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Abstract. The Mondex case study concerns the formal development and verifi-
cation of an electronic purse protocol. Several groups haveworked on its spec-
ification and mechanical verification, their solutions being (as were ours previ-
ously), either one big step or several steps motivated by thetask’s complexity.
A new solution is presented that is structured into three refinements, motivated
by the three concepts underlying Mondex: a message protocolto transfer money
over a lossy medium, protection against replay attacks, anduniqueness of trans-
fers using sequence numbers. We also give an improved proof technique based
on our theoretical results on verifying interleaved systems.

1 Introduction

Mondex smart cards implement an electronic purse [1]. They were the target of one
of the first ITSEC evaluations at level E6 [2] (now EAL7 of Common Criteria [3]),
which requires formal specification and verification. The formal specifications were
given in [4] using Z [5], together with manual correctness proofs. Two models of elec-
tronic purses were defined: an abstract one which models the transfer of money between
purses as elementary transactions, and a concrete level that implements money trans-
fer using a communication protocol that can cope with lost messages using a suitable
logging of failed transfers.

Mechanizing the security and refinement proofs of [4] was recently proposed as a
challenge for theorem provers (see [6] for more informationon the challenge and its
relation to ’Grand Challenge 6’). Several groups took up thechallenge. For a survey see
[7] — more details on some are given in Section 7. Results to date have been focused
on solving the problem either as closely as possible to the original, or by adapting the
problem to fit the style of the tool, thereby simplifying it.

The first author works in the Augsburg group, which uses KIV. This has derived
solutions for both styles. [8] gives a solution that formalizes the original data refine-
ment theory of [9] and uses the original backward simulation. Alternatively, since KIV
supports the Abstract State Machines (ASM, [10], [11]) style of specifying operations,
we have also given a solutions using ASMs in [12], as one refinement that uses general-
ized forward simulations of ASMs ([13], [14], [15], [16], [17]). This solution simplified



the deduction problem by using purse-local invariants (inspired by [18]), and by using
big commuting diagrams for full protocol runs, a technique used previously in ASM
refinements. This approach also uncovered a weakness of the original protocol, which
can be resolved by a small change. Still, the proof is monolithic, consisting of a single
refinement.

Other authors, particularly [19] and [20], have tried to modularize the refinement
into several to make deduction simpler, but from our point ofview they have not isolated
the Mondexconcepts into separate refinements, allowing a clean explanation. However,
their work has strongly influenced ours.

Isolating the Mondex concepts is a necessity when explaining the Mondex protocol
live to an audience. This prompted the attempt to formalize them as separate refine-
ments. The essential concepts of the Mondex protocol are thefollowing:

• Implementing transfers by sending messages over a lossy transport medium.
• Adding checks that protect against replay attacks.
• A challenge-response system to ensure uniqueness of protocol runs.
• Choosing suitably strong cryptographic functions to encrypt messages.

This paper explains the first three concepts by putting them into three successive refine-
ments. The fourth was absent in the original Mondex work: theMondex concrete level
assumes that suitable cryptography can be used to protect messages.Elsewhere [21],
we have shown that suitable cryptography can indeed be addedusing another refine-
ment, and that as an instance of a model-driven approach [22]the resulting ASM can
be implemented using Java [23], so we do not repeat this here.

The next section recalls the Mondex abstract specification,and we then explain each
of the refinements in turn in the following three sections. Wealso explain some of the
simulation relations and invariants that are needed to verify each refinement with KIV
(full details of all specifications and proofs are availableat [24]). A final technical re-
finement, that slightly changes notation to be compatible with the original definitions
completes the development. Finally, Section 7 gives related work and Section 8 con-
cludes.

2 The Abstract Specification

The main protocol of Mondex implements electronic cash transfer, using either a device
(wallet) with two slots, or an internet connection. Since the key idea iscash, the main
security concern is that, even in a hostile environment, money cannot be created or
destroyed (satisfying the security concerns of the bank andthe customer, respectively).

The abstract specification formalizes atomic money transfer: a functionbalance :
name → IN gives the current balance of each named purse (typename). A predicate
authentic distinguishes legitimate purses from impostors. Successful money transfer
is described by theTRANSFEROK rule below. This rule chooses the two authentic
participating pursesfrom and to and the amountvalue to transfer, which should be
less or equal thanbalance(from), and modifies the balances according to a successful
money transfer.
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TRANSFEROK =
choosefrom, to, value
with authentic(from) ∧ authentic(to) ∧ from 6= to ∧ value ≤ balance(from)
in balance(from) := balance(from) − value

balance(to) := balance(to) + value

In reality, transfers may fail, since power can fail, card memory can run out, and cards
may detach from the protocol prematurely. According to the security requirement no
money should be lost, so a mechanism must be implemented which saves information
about failed transfers. The definition of this information will be the task of the first
refinement. At the abstract level, it is simply assumed that there is another fieldlost:
name → IN on each card, which saves all outgoing money that is lost in failed transfer
attempts, so that it can subsequently be recovered. The rulefor failed transfer attempts
is then simply

TRANSFERFAIL =
choosefrom, to, value
with authentic(from) ∧ authentic(to) ∧ from 6= to ∧ value ≤ balance(from)
in balance(from) := balance(from) − value

lost(from) := lost(from) + value

With this rule it is obvious that the sum of allbalance andlost values of all authentic
purses never changes, so money can neither be created nortruly lost and the security
goal is satisfied. This completes the description of the abstract specification. Runs of
the system repeatedly applyARULE = TRANSFEROK ∨ TRANSFERFAIL which
chooses nondeterministically between the two possibilities.

3 From Atomic Transfers to Messages

The first refinement towards the Mondex protocol is concernedwith implementing
atomic transfer using a protocol that sends messages between the two purses, despite
the fact that these messages may get lost for any number of reasons.

Sending a singleVal(from,value) message from thefrom purse to theto purse
containing the value and its sender will not do, since the message could be lost, and
neither party would be able to prove that this happened.

An additionalAck(to,value) message acknowledging that theto purse has received
the money improves matters: if theto purse sends this message when receiving money,
but thefrom purse does not receive it, thefrom purse can write anexception log proving
that something did not work: either theVal message was not processed properly or the
Ack was lost. Dually, if theto purse sends aReq(to,value) message that requests the
money, and the from purse only sendsVal on receiving it, then theto purse can know
that something did not work: either the request was not processed properly, or theVal
was lost. Using all three messages enables detection ofVal(from,value) message loss
by inspecting both cards: theVal(from,value) message has been lost iffboth purses
have a suitable log entry.

Being able to detect failed transfers by checking both purselogs has one caveat:
the two log entries must reliably belong to thesame transfer. Otherwise a first attempt
could lose theAck(to,value) message, creating afrom log entry, and a second attempt
could lose theReq(to,value) message, creating a fictitious “matching” pair. Therefore
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we will assume that each attempt to transfer money is equipped with a unique transfer
identifier tid. The implementation oftid by sequence numbers is deferred to the third
refinement; in this refinement we just assume there is a globalfinite settids : set(tid)
that stores the used identifiers and that it is always possible to choose a fresh one.

So, for the protocol we need messagesReq(to, value, tid),Val(from, value, tid) and
Ack(to, value, tid). Triples consisting of a name, a value and a tid are calledpayment
details. They form the content of messages. Payment details are alsoremembered in ex-
ception logs which now replace thelost component. The logs are functionsexLogfrom
: name → set(paydetails) and exLogto : name → set(paydetails). To compute
the abstractlost(from) we have to sum all values of payment details(to,value,tid) ∈

exLogfrom(from) for which a matching(from,value,tid) in exLogto(to) exists (and
this is already the main information needed for the simulation relation).

To allow message exchange, each purse now has a “message box”of messages
awaiting processing. This is the functioninbox : name → set(message). We first
tried aninbox that contained one rather than several messages, but this turned out to
be too restrictive, enforcing message sequencing between purses. Losing messages is
realized by the following simple rule which may be invoked atany time by a purse
receiver:

LOSEMSG =
choosemsgs with msgs ⊆ inbox(receiver) in inbox(receiver) := msgs

Finally, a purse has to know which message it sent last so as toreact to missing answers
appropriately; functionoutbox : name → message does this. Anoutbox that isnot
in the middle of a protocol run, can contain either the last sent Ack, or the special value
none, when it has not yet sent a message or successfully received an Ack. Both cases
are checked with the predicateisNone.

With these data structures, we derive four rules: for sending requests (STARTTO),
for receiving a request and sending a value (REQ), for receiving a value and sending
an acknowledgement (VAL), and finally for receiving an acknowledgement (ACK).

Like LOSEMSG above, theSTARTTO andREQ rules assume that an authentic
pursereceiver has been chosen to execute the rule. Note thatSTARTTO chooses a
new transfer identifier and is possible only when the purse iscurrently not involved in a
protocol (i.e. whenisNone(outbox(receiver))). Postfix selectorsmsg.pd, msg.value,
msg.tid select the full payment details, thevalue and thetid contained in a message.seq
is ASM notation to indicate sequential execution (usually all assignments are executed
in parallel).

STARTTO =
if isNone(outbox(receiver))
then choosena, value, tid
with tid 6∈ tids ∧ authentic(na) ∧ na 6= receiver
in inbox(na) := inbox(na) ∪ {Req(receiver, value, tid)}

outbox(receiver) := Req(na, value, tid)
tids := tids ∪ {tid}
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REQ =
choosemsg
with msg ∈ inbox(receiver) ∧ isReq(msg) ∧ authentic(msg.na)

∧ msg.na 6= receiver ∧ msg.value ≤ balance(receiver)
∧ isNone(outbox(receiver)) in

inbox(msg.na) := inbox(msg.na) ∪ {Val(receiver, msg.value, msg.tid)}
outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver) − msg.value seq
inbox(receiver) := inbox(receiver) \ {msg}

TheVAL rule is similar toREQ: the input is checked to be aVal(pd) message, where
theoutbox must beReq(pd) with the same payment detailspd, and the sent message
placed ininbox(msg.na) is anAck. Also msg.value is added to thebalance instead
of subtracted. TheACK rule is similar too, but does not change thebalance, does not
write any output message and sets theoutbox to none.

VAL =
choosemsg
with msg ∈ inbox(receiver) ∧ isVal(msg) ∧ isReq(outbox(receiver))

∧ msg.pd = outbox(receiver).pd in
inbox(msg.na) := inbox(msg.na) ∪ {Ack(receiver, msg.value, msg.tid)}
outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value seq
inbox(receiver) := inbox(receiver) \ {msg}

ACK =
choosemsg
with msg ∈ inbox(receiver) ∧ isAck(msg) ∧ isVal(outbox(receiver))

∧ msg.pd = outbox(receiver).pd in
outbox(receiver) := none
inbox(receiver) := inbox(receiver) \ {msg}

Finally, a purse can abort a protocol (for whatever reason);it then executes

ABORT =
if isReq(outbox(receiver))
then exLogto(receiver) := exLogto(receiver) ∪ {outbox(receiver).pd} seq
if isVal(outbox(receiver))
then exLogfrom(receiver) := exLogfrom(receiver) ∪ {outbox(receiver).pd} seq
outbox(receiver) := none

The full specification chooses an authenticreceiver and nondeterministically executes
one of the above rules

IRULE = choosereceiver with authentic(receiver) in
LOSEMSG ∨ STARTTO ∨ REQ ∨ VAL ∨ ACK ∨ ABORT

In [12], [17] we have proposed the use of purse-local simulation relations and invari-
ants to verify refinements that split up an atomic action intoseveral protocol steps. The
approach described there for the simulation relation couldbe used unchanged. The in-
variants used in the approach state that “each purse has executed some (maybe no) steps
into the protocol”. Such invariants are easily expressiblein KIV’s Dynamic Logic.
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Our research in [25, 26] has established a general framework, that suggests invari-
ants should beprotocol-local, not purse-local. Therefore we generalized the approach
to using the following idea for invariants:

“For every protocol already running (identified by atid ∈ tids), there are two
pursesfrom andto that have executed some of the steps of the protocol. These
steps determine the part of the state involvingtid”

To get a formal definition involving ASM rules we have to do twothings. Firstly, we
have to formalize “some protocol steps”. For the Mondex protocol these are

(1) no step.
(2) STARTTO and possibly anABORT of theto purse.
(3) STARTTO, thenREQ, then possiblyABORT(from) or ABORT(to) or both.
(4) STARTTO, REQ, andVAL and then possiblyABORT(from).
(5) The full protocolSTARTTO, REQ, VAL andACK.

The states reached by executing some steps of the protocol therefore correspond directly
to the final statesst1 of the nondeterministic program

SOMESTEPS(st,from,to) =
(1) skip ∨
(2) STARTTO; {skip ∨ ABORT(to) ∨
(3) REQ; {{skip ∨ ABORT(to)};{skip ∨ ABORT(from)} ∨
(4) VAL; {skip ∨ ABORT(from) ∨
(5) ACK}}}

when started some initial statest, wheretid was still unused (tid 6∈ tids). Note that
the parametersfrom and to were dropped where it was obvious:STARTTO is really
STARTTO(to), i.e. theto purse is used in theSTARTTO rule in place ofreceiver. The
fact, thatst1 is a final state of some terminating run ofSOMESTEPS is expressed,
using Dynamic Logic [27] in KIV, as

〈SOMESTEPS(st,from,to)〉 st = st1

but the approach is not tied to the ASM formalism and Dynamic Logic: using a rela-
tional encoding of ASM rules, a relationsomesteps could be defined similarly to the
SOMESTEPS program above, using relational composition instead of compounds.
The Dynamic Logic formula would then be equivalent to

somesteps(st,from,to,st1)

Secondly, we have to give a formal equivalent of the assertion “the protocol steps deter-
mine the part of the state involvingtid”. The part of the state that involvestid is easy to
define. It consists of those messages in in- and outboxes, andthose exception logs, that
havetid in their payment details. To define what it means for the protocol steps to deter-
mine the part of the state that involvestid, we define a predicateeqtid(tid,st1,st2).
This predicate compares two states. The first statest1 is the final state of running
just the protocol steps involvingtid from some initial state. It is a possible result of
runningSOMESTEPS. The second statest2 is the result of running these protocol
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steps interleaved with an arbitrary number of protocol steps of other protocol instances.
eqtid(tid,st1,st2) specifies that indeed the parts of the state involvingtid of st1 and
st2 are equal, since other protocol instances cannot interferewith the current proto-
col instance. There are two small exceptions:LOSEMSG may delete messages from
inboxes, and a finalAck-message in an outbox may be overwritten after the current
protocol has finished.

Putting together theSOMESTEPS program and theeqtid predicate we get the
following invariant that encodes the informal idea given above:

INV(st2) ↔
∀ tid ∈ tids2. ∃ from, to, st, st1.

tid 6∈ tids ∧ 〈SOMESTEPS(st)〉 st = st1 ∧ eqtid(tid,st1,st2)

The formula states, that for every protocol currently running (tid ∈ tids2) there was an
initial statest before the protocol was started and two participantsfrom,to, such that
the current part of the state involvingtid is nearly the same (eqtid) as the state resulting
from some terminating run ofSOMESTEPS(st).

This is already the full invariant that is needed, except forthe trivial invariant stating
that no messages in inboxes, outboxes or exception logs, mention atid that is not yet in
tids.

The invariance proof reduces to proofs for every single protocol instance (i.e. for
everytid), and for every protocol step. It has two cases: either the protocol step executed
is one of the steps of the protocol instance fortid or it is a step of some other protocol
instance. In the first case we essentially get trivial proof obligations, since “some steps
of the protocol have been executed” is trivially invariant when executing yet another
step. Essentially these proof obligations check thatSOMESTEPS indeed encodesall
possible protocol runs. For the second case we have to prove that steps of other protocol
instances will not create messages or exception logs involving tid. The proof obligations
check thateqtid correctly captures all potential interference from the other protocol
instances.

Compared to the earlier proof of the full refinement in one step [12], which used
purse-local invariants (which already simplified the many invariants needed for the
original proof [4] that we used in [21]), the invariant has again been simplified: the
purse-local approach required predicate logic propertiesthat related the two states of
thefrom andto purses participating in a protocol run. These are not neededany more.

4 Protection against Replay Attacks

Our next refinement is concerned with protection against replay attacks. The original
development assumed thatReq, Val, Ack messages are cryptographically protected, so
we do the same. So an attacker cannot create such messages.

But even with this assumption, an attacker could destroy money on afrom purse
by saving and replayingReq andAck messages. Indeed our first protocol is vulnerable
to such an attack. For the new level, we assume an attacker whocan intercept (and/or
delete) messages, save them, and replay them. To model this formally, we assume a
global set of messagesether : set(message) that contains at most all messages that
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were sent so far. Since the union of all inboxes is a subset ofether, we can delete
the inboxes altogether from the ASM state and let purses picka message directly from
ether. This corresponds to the attacker’s ability to intercept and replace the message
sent to a purse. Placing messages into a globalether instead of theinbox of the recipient
has as immediate consequence: the intended recipient of themessage must now be a
component of the payment details of messages, and must be checked to be correct by
the actual recipient. Otherwise the attacker could redirect messages from one purse to
another. Since the attacker can still delete messages and messages might still be lost,
LOSEMSG becomes

LOSEMSG = choosemsgs with msgs ⊆ ether in ether := msgs

To protect against replay attacks the states of purses must be enhanced withusedTids
: name → set(tid), which gives thetids a pursereceiver has seen previously. When
a purse receives aReq, it saves thetid, and subsequently rejects messages with these
transfer ids. Note that it is not necessary to add thetid of aVal message to theusedTids:
accepting such a message only when the last sent message was aReq with the same
payment details (and which must therefore have had a new tid!) is enough. This gives
the following new rules for sending and receiving messages:

STARTTO =
choosena, value, tid with tid 6∈ tids ∧ authentic(na) ∧ na 6= receiver in
if isNone(outbox(receiver))
then ether := ether ∪ {Req(na, receiver, value, tid)}

outbox(receiver) := Req(na, receiver, value, tid)
tids := tids ∪ {tid}

REQ =
choosemsg with msg ∈ ether in
if isReq(msg) ∧ msg.from = receiver ∧ authentic(msg.to)
∧ msg.to 6= receiver ∧ msg.value ≤ balance(receiver)
∧ msg.tid 6∈ usedTids(receiver) ∧ isNone(outbox(receiver))

then ether := ether ∪ {Val(msg.pd)}
outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver) − msg.value
usedTids(receiver) := usedTids(receiver) ∪ {msg.tid}

VAL =
choosemsg with msg ∈ ether in
if isVal(msg) ∧ isReq(outbox(receiver)) ∧ msg.pd = outbox(receiver).pd
then ether := ether ∪ {Ack(msg.pd)}

outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value

ACK =
choosemsg with msg ∈ ether in
if isAck(msg) ∧ isVal(outbox(receiver)) ∧ msg.pd = outbox(receiver).pd
then outbox(receiver) := none
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Aborting can now be simplified slightly: since the payment details contain the names of
both purses, there is no further need to distinguishexLogfrom andexLogto. A single
exLog: name → paydetails will do, andABORT becomes

ABORT = if isReq(outbox(receiver)) ∨ isVal(outbox(receiver))
then exLog(receiver) := exLog(receiver) ∪ {outbox(receiver).pd} seq
outbox(receiver) := none

All together we have:

ERULE = choosereceiver with authentic(receiver) in
LOSEMSG ∨ STARTTO ∨ REQ ∨ VAL ∨ ACK ∨ ABORT

Whereas the previous refinement splits atomic steps into a protocol, this one is a typical
data refinement: abstract and concrete rules correspond pairwise.

The simulation relation needed for verification consists ofthree parts:

• The union of all inboxes is always a subset of theether.
• All requests inether can only be in aninbox, if they have atid that is not in

usedTids(from) of thefrom purse that this message is sent to.
• Enhancing the union of the two logsexLogfrom(receiver) andexLogto(receiver)

with “ receiver” as a new component of the payment details givesexLog(receiver)
for each authentic pursereceiver.

Three invariants are needed for the concrete level:

• ether contains only messages with authentic names of different purses.
• tid’s saved in theoutbox-, exLog- orusedTids- field of an authentic purse are always

also intids.
• outbox(receiver) has payment details enhanced with “receiver” as to/from compo-

nent forReq andAck/Val.

5 Sequence Numbers as Challenges

The next refinement guarantees the uniqueness of protocol runs without using the global
data structuretids. Instead we use a challenge-response scheme, like session keys, to
ensure uniqueness. Mondex uses sequence numbers, which areused only once and
then incremented. An alternative design decision would be to use random numbers
(“nonces”). The state is now enhanced with a new componentnextSeqNo : name →

IN, while the global settids and theusedTids of each purse are removed. To be secure,
both purses participating in a protocol run provide and increment theirnextSeqNo,
guaranteeing that each abstracttid is implemented by a unique (fromseqno(tid), tose-
qno(tid)) pair; the two functionsfromseqno andtoseqno are the essence of the sim-
ulation relation. To ensure no faked sequence numbers get used, we need to send the
sequence number as a challenge to both purses. For thefrom purse,Req can be used
for the purpose. For theto purse a new messagestartTo(from,nextSeqNo(from),to,
nextSeqNo(to),value), which is assumed to be encrypted too, is needed. On receiving
a startTo/Req message, theto/from purse must check whether it contains the correct
sequence number; both checks together guarantee, thatReq and Val are never sent
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on faked sequence numbers. Finally, for thefrom purse to sendstartTo, we need a
startFrom(to,nextSeqNo(to),value) message, that sendsnextSeqNo(to) to thefrom
purse. This comes from the terminal, when the transfer amount has been entered. It need
not be encrypted; at worst an invalidstartTo message gets rejected by theto purse. For
our ASM, we assumeall startFrom messages are in theether initially, modelling the
ability of the attacker to generate such messages at will.

Note that this model deviates slightly from the original Mondex protocol [4], which
assumes an unencryptedstartTo, sent together with thestartFrom, from the terminal.
The original protocol cannot guarantee that aReq contains a correctnextSeqNo(to),
and leads to the weakness described in [12].

The ASM of the resulting protocol is:

SRULE =
choosereceiver with authentic(receiver) in

LOSEMSG∨STARTFROM∨STARTTO∨REQ∨VAL∨ACK∨ABORT

STARTFROM =
choosemsg, n with msg ∈ ether ∧ nextSeqNo(receiver) < n in
if isStartFrom(msg) ∧ authentic(msg.name) ∧ msg.name 6= receiver
∧ msg.value ≤ balance(receiver) ∧ isNone(outbox(receiver))

then outbox(receiver) :=
startTo(receiver, nextSeqNo(receiver)

msg.name, msg.nextSeqNo, msg.value)
nextSeqNo(receiver) := n
ether := ether ∪ {outbox(receiver)}

STARTTO =
choosemsg, n with msg ∈ ether ∧ nextSeqNo(receiver) < n in
if isStartTo(msg) ∧ authentic(msg.from) ∧ msg.from 6= receiver
∧ msg.to = receiver ∧ msg.tono = nextSeqNo(receiver)
∧ isNone(outbox(receiver))

then outbox(receiver) := Req(msg.pd)
nextSeqNo(receiver) := n
ether := ether ∪ {Req(msg.pd)}

REQ =
choosemsg with msg ∈ ether in
if isReq(msg) ∧ isStartTo(outbox(receiver))
∧ outbox(receiver).pd = msg.pd

then outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver) − msg.value
ether := ether ∪ {Val(msg.pd)}

VAL =
choosemsg with msg ∈ ether in
if isVal(msg) ∧ isReq(outbox(receiver)) ∧ outbox(receiver).pd = msg.pd
then outbox(receiver) := Ack(msg.pd)

balance(receiver) := balance(receiver) + msg.value
ether := ether ∪ {Ack(msg.pd)}
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ACK =
choosemsg with msg ∈ ether in
if isAck(msg) ∧ isVal(outbox(receiver)) ∧ outbox(receiver).pd = msg.pd
then outbox(receiver) := none

ABORT =
choosen with nextSeqNo(receiver) ≤ n in
if isReq(outbox(receiver)) ∨ isVal(outbox(receiver))
then exLog(receiver) := exLog(receiver) ∪ {outbox(receiver).pd} seq

nextSeqNo(receiver) := n
outbox(receiver) := none

LOSEMSG =
choosenewether with newether ⊆ ether in ether := newether

The rules are largely unchanged except thattid’s are replaced by pairs of sequence
numbers.ABORT is now allowed to incrementnextSeqNo to conform to the final
Mondex protocol.

To verify the refinement we consider 1:1 diagrams for the common operations. The
new STARTFROM step implements an abstractskip. The simulation relation asserts
that two functionsfromseqno andtoseqno with domain =tids exist with the following
three properties:

• outboxes, messages inether and exception logs of the concrete level havetid re-
placed withfromseqno(tid) andtoseqno(tid). There are two exceptions: anoutbox
of the concrete level may already contain astartTo of a new protocol run when the
abstractoutbox still satisfiesisNone. The concreteether may contain additional
startFrom andstartTo messages.

• If tid1 and tid2 appear in payment details of the abstract level with the same
pursesfrom andto, thenfromseqno(tid1) 6= fromseqno(tid2) or toseqno(tid1) 6=
toseqno(tid2). This guarantees that every protocol run between the same two purses
uses a different pair of sequence numbers.

• If on the concrete leveloutbox(receiver) = startTo(pd) andReq(pd) ∈ ether, then
there is a correspondingReq(pd) (with tid instead of sequence numbers) in the ab-
stractether and it’stid is not inusedTids(receiver). This property describes the new
situation after sending astartTo message.

The concrete ASM also needs an invariant stating:

• outboxes never containstartFrom messages.
• ThenextSeqNo of each purse is larger than any sequence number contained inany

payment details in messages,inboxes,outboxes andexLogs.
• If outbox(receiver) contains astartTo, then thevalue of the message is less than or

equal tobalance(receiver).
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6 Renaming to Use the Original Data Structures

The final refinement step is a purely technical one. It adjuststwo small differences
betweenSRULE and the final Mondex protocol. Since the full ASM was already given
earlier in [12], we just give a short description of the differences.

In the real protocol, theoutbox information is split into two: apdAuth component
which stores the payment details, and astatus field, which stores the type of the last
sent message:epr (“expecting request”) for astartTo message,epv (“expecting value”)
for aReq message,epa (“expecting acknowledge”) for aVal message,idle for anAck
message ornone.

The second difference is a small change in control structure: nondeterministic choice
betweenSRULE’s disjuncts is replaced by deterministic choice over the type of mes-
sage; if the test of the rule fails, anABORT is executed. Finally, losing messages is
done while adding a message toether.

7 Related Work

The work of this paper is heavily based on the original work in[4] and the mechanized
proofs in [7]. Several of the solutions described therein are monolithic (including our
own); however, two structured the development into severalrefinements.

We first discuss the work of M. Butler and D. Yadav [19], since it is closest to
ours. Their development uses Event-B, which like ASMs uses an operational style of
specification (in contrast to the original Z which is relational). Event-B is based on the
idea of structuring a development into many small steps to achieve a high degree of
automation. So [19] used 9 refinements to develop a Mondex-like protocol. One key
idea in their work is to view Mondex protocol runs as instances of transactions, viewing
the state of all the purses as a kind of database (our work in [25, 26] also picks up on this
idea). Because of this, their first refinements do not introduce messages (like ours), but
define transactions and status information. This leads to anelegant development with
small steps and a high degree of automation, but the price to pay is that intermediate
levels use concepts (like a purse being in several transactions simultaneously), which
are not present in the Mondex protocol.

Our goal in this paper was different: we wanted to cleanly separate the concepts
present in the original Mondex protocol, and made no attemptto generalize. We also
did not attempt to automate proofs further than in our earlier work. In fact, the effort for
proving the 4 refinements of this paper was slightly higher than for the single refinement
[12], due to revisions of intermediate levels.

Despite the different aims of these papers, there is one key idea we also used: ab-
stracttid’s to identify protocol runs (or transactions), since it abstracts nicely from the
use of sequence numbers to identify protocol runs. Use oftid’s leads to similarities be-
tween the Event-B machines and our ASMs. Although there are differences (nostart-
Trans in our development; at this stage, our protocol has three messages), the biggest
similarities are between the Event-B machines derived after around 6 refinements, and
the one that our first refinement derives. This agrees with ourexperience, that the first
refinement is still the most complex to verify. Also, their refinements 6 and 7 introduce
sequence numbers, which we define in the third refinement.
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The other work on Mondex that uses a structured development is the one of C.
George and A.E. Haxthausen [20]. The work is based on the RAISE specification lan-
guage and derives the Mondex protocol using two refinements,starting from a speci-
fication that can be viewed as a first refinement of our abstractspecification. The key
idea of this specification is: to transfer money from one purse to another there has to
be a sending step (calledtransferLeft which either puts money “in transit” or moves it
to lost), a successful receiving step (calledtransferRight, which moves money from in
transit tobalance(to)), and a step which moves money from in transit to lost (called
Abort). The two steps of the refinement then show that all steps of the Mondex proto-
col implement one of these steps (e.g.REQ, that sends theVal message, implements
transferLeft). This development has the advantage that the propagation of the security
goals to the refined machines becomes easy. However the resulting refinement steps are
rather different from the ones we give here.

8 Conclusion

In this paper we have analyzed the core concepts of the Mondexprotocol, and we have
shown that it is possible to place each concept into one concept-specific refinement.
We have also given a slight improvement of the technique ofpurse-local invariants, ex-
plained in [17], by usingprotocol-local simulation relations, as suggested by our recent
results on a framework for interleaved protocols [25]. Thishas led to the verification of
each protocol run as one big commuting diagram, which moves much of the complexity
of the first refinement into generic theory. The generic framework has now been verified
in KIV [26], and holds promise for further extension and application.
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