Skip to main content

Neural Model for the Visual Recognition of Goal-Directed Movements

  • Conference paper
Book cover Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

Mirror neurons in monkey premotor cortex of are active during the motor planning and the visual observation of actions. These neurons have recently received a vast amount of interest in cognitive neuroscience and have been discussed as potential basis of imitation learning and the understanding of actions. We present a model that explains visual properties of mirror neurons without a reconstruction of the three-dimensional structure of action and object. The proposed model is based on a small number of physiologically well-established principles. In addition, it postulates novel neural mechanisms for the integration of information about object and effector movement, which can be tested in electrophysiological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Understanding motor events: a neurophysiological study. Exp. Brain Res. 91(1), 176–180 (1992)

    Article  Google Scholar 

  2. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  3. Oztop, E., Kawato, M., Arbib, M.: Mirror neurons and imitation: a computationally guided review. Neural Netw 19(3), 254–271 (2006)

    Article  MATH  Google Scholar 

  4. Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the premotor cortex. Brain 119(Pt 2), 593–609 (1996)

    Article  Google Scholar 

  5. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  Google Scholar 

  6. Logothetis, N.K., Pauls, J., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5(5), 552–563 (1995)

    Article  Google Scholar 

  7. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Tarr, M.J., Bülthoff, H.H.: Image-based object recognition in man, monkey and machine. Cognition 67(1-2), 1–20 (1998)

    Article  Google Scholar 

  9. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1431), 593–602 (2003)

    Article  Google Scholar 

  10. Tani, J., Ito, M., Sugita, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using rnnpb. Neural Netw. 17(8-9), 1273–1289 (2004)

    Article  Google Scholar 

  11. Oztop, E., Wolpert, D., Kawato, M.: Mental state inference using visual control parameters. Brain Res. Cogn. Brain Res. 22(2), 129–151 (2005)

    Article  Google Scholar 

  12. Demiris, Y., Simmons, G.: Perceiving the unusual: temporal properties of hierarchical motor representations for action perception. Neural Netw. 19(3), 272–284 (2006)

    Article  MATH  Google Scholar 

  13. Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11(7-8), 1277–1303 (1998)

    Article  Google Scholar 

  14. Oztop, E., Arbib, M.A.: Schema design and implementation of the grasp-related mirror neuron system. Biol. Cybern. 87(2), 116–140 (2002)

    Article  MATH  Google Scholar 

  15. Erlhagen, W., Mukovskiy, A., Bicho, E.: A dynamic model for action understanding and goal-directed imitation. Brain Research 1083(1), 174–188 (2006)

    Article  Google Scholar 

  16. Metta, G., Sandini, G., Natale, L., Craighero, L., Fadiga, L.: Understanding mirror neurons: a bio-robotic approach. Interaction Studies, special issue on Epigenetic Robotica 7(2), 197–232 (2006)

    Google Scholar 

  17. Bonaiuto, J., Rosta, E., Arbib, M.: Extending the mirror neuron system model, i. audible actions and invisible grasps. Biol. Cybern. 96(1), 9–38 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1431), 537–547 (2003)

    Article  Google Scholar 

  19. Sauser, E.L., Billard, A.G.: Parallel and distributed neural models of the ideomotor principle: an investigation of imitative cortical pathways. Neural Netw. 19(3), 285–298 (2006)

    Article  MATH  Google Scholar 

  20. Billard, A., Mataric, M.: Learning human arm movements by imitation: Evaluation of a biologically-inspired connectionist architecture. Robotics and Autonomous Systems 941, 1–16 (2001)

    Google Scholar 

  21. Perrett, D., Oram, M.: Neurophysiology of shape processing. IVC 11(6), 317–333 (1993)

    Google Scholar 

  22. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  23. Mel, B.W., Fiser, J.W.: Minimizing binding errors using learned conjunctive features. Neural. Comput. 12, 731–762 (2000)

    Article  Google Scholar 

  24. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  25. Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4(3), 179–192 (2003)

    Article  Google Scholar 

  26. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev. Neurosci. 1(2), 125–132 (2000)

    Article  Google Scholar 

  27. DiCarlo, J.J., Maunsell, J.H.: Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J. Neurophysiol. 89(6), 3264–3278 (2003)

    Article  Google Scholar 

  28. Jastorff, J., Kourtzi, Z., Giese, M.A.: Learning to discriminate complex movements: Biological versus artificial trajectories. J. Vis. 6, 791–804 (2006)

    Article  Google Scholar 

  29. Perrett, D.I., Harries, M.H., Bevan, R., Thomas, S., Benson, P.J., Mistlin, A.J., Chitty, A.J., Hietanen, J.K., Ortega, J.E.: Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 146, 87–113 (1989)

    Google Scholar 

  30. Murata, A., Gallese, V., Luppino, G., Kaseda, M., Sakata, H.: Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area aip. J. Neurophysiol. 83(5), 2580–2601 (2000)

    Google Scholar 

  31. Verfaillie, K., Daems, A.: Predicting point-light actions in real-time. Visual Cognition 9, 217–232 (2002)

    Article  Google Scholar 

  32. Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., Prinz, W.: Predicting point-light actions in real-time. Neuroimage 36(Suppl. 2), T22–32 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischer, F., Casile, A., Giese, M.A. (2008). Neural Model for the Visual Recognition of Goal-Directed Movements. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics