Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

On Reduct Construction Algorithms

Yiyu Yao!, Yan Zhao' and Jue Wang?

! Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada S4S 0A2
{yyao, yanzhao}@cs.uregina.ca
2 Laboratory of Complex Systems and Intelligence Science, Institute of Automation
Chinese Academy of Sciences, Beijing, China 100080

Abstract. This paper critically analyzes reduct construction methods
at two levels. At a high level, one can abstract commonalities from the
existing algorithms, and classify them into three basic groups based on
the underlying control structures. At a low level, by adopting different
heuristics or fitness functions for attribute selection, one is able to derive
most of the existing algorithms. The analysis brings new insights into the
problem of reduct construction, and provides guidelines for the design of
new algorithms.

Keywords: reduct construction algorithms, deletion strategy, addition-deletion
strategy, addition strategy, attribute selection heuristics.

1 Introduction

The theory of rough sets has been applied in data analysis, data mining and
knowledge discovery. A fundamental notion supporting such applications is the
concept of reducts, which has been studied extensively by many authors [5,7,
9,10,12,14,15]. A reduct is a subset of attributes that is jointly sufficient and
individually necessary for preserving the same information under consideration
as provided by the entire set of attributes. A review of the existing reduct con-
struction algorithms shows that most of them tie together search strategies (i.e.,
control structures) and attribute selection heuristics. This leads to difficulties in
analyzing, comparing, and classifying those algorithms, as well as the trend of
introducing new algorithms constantly.

There are two basic search strategies. The addition strategy starts with the
empty set and consecutively adds one attribute at a time until we obtain a
reduct, or a superset of a reduct. The deletion strategy starts with the full set
and consecutively delete one attribute at a time until we obtain a reduct. By
considering the properties of reducts, the deletion strategy always results in a
reduct [15]. On the other hand, algorithms based on a straightforward application
of the addition strategy only produce a superset of a reduct [3,4, 6, 8]. In order
to resolve this problem, many authors considered a combined strategy by re-
applying the deletion strategy on the superset of a reduct produced by the

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

addition strategy [1,12,14]. According to the above discussion, we have three
control strategies used by reduct construction algorithms. They are the deletion

strategy, the addition-deletion strategy, and the addition strategy.

With a clear separation of control structures and attribute selection heuris-
tics, we can critically analyze reduct construction algorithms with respect to
the high level control strategies, and the low level attribute selection heuristics,
respectively. This allows us to conclude that the differences between the exist-
ing algorithms lie more on the attribute selection heuristics than on the control

strategies.

2 Basic Concepts and Notations

We assume that data are represented by an information table, where a finite set

of objects are described by a finite set of attributes.

Definition 1. An information table S is the tuple:
S = (U, At, {V,]a € At},{I.]a € At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, V, is a nonempty set of values for an attribute a € At, and I, : U — V,
is an information function. For an object x € U, an attribute a € At, and a
value v € Vg, I,(x) = v means that the object x has the value v on attribute a.

A discernibility matrix stores attributes that differentiate any two objects of

the universe [9].

Definition 2. Let |U| denote the cardinality of U. Given an information table
S, its discernibility matriz, denoted by M, is a |U| x |U| matriz with my, € M

defined by:
mr,y = {CL € At | Ia(IL') 7é Ill(y)7x7y € U}

The physical meaning of m, , is that objects x and y are distinguished by any

of the attributes in m 4.

For any subset A C At, there is an associated equivalence relation E4 C

U xU,i.e.,

Ea={(z,y) €U xU |Va e A [I,(z) = L(y)]},

which partitions U into disjoint subsets. Such a partition of the universe is

denoted by U/Ej .

The partition U/FE 4; is the finest partition, and the partition U/FEy is the
coarsest partition. Given an arbitrary attribute set A C At, the partition U/E 4
is not necessarily equivalent to the partition U/E4;. A set of attributes that
individually necessary and jointly sufficient preserve the partition of U/E 4; is

called a reduct [7].

Definition 3. Given an information table S, a subset R C At is called a reduct

of At, if R satisfies the two conditions:

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

(i). U/Er=U/Ea;
(ii). foranya € R, U/ERr_(qy) # U/Eas.

Based on a discernibility matrix M, a reduct can be redefined as follows [9],

which is equivalent to Definition 3.

Definition 4. Given a discernibility matrix M, a subset R C At is called a

reduct of At, if R satisfies the two conditions:

(i). forallme M, mNR#0;
(ii). for any a € R, there exists at least one m € M such that
mN(R—{a})=0.

In many cases, we consider decision-relative reducts instead of (absolute)
reducts in a decision table. A decision table is an information table, with At =
CUD, where C stands for a set of condition attributes that describe the features

of objects, and D is a set of decision attributes.

Definition 5. Given a consistent decision table S = {U, At = CUD, {V,},{l.}},
a subset R C C is called a relative-reduct of C' with respect to D, if R satisfies

the two conditions:

(ii). for anya € R, ~(U/E(r—{a}) 2 U/ED),

where =X stands for the refinement relation between partitions.

Based on a decision table, we can easily construct a discernibility matrix that
only keeps track of the differences between any two objects that have different
decision values. We can use this redefined discernibility matrix to compute the
decision-relative reduct based on the same two conditions in Definition 4.

In this paper, we focus on computing the absolute reducts. The decision-

relative reducts can be computed in a similar manner.

Given an information table, there may exist many reducts. The intersection
of all reducts is called the core. The union of the singleton matrix elements

composes the core of the attribute set [9].

An attribute set R’ C At is called a super-reduct of a reduct R, if R’ O R; an
attribute set R’ C At is called a partial reduct of a reduct R, if R’ C R. Given

a reduct, there exist many super-reducts and many partial reducts.

3 Three Reduct Construction Strategies

3.1 Reduct construction by deletion

By a deletion method, we take At as a super-reduct, which is the largest super-
reduct. Deletion methods can be described generally as in Figure 1. Many algo-

rithms are proposed based on this simple control strategy [3, 15].

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

Input: An information table.
Output: A reduct R.
(1) R=At,CD = At.
(2) While CD # 0:
(2.1) Compute fitness of all the attributes in C'D using a fitness function d;
(2.2) Select an attribute a € C'D according to its fitness, let CD = CD — {a};
(2.3) If R — {a} is a super-reduct, let R = R — {a}.
(3) Output R.

Fig. 1. Deletion method for computing a reduct

A deletion method starts with the trivial super-reduct, i.e., the entire at-
tribute set. It has to check all the attributes in At for deletion. It is not efficient
in the cases when a reduct is short, and many attributes are eliminated from the
super-reduct after checking.

The order of attributes for deletion is essential for reduct construction. Dif-
ferent fitness functions determine different orders of attributes, and result in
different reducts. The attribute selection heuristic is given by a fitness function:

0: At — R, (1)

where R is the set of real numbers. The meaning of the function § is determined
by many semantic considerations. For example, it may be interpreted in terms
of the cost of testing, the easiness of understanding, or the actionability of an
attribute, the information gain it produces, etc.

Many algorithms use entropy-based heuristics, such as information gain and
mutual information [2, 6, 11, 13]. For example, the attribute entropy is given by:

§(a) = H(a) = = Y p(x)logp(x). (2)

zeV,

Some algorithms use frequency-based heuristics with respect to the discernibility
matrix, such as the ones reported in [7, 10, 12]. For example, we have:

d(a)=|{m e M |a € m}|. (3)

This is, we attempt to delete first an attribute that differentiates a small number
of objects.

3.2 Reduct construction by addition-deletion

By the addition-deletion strategy, we start the construction from an empty set or
the core, and consequently add attributes until a super-reduct is obtained. The
constructed super-reduct contains a reduct, but itself is not necessary a reduct
unless it is shown that all the attributes in it are necessary. We need to delete
the unnecessary attributes in the super-reduct till a reduct is found [14, 15]. The
addition-deletion methods can be described generally as in Figure 2.

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

Input: An information table.
Output: A reduct R.
Addition:
(1) R=0,CA = At.
(2) While R is not a super-reduct and C'A # 0:
(2.1) Compute fitness of all the attributes in C'A using a fitness function o;
(2.2) Select an attribute a € C'A according to its fitness, let CA = CA — {a};
(2.3) Let R=RU{a}.
Deletion:
(3) CD =R.
(4) While CD # 0:
(4.1) Compute fitness of all the attributes in C'D using a fitness function J;
(4.2) Select an attribute a € CD according to its fitness, let CD = CD — {a};
(4.3) If R — {a} is a super-reduct, let R = R — {a}.
(5) Output R.

Fig. 2. Addition-deletion method for computing a reduct

The addition-deletion strategy has been proposed and studied, since the dele-
tion strategy is not efficient, and the over-simplified addition methods normally
find a super-reduct, but not a reduct. A lack of consideration of the latter prob-
lem has produced many incomplete reduct construction algorithms, such as the
ones reported in [3, 4, 6, 8]. An addition-deletion algorithm based on the discerni-
bility matrix has been proposed by Wang and Wang [12], which can construct a
super-reduct, and reduce it to a reduct efficiently.

For the addition-deletion strategies, the orders of attributes for addition and
deletion are both essential for reduct construction. By using the fitness function
o, we add the fit attributes to the empty set or the core to form a super-reduct;
by using the fitness function ¢, we delete the fit attributes from the super-reduct
to form a reduct. o and ¢ can be two different heuristics, or the same heuristic.
If one can order the attributes according to a fitness function 0 from the most
fit attribute to the least fit attribute, then this order can be used for adding
them one by one until the sufficient condition is met, and the reversed order
can be used for deleting the unnecessary attributes. By this means, one heuristic
determines two orders, and a reduct composed of more fit attributes is obtained.

3.3 Reduct construction by addition

The goal of an addition method is to construct a reduct from an empty set or
the core, and consequently add attributes until it becomes a reduct. The essen-
tial difference between the addition method and the addition-deletion method
is that, the addition method takes in one attribute if the constructed set is a
partial reduct. On the other hand, the addition-deletion method continuously
adds attributes until a super-reduct is produced. In this case, superfluous at-
tributes could be added, and the deletion process is required to eliminate them.
The addition methods can be described generally as in Figure 3.

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

Input: An information table.
Output: A reduct R.
(1) R=0, CA= At.
(2) While R is not a reduct and CA # (:
(2.1) Compute fitness of all the attributes in C'A using a fitness function o;
(2.2) Select an attribute a € C'A according to its fitness;
(2.3) If RU {a} is a partial reduct, let R= RU {a}, and CA = CA — {a}.
(3) Output R.

Fig. 3. Addition method for computing a reduct

The process to check if a constructed attribute set is a partial reduct is not
a trivial step. Zhao and Wang have proposed an algorithm to carry out this
task [14]. Before we introduce this algorithm, we need to introduce two basic
operations defined on a discernibility matrix:

Absorb is an absorption operation on the discernibility matrix. One can
absorb a matrix element m € M if there exists another matrix element
m’ € M such that m’ C m. It means that if two objects can be distinguished
by any attribute in the matrix element m, then they can also be distinguished
by any attribute in a subset of m. We do not need to track the supersets,
but only the subsets, the absorbers. The operation is defined as:

Absorb(M) : For any m,m’ € M, if m' Cm, then M = M — {m}.

Group is a grouping operation on elements of a discernibility matrix. A set
of matrix elements can be grouped together with respect to an attribute by
collecting all the individual matrix elements containing the attribute. Since
each matrix element is associated with two objects, the grouping reflects the
fact that a set of objects associated with the grouped matrix elements can be
distinguished by this common attribute. We only need to track this common
attribute for simplicity. For an attribute a € At, the grouping is defined as:

Group(a) ={m € M | a € m}.

An addition algorithm for computing reducts based on a discernibility matrix
is described in Figure 4.

The fitness function o can be the one discussed in Sections 3.2. We need
to discuss more about the fitness function dm. To ensure that the chosen at-
tribute a is in a partial reduct, we need to choose one element m € Group(a),
and delete m from all the matrix element in M, and update M accordingly.
This deletion, here for simplicity, is called “delete the tail of a”, ensures that
a has to be a reduct attribute, otherwise, at least one pair of objects cannot
be distinguished. We should note that the fitness function dm of the proposed
addition algorithm is different from the fitness function § of the general deletion
algorithm we discussed in Section 3.1. That is because J evaluates the fitness
of one single attribute at a time, dm evaluates the fitness of a matrix element

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

Input: A discernibility matrix M.
Output: A reduct.
R=0,CA= At
Do while M # 0:
(1) M = Absorb(M).
(2) Compute fitness of all the attributes in C'A using a fitness function o;
(3) Select an attribute a € CA with Group(a) # @ according to its fitness, let
R=RU{a},CA=CA— {a};
(4) Compute fitness of all the matrix elements in Group(a) according to a fitness
function dm;
(5) Select a matrix element m; € Group(a) based on its fitness, update M by two
steps:
(5.1) Delete Group(a) from M: M = M — Group(a),
(5.2) Update matrix elements: M = {m —m; | m € M}.
Output the reduct R.

Fig. 4. An addition algorithm by using a discernibility matrix

m, which is a set of attributes. Typically, dm is the summation or the average
fitness of all the included attributes.
The selection of a matrix element for deletion can be described by a mapping;:

dm : {m | m € Group(a)} — R. (4)

The meaning of the mapping function dm is determined by many semantic con-
siderations as well.

A frequency-based heuristic can be defined as follows. The higher the value,
the more matrix elements are to be updated, and most possibly, after absorption,
a smaller matrix can be obtained. That is,

dm(m;) = |{m € M | mnNm; # 0} (5)

We can also define the fitness function dm as the information entropy, i.e., the
joint entropy of all the attributes in the attribute set m; — {a}. For example, if
m; — {a} = {b, c}, then
dm(m;) = H(m; —{a})
= H({b,c})
=— Z Z p(b, c)logp(b,). (6)

zeVy yeVe

4 Conclusion

This paper provides a critical study of the existing reduct construction algo-
rithms based on a two-level view: a high level view of control strategy and a
low level view of attribute selection heuristic. Three basic groups are discussed.
They are the deletion strategy, the addition-deletion strategy, and the addition

Yao, Y.Y, Zhao, Y. and Wang, J., On reduct construction algorithms,
Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Proceedings,
LNAI 4062, pp. 297-304, 2006.

strategy. Several attribute selection heuristics are examined. The analysis not
only produces valuable insights into the problem, but also provides guidelines
for the design of new reduct construction algorithms.

References

10.

11.

12.

13.

14.

15.

Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set
algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y.
(Ed.), Rough Set Methods and Applications (2000) 49-88.

Beaubouef, T., Petry, F.E., Arora, G.: Information-theoretic measures of uncer-
tainty for rough sets and rough relational databases. Information Sciences 109
(1998) 185-195.

Hu, X., Cercone, N.: Learning in relational databases: a rough set approach. Com-
putation Intelligence: An International Journal 11 (1995) 323-338.

Jenson, R., Shen, Q.: A rough set-aided system for sorting WWW bookmarks.
In: Zhong, N. et al. (Eds.), Web Intelligence: Research and Development (2001)
95-105.

Mi, J.S., Wu, W.Z., Zhang, W.X.: Approaches to knowledge reduction based on
variable precision rough set model. Information Sciences 159 (2004) 255-272.
Miao, D., Wang, J.: An information representation of the concepts and operations
in rough set theory. Journal of Software 10 (1999) 113-116.

Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer,
Boston (1991).

Shen, Q., Chouchoulas, A.: A modular approach to generating fuzzy rules with
reduced attributes for the monitoring of complex systems. Engineering Applications
of Artificial Intelligence 13 (2000) 263-278.

Skowron, A., Rauszer, C.: The discernibility matrices and functions in informa-
tion systems. In: Slowirniski, R. (Ed.), Intelligent Decision Support, Handbook of
Applications and Advances of the Rough Sets Theory. Dordrecht, Kluwer (1992).
Slezak, D., Various approaches to reasoning with frequency based decision reducts:
a survey. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (Eds.), Rough set methods and
applications. Physica-verlag, Heidelberg (2000) 235-285.

Wang, G., Yu, H., Yang, D.: Decision table reduction based on conditional infor-
mation entropy. Chinese Journal of Computers 25 (2002) 759-766.

Wang, J., Wang, J.: Reduction algorithms based on discernibility matrix: the or-
dered attributes method. Journal of Computer Science and Technology 16 (2001)
489-504.

Yu, H., Yang, D., Wu, Z., Li, H.: Rough set based attribute reduction algorithm.
Computer Engineering and Applications 17 (2001) 22-47.

Zhao, K., Wang, J.: A reduction algorithm meeting users’ requirements. Journal
of Computer Science and Technology 17 (2002) 578-593.

Ziarko, W.: Rough set approaches for discovering rules and attribute dependencies.
In: Klsgen, W., Zytkow, J.M. (Eds.), Handbook of Data Mining and Knowledge
Discovery. Oxford (2002) 328-339.

