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1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy boerger@di.unipi.it
2 Chair for Information Systems Engineering, Department of Computer Science, University of Kiel

D-24098 Kiel, thalheim@is.informatik.uni-kiel.de

Abstract. We survey the use of the Abstract State Machines (ASM) method for a rigor-
ous foundation of modeling and validating web services, workflows, interaction patterns and
business processes. We show in particular that one can tailor business process definitions in
application-domain yet rigorous terms in such a way that the resulting ASM models can be
used as basis for binding contracts between domain experts and IT technologists. The method
combines the expressive power and accuracy of rule-based modeling with the intuition pro-
vided by visual graph-based descriptions. We illustrate this by an ASM-based semantical
framework for the OMG standard for BPMN (Business Process Modeling Notation). The
framework supports true concurrency, heterogeneous state and modularity (compositional
design and verification techniques). As validation example we report some experiments, car-
ried out with a special-purpose ASM simulator, to evaluate various definitions proposed in
the literature for the critical OR-join construct of BPMN.1

1 Introduction

Over the last five years the Abstract State Machines (ASM) method has been used successfully in
various projects concerning modeling techniques for web services, workflow patterns, interaction
patterns and business processes.

An execution semantics for (an early version of) the Business Process Execution Language for
Web Services (BPEL) has been provided in terms of ASMs in [19,23] and has been reused in [17,18].
In [4] one finds a survey of recent applications of the ASM method to design, analyze and validate
execution models for service behavior mediation [3], service discovery [2,20] and service composition
techniques [22], three typical themes concerning Service Oriented Architectures (SOAs). In [22]
multi-party communication is viewed as an orchestration problem (“finding a mediator to steer the
interactions”). A systematic analysis, in terms of ASMs, of complex communication structures built
from basic service interaction patterns has been carried out in [5]. The workflow patterns collected
in [27,24], which are widely considered in the literature as paradigms for business process control
structures, have been shown in [10] to be instances of eight (four sequential and four parallel) basic
ASM workflow schemes.

Recently, we have adopted the ASM method for a systematic study of business process modeling
techniques [14,13,12]. As authoritative reference for basic concepts and definitions we have chosen
the OMG standard for BPMN [15], which has been defined to reduce the fragmentation of business
process modeling notations and tools. In the following we describe the salient methodological
features of this work and report our experience in applying the ASM framework [11] to provide a
transparent accurate high-level definition of the execution semantics of the current BPMN standard
(version 1.0 of 2006).

The paper is organized as follows. In Sect. 2 we explain how ASM models for business processes
can serve as ground model and thus as basis for a precise software contract, allowing one to address
the correctness question for a business process description with respect to the part of the real-world
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it is supposed to capture. In Sect. 3 we list the main methodological principles which guided us
in defining a succinct modularized ASM that constitutes an abstract interpreter for the entire
BPMN standard. In Sect. 4 we formulate the ASM rule pattern that underlies our feature-based
description of specific workflow behaviors. In Sect. 5 we show how this scheme can be instantiated,
choosing as example BPMN gateways. In Sect. 6 we illustrate by a discussion of the critical BPMN
OR-join construct how one can put to use an appropriate combination of local and global state
components in ASMs. We report here some results of an experimental validation, performed with a
special-purpose ASM interpreter [25] that integrates with current graphical visualization tools, of
different definitions proposed for the OR-Join in the literature. In Sect. 7 we point to some directly
related work and research problems.

2 Building ASM Ground Models for Business Processes

To guarantee that software does what the customer expects it to do involves first of all to ac-
curately describe those expectations and then to transform their description in a controlled way
to machine code. This is a general problem for any kind of software, but it is particularly press-
ing in the case of software-driven business process management, given the large conceptual and
methodological gap between the business domain, where the informal requirements originate, and
the software domain, where code for execution by machines is produced. The two methodologically
different tasks involved in solving the problem have been identified in [9] as construction of ground
models, to fully capture the informal requirements in an experimentally validatable form, and their
mathematically verifiable stepwise detailing (technically called refinement) to compilable code.

Ground models represent accurate “blueprints” of the piece of “real world” (here a business
process) one wants to implement, a system reference documentation that binds all parties involved
for the entire development and maintenance process. The need to check the accuracy of a ground
model, which is about a not formalizable relation between a document and some part of the world,
implies that the model is described in application domain terms one can reliably relate to the
intuitive understanding by domain experts of the involved world phenomena. Ground models are
vital to reach a firm understanding that is shared by the parties involved, so that a ground model
has to serve as a solid basis for the communication between the (in our case three) parties: business
analysts and operators, who work on the business process design and management side, information
technology specialists, who are responsible for a faithful implementation of the designed processes,
and users (suppliers and customers). We refer for a detailed dicussion of such issues to [9] and
limit ourselves here to illustrate the idea by three examples of a direct (i.e. coding-free, abstract)
mathematical representation of business process concepts in ASM ground models. The examples
define some basic elements we adopted for the abstract BPMN interpreter in [13].

Example 1. Most business process model notations are based on flowcharting techniques, where
business processes are represented by diagrams at whose nodes activities are executed and whose
arcs are used to contain the information on the desired execution order (so-called control informa-
tion). We therefore base our BPMN model on an underlying graph structure, at whose nodes ASM
rules are executed which express the associated activity and the intended control flow.

Furthermore, usually the control flow is formulated using the so-called token concept, a program
counter generalization known from the theory of Petri nets. The idea is that for an activity at a
target node of incoming arcs to become executable, some (maybe all) arcs must be Enabled by
a certain number of tokens being available at the arcs; when executing the activity, these tokens
are Consumed and possibly new tokens are Produced on the outgoing arcs. This can be directly
expressed using an abstract dynamic function token associating (multiple occurrences of) tokens—
elements of an abstract set Token—to arcs2:

token : Arc → Multiset(Token)
2 In programming language terms one can understand f (a1, . . . , an) for a dynamic function f as array

variable.
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The use of an abstract predicate Enabled and abstract token handling machines Consume and
Produce allows us to adapt the token model to different instantiations by a concrete token model.
For example, a frequent understanding of Enabled is that of an atomic quantity formula, stating
that the number of tokens currently associated to an arc incoming into a given node is at least a
quantity inQty(in) required at this arc.

Enabled(in) = (| token(in) |≥ inQty(in))

With such a definition one can also specify further the abstract control related operations,
namely to Consume (inQty(in) many occurrences of) a token t on in and to Produce (outQty(out)
many occurrences of) t on an arc outgoing from the given node.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))

We express the data and events, which are relevant for an execution of the activity associated
to a node and belong to the underlying database engine respectively to the environment, by appro-
priate ASM locations: so-called controlled (read-and-write) locations for the data and monitored
(only read) locations for the events. Any kind of whatever complex value an application needs for
data or events is allowed to be stored in an ASM location, directly, corresponding to the given
level of abstraction, avoiding any encoding a later refinement to implementable data structures
may require.

This approach allows us to combine the visual appeal of graph-based notations with the ex-
pressive power and simplicity of abstract-state and rule-based modeling: we can paraphrase the
informal explanations in the BPMN standard document of “how the graphical elements will inter-
act with each other, including conditional interactions based on attributes that create behavioral
variations of the elements” [15, p.2] by corresponding ASM rules, which address issues the graphi-
cal notation does not clarify. More generally speaking, (asynchronous) ASMs can be operationally
understood as extension of (locally synchronous and globally asynchronous [21]) Finite State Ma-
chines to FSMs working over abstract data. Therefore a domain expert, when using graphical
design tools for FSM-like notations, can reason about the graphical elements in terms of ASMs
whenever there is some need for an exact reference model to discuss semantically relevant issues.

Example 2. In business process design it is usual to distinguish between a business process (the
static diagram) and its instances (with specific token marking and underlying data values). This
distinction is directly reflected in the ASM model in terms of instantiations of the underlying
parameters, which appear abstractly but explicitly in the ASM model. For example a token is
usually characterized by the process ID of the process instance pi to which it belongs (via its
creation at the start of the process instance), which allows one to distinguish tokens belonging
to different instances of one process p. It suffices to write tokenpi to represent the current token
marking in the process diagram instance of the process instance pi a token belongs to. In this way
tokenpi(arc) denotes the token view of process instance pi at arc, namely the multiset of tokens
currently residing on arc and belonging to process instance pi . BPEL uses this for a separation of
each process instance by a separate XML document.

Correspondingly one has to further detail the above predicate Enabled by the stipulation that
only tokens belonging to one same process instance have to be considered:

Enabled(in) = (| tokenpi(in) |≥ inQty(in) forsome pi)

The reader will notice that the use of abstract Insert and Delete operations in defining the
macros Produce and Consume for tokens, instead of directly updating token(a, t), comes handy:
it makes the macros usable in a concurrent context, where multiple agents, belonging to multiple
process instances, may want to simultaneously operate on the tokens on an arc. Note that it is also
consistent with the special case that in a transition with both Delete(in, t) and Insert(out , t)
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one may have in = out , so that the two operations are not considered as inconsistent, but their
cumulative effect is considered.

Thus the ASM model of the given business process represents the scheme of the process, stati-
cally defined by its rules; its instances are the scheme instantiations obtained by substituting the
parameters by concrete values belonging to the given process instance pi . In accordance with com-
mon practice, one can and usually does suppress notationally the process instance parameter pi ,
as we did when explaining the function token above, as long as it is clear from the context or does
not play a particular role.

Example 3. This example is about the need for global data or control structures in various
business process constructs, e.g. synchronization elements owned by cooperating process agents or
more generally speaking data shared by local processes. They can be directly expressed in terms
of global locations of possibly asynchronous ASMs, thus avoiding detours one has to invent in
frameworks where transitions can express only local effects. For an illustration we refer again to
the definition of the BPMN standard in [15]. It uses a predominantly local view for task execution
and step control, although some constructs such as splits and joins, multi-instance processes, gotos
(called links) , and sub-processes are bound by context integrity constraints.

For example splits can be intimately related by such integrity constraints to joins and thus
their execution is not free of side (read: not local) effects. For an illustration see the discussion of
the OR-join gateway construct of BPMN in Sect. 6.

Another example are data dependencies among different processes, whose description in [15]
seems to be relegated to using associations, but really need global or shared locations to appropri-
ately represent their role for the control flow.

3 Separation of Different Concerns

For design and analysis of business processes it turned out to be crucial that the ASM method
supports to first explicitly separate and then smoothly combine the realization of different concerns,
based upon appropriate abstractions supporting this form of modularization. We list some of the
main separation principles, which we have used with advantage for the definition of the execution
semantics for BPMN by ASMs.

Separation Principle 1. This principle is about the separation of behavior from scheduling. To
cope with the distributed character of cooperating business processes, one needs descriptions that
are compatible with various strategies to realize the described processes on different platforms for
parallel and distributed computing. This requires the underlying model of computation to support
most general scheduling schemes, including true concurrency.

In general, in a given state of execution of a business process, more than one rule could be
executable, even at one node. We call a node Enabled in a state (not to be confused with the
omonymous Enabledness predicate for arcs) if at least one of its associated rules is Fireable at this
node in this state.3

We separate the description of workflow behavior from the description of the underlying schedul-
ing strategy in the following way. We define specific business process transition rules, belonging to
a set say WorkflowTransition of such rules, to describe the behavioral meaning of any workflow
construct associated to a node. Separately, we define an abstract scheduling mechanism, to choose
at each moment an enabled node and at the chosen node a fireable transition, by two not fur-
thermore specified selection functions, say selectNode and selectWorkflowTransition defined over the
sets Node of nodes respectively WorkflowTransition. These functions determine how to choose an
3 We treat the fireability of a rule (by an agent) as an abstract concept, because its exact interpretation

may vary in different applications. For business process diagrams it clearly depends on the Enabledness
of the incoming arcs related to a rule at the given node, but typically also on further to be specified
aspects, like certain events to happen, on the (degree of) availability of needed resources, etc.
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enabled node and a fireable workflow transition at such a node for its execution. We then can
combine behavior and scheduling by a rule scheme WorkflowTransitionInterpreter, which
expresses how scheduling (together with the underlying control flow) determines when a particular
node and rule (or an agent responsible for applying the rule) will be chosen for an execution step.

WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition({r | r ∈ WorkflowTransition and Fireable(r ,node)})

rule

Separation Principle 2. The second principle is about the separation of orthogonal constructs. To
make ASM workflow interpreters easily extensible and to pave the way for modular and possibly
changing workflow specifications, we adopted a feature-based approach, where the meaning of
workflow concepts is defined elementwise, construct by construct. For each control flow construct
associated to a node we provide a dedicated rule (or set of rules) WorkflowTransition(node),
belonging to the set WorkflowTransition in the WorkflowTransitionInterpreter scheme of
the previous example, which abstractly describe the operational interpretation of the construct.
We illustrate this in Sect. 5 by the ASM rules defining the execution behavior of BPMN gateways,
which can be separated from the behavioral description of BPMN event and activity nodes.

Another example taken from BPMN is the separation of atomic tasks from non-atomic subpro-
cesses and from activities with an iterative structure. BPMN distinguishes seven kinds of tasks:

TaskType = {Service,User ,Receive,Send ,Script ,Manual ,Reference,None}

These task types are based on whether a message has been sent or received or whether the task
is executed or calls another process. The execution semantics for task nodes is given by one ASM
rule (scheme) [13], which uses as interface abstract machines to Send or Receive messages and
to Call or Execute processes.

A third example from the BPMN standard is the separation of cyclic from acyclic processes,
whe we use for the discussion of the OR-join gateway in Sect. 6.

Separation Principle 3. The third principle is the separation of different model dimensions like
control, events, data and resources. Such a separation is typical for business process notations,
but the focus of most of these notations on control (read: execution order, possibly influenced
also by events) results often in leaving the underlying data or resource features either completely
undefined or only partly and incompletely specified. The notion of abstract state coming with ASMs
supports to not simply neglect data or resources when speaking about control, but to tailor their
specification to the needed degree of detail, hiding what is considered as irrelevant at the intended
level of abstraction but showing explicitly what is needed. We illustrate this in Sect. 4 by the four
components for data, control, events and resources in WorkflowTransition, which constitute
four model dimensions that come together in the ASM scheme for workflow interpreter rules. These
four components are extensively used in the BPMN standard, although the focus is on the control
flow, which is represented by the control flow arcs, relegating interprocess communication (via
message flow arcs between processes) and data conditions and operations to minor concerns. For
an enhanced specification of interprocess communication see the orchestration of processes in [28].

Separation Principle 4. The fourth principle, whose adoption helps to reduce the descrip-
tion size of abstract models, is the separation of rule schemes and concrete rules, where the con-
crete rules may also be specialized rule schemes. It exploits the powerful abstraction mechanisms
ASMs offer for both data and operations, whether static or dynamic. We illustrate this by the
ComplexGateTransition in Sect. 5.1, a scheme from which one can easily define the behavior
of the other BPMN gateways by instantiating some of the abstractions (see Sect. 5.2).
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Separation Principle 5. The fifth example is about the separation of design, experimental val-
idation and mathematical verification of models and their properties. In Sect. 6 we illustrate an
application of this principle by an analysis of the OR-join gateway, where for a good understanding
of the problem one better separates the definition of the construct from the computation or veri-
fication of its synchronization behavior. Once a ground model is defined, one can verify properties
for diagrams, separating the cases with or without cyclces and in the former case showing which
cycles in a diagram are alive and which ones may result in a deadlock. In addition, the specialized
ASM workflow simulator [25] allows one to trace and to experimentally validate the behaviour of
cyclic diagrams.

The principle goes together with the separation of different levels of detail at which the ver-
ification of properties of interest can take place, ranging from proof sketches over traditional or
formalized mathematical proofs to tool supported proof checking or interactive or automated the-
orem proving, all of which can and have been used for ASM models (see [11, Ch.8,9] for details).

Separation Principle 6. This pinciple is about the separation of responsibilities, rights and roles
of users of BPMN diagrams. To represent different roles of users BPMN diagrams can be split
into so-called pools, between which messages can be exchanged. Furthermore user actions can be
separated by so-called swimlanes. Such a separation of user actions depending on the user’s role
within a diagram is supported in a natural way by the ASM concept of rule executing agents: one
can associate different and even independent agents to sets of user rules; moreover these agents
could be supervised by a user superagent coming with his own supervising rules, which leads to
more general interaction patterns than what is foreseen by the BPMN standard (see [5]).

In the next section we show how from a combination of the separation principles formulated
above one can derive an orthogonal high-level interpretation of the basic concepts of BPMN.

4 The Scheme for Workflow Interpreter Rules

For every workflow or BPMN construct associated to a node, its behavioral meaning can be ex-
pressed by a guarded transition rule WorkflowTransition(node) ∈ WorkflowTransition of the
general form defined below. Every such rule states upon which events and under which further
conditions—typically on the control flow, the underlying data and the availability of resources—
the rule can fire to execute the following actions:

perform specific operations on the underlying data (‘how to change the internal state’) and
control (‘where to proceed’),
possibly trigger new events (besides consuming the triggering ones),
operate on the resource space to handle (take possession of or release) resources.

In the scheme, the events and conditions in question remain abstract, the same as the operations
that are performed. This allows one to instantiate them by further detailing the guards (expressions)
respectively the submachines for the description of concrete workflow transitions.4

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

4 We remind the reader that by the synchronous parallelism of single-agent ASMs, in each step all ap-
plicable rules are executed simultaneously, starting from the same state to produce together the next
state.
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WorkflowTransition(node) represents an abstract state machine, in fact a scheme (some-
times also called a pattern) for a set of concrete machines that can be obtained by further speci-
fying the guards and the submachines for each given node. In the next section we illustrate such
an instantiation process to define the behavior of BPMN gateways by ASM rules taken from the
high-level BPMN interpreter defined in [13].

5 Instantiating WorkflowTransition for BPMN Gateways

In this section we instantiate WorkflowTransition for BPMN gateways, nodes standing for
one of the three types of BPMN flow objects. The other two types are event and activity nodes,
whose behavior can be described by similar instantiations, see [13] for the details. We start with
the rule for so-called complex gateway nodes, from which the behavior of the other BPMN gateway
constructs can be defined as special cases.

5.1 ComplexGateTransition

Gateways are used to describe the convergence (also called merging) and/or divergence (also called
splitting) of control flow, in the sense that tokens can ‘be merged together on input and/or split
apart on output’ [15, p.68]. For both control flow operations one has to determine the set of
incoming respectively outgoing arcs they are applied to at the given node. The particular choices
depend on the node, so that we represent them by two abstract selection functions, namely to

selectConsume the incoming arcs where tokens are consumed,
selectProduce the outgoing arcs where tokens are produced.

Both selection functions come with constraints: selectConsume is required to select upon each
invocation a non-empty set of enabled incoming arcs, whose firingTokens are to be consumed in
one transition.5 selectProduce is constrained to select upon each invocation a non-empty subset
of outgoing arcs o satisfying an associated OutCond(o). On these arcs complxGateTokens are
produced, whose particular form may depend on the firingTokens. We skip that in addition, as
(part of) DataOp(node), multiple assignments may be ‘performed when the Gate is selected’ [15,
Table 9.30 p.86] (read: when the associated rule is fired).

ComplexGateTransition(node) =
let

I = selectConsume(node)
O = selectProduce(node)

in WorkflowTransition(node, I ,O)
where

CtlCond(node, I ) = (I 6= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

if O 6= ∅ and O ⊆ {o ∈ outArc(node) | OutCond(o)} then
ProduceAll({(complxGateToken(firingToken(I ), o), o) | o ∈ O})
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n}) where

[t1, . . . , tn ] = firingToken(I ), [in1, . . . , inn ] = I

5 A function firingToken(A) is used to express a structural relation between the consumed incoming and
the produced outgoing tokens, as described in [15, p.35]. It is assumed to select for each element a of
an ordered set A of incoming arcs some of its token(a) to be Consumed. For the sake of exposition
we make the usual assumption that inQty(in) = 1, so that we can use the following sequence notation:
firingToken([a1, . . . , an ]) = [t1, . . . , tn ] denotes that ti is the token selected to be fired on arc ai .
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5.2 Instantiating ComplexGateTransition

The BPMN standard defines and names also special gateways, which can all be obtained by spe-
cializing the selection functions in ComplexGateTransition. To describe these instantiations
here more clearly, we assume without loss of generality that these special gateways never have both
multiple incoming and multiple outgoing arcs. Thus the so-called split gateways have one incoming
and multiple outgoing arcs, whereas the so-called join gateways have multiple incoming and one
outgoing arc.

For AND-split and AND-join gateway nodes, selectProduce and selectConsume are required to
yield all outgoing resp. all incoming arcs.

For OR-split nodes two cases are distinguished: selectProduce chooses exactly one (exclusive
case, called XOR-split) or at least one outgoing arc (called inclusive OR or simply OR-split).
For the exclusive case a further distinction is made depending on whether the decision is ‘data-
based’ or ‘event-based’, meaning that OutCond(o) is a DataCond(o) or an EventCond(o). For both
cases it is required to select the first out ∈ outArc(node), in the given order of gates, satisfying
GateCond(out).

Similarly also for OR-join nodes two versions are distinguished, an exclusive and data-based
one—the event-based XOR is forbidden by the standard to act only as a Merge—and an event-
based inclusive one. In the latter case selectConsume is required to yield a subset of the incoming
arcs with associated tokens ‘that have been produced upstream’ [15, p.80], but no indication is
given how to determine this subset, which is a synchronization problem. We discuss this very much
disputed issue further in the next section.

6 OR-Join Gateway: Global versus Local Description Elements

The OR-join concept is present in many workflow and business process modeling languages and is
used with different understandings advocated in the literature, in different commercial workflow
systems and by different users. Part of this situation stems from the fact that in dealing with the
OR-join concept, often two things are mixed up that should be kept separate, namely a) how the
intended meaning of the concept is defined (question of semantics) and b) how properties of interest
for the construct (most importantly its fireability in a given state) can be computed, validated
(at run time) or verified (at design time) (question of computation, validation and verification
methods).

It could be objected that an algorithm to compute the fireability of the OR-join rules defines
the crucial synchronization property and thus the semantics of the OR-join. Speaking in general
terms this is true, but then the question is whether there is agreement on which algorithm to use
and whether the algorithm is understandable enough to serve as a behavioral specification the
business process expert can work with. However, looking at the literature there seems to be no
agreement on which algorithm should be used and the complexity of the proposed ones makes
them unfit to serve as satisfactory semantical specification for the workflow practitioner.

The semantical issue disputed in the literature is the specification of the selectConsume functions,
which incorporate the critical synchronization conditions. selectConsume(node) plays the role of an
interface for triggering for a set of to-be-synchronized incoming arcs the execution of the rule at
the given node. Unfortunately, most proposals for an OR-join semantics in one way or the other
depend on the framework used for the definition. This is particularly evident in the case of Petri-
net-based definitions, where, to circumvent the restrictions imposed by the local nature of what
a Petri net transition can express, either the diagrams are restricted (to the possible dislike of
a business process practitioner) or ad hoc extensions of Petri nets are introduced that are hard
to motivate in application domain terms (see for example [33,31,32]). A side problem is that the
BPMN standard document seems to foresee that the function is dynamic (run-time determined),
since the following is required:

Process flow SHALL continue when the signals (Tokens) arrive from all of the incoming
Sequence Flow that are expecting a signal based on the upstream structure of the Process
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. . . Some of the incoming Sequence Flow will not have signals and the pattern of which
Sequence Flow will have signals may change for different instantiations of the Process. [15,
p.80]

We refer to [12] for a detailed discussion of OR-join variations and ways to define and compute
the underlying synchronization functions selectConsume . We restrict our attention here to report
some experiments Ove Soerensen has made with various alternatives we considered to come up with
a practically acceptable definition that could serve for the standard, in particular in connection
with diagrams that may contain cycles. For this purpose Soerensen has built a specialized ASM
workflow simulator [25] that is interfaced with standard graph representation tools, so that the
token flow and the unfolding of a diagram cycle triggered by applying ASM OR-join rules can be
visualized.

One alternative we considered is to a) pass at runtime every potential synchronization request
from where it is originated (a split gateway node) to each downstream arc that enters a join
gateway node and to b) delete this request each time the synchronization possibility disappears
due to branching. Assume for the moment that the given diagram contains no cycles and assume
without loss of generality that there is a unique start node. Then it suffices to operate the following
refinement on our BMPN model.

Split gate transition refinement When due to an incoming token t at a split node a new
token t .o is produced on an arc o outgoing node, a computation path starts at o that may
need to be synchronized with other computation paths started simultaneously at this node, so
that also a synchronization copy is produced and placed on each downstream arc that enters a
join node, i.e. an arc entering a join node to which a path leads from o. We denote the set of
these join arcs by AllJoinArc(o). Simultaneously the synchronization copy of t is deleted from
all such arcs that are reachable from node.
Join gate transition refinement We consume the synchronization tokens that, once the
to-be-synchronized tokens have been fired, have served their purpose, and produce new syn-
chronization tokens for the tokens the join produces. To CtlCond(node, I ) we add the synchro-
nization condition that I is a synchronization family at node, which means a set of incoming
arcs with non-empty syncToken sets such that all other incoming arcs (i.e. those not in I ) have
empty syncToken set (read: are arcs where no token is still announced for synchronization so
that no token will arrive any more (from upstream) to enable such an arc).

It is not difficult to formulate this idea as a precise refinement (in the sense of [8]) of our ASMs
for BPMN split and join rules (see [12]). To extend this approach to the case of diagrams with
cycles (more generally subprocesses), one can refine the AllJoinArc function to yield only arcs of
join nodes up to and including the next subprocess entry node; inside a subprocess AllJoinArc
is further restricted to only yield join nodes that are inside the subprocess.6 The production
of synchronization tokens by the transition rule for join gate nodes that enter a subprocess is
postponed to the exit node rule(s) of the subprocess.

There are obviously various other possibilities, with all of which one can experiment using the
work that will be reported in [25].

7 Related and Future Work

There are two specific papers we know on the definition of a formal semantics of a subset of
BPMN. In [16] a Petri net model is developed for a core subset of BPMN which however; it
is stated there that due to the well-known lack of high-level concepts in Petri nets, this Petri
net model “does not fully deal with: (i) parallel multi-instance activities; (ii) exception handling
in the context of subprocesses that are executed multiple times concurrently; and (iii) OR-join
gateways. ” In [30] it is shown “how a subset of the BPMN can be given a process semantics in
Communicating Sequential Processes”, starting with a formalization of the BPMN syntax using
6 In Soerensen’s tool this is realized by spanning a new diagram copy of the subprocess.
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the Z notation and offering the possibility to use the CSP-based model checker for an analysis of
model-checkable properties of business processes written in the formalized subset of BPMN. The
execution semantics for BPMN defined in [13] covers every standard construct and is defined in the
form of if Event and Condition then Action rules of Event-Condition-Action systems, which are
familiar to most analysts and professionals trained in process-oriented thinking. Since ASMs assign
a precise mathematical meaning to abstract (pseudo) code, for the verification and validation of
properties of ASMs one can adopt every appropriate accurate method, without being restricted to,
but allowing one to use, appropriate mechanical (theorem proving or model checking) techniques.

In [29] an inclusion of process interaction and resource usage concerns is advocated for the
forthcoming extension BPMN 2.0 of BPMN. It could be worth to investigate how the ASM mod-
els defined in [5] for the interaction patterns in [1] can be included into the current ASM model
for BPMN, extending the current communication means in BPMN—event handling, message ex-
change between pools and data exchange between processes—to richer forms of interaction between
multiple processes. Also a rigorous analysis of scheduling and concurrency mechanisms would be
interesting, in particular in connection with concerns about resources and workload balancing that
play a crucial role for efficient implementations.

The feature-based definition of workflow concepts in this paper is an adaptation of the method
used in a similar fashion in [26] for an instructionwise definition, verification and validation of
interpreters for Java and the JVM. This method has been developed independently for the definition
and validation of software product lines [7], see [6] for the relation between the two methods.

Final version to appear in: Proc. ABZ’08 (London 2008). Springer LNCS.
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