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Abstract. The ingredients of typical model based development via eefient

are re-examined, and some well known frameworks are reddawehat light,
drawing out commonalities and differences. It is obsenred &lterations in se-
mantics take placde factodue to applications pressures and for other reasons.
This leads to a perspective on tools for such methods in wihietproof obliga-
tions become programmable and/or configurable, permittajer co-operation
between techniques and interaction with an Evidential Ba. This is of intrin-

sic interest, and also relevant to the Verification Grandli€hge.

Key words: Model Based Development, Refinement, Configurable Proof Obl
gations, Tools, Verification Grand Challenge

1 Introduction

Refinement, as a model based methodology for developingregsrom abstract spec-
ifications, has been around for a long time [1]. In this perim@ny variations on the
basic idea have arisen, to the extent that an initiate caeWwédered by the apparently
huge choice available. As well as mainstream refinementadelbgies such as ASM,
B, Z, etc., which have enjoyed significant applications tisere are a myriad other re-
lated theories in the literature, too numerous to cite cahpnsively. And at a detailed
theoretical level, they are all slightly different.

From a developer’s point of view, this variety can only berieéntal to the wider
adoption of formal techniques in the real world applicasi@nena — in the real world,
developers have a host of things to worry about, quite remhdk@m evaluating the
detailed technical differences between diverse formdirn@pies in order to make the
best choice regarding which one to use. In any event, sudbetoften made on quite
pragmatic grounds, such as the ready access to one or madg)gnd crucially these
days, availability of appropriate tool support. Anecdlytehe choice of one or another
formalism appears to make little difference to the outcoffreer@al world project using
such technigues — success seems to be much more connedtgdapier requirements
capture, and with organising the development task in a walishsympathetic to both
the formal technique and to the developers’ pre-existinggligment practices.

In this paper we examine closely what goes into a typicalmodf model based re-
finement by examining a number of cases. As a result, we caactxihe detailed simi-
larities and differences, and use this to inform a view on kdferent techniques ought
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to relate to one another. This in turn forms a perspective @m different techniques

can meet a contemporary environment in which verificati@htéques and their tools
can increasingly address mainstream industrial scalelgmub— determining how to

address the spectrum of technical differences betweenitpas, in the face of a wider
world prone to see them as intrinsically divisive, remaisggmificant challenge. In this

paper, we contend that techniques in this field can be vieweambmprising a number
of features, amongst which, the commonly occuring ones biaghe emphasised, and
the more specific ones deserve to be viewed more flexibly.lirif@ss developed to the

point that a landscape can be imagined, in which differestiri@ues, and their tools,
can ultimately talk to one another.

The rest of the paper is as follows. In Section 2 we cover theraon features of
model based formalisms. In Section 3 we show how these gére=rare reflected in a
number of specific well known approaches. Section 4 reflatthe evidence accumu-
lated in the previous one and draws some appropriate caonkisSection 5 takes the
preceding material and debates the implications for tdbis.suggested that increased
programmability can substantially help to bridge the gagisvieen techniques, and the
way that programmability features in some recent tools ssused. These thoughts
are also in sympathy with the SRI ‘Evidential Tool Bus’ id&4, [and can contribute
positively towards the current Verification Grand Challeg-5]. Section 6 concludes.

2 Model Based Refinement Methods: Generalities

A typical model based formal refinement method, whose aino i®itmalise how an

abstract model may be refined to a more concrete one, coosstsumber of elements
which interact in ways which are sometimes subtle. In thitise we bring some of

these facets into the light; the discussion may be comparadimilar one in [6].

Formal language. All formal refinement techniques need to be quite specificudbo
the language in which the elements of the technique are etk This precision
is needed for proper theoretical reasoning, and to enabthamical tools with well
defined behaviour to be created for carrying out activitiesoaiated with the method.
There are inevitably predicates of one kind or another taiiles the properties of
the abstract and concrete models, but technical meanssar@eéded to express state
change within the technique. Compared with the predicated tor properties, there is
much more variety in the linguistic means used for expresstate change, although
each has a firm connection with the predicates used for thestimaglof properties.
Granularity and naming. All formal refinement techniques depend on relating con-
crete steps (or collections of steps) to the abstract stapso(lections of steps) which
they refine. Very frequently, a single concrete step is maa®trespond to a single ab-
stract one, but occasionally more general schemes (in vélgghences of abstract and
concrete steps figure) are considered. Thd ) scheme is certainly convenient to deal
with theoretically, and it is often captured by demandinatttmne names of operations
or steps that are intended to correspond at abstract andeterievels are the same.
However, in many applications contexts, such a simple ngreétieme is far removed
from reality, and if naively hardwired into the structureafool, makes the tool much
less conveniently usable in practice.
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Concrete-abstract fidelity. All formal refinement techniques demand that the concrete
steps relate in a suitable manner to abstract ones. Almagtnsally, a retrieve rela-
tion (also referred to as a refinement mapping, abstractiation, gluing relation, etc.)

is used to express this relationship. It is demanded thatetneve relation holds be-
tween the before-states of a concrete step (or sequenceps) sind the abstract step
(or sequence of steps) which simulates it; likewise it mwdt tior the after-states of
the simulating pair. In other words (sequences of) conatees must be faithful to (se-
quences of) abstract steps. (A special case, simple refimearéses when the retrieve
relation is an identity.)

Concrete-abstract fidelity is the one feature that can bedduessentially the same
form across the whole family of model based formalisms. klg the case that this
fidelity —usually expressed using a proof obligation (P@gfidelity PO— is often de-
rived as asufficient conditiorior a more abstract formulation of refinement, concerning
the overall behaviour of ‘whole programs’. These sufficieanditions normally form
the focus of the theory of model based refinement technicpirese they offer what is
usually the only route to proving refinement in practicalesas

Notions of correctnessOne of the responsibilities of a formal refinement technique
is to dictatewhenthere should be concrete steps that correspond to the exéstE
abstract ones. This (at least implicitly) is connected wfith potential for refinement
techniques to be used in a black-box manner. Thus if an abstiedel has been drawn
up which deals adequately with the requirements of the prabthen any refinement
shouldguarantedhat the behaviour expressed in the abstract model shoukfleeted
appropriately in more concrete models, and ultimately & ithplementation, so that
the requirements coverage persists through to code.

There is much variation among refinement techniques on hsagtnandled, par-
ticularly when we take matters of interpretation into aaaioélthough the mainstream
techniques we discuss below are reasonably consistent Himissue, some variation
is to be found, and more variety can be found among refinenaiants in the litera-
ture. The formal content of these perspectives gets captarsuitable POs, and often,
the policy adopted has some impact on the fidelity PO too. Alaiimpact can be felt
in initialisation (and finalisation) POs.

Interpretation. The preceding referred (rather obliquely perhaps) to efemef model
based refinement theories that are expressed in the POs tidbgy, i.e.via logic.
However, this does not determine how the logical elemendseréo phenomena in the
real world. If transitions are to be described by logicahfioitae (involving before and
after states, say), then those formulae can potentially th& valuefalse as well as
true. And while determining how the logical formulae correspaadhe real world is
usually fairly straightforward in thérue case, determining the correspondence in the
false case can be more subtle. These matters of logical-to-redthworrespondence
constitute thenterpretationaspects of a formal development technique.

Trace inclusion. Trace inclusion, i.e. the criterion that every executiogusnce of the
system (i.e. the concrete model) is as permitted by the Bpatedn (i.e. the abstract
model), is of immense importance in the real world. When aplémented system
behaves unexpectedly, the principalst hoanethod of investigation amounts to deter-
mining how the preceding behaviour failed to satisfy theeranclusion criterion. This
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importance is further underlined by the role that traceusimn plays in model check-
ing. The ‘whole program’ starting point of the derivationrafiny sufficient conditions
forrefinementis also rooted in trace inclusion. Two formgra€e inclusion are of inter-
est.Weak trace inclusiomerely states that for every concrete trace there is a stingla
abstract oneStrong trace inclusiogoes beyond that and states thastepsimulates
Cstepsand we exten€stepgo CstepgCnxi, thenAstepscan be extended tstepgAnxt
which also simulates. With weak trace inclusion, we mighvei® abandostepsand
find some unrelatedstepsiterent to recover simulation o€steps; Cp:.

Composition. It is a given that large systems are built up out of smallergonents, so
the interaction of this aspect with the details of a refinenderelopment methodology
are of some interest, at least for practical applicationgrEmore so than for notions
of correctness, there is considerable variation amonge@fant techniques on how
compositionality is handled — the small number of technge review in more detail
below already exhibit quite a diversity of approaches toissee.

3 ASM, B, Event-B, Z

In this section, we briefly review how the various elementsnafdel based methods
outlined above are reflected in a number of specific and wadlakn formalisms. For

reasons of space, we restrict to the ASM, B (together withntioee recent Event-B)

and Z methodologies. We also stick to a forward simulatiorspective throughout. It

turns out to be convenient to work in reverse alphabetiadéor

31 Z

Since Z itself [7] is simply a formal mathematical languagee cannot speak defini-
tively of theZ refinement. We target our remarks on the formulations i®]8,

Formal languageZ uses the well known schema calculus, in which a schema con-
sists of named and typed components which are constrainaddsynula built up using
the usual logical primitives. This is an all-purpose maelmn ‘delta’ schemas enable
before-after relations that specify transitions to be definother schemas define re-
trieve relations, etc. The schema calculus itself enaldlesraas to be combined so as
to express statements such as the POs of a given refinementthe

Granularity and namingMost of the refinement formulations in [8, 9] stick to a
(1,1) framework. Purely theoretical discussions often streagtthis to identity on
‘indexes’ (i.e. names) of operations at abstract and caadesels, though there is no
insistence on such a close tieup in [10, 11].

Concrete-abstract fidelityin the above context for Z refinement, the fidelity PO
comes out as follows, which refers to the contract integiren without 1/0 (while the
behavioural interpretation drops the ‘&p):

vV AState CState CState’ e preAOp/A RA COp=- 3 AState e R’ AAOp (1)

where AState CStateare (abstract and concrete) state schemas (primes denete af
states)AOp, COpare corresponding operatiomiis the retrieve relation, and ‘pAOg,
the precondition, in fact denotes the domaiAafp.

Notions of correctness$n Z, an induction on execution steps is used in thel)
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framework to derive trace inclusion. To work smoothly, tiya(on the state space) of
the relations expressing operations is assumed. To copepaitial operations, a
element is added to the state space,tatalisationsof one kind or another, of the rela-
tions representing the operations, are applied. The caresmgs of totalisation (such as
(1)), got by eliminating mention of the added parts from adtad forward simulation
implication, constitute the POs of, and embody the notiooasfectness for, the total-
isation technique under consideration. These turn out tihéesame for both contract
and behavioural approaches, aside from the difference)indted above.

Interpretation The two main totalisations used, expressabstractandbehavioural
interpretations. In the former, an operation may be invo&edny time, andhe con-
sequences of calling it outside its precondition are untadble (within the limits of
the model of the syntax being used), includihg nontermination. In the latterl is
guaranteed outside the precondition (usually called tredyin this context, but still
defined as the domain of the relevant partial relation), Wisaypically interpreted by
saying the operatiowill not executef the guard is false.

Trace inclusion Trace inclusion has been cited as the underlying derimegoh-
nique for the POs, and since an inductive approach is usedstitong trace inclusion.
However, the ‘fictitious’ transitions of operations intrazkd by totalisation are treated
on an equal footing to the original ‘honest’ ones, so manyisps traces, not cor-
responding to real world behaviour, can be generated. Rtamte a simulation of a
concrete trace may hit a state (whether abstract or condteieis outside the ‘natu-
ral’ domain of thenextpartial operation. Then, in the contract interpretatitwe, trace
can continue in a very unrestricted manner, despite thereifit way that one would
view the constituent steps from a real world perspectivéngslook a bit better in the
behavioural interpretation, since such a trace is thezeafinfined tal .

Composition One prominent composition mechanism to be found in gr@mo-
tion. In promotion, a component which is specified in a self-cme@ way is replicated
via an indexing function to form a family inside a larger ®yst this interacts cleanly
with refinement [8, 9]. However, the schema calculus in galiemot monotonic with
respect to refinement without additional caveats [12].

32 B

The original B Method was described with great clarity in]1&hd there are a number
of textbook treatments eg. [14-16].

Formal languageOriginal B was based on predicates for subsets of statettemr
in a conventional first order language, and on weakest pdition predicate transform-
ers (wppts) for the operations. The use of predicate transfos obviates the need for
explicitly adjoining_L elements to the state spaces.

Granularity and namingOriginal B adheres to a strigtl, 1) framework; ‘strict’
in the sense that tools for original B demand identical nafoesperations and their
refinements. Abstract models of complex operations can enatlsled out of smaller
pieces using such mechanisms as INCLUDES, USES, SEES. l¢owrue the com-
plete abstract model has been assembled, refinement psoceewlithically towards
code. The last step of refinement to code, is accomplisheddmgla generator which
plugs together suitably designed modules that implemenibilest level B constructs.
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Concrete-abstract fidelityT his is handled via the predicate transformers. Adapting
the notation of [13] for ease of comparison with (1), thevalg PO can be written:

Alnv A Clnv A trm AOp=- [ COp] — [ AOp] — Cinv (2)

In this, AInvandtrm AOpare the abstract invariant and termination condition (&t
being the predicate of the precondition), whiténv is the concrete invariant, which in
original B, involves both abstract and concrete variabtestaus acts also as a retrieve
relation; all of these are predicatésAOp| and[ COp]| are the wppts for the abstract
and concrete operations, so (2) says that applying the etsnand ‘doubly negated’
abstract wppts to the after-state retrieve relation yialgsedicate (on the before-states)
that is implied by the before-state quantities to the lethefimplication.

Notions of correctnessn original B, preconditiontfm) and guardf{s) are distinct
concepts (unlike Z), albeit connected by the implicatiotrm = fis , due to the de-
tails of the axiomatic way that these two concepts are defiedeovertrm A — fis
can hold for an operation, permittingiracles a phenomenon absent from formalisms
defined in a purely relational manner. In original n is a conjunct of any opera-
tion’s definition, so outsidem, nothing is assumed, and when interpreted relationally,
it leads to something like a ‘totalisation’ (though diffatérom the Z ones). During
refinement, the precondition is weakened and the guardaagtnened, the former of
which superficially sounds similar to Z, though it is agaiffetient technically.

Interpretation The interpretation of operation steps for whicim andfis both hold
is the conventional unproblematic one. Other steps firertragination. Iftrm is false
the stepaborts i.e. it can start, but not complete normally; modelled tielzally by
an unconstrained outcome, a bit like contract Zfidfis false the step does not start
normally, but can complete; a miracle indeed, usually preted by saying that the
step will not take place ffis is false.

Trace inclusion In original B, trace inclusion is not addressed directlyt bs a
consequence of monotonicity. Refinement is monotonic adies B constructors, in-
cluding sequential composition. This yields a notion of k&ace inclusion, since the
trm andfis of a composition are aautputof a composition calculation, not an input,
and in particular, cannot be assumed to betthe andfis of the first component, as
one would want if one were extending a simulation by congidethe next step. And
even though the sufficient condition for fidelity (2) is a siy¢hening of the natural B
refinement condition, it does not lead to an unproblemat@nsttrace inclusion, since
in a relational model, we have the additional transitionsegated by the ‘totalisation’,
and miracles do not give rise to actual transitions.

CompositionIn original B, the interaction of refinement and compositis not a
real issue. The earlierINCLUDES, USES, SEES mechanisnteai@nly composition
mechanisms, but they just act at the top level. Only the finafisembled complete
abstract model is refined, avoiding the possibility of Zelikonmonotonicity problems.
The IMPORTS mechanism allows the combination of independierelopments.

3.3 Event-B

Event-B [17-19] emerged as a focusing of original B onto asstithat allows for both
more convenient practical development, and also an avoaahthe more counterin-
tuitive aspects of the original B formalism, such as miracle
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Formal languageEvent-B is rooted in a traditional relational frameworkyived by
restricting original B operations (henceforth called e¢gto have darm which istrue,
and controlling event availability purely via the guard,iefis the domain of the event
transition relation, as in Z. Distinguishing between guamd event in the syntax enables
event transitions to be defined via convenient notationsh(sis assignment) which are
more widely defined than the desired guard. Formally, theenexotic possibilities
afforded by predicate transformers are no longer needed.

Granularity and namingEvent-B relaxes the stri¢tl, 1) conventions of original B.
As in original B, the syntax of the refinement mechanism is egaled in the syntax of
the refining machine, so an abstraction can be refined in rharedne way, but notice
versa However, a refining event now names its abstract event, ststnact event can
have several refinements within the same refining machine. &ents in a refining
machine aremplicitly understood to refine an abstraip, something which needed
to be stated explicitly in original B, cluttering incremahtievelopment.

Concrete-abstract fidelityThe absence of the more exotic aspects of predicate
transformers gives the Event-B fidelity PO a quite convergi@ppearance:

vV u,v,V e AlnvA CInvA Gegy A CEv= 3 U e AEVA CInV 3)

This says that assuming the abstract invariant and the etmicivariant (which is again
a joint invariant i.e. retrieve relation) and the concreteigl and concrete transition re-
lation for the before-states, yields the existence of atratisevent which re-establishes
the joint invariant in the after-states.

Notions of correctnes3 he absence of preconditions distinct from guards singdlifi
matters considerably. The previous ‘weakening of the prditmn’ during refinement
of an operation, is now taken over by ‘disjunction of conergtiard with guards of all
new events is weaker than the abstract guard’. This is a diffexrent criterion, which
nevertheless guarantees that if something can happen abgtiact level, a ‘suitable’
thing is enabled at the concrete level. This is also combinigu guard strengthening
in the refinement of individual events, and a well foundedrmsperty to prevent new
events from being always enabled relative to old eventsaliBattions are no longer
present in any form, which has an impact on trace inclusiea {&low).

Interpretation The absence of preconditions distinct from guards singdifnter-
pretational matters considerably. There is a firm commitnterthe idea that events
which are not enabled do not execute, avoiding the need tagengith miracles and
with spurious transitions generated by totalisation.

Trace inclusionIn the Event-B context, trace inclusion wins massivelncgifor a
refined event, the concrete guard implies the abstract baéptplication has the same
orientation as the implication in (3), so the two work in hamyg to enable any concrete
step joined to an appropriate abstract before-state, tmpeoblematically simulated,
a phenomenon not present in formalisms mentioned earlieimulated moreover, by
a ‘real’ abstract event, not a fictitious one introduced watalisation. New events do
not disturb this, since they are by definition refinementskip, which can always
effortlessly simulate them. So we have genuine, uncluttesieong trace inclusion.

Composition Event-B takes a more pro-active approach to compositian trig-
inal B. Event-B’s top-down and incremental approach mehasdystem models start
out small and steadily get bigger. This allows compositmbé instituted vi@lecompo-
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sition. As a system model starts to get big, its events can be jparitiinto subsystems,
each of which containabstractionsof the events not present. These abstractions can
capture how events in different subsystems need to intealiowving for independent
refinement, and avoiding the non-monotonicity problemstineerd earlier.

3.4 ASM

The Abstract State Machine approach developed in a destette an operationally
based rigorous development framework at the highest Idvabstraction possible. A
definitive account is given in [6].

Formal language Among all the methodologies we survey, ASM is the one that
de-emphasises the formality of the language used for modehe most — in a laud-
able desire to not dissuade users by forcing them to digesga mount of technical
detail at the outset. System states are general first omletstes. These get updated by
applying ASM rules, which modify the FO structures held ire@mr morelocations In
a departure from the other formalisms reviewalll rules with a true guard are applied
simultaneously during an update.

Granularity and namingThe ASM approach tries as hard as it can to break the
shackles of imposing, up front, any particular scheme ofespondence between ab-
stract and concrete steps during refinement. Since a retraation has to be period-
ically re-established, a practical technique that breaksia of simulating runs into
(m, n) diagrams ofm abstract steps armtconcrete ones (for arbitrary finite+n > 0),
without any preconceptions about which steps occur, ismmally demanding.

Concrete-abstract fidelityn striving to be as unrestrictive as possible, ASM does
not prescribe specific low level formats for establishinfin@ement. However, one tech-
nigue, generalised forward simulation, established byeficbrn [20] (see also [21]),
has become identified asde factostandard for ASM refinement. This demands that
the (m, n) diagrams mentioned above are shown to be simulating by ga/working’
retrieve relatiorr, which implies the actual retrieve relatier; which itself is referred
to as anequivalenceThe = relation is then used in implications of the form (1)-(3),
except that several abstract or concrete steps (or nonedeamolved at a time. As
many(m, n) diagram simulations as needed to guarantee coverage efsalthat arise
must then be established.

Notions of correctnesst has already been mentioned thatis referred to as an
equivalence. While almost all retrieve relations used iacfice are in fact partial or
total equivalences [22], knowing thés priori has some useful consequences. It leads
to a simple relationship between the guards of the run fragsn@ simulating(m, n)
diagrams, subsuming guard strengthening, and eliminatiagy potential complica-
tions. Refinement is defined directly via a trace-includika-criterion (periodic re-
establishment of), and for(0,n) and (m,0) diagrams, there is a well foundedness
property to prevent permanent lack of progress in one orraygtem in a refinement.
The analogue of ‘precondition weakening’ (though we emjseethat there is no sepa-
rate notion of precondition in ASM) is subsumed by the notibitomplete refinement’
which demands that the abstract model refines the concretéasrwell asvice versa,
thus ensuring that any time an abstract run is availables sosuitable concrete one,
yielding persistence of coverage of requirements down aegfent chain. Of course
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not all refinements need to be complete, permitting conveniaderspecification at
higher levels, in a similar manner to Event-B.

Interpretation Since states and transitions are defined directly, thexearsubtle
issues of interpretation associated with them. Also, ASM fining is a hardwiring of
the ‘transitions which are not enabled do not execute’ cotiga into the formalism.

Trace inclusion The (m, n) diagram strategy of ASM modifies the notion of trace
inclusion that one can sustain. The A3M, n) notion, at the heart of the ASibrrect
refinementriterion, can be viewed as a generalisation of the Eve(it;B) strategy.

Composition With the major focus being on identifying the ground modaeid on
its subsequent refinement (rather as in original B), the amsition of independent re-
finements is not prominent in [6, 21]. On the other hand; ifeally is an equivalence
(or as we would need to have it between two state spaces wteattifeerent, aregu-
lar relation a.k.a. @ifunctionalrelation), there is a beneficial effect on any prospective
composition of refinements. Many of the issues noted in [XBfabecause incom-
patible criteria about abstract sets (of states, say) waiehunproblematic due to the
abstract sets’ disjointness, can become problematic du® @gecondition weakening
when the sets’ concrete retrieve images become non-disjigim non-regular retrieve
relation. A regular retrieve relation does much to prevéis,tfacilitating composition
of refinements.

4 Configurable Semantics

The preceding sections very briefly surveyed a few well knogfimement paradigms.
Although it might not be as apparent as when one examines ofottge details in
each case, it is easy to be struck by how so many of the issudsmveshighlighted,
turn out merely to belesign decisionshat happen to have been taken, about some
particular feature, in the context of one or other formaligdthough some such design
decisions are interrelated, one can very easily imagira, ithmany cases, a given
design decision about some aspect of a refinement methodaogld just as easily
have been implemented in the context of a methodology eiffiefrom the one in which
we happen to find it. Here are a few examples.

e Regarding Z, one could easily imagine its notion(s) of camess being substituted
by the ones from Event-B or ASM. Its notion of trace incluswould then be replaced
by one not requiring the use of ‘fictitious’ transitions geated by totalisation.

e For B, one could easily imagine adding elements to state spaces etc. in order to
obtain a different relational semantics, with fewer ‘fiictits’ transitions.

e For Event-B and ASM one could imagine bringing in some aspeithe Z modelling,
though it appears that little would be gained by doing so.

Of course such ideas are not new. In many cases, for matutmd@ogies, alternatives
of one kind or another have been investigated, whether indneal research literature
or as student research projects — making an even moderatglgrehensive list of the
cases covered would swell the size of this paper unacceptabl

Semantic modifications of the kind hinted at can serve a meniess purpose than
mere curiosity. In ProB [23], a model checker and animatottie B-Method first im-
plemented for original B, the original B preconditions aecimterpreted as (i.e. given
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the semantics of) additional guards. The reason for thisasgreconditions arereak-
enedduring refinement, whereas guards atengthenedAs already noted in Section
3.3, the orientation of the latter implication is the saméha in the fidelity PO, so the
two collaborate in establishing trace inclusion. Prectadiweakening is in conflict
with this, so the ProB adaptation is necessary to ensurehhbatheoretical construc-
tions at the heart of model checking remain valid.

Commenting from a real world developer’s perspective, theef the extraneous
and counterintuitive elements that a formalism contalmshore appealing it becomes
for real world use. For example, if an applications spheegures operations that are
intrinsically partial, then that is all that there ought ®tb the matter, and consequently,
the approach of totalising such operations becomes arcatiflistraction, potentially
even a misleading one if the fictitious transitions could bstaken for real ones.

Such techniques as totalisation can be seen as making kheftsetting upthe se-
mantics of a formal framework simpler. However, the real Mateveloper’s priorities
are more focused on accurate modelling of the applicatienago, and this can moti-
vate a modification of the semantics, albeit at the price ditaahal formal complexity.
In the Météor Project [24], the semantics of original B waadified to explicitly check
well-definedness conditions for applications of (partia)ctions, using techniques go-
ing back to Owe [25], in recognition of this application ne&yent-B, a more recent
development, has such checks builiain initio, and its semantics fits model checking
needs much better too, as already noted.

The above thoughts, assembled with the wisdom of hindsilyive one to the con-
clusion that the semantics of formal development notativosld be better designed
in a moreflexible or configurableway. The idea that a single pre-ordained semantic
framework can cover all cases in all needed applicationatesis hard to sustain.

Such a viewpoint has consequences of course, both thesdratid practical. Theo-
retically, one would have to structure the theory of a paticformalism so that con-
trasting design decisions could be adopted straightfatlyan a way that avoided con-
fusing the reader, and so that the consequences of adofitémgadives could easily
be imagined. Moreover, doing this would not constitute aehagerhead since theo-
retical work is relatively cheap. Practically though, itaglifferent matter. Practically,
formalisms, such as the ones we have discussed, are embodusals; and creating
a good tool requires a considerable investment. We distieswider consequences of
our perspective for tools in the next section.

A final thought on the topic of semantic flexibility. One cahhelp notice from
the above brief discussion, that the places where semanoitidfications have been im-
posed on a technique in order to satisfy application devata methodology needs,
have all occurred in the ‘notions of correctness’ and ‘iptetation’ areas. Notably
free from interference has been the ‘concrete-abstraditfidarea. This indicates a
strong consensus among approaches that simulation (iroomeoir another) ishekey
criterion that techniques must establish. Other issuas f8ection 2, such as ‘formal
language’, ‘granularity and naming’ and ‘trace inclusigicomposition’, can be seen
as either enablers for setting up a framework, or derivablesequences of the design
decisions taken. This in turn suggests a scheme for orgagtiseories in this field: one
sets up the linguistic machinery, one sets up concreteaddsimulation, one chooses
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additional correctness and accompanying concepts, andthe derives whatever ad-
ditional properties of interest follow from the precedirfgpices. And when comparing
or combining one formalism with another, it is th@ersectionof features rather than
theirunionthat is of greatest importance.

5 Issues for Tools

The considerations of the preceding sections have imitatffor tool design, as al-
ready noted. Up to now, most tools in this arena have beerdb@sa commitment to
a particular set of design decisions about various semasties, and these decisions,
howsoever arrived at, have been hardwired into the straafithe tool, making tools
somewhat monolithic. This has the advantage that with eagh dne knows exactly
what one is getting. However, it also has the disadvantaggitlisolates tools from
each other, and makes tool interoperability difficult or mspible.

These days, it is more and more recognised that to best adifresisks inherent
in the whole process of a system development, it is desitahlgilise a range of tech-
niques and to interconnect them. A consequence of theisolaétween tools is that it
is difficult to simultaneously capitalise on the strengthsore than one. It also means
that when an advance is made in one tool, other tools havepilicdte the work in-
volved before similar ideas can be used in the other contéxis way of addressing
this difficulty is to not only make the various theoreticarneworks flexible and con-
figurable, as recommended earlier, but to also make the thatssupport them more
configurableandprogrammableWe now discuss three approaches to this as exempli-
fied within three different tool environments.

TheRodin Toolset[18] for supporting the Event-B methodology, is built on sk
[26], a flexible platform for software development which rages dependencies be-
tween development artifacts and supports a GUI for dispaghem. The semantic
content of a methodolgy supported by an Eclipse-based socdptured via a collec-
tion of Eclipse plugins. Rodin is thus a collection of plugjiior introducing Event-B
machines and contexts, editing them, checking them, géngraOs, supporting PO
proof, and general housekeeping. Other plugins exis#igiXLprinting, ProB support,
and support for additional development activities to ai@itvB development s planned
or can easily be envisaged. Since the source of Rodin is ipub&c domain, one can
integrate such additional activities by simply writing regolugins of one’s own. If
one wished to actuallglter specific semantic elements of Event-B for any reason, one
might well have toreplacean existing plugin by a different one, since the standard
semantics of Event-B is hardwired into the plugins, if ndbi&clipse. This, although
possible, is not trivial, since writing Eclipse pluginspesially ones that would have to
collaborate closely with other existing ones, is not an @ask. Counter to this relative
inflexibility, we note that a certain limited amount of sertiarflexibility has been built
into Rodinab initio, since one can configure certain attributes of events, egthven
they areordinary, convergentetc. This influences the verification conditions that are
generated.

The Frog tool [27,28] is an experimental tool, originally designed forahan-
ically supporting retrenchment [29], whose inbuilt fledityi addresses our concerns
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very well. In Frog, much of what is hardwired in typical exig} proof-driven devel-
opment tools is programmable. Thus there is an intermetiiaguage (Frog-CCL) for
declaring thestructureof the clauses that comprise the usual syntactic consttinats
constitute a typical formal development framework. Pagathtically, one has machine
definitions, relationships between machines and the lik&rbg, the mathematical in-
gredients of all the constructs are specified using Z schetmasexploiting Z's essence
as a general purpose formal mathematical notation. Sidaéaeships between con-
structs, such as refinements, are themselves syntactitraciss the precise nature of
what constitutes a refinement (in terms of the POs that cleise it), can be pre-
cisely specified and configured using Frog-CCL scripts. @r@sg a complete formal
development methodology in Frog is thus a matter of writiegesal Frog-CCL scripts,
rather than a major development task. At least that is samtimle. Due to limited time
during Simon Fraser’s doctorate, certain things are sdiftvired in Frog, such as: the
use of Z as mathematical language, the use of the Isabetiestineprover [30], and a
strict (1, 1) naming convention for operations. Evidently, more flexipitould easily
be contemplated for these aspects.

Of course the maximum flexibility for adapting the semanticl/ar any other as-
pects of a methodology whilst still within a tool environnteis to work with a fairly
general purpose theorem prover. There are essentiallymsirgints when one takes this
approach, since, regardless of what features are takemastating the foundations of
a given formal development methodology (and there is camnalale variation on what is
regarded as fundamental among different methodologies)erification that a partic-
ular development is correct with respect to that particaiathodology, always reduces
to constructing proofs (of a fairly conventional kind) of amber of posited properties
of the development, the verification conditions. The fldiipiof the general purpose
theorem prover approach has been demonstrated with gree¢ssiin deploying the
KIV Theorem Prover [31] to address system development in the ASM methodology
(and others). The web site [32] gives full details of the nsetbal verification of a
number of substantial developments, carried out under arécal formalisations of a
variety of detailed refinement formalisms. The approachamgsyed particular success
in the context of the mechanical verification of Mondex [38]. 3 he generality of KIV
enabled previously investigated refinement strategieetquickly adapted to the de-
tails of Mondex, and the whole of the verification, done in p&tition with several
international groups, to be accomplished in record time.

6 Conclusions

In this paper, we have examined some key features of a smmalbeuof well known re-
finement methodologies, and commented on their similarétie differences. We noted
that many of their features were not especially specific éortfethodologies in which
they were found, and that we could just as easily transphamtinto others. We also
observed that applications considerations can influendadapt such methodologies,
irrespective of first principles, belying the view that theemantics are sacrosanct.
The same considerations impact tool support, but more gegpen the invest-
ment needed to create a good tool. Accordingly, we turnedattention to strategies
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for achieving greater tool flexibility: from Rodin’s plugsnto Frog'’s scripting approach,
to theorem proving using eg. KIV. While the last of these unatedly offers the great-
est flexibility, it also requires the greatest expertise, #om more everyday development
environments, some tool-imposed discipline is probabbessary. The question is how
to achieve an adequate level of tool supervision withoutmmmising openness, inter-
operability and flexibility. In the author’s view, the Frogroach offers great promise
for quick adaptability of the semantic details of a formalthwelology, without de-
manding a huge investment in reprogramming the tool. It &/¢a imagine that in a
tool such as Frog, for industrial application, the prograabhe semantic aspects can be
made editable only by senior personnel, and the majorith@tievelopment team see a
tool which behaves as though its semantics was convenlydraidwired. In any event,
all the approaches outlined above certainly offer promasel, further experimentation
is to be expected in the near future.

All of the above is certainly in harmony with the call for anigential Tool Bus
(ETB) [2], over which tools could communicate. In the ETBol®are no longer en-
visaged as monolithic entities, isolated from each othet,rather as members of a
community, each responsible for a subset of, or for a pdef@pproach to, the overall
verification task. Tools on the bus could make use of the igdpevidence for correct-
ness established by other tools on the bus, to enhance wyatitbmselves would be
able to achieve — they in turn publishing their own resultstlom bus for successor
tools to benefit from. Thus the community could achieve, hypavation, far more, far
more cheaply, than any one tool could achieve on its own.

The preceding is also in harmony with the currently activafi@ation Grand Chal-
lenge [3-5]. This has many aims, from promoting formal teghas in the mainstream
(on the basis of their by now well established capacity tavdelto standard, on time,
on budget, and overall more cheaply than by the use of coilralttechniques), to
establishing cadres of formally verified applications irepasitory (as further evidence
to encourage their uptake, and perhaps to provide therellgctions of reusable for-
mally verified components), to encouraging the harmorosadind cooperation of for-
mal techniques. This last aim is squarely aligned with outivations for carrying out
the analysis of refinement techniques given in this paper.
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