Skip to main content

The Extreme Energy Ratio Criterion for EEG Feature Extraction

  • Conference paper
Book cover Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

Energy is an important feature for electroencephalogram (EEG) signal classification in brain computer interfaces (BCIs). It is not only physiologically rational but also empirically effective. This paper proposes extreme energy ratio (EER), a discriminative objective function to guide the process of spatially filtering EEG signals. The energy of the filtered EEG signals has the optimal discriminative capability under the EER criterion, and hence EER can as well be regarded as a feature extractor for distilling energy. The paper derives the solutions which optimize the EER criterion, shows the theoretical equivalence of EER to the existing method of common spatial patterns (CSP), and gives the computational savings EER makes in comparison with CSP. Two paradigms extending EER from binary classification to multi-class classification are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sun, S.: Research on EEG Signal Classification for Brain-Computer Interfaces Based on Machine Learning Methodologies. Ph.D. Thesis, Tsinghua University, Beijing (2006)

    Google Scholar 

  2. Nicolelis, M.A.L.: Actions from thoughts. Nature 409, 403–407 (2001)

    Article  Google Scholar 

  3. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  4. Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B., Cadusch, P.J.: EEG coherency I: Statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scale. Electroenceph. Clin. Neurophysiol. 103, 499–515 (1997)

    Article  Google Scholar 

  5. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110, 787–798 (1999)

    Article  Google Scholar 

  6. Dornhege, G., Blankertz, B., Curio, G., Müller, K.R.: Boosing bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass pardigms. IEEE Trans. Biomed. Eng. 51, 993–1002 (2004)

    Article  Google Scholar 

  7. Sun, S., Zhang, C.: Adaptive feature extraction for EEG signal classification. Med. Biol. Eng. Comput. 44, 931–935 (2006)

    Article  MathSciNet  Google Scholar 

  8. Sun, S., Zhang, C.: An optimal kernel feature extractor and its application to EEG signal classification. Neurocomputing 69, 1743–1748 (2006)

    Article  Google Scholar 

  9. Curran, E.A., Stokes, M.J.: Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn. 51, 326–336 (2003)

    Article  Google Scholar 

  10. Kamousi, B., Liu, Z., He, B.: Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 166–171 (2005)

    Article  Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computation, 2nd edn. The John Hopkins University Press, Baltimore (1989)

    Google Scholar 

  12. Zhang, X.: Matrix Analysis and Applications. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  13. Searle, S.R.: Matrix Algebra Useful for Statistics. John Wiley & Sons, New York (1982)

    MATH  Google Scholar 

  14. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  15. Koles, Z.J., Lazar, M.S., Zhou, S.Z.: Spatial patterns underlying population differences in the background EEG. Brain Topogr. 2, 275–284 (1990)

    Article  Google Scholar 

  16. Ramoser, H., Müller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8, 441–446 (2000)

    Article  Google Scholar 

  17. Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12, 181–201 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, S. (2008). The Extreme Energy Ratio Criterion for EEG Feature Extraction. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics