};
—p : E → {0, 1, . . . , 2k} assigns priorities to edges as follows:

—p((q1, q2), (q
′
1, q2, σ)) = 2i − 1 if γ1(q1, σ, q′1) = vi,

—p((q1, q2, σ), (q1, q
′
2)) =







0 if γ2(q2, σ, q′2) < v1

2i if vi ≤ γ2(q2, σ, q′2) < vi+1

2k if vk ≤ γ2(q2, σ, q′2)

The game on G(A, B) is played as follows. Starting in qI , if the current state is
in Qchallenger , then the challenger chooses the successor state in the set of outgoing
edges, and if the current state is in Qsimulator , then the simulator chooses the
successor state in the set of outgoing edges. The game results in an infinite path
through the graph.

The objective of the simulator in the game for Sup-automata is the weak-parity
objective: a play satisfies a weak-parity objective if the maximal priority which
occurs in the play is even (see [Thomas 1997] for details). The objective of the
simulator in the game for LimSup-automata is that the maximal priority which is
seen infinitely often is even, and in the game for LimInf-automata that the minimal
priority which is seen infinitely often is odd, i.e., classical parity objectives.

In the three cases, a winning strategy of the simulator in G(A, B) is a witness that
there is no winning strategy for the challenger in the simulation game. Similarly,
a winning strategy for the challenger in G(A, B) is a witness of a winning strategy
for the challenger in the simulation game. Hence it follows that the simulator wins
in G(A, B) if and only if B simulates A.

The NP ∩ coNP complexity result for LimSup- and LimInf-automata then follows
from the fact that parity games can be solved in NP ∩ coNP [Emerson and Jutla
1991]. Since weak-parity games are solvable in linear-time [Chatterjee 2008], the
quantitative simulation problem for Sup-automata is solvable in polynomial time.

The simulation game for nondeterministic LimAvg- and Disc-automata (with a
rational discount factor) can also be solved in NP ∩ coNP. We construct a game
with limit-average (resp. discounted) objective. The game has the same structure
(states and transitions) as G(A, B) above. Weights are assigned to transitions as
follows: if it corresponds to a transition in A, then it has the same weight as in A,
and if it corresponds to a transition in B with weight v, then it has weight −v for
the limit-average game and v√

λ
for the discounted game (where λ is the discount

factor of A and B). Moreover, the discount factor of the discounted game is
√

λ.
Now, we consider the case of LimAvg-automata. Let A = 〈Q1, q

1
I , Σ, δ1, γ1〉 and

B = 〈Q2, q
2
I , Σ, δ2, γ2〉 be two LimAvg-automata. We construct the quantitative

perfect-information limit-average game G(A, B) = 〈Qmin, Qmax, qI , E, γ〉 where:

—Qmin = Q1 × Q2;

—Qmax = Q1 × Q2 × Σ;

—qI = (q1
I , q2

I );
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—E = {((q1, q2), (q
′
1, q2, σ)) | (q1, σ, q′1) ∈ δ1} ∪ {((q1, q2, σ), (q1, q

′
2)) | (q2, σ, q′2) ∈

δ2}.
—γ assigns −γ1(q1, σ, q′1) to each ((q1, q2), (q

′
1, q2, σ)) ∈ E, and γ2(q2, σ, q′2) to each

((q1, q2, σ), (q1, q
′
2)) ∈ E.

It is easy to establish a correspondence between strategies of the challenger in
the simulation game and the min-player in game G(A, B), and similarly, for the
simulator and the max-player. The following two case analysis relates the maximal
value of the perfect-information limit-average game G(A, B) and the simulation
game. In the following analysis we use pure memoryless determinacy of perfect-
information limit-average games [Ehrenfeucht and Mycielski 1979] (i.e., existence
of pure memoryless optimal strategies in such games).

(1) We first show that if the maximal value that the max-player can ensure is
at least 0, then B simulates A. We fix an optimal strategy τ∗

1 for the max-
player in G(A, B). Consider an arbitrary strategy for the min-player, and the
resulting play π starting from qI . Let the sequence of weights in the play be
−u0, v0,−u1, v1,−u2, v2, · · · . Since the maximal value is at least 0 and τ∗

1 is an
optimal strategy, it follows that

lim inf
n→∞

1

2n
·

n−1
∑

i=0

(vi − ui) ≥ 0.

By Lemma 3 we obtain that

1

2

(

lim inf
n→∞

1

n
·

n−1
∑

i=0

vi − lim inf
n→∞

1

n
·

n−1
∑

i=0

ui)
)

≥ lim inf
n→∞

1

2n
·

n−1
∑

i=0

(vi − ui) ≥ 0.

Hence the strategy that corresponds to τ∗
1 in the simulation game is a witness

that there is no winning strategy for the challenger, i.e., B simulates A.

(2) We now show that if the maximal value that the max-player can ensure is
negative, then B does not simulate A. In this case, we fix a pure memoryless
optimal strategy τ∗

2 for the min-player, and let us refer to the graph after fixing
τ∗
2 as G(A, B)τ∗

2
. Since the maximal value that the max-player can ensure is

negative and τ∗
2 is an optimal strategy, it follows that the sum of weights of all

cycles C reachable from qI in G(A, B)τ∗
2

is negative (i.e., the sum of weights by
γ1 exceeds the sum weights by γ2 in C). By arguments similar to Theorem 5,
it follows that given the strategy τ∗

2 , for all strategies τ1 of the max-player, the
value of the resulting play in A exceeds the value of the resulting play in B.
That is, the strategy that corresponds to τ∗

2 in the simulation game is a (not
necessarily blind) winning strategy for the challenger. It follows that B does
not simulate A.

It follows from above that the maximal value that the max-player can enforce in
G(A, B) is nonnegative if and only if B simulates A. The result then follows from
the fact that the maximal value of perfect-information limit-average games can be
decided in NP ∩ coNP.

Finally, we consider the case of Disc-automata. Let A = 〈Q1, q
1
I , Σ, δ1, γ1〉 and

B = 〈Q2, q
2
I , Σ, δ2, γ2〉 be two Disc-automata (with rational discount factor λ).
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We construct the discounted game G(A, B) = 〈Qmin, Qmax, qI , E, γ〉 with discount
factor λ′ =

√
λ where:

—Qmin = Q1 × Q2;

—Qmax = Q1 × Q2 × Σ;

—qI = (q1
I , q2

I );

—E = {((q1, q2), (q
′
1, q2, σ)) | (q1, σ, q′1) ∈ δ1} ∪ {((q1, q2, σ), (q1, q

′
2)) | (q2, σ, q′2) ∈

δ2}.
—γ assigns −γ1(q1, σ, q′1) to each ((q1, q2), (q

′
1, q2, σ)) ∈ E, and 1

λ′ · γ2(q2, σ, q′2) to
each ((q1, q2, σ), (q1, q

′
2)) ∈ E.

It is easy to see that the maximal value that the max-player can enforce in this
game is nonnegative if and only if B simulates A. Essentially, this is because if
the sequence of weights in the play of the game G(A, B) is −u0,

v0

λ′ ,−u1,
v1

λ′ , . . . ,
then its λ′-discounted sum is (v0 − u0) + λ′2 · (v1 − u1) + λ′4 · (v2 − u2) + . . . ,
that is (v0 − u0) + λ · (v1 − u1) + λ2 · (v2 − u2) + . . . which is nonnegative iff
Discλ(vi) ≥ Discλ(ui).

Now, we show that deciding whether the value of the game G(A, B) is nonnegative
can be done in NP ∩ coNP. This would be straightforward if λ′ was rational,
but λ′ =

√
λ can be irrational even if λ is rational. It is known that perfect-

information discounted games admit pure memoryless optimal strategies, and the
pure memoryless optimal strategies serve as polynomial witnesses for the NP ∩
coNP procedure. To complete the NP ∩ coNP result we need to present polynomial-
time verification procedure for graphs (i.e., game graphs after a pure memoryless
strategy for a player is fixed). Suppose a pure memoryless strategy for one of
the player (say the min player) is fixed, and then we do the following polynomial-
time check: we construct a weighted graph from G(A, B) and the fixed strategy for
player min by first removing the edges that are not played by the strategy, and then
removing the min-states and replacing every path of length 2 between max-states
by a direct edge, weighted v − u if the corresponding two edges in the game were
labeled −u and v

λ′ , and then solving the resulting graph as a λ-discounted graph (in
polynomial-time [Andersson 2006]). The dual construction can be done in a similar
fashion when a strategy for player max is fixed. Since checking if the minimal (or
maximal) value of a discounted graph (with rational discount) is nonnegative can
be done in polynomial time, we get an NP (or coNP) procedure. �

5. THE EXPRESSIVE POWER OF WEIGHTED AUTOMATA

We study the expressiveness of the different classes of weighted automata over
infinite words by comparing the quantitative languages they can define. For this
purpose, we show the existence and non-existence of translations between classes
of finite and weighted automata. All reducibility relationships are summarized in
Table III and Figure 9.

5.1 Positive Reducibility Results

We start with the positive results about the existence of reductions between various
classes of weighted automata, most of which can be obtained by generalizing cor-
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responding results for finite automata. Our results also hold if we allow transition
weights to be irrational numbers.

First, it is clear that Büchi and coBüchi automata can be reduced to LimSup-
and LimInf-automata, respectively. In addition, we have the following results.

Theorem 13. (i) Sup-automata can be determinized in O(2n) time; (ii) LimInf-
automata can be determinized in O(mn) time; (iii)Deterministic Sup-automata can
be reduced to deterministic LimInf-, to deterministic LimSup-, and to deterministic
LimAvg-automata, all in O(n · m) time; (iv) LimInf-automata can be reduced to
LimSup- and to LimAvg-automata, both in O(n · m) time.

Proof sketch. (i) Given a Sup-automaton A = 〈Q, qI , Σ, δ, γ〉, we construct a
deterministic Sup-automaton AD = 〈QD, qD

I , Σ, δD, γD〉 such that LAD
= LA, using

a subset construction:

—QD = 2Q;

—qD
I = {qI};

—δD contains all transitions (s, σ, s′) such that σ ∈ Σ and s′ = {q′ ∈ Q | ∃q ∈ s :
(q, σ, q′) ∈ δ};

—γD assigns to (s, σ, s′) ∈ δD the weight v = max{γ(q, σ, q′) | q ∈ s, q′ ∈
s′ and (q, σ, q′) ∈ δ}.

(ii) Given a LimInf-automaton A = 〈Q, qI , Σ, δ, γ〉, we construct a deterministic
LimInf-automaton AD = 〈QD, qD

I , Σ, δD, γD〉 such that LAD
= LA. Let the weights

that appear on transitions of A be (in increasing order) v1 < v2 < · · · < vk. Define:

—QD = {(t1, . . . , tk) | t1 ⊆ Q and ti ⊆ ti−1 for i = 2, . . . , k}. Intuitively, AD

keeps k copies of the classical subset construction for finite automata, one for
each weight in A. However, the transitions from a set ti are limited to those with
a weight at least vi. Therefore, t1 corresponds exactly to the subset construction,
and never gets empty (since A is total). If ti gets empty (for i ≥ 2), it means
that all runs over the finite prefix of the input word that we have read contain a
weight less than vi;

—qD
I = ({qI}, . . . , {qI});

—δD contains all transitions ((t1, . . . , tk), σ, (t′1, . . . , t
′
k)) such that σ ∈ Σ and for all

1 ≤ i ≤ k,

—if ti 6= ∅, then t′i = {q′ ∈ Q | ∃q ∈ ti : (q, σ, q′) ∈ δ ∧ γ(q, σ, q′) ≥ vi};
—if ti = ∅, then let j such that tj 6= ∅ and tj+1 = ∅ (note that such j exists

and is unique) and t′i = {q′ ∈ Q | ∃q ∈ tj : (q, σ, q′) ∈ δ ∧ γ(q, σ, q′) ≥ vi};
When a set ti gets empty (then all tj gets empty for j > i), it is initiated with
the least nonempty set of states;

—γD assigns to ((t1, . . . , tk), σ, (t′1, . . . , t
′
k)) ∈ δD the weight vm where m = max{j |

t′j 6= ∅}. Intuitively, the value of the input word is at least vi if and only if
the set ti never gets empty from some point on. This construction generalizes
the Miyano-Hayashi construction [Miyano and Hayashi 1984] for determinizing
coBüchi automata.
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(iii) Given a deterministic Sup-automaton A = 〈Q, qI , Σ, δ, γ〉, we construct a
deterministic LimInf-automaton AD = 〈QD, qD

I , Σ, δD, γD〉 such that LAD
= LA.

Let v1 < v2 < · · · < vk be the weights that appear on transitions of A. Define:

—QD = Q × {1, . . . , k};
—qD

I = (qI , 1);

—δD contains all transitions ((q, i), σ, (q′, i′)) such that (q, σ, q′) ∈ δ and i′ =
max{i, k} where k is such that vk = γ(q, σ, q′);

—γD((q, i), σ, (q′, i′)) = vi for all ((q, i), σ, (q′, i′)) ∈ δD.

To show that deterministic Sup-automata are reducible to deterministic LimSup-
automata (resp. to deterministic LimAvg-automata), we use the same automaton
AD interpreted as a LimSup- (resp. LimAvg-) automaton.

(iv) The reduction from LimInf- to LimSup-automata (and to LimAvg-automata)
essentially consists of guessing a position i and a transition weight v such that
only weights greater than v are seen after position i. Once the guess is made, all
transitions have weight v. Given a LimInf-automaton A we present an equivalent
LimAvg-automaton B. Let v1 < v2 < v3 < . . . < vk be the set of weights of A.
The automaton B is obtained as follows: we make k copies A1, A2, . . . , Ak of the
automaton A; in automaton Ai we only allow transitions of A of weights at least
vi and assign each of them weight vi. We start in automaton A1 and at any point
can choose to stay in Ai or choose to move to any of the copies Ai+1, . . . , Ak. In
each copy Ai, the transition of A with weights smaller than vi are replaced by a
transition with weight v1 over the same letter and leading to a sink state. The sink
state has a self-loop with weight v1 over every letter in the alphabet. �

5.2 Negative Reducibility Results

We show that all other reducibility relationships do not hold. The most impor-
tant results in this section show that (i) deterministic coBüchi automata cannot be
reduced to deterministic LimAvg-automata, deterministic Büchi automata cannot
be reduced to LimAvg-automata, and (ii) neither LimAvg- nor Disc-automata can
be determinized. Over the alphabet Σ̂ = {a, b}, we use in the sequel the boolean
languages LF , which contains all infinite words with finitely many a’s, and LI ,
which contains all infinite words with infinitely many a’s. We also use the fol-
lowing definition. A class C of finite automata can be weakly reduced to a class
C′ of weighted automata if for every A ∈ C there exists an A′ ∈ C′ such that
infw∈LA

LA′(w) > supw 6∈LA
LA′(w). Intuitively, weak reductions may not preserve

the values of the words, but preserve the order on values: for two words w ∈ LA

(i.e., LA(w) = 1) and w′ 6∈ LA (i.e., LA(w′) = 0), we have both LA(w) > LA(w′)
and LA′(w) > LA′(w′).

The classical proof that deterministic coBüchi automata cannot be reduced to
deterministic Büchi automata can be adapted to show the following theorem.

Theorem 14. Deterministic coBüchi automata cannot be reduced to determin-
istic LimSup-automata.
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a, 1

b, 0

Fig. 4. A deterministic weighted automaton.

Since deterministic LimAvg- and deterministic Disc-automata can define quanti-
tative languages whose range is infinite, while LimSup-automata cannot, we obtain
the following result.

Theorem 15. Deterministic LimAvg-automata and deterministic Disc-automata
cannot be reduced to LimSup-automata.

Proof. Consider the deterministic automaton A (shown in Figure 4) that consists
of a single self-loop state with weight 1 for a and 0 for b. For j ≥ 0, consider the
words wj = (bja)ω and w′

j = ajbω. Then we have LA(wj) = 1
j+1 if A is interpreted

as a deterministic LimAvg-automaton, and LA(w′
j) = 1−λi

1−λ
if A is interpreted as

a deterministic Disc-automaton, i.e., the automaton A has infinitely many output
values. The possible output value set for Büchi, coBüchi, LimInf -, and LimSup-
automata is finite. Hence the result follows.

�

Remark. For the automaton A of Theorem 15, if we consider the language
L = {w ∈ Σω | LA(w) = 1}, then there is no nondeterministic Büchi or coBüchi
automaton that accepts the language L. This is because it is known from [Chat-
terjee 2007b] that the set L is complete for the third level of the Borel hierarchy.
Nondeterministic Büchi or coBüchi automata can express only ω-regular languages
that lie in the boolean closure of the second level of the Borel hierarchy, and can-
not express languages that are complete for the third level of the Borel hierarchy.
Hence it follows that L cannot be expressed by nondeterministic Büchi or coBüchi
automata.

The next theorem shows that nondeterministic LimAvg-automata are strictly
more expressive than their deterministic counterpart. Theorem 17 will show that
the expressive powers of LimAvg- and LimSup-automata are incomparable.

Theorem 16. Deterministic coBüchi automata cannot be weakly reduced to de-
terministic LimAvg-automata, and therefore they cannot be reduced to deterministic
LimAvg-automata. LimAvg-automata cannot be determinized.

Proof. Consider the language LF of finitely many a’s, which is the language defined
by the deterministic coBüchi automaton shown in Figure 5. It is also easy to see
that the nondeterministic LimAvg-automaton shown in Figure 6 defines LF . We
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a

b

b

a

Fig. 5. A deterministic coBüchi automa-
ton.

q0 q1 sink

a, b, 0

a, b, 0

b, 1

a, 0

a, b, 0

Fig. 6. A nondeterministic limit-average automa-
ton.

show that LF cannot be defined by any deterministic LimAvg-automaton to prove
the desired claims. By contradiction, assume that A is a deterministic LimAvg-
automaton with set of states Q and the initial state qI that defines LF . We assume
without loss of generality that every state q ∈ Q is reachable from qI by a finite
word wq .

Let α = infw∈LF
LA(w). We claim that all b-cycles (a b-cycle is a cycle in A that

can be executed with only b’s) must be such that the average of the weights on the
cycle is at least α. Indeed, if there is a b-cycle C in A with average weights less
than α, then consider a state q ∈ C and the word w = wq ·bω. We have LA(w) < α.
Since w = wq · bω ∈ LF , this contradicts α = infw∈LF

LA(w).
We now show that for all ǫ > 0, there exists w′ 6∈ LF such that LA(w′) ≥ α − ǫ.

Fix ǫ > 0. Let β = maxq,q′∈Q,σ∈{a,b}|γ(q, σ, q′)|. Let j = ⌈ 6·|Q|·β
ǫ

⌉, and consider the
word wǫ = (bj ·a)ω. A lower bound on the average of the weights in the unique run
of A over (bj · a) is as follows: it can have a prefix of length at most |Q| whose sum
of weights is at least −|Q| · β, then it goes through b-cycles for at least j − 2 · |Q|
steps with sum of weights at least (j − 2 · |Q|) · α (since all b-cycles have average
weights at least α), then again a prefix of length at most |Q| without completing
the cycle (with sum of weights at least −|Q| · β), and then weight for a is at least
−β. Hence the average is at least

(j − 2 · |Q|) · α − 2 · |Q| · β − β

j + 1
≥ α − 6 · |Q| · β

j
≥ α − ǫ;

we used above that |α| ≤ β, and by choice of j we have 6·|Q|·β
j

≤ ǫ. Hence we have

LA(wǫ) ≥ α − ǫ. Since ǫ > 0 is arbitrary, and wǫ 6∈ LF , we have supw 6∈LF
LA(w) ≥

α = infw∈LF
LA(w). This establishes a contradiction, and thus A cannot exist.

The desired result follows. �

Theorem 17. Deterministic Büchi automata cannot be weakly reduced to
LimAvg-automata, and therefore they cannot be reduced to LimAvg-automata.

Proof. We consider the language LI of infinitely many a’s which is accepted by
the deterministic Büchi automaton shown in Figure 7.

By contradiction, assume that A is a nondeterministic LimAvg-automaton with
set of states Q and initial state qI that defines LI . We assume without loss of
generality that every state q ∈ Q is reachable from qI by a finite word wq.

Let α = supw 6∈LI
LA(w), and β = maxq,q′∈Q,σ∈{a,b}|γ(q, σ, q′)|. We claim that

all b-cycles C in A must have average weights at most α; otherwise, consider a

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Quantitative Languages · 29

b

a

a

b

Fig. 7. A deterministic Büchi automaton.

state q ∈ C and the word w = wq · bω, we have LA(w) > α which contradicts that
α = supw 6∈LI

LA(w).
We now show that for all ǫ > 0, there exists w ∈ LI such that LA(w) ≤ α + ǫ.

Fix ǫ > 0. Let j = ⌈ 3·|Q|·β
ǫ

⌉, and consider the word wǫ = (bj ·a)ω. An upper bound
on the average of the weights in any run of A over (bj ·a) is as follows: it can have a
prefix of length at most |Q| with the sum of weights at most |Q| · β, then it follows
(possibly nested) b-cycles1 for at most j steps with sum of weights at most j · α

(since all b-cycles have average weights at most α), then again a prefix of length
at most |Q| without completing a cycle (with sum of weights at most |Q| · β), and
then weight for a is at most β. So, for any run of A over wǫ = (bj ·a)ω , the average
weight is at most

j · α + 2 · |Q| · β + β

j + 1
≤ α +

3 · |Q| · β
j

≤ α + ǫ

Hence we have LA(wǫ) ≤ α + ǫ. Since ǫ > 0 is arbitrary, and wǫ ∈ LI , we have
infw∈LI

LA(w) ≤ α = supw 6∈LI
LA(w). The desired result follows. �

None of the weighted automata we consider can be reduced to Disc-automata
(Theorem 18), and Disc-automata cannot be reduced to any of the other classes of
weighted automata (Theorem 19, and also Theorem 15).

Theorem 18. Deterministic coBüchi automata and deterministic Büchi au-
tomata cannot be weakly reduced to Disc-automata, and therefore they cannot be
reduced to Disc-automata. Also deterministic Sup-automata cannot be reduced to
Disc-automata.

The proofs of Theorem 18 and 19 are based on the property that the value
assigned by a Disc-automaton to an infinite word depends essentially on a finite
prefix, in the sense that the values of two words become arbitrarily close when they
have sufficiently long common prefixes. In other words, the quantitative language
defined by a discounted-sum automaton is a continuous function in the Cantor
topology. In contrast, for the other classes of weighted automata, the value of an
infinite word depends essentially on its tail.

Proof of Theorem 18. First, we show that deterministic coBüchi automata
cannot be weakly reduced to Disc-automata. Consider the language LF of finitely

1Since A is nondeterministic, a run over bj may have nested cycles. We can decompose the run
by repeatedly eliminating the innermost cycles.
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many a’s. The language LF is accepted by the deterministic coBüchi automaton
shown in Figure 5.

We show that LF is not weakly reducible to any nondeterministic Disc-
automaton. By contradiction, assume that there exists a nondeterministic Disc-
automaton A such that α = infw∈LF

LA(w) > supw 6∈LF
LA(w) = β. Then,

LA(aibω) ≥ α for all i ≥ 0. So, for all ǫ > 0, there exists i ≥ 0 such that A

has a run over ai with value at least α − ǫ. Therefore LA(aω) ≥ α − 2ǫ. Since this
holds for all ǫ > 0, we have LA(aω) ≥ α. Similarly, LA(biaω) ≤ β for all i ≥ 0,
and for all ǫ > 0, there exists i ≥ 0 such that A has all its runs over bi with value
at most β + ǫ. Therefore LA(bω) ≤ β + 2ǫ. Since this holds for all ǫ > 0, we have
LA(bω) ≤ β. Since aω 6∈ LF and bω ∈ LF , this contradicts that α > β.

Second, we show that deterministic Büchi automata cannot be weakly reduced
to Disc-automata. We consider the language LI of infinitely many a’s. The deter-
ministic Büchi automaton shown in Figure 7 accepts LI . We now show that LI is
not weakly reducible to any nondeterministic Disc-automaton.

By contradiction, assume that there exists a nondeterministic Disc-automaton A

such that α = infw∈LI
LA(w) > supw 6∈LI

LA(w) = β. Then, LA(biaω) ≥ α for all

i ≥ 0. So, for all ǫ > 0, there exists i ≥ 0 such that A has a run over bi with
value at least α − ǫ. Therefore LA(bω) ≥ α − 2ǫ. Since this holds for all ǫ > 0, we
have LA(bω) ≥ α. Similarly, LA(aibω) ≤ β for all i ≥ 0, and for all ǫ > 0, there
exists i ≥ 0 such that A has all its runs over ai with value at most β + ǫ. Therefore
LA(aω) ≤ β +2ǫ. Since this holds for all ǫ > 0, we have LA(aω) ≤ β. Since aω ∈ LI

and bω 6∈ LI , this contradicts that α > β.
Third, we show that Sup-automata cannot be reduced to Disc-automata. Con-

sider the deterministic Sup-automaton A (shown in Figure 4) that consists of a
single self-loop state with weight 1 for a and 0 for b.

Assume that there exists a nondeterministic Disc-automaton B such that for all
w ∈ Σω we have LA(w) = LB(w). For each i ≥ 0, consider the word wi = biaω.
We have LB(wi) = LA(wi) = 1, and thus for all ǫ > 0, there exists i ≥ 0 such that
B has a run over bi with value at least 1− ǫ. Therefore LB(bω) ≥ 1− 2ǫ. Since this
holds for all ǫ > 0, we have LB(bω) ≥ 1. However, LA(bω) = 0 which contradicts
that LA(w) = LB(w) for all w ∈ Σω . �

Theorem 19. Deterministic Disc-automata cannot be reduced to LimAvg-
automata.

Proof. Consider the deterministic Disc-automaton A (shown in Figure 4) that
consists of a single self-loop state with weight 1 for a and 0 for b.

Assume that there exists a nondeterministic LimAvg-automaton B such that for
all w ∈ Σω we have LA(w) = LB(w). For each i ≥ 0, consider the finite word
wi = ai and let si be the set of states of B in which can be the last state of a run
of B over wi. Since B is finite, there exist j 6= k such that sj = sk. Therefore,

LB(wjb
ω) = LB(wkbω). However, LA(wjb

ω) = 1−λj

1−λ
and LA(wkbω) = 1−λk

1−λ
and

thus LA(wjb
ω) 6= LA(wkbω) which establishes a contradiction. �
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s0

sa sb

a, 1
b, 0

a, 0
b, 1

a, 1
b, 0

a, 0
b, 1

Fig. 8. The automaton N .

The next result shows that discounted-sum automata cannot be determinized.
Consider the nondeterministic discounted-sum automaton N over the alphabet
Σ̂ = {a, b} shown in Figure 8. The automaton N computes the maximum of
the discounted sum of a’s and b’s. Formally, given a (finite or infinite) word
w = w0w1 . . . ∈ Σ̂∗ ∪ Σ̂ω, let

va(w) =

|w|
∑

i|wi=a

λi and vb(w) =

|w|
∑

i|wi=b

λi

be the λ-discounted sum of all a’s (resp. b’s) in w. Then LN(w) =
max{va(w), vb(w)} for all infinite words w ∈ Σ̂ω. We show that N cannot be deter-
minized for rational discount factors λ greater than 1

2 . The proof uses a sequence
of intermediate lemmas.

For σ ∈ Σ̂, let σ = a if σ = b, and σ = b if σ = a. We say that an infinite word
w ∈ Σ̂ω prefers σ ∈ Σ̂ if vσ(w) > vσ(w).

Lemma 5. For all 0 < λ < 1, all w ∈ Σ̂∗, and all σ ∈ Σ̂, there exists w′ ∈ Σ̂ω

such that w · w′ prefers σ if and only if vσ(w · σω) > vσ(w · σω).

Proof. Assume that w.w′ strictly prefers σ. Then vσ(w · σω) ≥ vσ(w · w′) >

vσ̄(w · w′) ≥ vσ̄(w · σω). The reverse direction is trivial. �

We say that a finite word w ∈ Σ̂∗ is ambiguous if there exist two infinite words
w′

a, w′
b ∈ Σ̂ω such that w · w′

a prefers a and w · w′
b prefers b.

Lemma 6. For all 0 < λ < 1 and w ∈ Σ̂∗, the word w is ambiguous if and only

if |va(w) − vb(w)| < λ|w|

1−λ
.

Proof. By Lemma 5, w is ambiguous if and only if va(w · aω) > vb(w · aω) and
vb(w · bω) > va(w · bω), that is

va(w) +
λ|w|

1 − λ
> vb(w) and vb(w) +

λ|w|

1 − λ
> va(w).
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�

Intuitively, ambiguous words are problematic for a deterministic automaton be-
cause it cannot decide which of the two functions va or vb to choose.

Lemma 7. For all 1
2 < λ < 1, there exists an infinite word ŵ ∈ Σ̂ω such that

every finite prefix of ŵ is ambiguous.

Proof. We construct ŵ = w1w2 . . . inductively as follows. First, let w1 = a which
is an ambiguous word for all λ > 1

2 (Lemma 6). Assume that w1 . . . wi is ambiguous

for all 1 ≤ i ≤ k, that is |xi| < λi

1−λ
where xi = va(w1 . . . wi) − vb(w1 . . . wi)

(Lemma 6). We take wk+1 = a if xk < 0, and wk+1 = b otherwise. Let us show

that |xk+1| < λk+1

1−λ
. We have |xk+1| =

∣

∣|xk| − λk
∣

∣, and thus we need to show that

|xk| − λk < λk+1

1−λ
and −|xk| + λk < λk+1

1−λ
knowing that |xk| < λk

1−λ
. It suffices to

show that

λk

1−λ
≤ λk + λk+1

1−λ
and λk − λk+1

1−λ
< 0.

In other words, it suffices that 1 ≤ 1 − λ + λ and 1 − λ − λ < 0, which is true for
all λ > 1

2 . �

The word ŵ constructed in Lemma 7 could be harmless for a deterministic au-
tomaton if some kind of periodicity or reguylarity was appearinf in reading ŵ.

We make this notion formal by defining diff (w) = va(w)−vb(w)
λ|w| for all finite words

w ∈ Σ̂∗. It can be shown that if the set Rλ = {diff (w) | w ∈ Σ∗} ∩ ( −1
1−λ

, 1
1−λ

) is
finite, then the automaton N can be determinized (see Appendix A), where (x, y)
denotes the open interval between two reals x and y with x < y. Lemma 8 shows
that this is also a necessary condition.

Lemma 8. For all 0 < λ < 1, if the set Rλ is infinite, then there exists no
deterministic Disc-automaton D such that LD = LN .

Proof. By contradiction, assume that Rλ is infinite and there exists a deterministic
Disc-automaton D such that LD = LN . For all w ∈ Σ̂∗, let Post(w) be the (unique)
state reached in D after reading w. We show that for all words w1, w2 ∈ Σ̂∗ such
that diff (w1), diff (w2) ∈ Rλ, if diff (w1) 6= diff (w2), then Post(w1) 6= Post(w2).
Therefore D cannot have finitely many states.

We show this by contradiction. Assume that Post(w1) = Post(w2). Then w1

and w2 are ambiguous by Lemma 6 since diff (w1), diff (w2) ∈ Rλ. By Lemma 5,
we thus have for i = 1, 2,

LN(wi · aω) = va(wi) +
λ|wi|

1 − λ
and LN (wi · bω) = vb(wi) +

λ|wi|

1 − λ
.

On the other hand, since Post(w1) = Post(w2), there exist v1, v2, Ka, Kb ∈ R such
that for i = 1, 2,

LD(wi · aω) = vi + λ|wi| · Ka and LD(wi · bω) = vi + λ|wi| · Kb.

Since LD = LN , this entails that LD(wi·aω)−LD(wi ·bω) = LN (wi·aω)−LN(wi ·bω),
and therefore
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Reducibility
boolean quantitative

N
/ D

C
W

D
B

W

N
B

W

N
/ D

S
u
p

N
/ D

L
in

f

D
L
su

p

N
L
su

p

D
L
a
v
g

N
L
a
v
g

D
D

is
c

N
D

is
c

b
o
o
le

a
n N/DCW · × X × X × X × X × ×

DBW × · X × × × X × × × ×

NBW × × · × × × X × × × ×

q
u
a
n
ti
ta

ti
v
e

N/DSup · X X X X X × ×

N/DLinf

×

× · × X × X × ×

DLsup × × · X × × × ×

NLsup × × × · × × × ×

DLavg × × × × · X × ×

NLavg × × × × × · × ×

DDisc × × × × × × · X

NDisc × × × × × × × ·

Table III. Reducibility relation. C is reducible to C′ if the entry R(C, C′) is X.

va(w1) − vb(w1)

λ|w1| = Ka − Kb =
va(w2) − vb(w2)

λ|w2|

which yields a contradiction (to the fact that diff (w1) 6= diff (w2)). �

We are now ready to prove the following theorem.

Theorem 20. Disc-automata cannot be determinized.

Proof. Let λ∗ be a non-algebraic number in the open interval (1
2 , 1). Then, we

show that the set Rλ∗ is infinite, which establishes the theorem by Lemma 8.
By Lemma 6 and Lemma 7, there exist infinitely many finite words w ∈ Σ̂∗ such

that diff (w) ∈ Rλ∗ . Since λ∗ is not algebraic, the polynomial equation diff (w1) =
diff (w2) cannot hold for w1 6= w2. Therefore, Rλ∗ is infinite. �

By a careful analysis of the shape of the family of polynomial equations in the
above proof (see Lemma 9), we can show that the automaton N cannot be deter-
minized for any rational value of λ greater than 1

2 .

Lemma 9. For all finite words w1, w2 ∈ Σ∗ with w1 6= w2, the polynomial equa-
tion diff (w1) = diff (w2) in variable λ has no rational solution in ] 12 , 1[.

Proof. First, consider a polynomial f(x) = c0 + c1 · x + · · · + cn · xn with integer
coefficients, c0 6= 0 and cn 6= 0. If f(p

q
) = 0 for some mutually prime integers p and

q, then we have

c0 · qn + c1 · p · qn−1 + · · · + cn−1 · pn−1 · q + cn · pn = 0.

The first term in this sum must be a multiple of p since the rest of the sum is
divisible by p, and analogously the last term must be a multiple of q. Since p

q
is

irreducible, it must be that p divides c0 and q divides cn.
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NDisc NLavg NLsup

DDisc DLavg N/DLinf DLsup NBW

DBWN/DSup

N/DCW
quantitative

boolean

Fig. 9. Reducibility relations: a class C of automata can be reduced to C′ iff there is a path from
C to C′.

Now, consider the equation diff (w1) = diff (w2):

va(w1) − vb(w1)

λ|w1| =
va(w2) − vb(w2)

λ|w2| .

Assume without loss of generality that n = |w2| − |w1| ≥ 0. We get the equation

λn(va(w1) − vb(w1)) = va(w2) − vb(w2).

If n > 0, then the coefficient of the term of degree zero in the above equation is
either 1 or −1, and by the above argument, the only rational solutions it can have
are 1 or −1. If n = 0, then it is easy to see that at least one coefficient is not
zero (since w1 6= w2) and every non-zero coefficient is either 2 or −2. Therefore, as
above the only possible rational solutions are 1 or −1. The result follows. �
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A. DETERMINIZATION OF N WHEN Rλ IS FINITE

Lemma 10. For 1
2 < λ < 1 and Rλ = { va(w)−vb(w)

λ|w| | w ∈ Σ∗} ∩ [− 1
1−λ

, 1
1−λ

], the
Disc-automaton N of Figure 8 can be determinized if the set Rλ is finite.

Proof sketch. We construct the DDisc AD = 〈Q, I, Σ, δ, γ〉 such that LAD
= LN

as follows:

• Q = Rλ ∪ {sa, sb};
• I = {0} (notice that 0 ∈ Rλ since va(ǫ) − vb(ǫ) = 0);

• Σ = {a, b};
• δ contains the following transitions:
◦ (sa, a, sa), (sa, b, sa), (sb, a, sb), (sb, b, sb)

◦ all transitions (s, a, s′) such that s′ =







sa if s+1
λ

≥ 1
1−λ

sb if s+1
λ

≤ −1
1−λ

s+1
λ

otherwise

◦ all transitions (s, b, s′) such that s′ =







sa if s−1
λ

≥ 1
1−λ

sb if s−1
λ

≤ −1
1−λ

s−1
λ

otherwise

• γ : δ → Q is defined as follows:
◦ γ(sa, a, sa) = γ(sb, b, sb) = 1;
◦ γ(sa, b, sa) = γ(sb, a, sb) = 0;
◦ γ(s, a, s′) = 1 and γ(s, b, s′) = 0 for all s, s′ ∈ Rλ

◦ γ(s, a, sa) = 1 and γ(s, b, sb) = 1 − s for all s ∈ Rλ

The correctness of this construction can be justified by the following observations:

(1) If s = va(w)−vb(w)
λ|w| , then va(w.a)−vb(w.a)

λ|w.a| = va(w)+λ|w|−vb(w)
λ|w|+1 = s+1

λ
and similarly

va(w.b)−vb(w.b)
λ|w.b| = s−1

λ

(2) The automaton AD gives weight va(w) to the finite words w such that Post(w) ∈
Rλ. Assume that AD is in state s ∈ Rλ after reading a finite word w. Then,
if (s, a, sa) ∈ δ, the correct value is given to every continuation of w.a, since
they all prefer a (cf. Lemma 6). If (s, b, sb) ∈ δ, then all continuations of
w.b prefer b and the value given by AD to w.b is va(w) + λ|w| · (1 − s) =
va(w) + λ|w| − (va(w) − vb(w)) = vb(w.b).

(3) By Lemma 6, if an infinite word w has all its prefixes ambiguous, then va(w) =
vb(w) and thus the value given by AD to w (which is va(w)) is correct in this
case as well.

�

Figure 10 shows a deterministic Disc-automaton defining the language LN for

λ =
√

5−1
2 (which gives a finite set Rλ).
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s0

s1 s3

s2 s4

sa sb

a, 1

b, 0
b, 0

b, 1

a, 0
a, 0

a, 1

a, 1

b, 1

b, 1

a, 1
b, 0

a, 0
b, 1

Fig. 10. AD for λ =
√

5−1
2

(i.e., 1 = λ + λ2).
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