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Abstract. The Mondex case study concerns the formal development aifd ve
cation of an electronic purse protocol. Several groups hewded on its spec-
ification and mechanical verification, their solutions lme{as were ours previ-
ously), either one big step or several steps motivated bytables complexity.
A new solution is presented that is structured into threeegfients, motivated
by the three concepts underlying Mondex: a message proto¢ainsfer money
over a lossy medium, protection against replay attacks uamgleness of trans-
fers using sequence numbers. We also give an improved peobhique based
on our theoretical results on verifying interleaved system

1 Introduction

Mondex smart cards implement an electronic purse [1]. Theyewthe target of one
of the first ITSEC evaluations at level E6 [2] (now EAL7 of CommCriteria [3]),
which requires formal specification and verification. Thenfal specifications were
given in [4] using Z [5], together with manual correctnessqgds. Two models of elec-
tronic purses were defined: an abstract one which modelsahsfer of money between
purses as elementary transactions, and a concrete levéhthkements money trans-
fer using a communication protocol that can cope with losssages using a suitable
logging of failed transfers.

Mechanizing the security and refinement proofs of [4] wagndly proposed as a
challenge for theorem provers (see [6] for more informationthe challenge and its
relation to 'Grand Challenge 6’). Several groups took updhallenge. For a survey see
[7] — more details on some are given in Section 7. Results te dave been focused
on solving the problem either as closely as possible to thgnal, or by adapting the
problem to fit the style of the tool, thereby simplifying it.

The first author works in the Augsburg group, which uses KilkisThas derived
solutions for both styles. [8] gives a solution that formmal the original data refine-
ment theory of [9] and uses the original backward simulat&ternatively, since KIV
supports the Abstract State Machines (ASM, [10], [11])estyl specifying operations,
we have also given a solutions using ASMs in [12], as one nefard that uses general-
ized forward simulations of ASMs ([13], [14], [15], [16], 7). This solution simplified



the deduction problem by using purse-local invariantsgiresl by [18]), and by using
big commuting diagrams for full protocol runs, a technigwed previously in ASM

refinements. This approach also uncovered a weakness ofitfiead protocol, which

can be resolved by a small change. Still, the proof is madnigliconsisting of a single
refinement.

Other authors, particularly [19] and [20], have tried to mlzdize the refinement
into several to make deduction simpler, but from our pointiefv they have notisolated
the Mondexconceptsinto separate refinements, allowing a clean explanatioweder,
their work has strongly influenced ours.

Isolating the Mondex concepts is a hecessity when explgitie@ Mondex protocol
live to an audience. This prompted the attempt to formalimat as separate refine-
ments. The essential concepts of the Mondex protocol arfoliogving:

e Implementing transfers by sending messages over a losssptoat medium.
¢ Adding checks that protect against replay attacks.

¢ A challenge-response system to ensure uniqueness of plotos.

e Choosing suitably strong cryptographic functions to eptrmessages.

This paper explains the first three concepts by putting the#athree successive refine-
ments. The fourth was absent in the original Mondex work:Ntesdex concrete level
assumes that suitable cryptography can be used to protect messktgewhere [21],
we have shown that suitable cryptography can indeed be aaklad another refine-
ment, and that as an instance of a model-driven approacht22ksulting ASM can
be implemented using Java [23], so we do not repeat this here.

The next section recalls the Mondex abstract specificagiod we then explain each
of the refinements in turn in the following three sections. &% explain some of the
simulation relations and invariants that are needed tdywe&ch refinement with KIV
(full details of all specifications and proofs are availabig24]). A final technical re-
finement, that slightly changes notation to be compatibté wie original definitions
completes the development. Finally, Section 7 gives rélaterk and Section 8 con-
cludes.

2 The Abstract Specification

The main protocol of Mondex implements electronic cashdf@anusing either a device
(wallet) with two slots, or an internet connection. Since Key idea ixash, the main
security concern is that, even in a hostile environment, eyozannot be created or
destroyed (satisfying the security concerns of the bankla@dustomer, respectively).
The abstract specification formalizes atomic money tranaféunctionbalance :
name — N gives the current balance of each named purse (tgmee). A predicate
authentic distinguishes legitimate purses from impostors. Succéssbney transfer
is described by th& RANSFEROK rule below. This rule chooses the two authentic
participating pursefrom andto and the amountalue to transfer, which should be
less or equal thabalance(from), and modifies the balances according to a successful
money transfer.



TRANSFEROK =

choosefrom, to, value

with authentic(from) A authentic(to) A from # to A value < balance(from)

in balance(from) := balance(from) — value

balance(to) := balance(to) + value

In reality, transfers may fail, since power can fail, cardnoey can run out, and cards
may detach from the protocol prematurely. According to theusity requirement no
money should be lost, so a mechanism must be implementedhwhies information
about failed transfers. The definition of this informatioillvee the task of the first
refinement. At the abstract level, it is simply assumed thate is another fieldbst:
name — N on each card, which saves all outgoing money that is lostiliedaransfer
attempts, so that it can subsequently be recovered. Théatlailed transfer attempts
is then simply

TRANSFERFAIL =

choosefrom, to, value

with authentic(from) A authentic(to) A from # to A value < balance(from)

in balance(from) := balance(from) — value

lost(from) := lost(from) + value

With this rule it is obvious that the sum of dblance andlost values of all authentic
purses never changes, so money can neither be creatédiholost and the security
goal is satisfied. This completes the description of therabsspecification. Runs of
the system repeatedly appARULE = TRANSFEROK v TRANSFERFAIL which
chooses nondeterministically between the two possisliti

3 From Atomic Transfers to Messages

The first refinement towards the Mondex protocol is concenvill implementing
atomic transfer using a protocol that sends messages hetiveawo purses, despite
the fact that these messages may get lost for any numbersafnsa

Sending a singl&/al(from,value) message from th&om purse to theto purse
containing the value and its sender will not do, since thesags could be lost, and
neither party would be able to prove that this happened.

An additionalAck(to,value) message acknowledging that tieepurse has received
the money improves matters: if the purse sends this message when receiving money,
but thefrom purse does not receive it, tfrem purse can write aaxception log proving
that something did not work: either théal message was not processed properly or the
Ack was lost. Dually, if theo purse sends Req(to,value) message that requests the
money, and the from purse only serid on receiving it, then théo purse can know
that something did not work: either the request was not e properly, or th¥al
was lost. Using all three messages enables detectidvalffom,value) message loss
by inspecting both cards: théal(from,value) message has been lost lfbth purses
have a suitable log entry.

Being able to detect failed transfers by checking both ploge has one caveat:
the two log entries must reliably belong to tkame transfer. Otherwise a first attempt
could lose théAck(to,value) message, creatingfeom log entry, and a second attempt
could lose th&req(to,value) message, creating a fictitious “matching” pair. Therefore



we will assume that each attempt to transfer money is eqdipgh a unique transfer
identifiertid. The implementation ofid by sequence numbers is deferred to the third
refinement; in this refinement we just assume there is a gfotitd settids : set(tid)
that stores the used identifiers and that it is always passibthoose a fresh one.

So, for the protocol we need messagesj(to, value, tid),Val(from, value, tid) and
Ack(to, value, tid). Triples consisting of a name, a value and a tid are calanent
details. They form the content of messages. Payment details areeatsembered in ex-
ception logs which now replace thest component. The logs are functioesLogfrom
: name — set(paydetails) and exLogto : hame — set(paydetails). To compute
the abstractost(from) we have to sum all values of payment detditsvalue,tid) €
exLogfrom(from) for which a matchingfrom,value,tid) in exLogto(to) exists (and
this is already the main information needed for the simatatelation).

To allow message exchange, each purse now has a “messag®fhmessages
awaiting processing. This is the functiambox : name — set(message). We first
tried aninbox that contained one rather than several messages, but thedtout to
be too restrictive, enforcing message sequencing betwerse$ Losing messages is
realized by the following simple rule which may be invokedaaty time by a purse
receiver:

LOSEMSG = ) ) o )
choosemsgs with msgs C inbox(receiver) in inbox(receiver) := msgs

Finally, a purse has to know which message it sent last soraatbto missing answers
appropriately; functioroutbox : name — message does this. Aroutbox that isnot
in the middle of a protocol run, can contain either the last #ek, or the special value
none, when it has not yet sent a message or successfully recaivAdika Both cases
are checked with the predicasNone.

With these data structures, we derive four rules: for semdéquests§TARTTO),
for receiving a request and sending a valR&EQ), for receiving a value and sending
an acknowledgemenVAL), and finally for receiving an acknowledgemeAQK).

Like LOSEMSG above, theSTARTTO andREQ rules assume that an authentic
pursereceiver has been chosen to execute the rule. Note 8T&#RTTO chooses a
new transfer identifier and is possible only when the pursaiigently not involved in a
protocol (i.e. wherisNone(outbox(receiver))). Postfix selectormsg.pd, msg.value,
msg.tid select the full payment details, thalue and thetid contained in a messagq
is ASM notation to indicate sequential execution (usudllassignments are executed
in parallel).

STARTTO =

if isNone(outbox(receiver))

then choosena, value, tid

with tid ¢ tids A authentic(na) A na # receiver

in inbox(na) := inbox(na) U {Req(receiver, value, tid)}
outbox(receiver) := Req(na, value, tid)
tids := tids U {tid}



REQ =
choosemsg
with  msg € inbox(receiver) A isReq(msg) A authentic(msg.na)
A msg.na # receiver A msg.value < balance(receiver)
A isNone(outbox(receiver)) in
inbox(msg.na) := inbox(msg.na) U {Val(receiver, msg.value, msg.tid) }
outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver) — msg.value seq
inbox(receiver) := inbox(receiver) \ {msg}

The VAL rule is similar toREQ: the input is checked to be\al(pd) message, where
the outbox must beReq(pd) with the same payment detajtsl, and the sent message
placed ininbox(msg.na) is anAck. Also msg.value is added to théalance instead
of subtracted. ThACK rule is similar too, but does not change thedance, does not
write any output message and setsab#&ox to none.

VAL =
choosemsg
with msg € inbox(receiver) A isVal(msg) A isReq(outbox(receiver))
A msg.pd = outbox(receiver).pd in
inbox(msg.na) := inbox(msg.na) U {Ack(receiver, msg.value, msg.tid) }
outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value seq
inbox(receiver) := inbox(receiver) \ {msg}

ACK =
choosemsg
with  msg € inbox(receiver) A isAck(msg) A isVal(outbox(receiver))
A msg.pd = outbox(receiver).pd in
outbox(receiver) := none
inbox(receiver) := inbox(receiver) \ {msg}

Finally, a purse can abort a protocol (for whatever reasibtf)en executes

ABORT =

if isReq(outbox(receiver))

then exLogto(receiver) := exLogto(receiver) U {outbox(receiver).pd} seq

if isVal(outbox(receiver))

then exLogfrom(receiver) := exLogfrom(receiver) U {outbox(receiver).pd} seq
outbox(receiver) := none

The full specification chooses an authemédceiver and nondeterministically executes
one of the above rules

IRULE = choosereceiver with authentic(receiver) in
LOSEMSG Vv STARTTO vV REQ Vv VAL v ACK v ABORT

In [12], [17] we have proposed the use of purse-local sinmatelations and invari-
ants to verify refinements that split up an atomic action seweeral protocol steps. The
approach described there for the simulation relation cbeldised unchanged. The in-
variants used in the approach state that “each purse hastegemme (maybe no) steps
into the protocol”. Such invariants are easily expressiblélV’s Dynamic Logic.



Our research in [25, 26] has established a general framewmak suggests invari-
ants should berotocol-local, not purse-local. Therefore we generalized the approach
to using the following idea for invariants:

“For every protocol already running (identified bytid € tids), there are two
pursesrom andto that have executed some of the steps of the protocol. These
steps determine the part of the state involuiidg

To get a formal definition involving ASM rules we have to do timngs. Firstly, we
have to formalize “some protocol steps”. For the Mondexgeot these are

(1) no step.

(2) STARTTO and possibly al\BORT of theto purse.

(3) STARTTO, thenREQ), then possibl ABORT (from) or ABORT(to) or both.
(4) STARTTO, REQ, andVAL and then possibP ABORT (from).

(5) The full protocolSTARTTO, REQ, VAL andACK.

The states reached by executing some steps of the protecefone correspond directly
to the final statestl of the nondeterministic program

SOMESTEPS(st,from,to) =

(1) skipvVv

(2) STARTTO; {skip vV ABORT(to) vV

?3) REQ; {{skip V ABORT(to)};{skip vV ABORT(from)} Vv
4) VAL; {skip V ABORT(from) Vv

) ACK}}}

when started some initial statg, wheretid was still unusedt{d ¢ tids). Note that
the parameterBom andto were dropped where it was obviolBTARTTO is really

STARTTO(to), i.e. theto purse is used in thETARTTO rule in place ofreceiver. The

fact, thatstl is a final state of some terminating run 8OMESTEPS is expressed,
using Dynamic Logic [27] in KIV, as

(SOMESTEPS(st,from,to0)) st = st1

but the approach is not tied to the ASM formalism and Dynanagit: using a rela-
tional encoding of ASM rules, a relatimomesteps could be defined similarly to the
SOMESTEPS program above, using relational composition instead of paumds.

The Dynamic Logic formula would then be equivalent to

somesteps(st,from,to,st1)

Secondly, we have to give a formal equivalent of the asseftlee protocol steps deter-
mine the part of the state involvirt@gl”. The part of the state that involvéid is easy to
define. It consists of those messages in in- and outboxeshasd exception logs, that
havetid in their payment details. To define what it means for the proltsteps to deter-
mine the part of the state that involved, we define a predicateqtid(tid,st1,st2).
This predicate compares two states. The first ssateis the final state of running
just the protocol steps involvingid from some initial state. It is a possible result of
running SOMESTEPS. The second statst? is the result of running these protocol



steps interleaved with an arbitrary number of protocol stfother protocol instances.
eqtid(tid,st1,st2) specifies that indeed the parts of the state involtidgf st1 and
st2 are equal, since other protocol instances cannot intevfirethe current proto-
col instance. There are two small exception®SEMSG may delete messages from
inboxes, and a finack-message in an outbox may be overwritten after the current
protocol has finished.

Putting together th6&6OMESTEPS program and theqtid predicate we get the
following invariant that encodes the informal idea giveioad:

INV(st2) <
V tid € tids2. 3 from, to, st, st1.
tid ¢ tids A (SOMESTEPS(st)) st = stl A eqtid(tid,st1,st2)

The formula states, that for every protocol currently rumgtid € tids2) there was an
initial statest before the protocol was started and two participdrdm,to, such that
the current part of the state involvirtigl is nearly the samee(tid) as the state resulting
from some terminating run SOMESTEPS(st).

This is already the full invariant that is needed, exceptliertrivial invariant stating
that no messages in inboxes, outboxes or exception loggionextid that is not yet in
tids.

The invariance proof reduces to proofs for every single gurot instance (i.e. for
everytid), and for every protocol step. It has two cases: either thoppl step executed
is one of the steps of the protocol instancetfdror it is a step of some other protocol
instance. In the first case we essentially get trivial prdaigations, since “some steps
of the protocol have been executed” is trivially invariarttem executing yet another
step. Essentially these proof obligations check 8@MESTEPS indeed encodesdl|
possible protocol runs. For the second case we have to gravsteps of other protocol
instances will not create messages or exception logs imgtid. The proof obligations
check thateqtid correctly captures all potential interference from theesthrotocol
instances.

Compared to the earlier proof of the full refinement in ong gt2], which used
purse-local invariants (which already simplified the manyariants needed for the
original proof [4] that we used in [21]), the invariant hasaagbeen simplified: the
purse-local approach required predicate logic propettiasrelated the two states of
thefrom andto purses participating in a protocol run. These are not neadganore.

4 Protection against Replay Attacks

Our next refinement is concerned with protection againdtgepttacks. The original
development assumed tHReq, Val, Ack messages are cryptographically protected, so
we do the same. So an attacker cannot create such messages.
But even with this assumption, an attacker could destroyepam afrom purse

by saving and replayinBeq andAck messages. Indeed our first protocol is vulnerable
to such an attack. For the new level, we assume an attackecarhmtercept (and/or
delete) messages, save them, and replay them. To modebthisilfy, we assume a
global set of messagether : set(message) that contains at most all messages that



were sent so far. Since the union of all inboxes is a subsetiadr, we can delete
the inboxes altogether from the ASM state and let pursesaitiessage directly from
ether. This corresponds to the attacker’s ability to intercepl egplace the message
sentto a purse. Placing messages into a glethelr instead of thénbox of the recipient
has as immediate consequence: the intended recipient ofidssage must now be a
component of the payment details of messages, and must bketh® be correct by
the actual recipient. Otherwise the attacker could retimeessages from one purse to
another. Since the attacker can still delete messages asshges might still be lost,
LOSEMSG becomes

LOSEMSG = choosemsgs with msgs C ether in ether := msgs

To protect against replay attacks the states of purses mustianced witisedTids

: name — set(tid), which gives thdids a purseeceiver has seen previously. When

a purse receives BReq, it saves thdid, and subsequently rejects messages with these
transfer ids. Note that it is not necessary to addithef aVal message to thasedTids:
accepting such a message only when the last sent messageReasvath the same
payment details (and which must therefore have had a nejisi@nough. This gives
the following new rules for sending and receiving messages:

STARTTO =
choosena, value, tid with tid ¢ tids A authentic(na) A na # receiver in
if isNone(outbox(receiver))
then ether := ether U {Req(na, receiver, value, tid) }
outbox(receiver) := Req(na, receiver, value, tid)
tids := tids U {tid}

REQ =
choosemsg with msg € ether in
if isReq(msg) A msg.from = receiver A authentic(msg.to)
A msg.to # receiver A msg.value < balance(receiver)
A msg.tid ¢ usedTids(receiver) A isNone(outbox(receiver))
then ether := ether U {Val(msg.pd)}
outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver) — msg.value
usedTids(receiver) := usedTids(receiver) U {msg.tid}

VAL =
choosemsg with msg € ether in
if isVal(msg) A isReq(outbox(receiver)) A msg.pd = outbox(receiver).pd
then ether := ether U {Ack(msg.pd)}
outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value

ACK =

choosemsg with msg € ether in

if isAck(msg) A isVal(outbox(receiver)) A msg.pd = outbox(receiver).pd
then outbox(receiver) := none



Aborting can now be simplified slightly: since the paymertaile contain the names of
both purses, there is no further need to distingeishogfrom andexLogto. A single
exLog: name — paydetails will do, andABORT becomes

ABORT = if isReq(outbox(receiver)) v isVal(outbox(receiver))
then exLog(receiver) := exLog(receiver) U {outbox(receiver).pd} seq
outbox(receiver) := none

All together we have:

ERULE = choosereceiver with authentic(receiver) in
LOSEMSG Vv STARTTO vV REQ Vv VAL vV ACK v ABORT

Whereas the previous refinement splits atomic steps intotagul, this one is a typical
data refinement: abstract and concrete rules correspongipai
The simulation relation needed for verification consistthoée parts:

e The union of all inboxes is always a subset of dtieer.

e All requests inether can only be in annbox, if they have atid that is not in
usedTids(from) of thefrom purse that this message is sent to.

e Enhancing the union of the two logxLogfrom(receiver) andexLogto(receiver)
with “receiver” as a new component of the payment details geelsog(receiver)
for each authentic purseceiver.

Three invariants are needed for the concrete level:

e ether contains only messages with authentic names of differersigsu

o tid’s saved in th@utbox-, exLog- or usedTids- field of an authentic purse are always
also intids.

e outbox(receiver) has payment details enhanced with¢eiver” as to/from compo-
nent forReq andAck/Val.

5 Sequence Numbers as Challenges

The next refinement guarantees the uniqueness of protatoWwithout using the global
data structurdids. Instead we use a challenge-response scheme, like sessisnté
ensure unigueness. Mondex uses sequence numbers, whiciseateonly once and
then incremented. An alternative design decision woulddese random numbers
(“nonces”). The state is now enhanced with a new compomextSegNo : name —

N, while the global setids and theusedTids of each purse are removed. To be secure,
both purses participating in a protocol run provide and éncent theimextSeqNo,
guaranteeing that each abstrdtis implemented by a uniquérémseqno(tid), tose-
gno(tid)) pair; the two functiongromseqgno andtoseqno are the essence of the sim-
ulation relation. To ensure no faked sequence numbers gét wse need to send the
sequence number as a challenge to both purses. Fémotepurse,Req can be used
for the purpose. For thto purse a new messagtartTo(from,nextSeqNo(from),to,
nextSeqNo(to),value), which is assumed to be encrypted too, is needed. On regeivin
a startTo/Req message, tho/from purse must check whether it contains the correct
sequence number; both checks together guaranteeR#waiand Val are never sent



on faked sequence numbers. Finally, for fh@m purse to sendtartTo, we need a
startFrom(to,nextSegNo(to),value) message, that sendextSegNo(to) to thefrom
purse. This comes from the terminal, when the transfer atrttasbeen entered. It need
not be encrypted; at worst an invabthrtTo message gets rejected by thepurse. For
our ASM, we assumall startFrom messages are in theher initially, modelling the
ability of the attacker to generate such messages at will.

Note that this model deviates slightly from the original Miex protocol [4], which
assumes an unencryptstartTo, sent together with thstartFrom, from the terminal.
The original protocol cannot guarantee tha&eq contains a correatextSeqNo(to),
and leads to the weakness described in [12].

The ASM of the resulting protocol is:

SRULE =
choosereceiver with authentic(receiver) in
LOSEMSG VSTARTFROMVSTARTTO VREQVVALVACKYVABORT

STARTFROM =
choosemsg, n with msg € ether A nextSeqNo(receiver) < nin
if isStartFrom(msg) A authentic(msg.name) A msg.name # receiver
A msg.value < balance(receiver) A isNone(outbox(receiver))
then outbox(receiver) :=
startTo(receiver, nextSeqgNo(receiver)
msg.name, msg.nextSegNo, msg.value)
nextSegNo(receiver) := n
ether := ether U {outbox(receiver)}

STARTTO =
choosemsg, n with msg € ether A nextSegNo(receiver) < nin
if isStartTo(msg) A authentic(msg.from) A msg.from # receiver
A msg.to = receiver A msg.tono = nextSeqNo(receiver)
A isNone(outbox(receiver))
then outbox(receiver) := Req(msg.pd)
nextSegqNo(receiver) :=n
ether := ether U {Req(msg.pd)}

REQ =
choosemsg with msg € ether in
if isReq(msg) A isStartTo(outbox(receiver))
A outbox(receiver).pd = msg.pd
then outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver) — msg.value
ether := ether U {Val(msg.pd)}

VAL =
choosemsg with msg € ether in
if isVal(msg) A isReq(outbox(receiver)) A outbox(receiver).pd = msg.pd
then outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value
ether := ether U {Ack(msg.pd)}
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ACK =

choosemsg with msg € ether in

if isAck(msg) A isVal(outbox(receiver)) A outbox(receiver).pd = msg.pd
then outbox(receiver) := none

ABORT =

choosen with nextSegNo(receiver) < nin

if isReq(outbox(receiver)) Vv isVal(outbox(receiver))

then exLog(receiver) := exLog(receiver) U {outbox(receiver).pd} seq
nextSeqNo(receiver) ;= n
outbox(receiver) := none

LOSEMSG =
choosenewether with newether C ether in ether := newether

The rules are largely unchanged except tidit are replaced by pairs of sequence
numbers ABORT is now allowed to incrememextSeqNo to conform to the final
Mondex protocol.

To verify the refinement we consider 1:1 diagrams for the camwperations. The
new STARTFROM step implements an abstrasitip. The simulation relation asserts
that two functiongromseqno andtoseqgno with domain =tids exist with the following
three properties:

e outboxes, messages iether and exception logs of the concrete level haidere-
placed withfromseqgno(tid) andtosegno(tid). There are two exceptions: anitbox
of the concrete level may already contaistartTo of a new protocol run when the
abstractoutbox still satisfiesisNone. The concreteether may contain additional
startFrom andstartTo messages.

o If tid; andtid, appear in payment details of the abstract level with the same
pursesfrom andto, thenfromsegno(tid;) # fromseqno(tid;) or tosegno(tid;) #
tosegno(tidz2). This guarantees that every protocol run between the sampuvses
uses a different pair of sequence numbers.

e If on the concrete levadutbox(receiver) = startTo(pd) andReq(pd) € ether, then
there is a correspondiri@eq(pd) (with tid instead of sequence numbers) in the ab-
stractether and it'stid is not inusedTids(receiver). This property describes the new
situation after sending startTo message.

The concrete ASM also needs an invariant stating:

e outboxes never contaistartFrom messages.

e ThenextSeqgNo of each purse is larger than any sequence number contairaetyin
payment details in messag@#yoxes,outboxes andexLogs.

o If outbox(receiver) contains astartTo, then thevalue of the message is less than or
equal tobalance(receiver).

11



6 Renaming to Use the Original Data Structures

The final refinement step is a purely technical one. It adjtgts small differences
betweerSRULE and the final Mondex protocol. Since the full ASM was alreaihen
earlier in [12], we just give a short description of the diffaces.

In the real protocol, theutbox information is split into two: gpdAuth component
which stores the payment details, andtatus field, which stores the type of the last
sent messagepr (“expecting request”) for atartTo messagegpv (“expecting value”)
for aReq messagegpa (“expecting acknowledge”) for al messagddle for anAck
message omone.

The second difference is a small change in control struchuedeterministic choice
betweenSRULE’s disjuncts is replaced by deterministic choice over thgetpf mes-
sage; if the test of the rule fails, aaBORT is executed. Finally, losing messages is
done while adding a messagesther.

7 Related Work

The work of this paper is heavily based on the original worldirand the mechanized
proofs in [7]. Several of the solutions described therem monolithic (including our
own); however, two structured the development into sevefaiements.

We first discuss the work of M. Butler and D. Yadav [19], sintésiclosest to
ours. Their development uses Event-B, which like ASMs usesperational style of
specification (in contrast to the original Z which is relatéd). Event-B is based on the
idea of structuring a development into many small steps toeae a high degree of
automation. So [19] used 9 refinements to develop a Mondexgiotocol. One key
idea in their work is to view Mondex protocol runs as instagwgtransactions, viewing
the state of all the purses as a kind of database (our worl6ir2[g] also picks up on this
idea). Because of this, their first refinements do not intoeduessages (like ours), but
define transactions and status information. This leads telegant development with
small steps and a high degree of automation, but the pricaydspthat intermediate
levels use concepts (like a purse being in several tramsectimultaneously), which
are not present in the Mondex protocol.

Our goal in this paper was different: we wanted to cleanlyase® the concepts
present in the original Mondex protocol, and made no attemgeneralize. We also
did not attempt to automate proofs further than in our eewlierk. In fact, the effort for
proving the 4 refinements of this paper was slightly highantfor the single refinement
[12], due to revisions of intermediate levels.

Despite the different aims of these papers, there is onedesy e also used: ab-
stracttid’s to identify protocol runs (or transactions), since it @hsts nicely from the
use of sequence numbers to identify protocol runs. Uselsfleads to similarities be-
tween the Event-B machines and our ASMs. Although there iffierehces (ncstart-
Trans in our development; at this stage, our protocol has threesages), the biggest
similarities are between the Event-B machines derived aftund 6 refinements, and
the one that our first refinement derives. This agrees withegperience, that the first
refinement is still the most complex to verify. Also, theifirements 6 and 7 introduce
sequence numbers, which we define in the third refinement.
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The other work on Mondex that uses a structured developnsetiitei one of C.
George and A.E. Haxthausen [20]. The work is based on the RA[#cification lan-
guage and derives the Mondex protocol using two refinemstagjng from a speci-
fication that can be viewed as a first refinement of our abssetification. The key
idea of this specification is: to transfer money from one pucsanother there has to
be a sending step (callechnsferLeft which either puts money “in transit” or moves it
to lost), a successful receiving step (caltexhsferRight, which moves money fromin
transit tobalance(to)), and a step which moves money from in transit to lost (called
Abort). The two steps of the refinement then show that all stepseoftbndex proto-
col implement one of these steps (6REQ, that sends th®al message, implements
transferLeft). This development has the advantage that the propagdtibe security
goals to the refined machines becomes easy. However thémgsefinement steps are
rather different from the ones we give here.

8 Conclusion

In this paper we have analyzed the core concepts of the Mgmaéscol, and we have

shown that it is possible to place each concept into one grepecific refinement.

We have also given a slight improvement of the techniquauode-local invariants, ex-

plained in [17], by usingrotocol-local simulation relations, as suggested by our recent

results on a framework for interleaved protocols [25]. Thés led to the verification of

each protocol run as one big commuting diagram, which moweshrof the complexity

of the first refinement into generic theory. The generic franorix has now been verified

in KIV [26], and holds promise for further extension and aggtion.
AcknowledgementWe would like to thank Bogdan Tofan, who has done many of

the K1V proofs that ensure correctness of this work.
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