
http://wrap.warwick.ac.uk/

Original citation:
Hendrix, M., De Bra, P., Pechenizkiy, M., Smits, D. and Cristea, Alexandra I. (2008)
Defining adaptation in a generic multi layer model: CAM: the GRAPPLE conceptual
adaptation model. Coventry, UK: Department of Computer Science. CS-RR-442

Permanent WRAP url:
http://wrap.warwick.ac.uk/60501

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60501
mailto:publications@warwick.ac.uk

Defining adaptation in a generic multi layer model:

CAM: The GRAPPLE Conceptual Adaptation Model

Maurice Hendrix
1
, Paul De Bra

2
, Mykola Pechenizkiy

2
,

David Smits
2
, Alexandra Cristea

1

1
 Department of Computer Science

The University of Warwick, Coventry

CV4 7AL, United Kingdom

{maurice, acristea}@dcs.warwick.ac.uk

2
 Faculty of Mathematic and Computer Science

Eindhoven University of Technology

PO Box 513, 5600 MB Eindhoven, The Netherlands

debra@win.tue.nl, {m.pechenizkiy, d.smits}@tue.nl

Abstract. Authoring of Adaptive Hypermedia is a difficult and time consuming

task. Reference models like LAOS [10] and AHAM [29] separate adaptation

and content in different layers. Systems like AHA! [15], offer graphical tools

based on these models to allow authors to define adaptation without knowing

any adaptation language. The adaptation that can be defined using such tools is

still limited. Authoring systems like MOT [11] are more flexible, but usability

of adaptation specification is low. This paper proposes a more generic model

which allows the adaptation to be defined in an arbitrary number of layers,

where adaptation is expressed in terms of relationships between concepts. This

model allows the creation of more powerful yet easier to use graphical

authoring tools. This paper presents the structure of the Conceptual Adaptation

Models used in adaptive applications created within the GRAPPLE adaptive

learning environment, and their representation in a graphical authoring tool.

Keywords: Conceptual Adaptation Model; Adaptive Technology Enhanced

Learning.

1 Introduction

Adaptive Hypermedia can potentially offer a rich learning experience with content

adapted to the users’ needs. However, this potential depends heavily on the ability of

authors to create adaptive material. There exist several Adaptive Hypermedia

reference models like AHAM (Adaptive Hypermedia Application Model) [29] and

LAOS (Layered WWW AHS Authoring Model and their corresponding Algebraic

Operators) [10] that are specifically developed for authoring. But even when using

tools developed based upon these models, authoring remains a time consuming task

[21]. A problem, even with graphical authoring tool like the Graph Author developed

for AHA! [15] is that the adaptivity is specified in a single layer. Adaptation is based

on concept relationships (of different types or crts
1
) that have to be created one by

one. The author will either have to use the crts defined by an expert or has to learn

how to create new crts (for which there are no special design tools).

In this paper we present the authoring approach of the GRAPPLE project. This is

an EU FP7 STREP project aimed at bringing adaptive technology-enhanced learning

(or adaptive TEL for short) to the masses, by interfacing and/or integrating an

adaptive learning environment (ALE) with different learning management systems

(LMSs). The authoring approach in GRAPPLE is to offer a graphical tool to create a

conceptual adaptation model (CAM). In Section 2 we explain the structure of a CAM

with multiple adaptation layers. In Section 3 we show how an author can create

concept relationships (leading to adaptation), either one by one or many at a time, and

how the author can create crts in a similar graphical way. Although the multi-layer

model is loosely based upon LAOS & LAG (Layers of Adaptation Granularity) [14]

authors are not required to write “pseudo code” as they do in LAG. We discuss the

translation of a CAM to actual adaptation rules executed by an adaptation engine

(while the user is using the learning application), and in Section 4 we discuss some

issues regarding termination and confluence resulting from the CAM to adaptation

rule translation.

2 The Conceptual Adaptation Model

AHAM is a reference model for Adaptive Hypermedia Systems (AHS) [29] which

describes adaptive applications as consisting of three main layers:

• The Domain Model (DM) describes concepts, groups them in a hierarchical

structure, and defines arbitrary concept relationships, possibly of a special

concept relationship type (crt). In principle a DM can be “imported” from a

subject domain ontology, except for the concept relationships that have a

(pedagogical) meaning not expressed in the domain ontology.

• The User Model (UM) also defines concepts, but with user specific attributes

e.g. knowledge level, learning style preferences etc. Typically the UM is an

overlay model of the DM, meaning that for every concept in DM there is a

corresponding concept in the UM.

• The Adaptation Model (AM) defines the adaptation behaviour. It typically

consists of condition-action rules or event-condition-action rules that define

how user actions are transformed into UM updates and into the generation of

presentation specifications. There are two types of rules:

o generic adaptation rules are connected to crts; this for instance

allows to define a knowledge update rule for visiting pages and a

prerequisite rule for determining the suitability of concepts

depending on whether all prerequisites are satisfied; an author only

has to specify concept relationships and an authoring tool can then

generate the corresponding adaptation rules automatically;

1 concept relationship types

o specific adaptation rules apply to specific concepts of the domain

model and can be used for a very rare adaptation rule or for defining

an exception to a generic adaptation rule; authoring such specific

adaptation rules requires knowledge of the language in which such

rules are defined (and which is system-dependent).

In the AHA! system [21] a graphical authoring tool: the Graph Author is used to

define the DM and to draw a graph of concept relationships (of different types). As

the name “graph” already suggests concept relationships are (unary or) binary,

whereas in AHAM there is no restriction to the number of concepts that together may

form a relationship.

The LAOS model [10] is an extension of AHAM. The AM in AHAM has rules for

updating the user model (e.g. with knowledge values), for defining aspects of the

presentation (e.g. the presentation style for links depending on their suitability) and

for domain-independent but only user-dependent aspects (e.g. a learning style). In

LAOS, different aspects of the adaptation model are distributed over multiple layers

in the model [26], in particular the goal and constraints model (GM), the adaptation

model (AM) and the presentation model (PM). In this way, pedagogical information,

e.g., can be expressed in the GM, and kept apart from other information. Also, the PM

describes the final look & feel of the presentation as well as quality of service

parameters (e.g. for mobile devices). Moreover, the adaptation model takes into

consideration the levels of reuse of adaptation, by conforming to the LAG framework

[3], [7]: establishing as a first level the (event-)-condition-action rules, as in AHAM,

that are the building stones for adaptation, and also thus assembly-language type of

adaptation specifications; at the second level, allowing for more sophisticated

adaptation languages [5] (such as LAG [7] [14] or LAG-XLS [9], [27] ; finally, at the

last level, adaptation strategies, comprising reusable, annotated storylines of

adaptation and personalization, that can be applied to various domain models.

In the GRAPPLE project, the structure of a conceptual adaptation model (CAM) is

even more general and flexible: it contains an arbitrary number of layers, which may

be different for each application. There will always be a DM and UM layer and at

least one layer with adaptation aspects, so the structure of CAMs in GRAPPLE is

always a generalization of the AHAM model, and a refinement of the LAOS model.

Some example adaptation layers possible in a CAM include:

• Prerequisite layer: in this layer the author defines a structure of prerequisites

between (sets of) concepts. Each prerequisite relationship connects two sets

of concepts, the first of which contains prerequisite knowledge for the

second set. This would correspond to part of the information stored in the

Goal Model in LAOS, the ordering of information items.

• Task (or Goal) layer: in this layer the author connects sets of concepts with

goals or tasks. All concepts of such a set need to be studied (and mastered) in

order to reach the corresponding goal or complete the associated task. This

would correspond with the overall goal of a particular goal model in LAOS,

i.e., the metadata describing the whole instance (e.g., an introductory course

for first year mathematics students in mathematical analysis).

• Procedure layer: in this layer the author may define a process model that

must be followed during the learning process as it corresponds to the set of

steps when actually performing a learning task. This would loosely

correspond to the adaptation layer in AHAM and LAOS.

The relationships defined in the different CAM layers do not yet express the actual

adaptation that will take place. A prerequisite may be translated to a rule that will

change the presentation of links to concepts, but it may also be translated to the

conditional inclusion of a prerequisite explanation (fragment). The translation of

CAM structures to actual adaptation rules is described in Section 4 below.

3 Authoring CAMs

3.1 An illustrative scenario

We illustrate the authoring process of a CAM by means of a scenario in which a

teacher needs to express some generic and specific prerequisite relationships.

Dr. Davies
2
 prepares a new on-line course on the history of art for first year

undergraduate students. He essentially has two options: he can either try to define a

link structure between the course pages in such a way that students never see a link to

information they cannot yet understand (because of missing foreknowledge) or he can

define a CAM with prerequisite relationships and then rely on the ALE to ensure that

students are only guided towards pages for which they have all the prerequisite

knowledge. Although it is often argued that defining adaptation (a CAM in this case)

means that creating an adaptive course is more work than creating a static course, the

converse is actually true: the first option, to create a static course that is such that

students can only follow links to information they are ready to understand is a nearly

(or perhaps completely) impossible task and would require a lot of very careful work

in selecting links to show to (all) students.

At first, Dr. Davies may think that it would be a good idea to create a prerequisite

relationship from “Michelangelo” to “The Last Judgment”, as the students should first

learn something about the artist before learning about the artist’s artworks. The

authoring tool allows authors to draw a prerequisite relationship between a set of

(prerequisite) concepts on the left and a set of concepts on the right. In this case the

drawing would look like:

Fig. 1 Relation between Michelangelo and The Last Judgment

However, Dr. Davies then realizes that “Michelangelo” should not just be a

prerequisite for “The Last Judgment” but for every artwork by Michelangelo. So he

changes the drawing to:

2 Any resemblance with an existing person is purely accidental.

Fig. 2 Relation between Michelangelo and Placeholder Concept _X

and adds the condition:

Fig. 3 The placeholder represents all concepts for which the creator is Michelangelo

The specific concept relationship thus becomes a partially generic one: there is still

one specifically named concept but also a variable to express that the relationship

applies to all concepts _X that satisfy a certain condition. The underscore indicates

that X is a variable and not a literal value.

Something perhaps not immediately obvious from this example is that there are

two possible uses of this authoring tool (plus a combined third one):

• In the example, the “creator” attribute is a DM property, probably derived

from a subject ontology. Which concepts have “Michelangelo” as pre-

requisite depends purely on the DM and this is thus independent of the

learner taking the course.

• It is equally well possible to use an attribute from the UM in a relationship,

thus creating relationships that are not only user-dependent but even

dependent on the “current” instance of the user model.

• There is even a third possibility, by combining the previous two. The

learning application can for instance recommend topics from a list that first

of all depends on the DM but that also depends on the user’s knowledge. For

instance, only those recommended topics may be shown of which the user

still has little or no knowledge.

Note that when the relationship only depends on DM information (like in the

example) the replacement of _X by actual concepts could (but need not) be done at

compile time, i.e. when translating the CAM into actual low level adaptation rules to

be executed by the GRAPPLE ALE. When the relationship depends on UM

information this is not possible.

Dr. Davies may later also go one step further in the definition of the prerequisite

relationships. He may wish to state that for every artist and artwork the learner should

learn about the artist before studying the artworks from that artist.

The drawing then becomes something like:

Fig. 4 Relationship for generalization of the Michelangelo example

Fig. 5 Constraints for generalization of the Michelangelo example

Note that whereas creating a (set of) specific concept relationships does not require

any knowledge of the structure of the DM or UM or any language to refer to DM or

UM attributes of concepts, creating generic concept relationships, or crts does require

some basic knowledge of the CAM language (to write

_X.creator==Michelangelo). This language contains a still fairly high-level

description of the semantics of the relationship. We consider it to be part of a

translation model that defines how the relationships are translated to low level

adaptation rules to be executed by the adaptation engine.

Each crt corresponds to a different layer in the CAM (and thus in the graphical

presentation of the CAM editor). If Dr. Davies wishes to define a new type of

relationship he can create a new layer and define a new crt as shown below:

Fig. 6 Customizing a relationship

There are two ways to define the adaptation associated with the new relationship.

Where it says “Code:” you can add the CAM language pseudo code for the adaptive

behaviour. For instance, a statement:

 _Y.suitability = ALL _X.knowledge > 70

could be used for indicating the desired behaviour for a prerequisite relationship.

Although such code may look specific and implementation oriented, in reality it is

not. The translation to the underlying adaptation engine may for instance define

“suitability” to just be a volatile attribute of which the value is calculated when

needed, or it may be a persistent attribute of which the value is updated each time the

knowledge value of one of the prerequisites changes. Such implementation details are

defined in a translation model. A single CAM may be translated to the actual

adaptation language (and behaviour) of different adaptation engines, by using

different translation models.

An alternative way to define the actual adaptive behaviour associated with a

relationship is to just define a method call for a method that needs to be defined in the

translation model. This approach makes the use of CAMs very powerful and generic

but it also makes the behaviour dependent on a low level implementation rather than a

high level specification. It is unlikely that teachers (like the imaginary Dr. Davies)

will resort to writing program code for the adaptation engine.

3.1 Pedagogical strategies in CAM

In the previous section we have seen a scenario illustrating how a teacher can create

or customize an adaptive lesson. Previous research has defined interesting

pedagogically sound adaptation strategies, representing different learning scenarios

based on learners’ needs, preferences, some also based on complex (and

controversial) pedagogical foundations, such as learning styles, for Adaptive

Hypermedia
3
 [1]. In this section we will explore some of these strategies in relation to

CAM. More specifically we will check how, in principle, such strategies can be

expressed in the new CAM. As CAM is aimed to be richer than previous attempts, it

should at least be able to express the basic strategies we have defined before. CAM is

more flexible, however, and can express strategies beyond what is analyzed here.

While trying to express the (selection of) learning style related strategies we noticed

some common issues:

• It is clear that we need to have some view of the Domain Model in order for

the teacher to see what the available concepts are.

• A wizard like interface for ready-made strategies could be very helpful,

while still allowing customization.

• The step-wise processing as previously implicitly assumed in LAOS/LAG

based systems is still desirable. Otherwise some strategies like the Breadth-

and Depth-First will not be possible, as inference rules will make sure the

whole content will directly be visible. Thus, rules need to be triggered one-

step-at-a-time, when certain events occur (e.g., a mouse-click). It is

envisioned that, if desired, it should be possible to specify rules that trigger

other rules, like in AHA!, however, in a visual way.

• In the LAOS/ LAG conversions to AHA!, one could control to a certain

extent what kind of menus and other guidance the student would get. This

represents adaptation of the presentation layer in LAOS, and reflects on

3 See also our strategies page: http://prolearn.dcs.warwick.ac.uk/strategies.html

interface changes and display for the student. It is desirable that in the new

CAM-based systems this control will also be present to some extent.

Rollout

The rollout strategy is a very simple strategy that allows authors to decide when a

certain concept or concept part should be shown: concepts to be shown after a certain

number of steps could be classified as ‘showafter’, and attached the meta-data

containing the number of steps after which to be shown. Similarly, concepts classified

as ‘showatmost’ should only be displayed at most the given number of steps as again

contained in meta-data. The roll-out strategy depends upon the tree hierarchy. We

note hat it is straightforward to create such a hierarchy with the introduction of a

parent-child relation.

First, authors need to be able to sort the concepts in the desired hierarchy (if this is not

already available, e.g., if concepts are grouped in a graph). Next, we discuss the

representation of the ‘showafter’ part. The strategy demands that a concept is shown

after its parent has been viewed a given number of times. As a constraint on _X, we

have the following:

_X.metadata == ‘showafter’ && _X.parent ==_Y &&
UM._Y.showcount >= _X.showafter

Fig. 7 ‘Showafter’ relationship

In Fig. 7, the relationship for ‘showafter’ is created via a prerequisite. This uses the

prerequisite relation in its sense of condition on displaying concept _X based on

viewing concept _Y (and some supplementary conditions, as above). However, this

does not use prerequisite in terms of knowledge update.

Depending on the implementation of prerequisite relationship, the ‘showatmost’ part

may or may not be needed. If the implementation of the prerequisite relationship

makes sure that concepts for which previously the prerequisite was fulfilled, but for

which this is no longer the case, are hidden, we do not need to do anything for the

‘showatmost’ part. If this is not handled by the prerequisite we have to add a

relationship that hides concepts once the have passed their ‘showatmost’ threshold.

Fig. 8 ‘Showatmost’ via hide relation, only needed if prerequisite does not hide concepts

The constraint is then:

_X.metadata == ‘showatmost’ && _X.parent ==_Y &&
UM._Y.showcount > X.showatmost

Note that we also need to make sure that for each concept a count is kept in the user

model. This can be done with a relationship ‘countaccess’ relating a concept to itself.

Fig. 9 ‘Countaccess’ relationship

The constraint will then be:
 _X.access == true
The implementation of the countaccess relationship simply increases the count:

UM._X.showcount = UM._X.showcount+1

Depth First

The depth first strategy is used for sequential learners. One topic at a time is

presented, and the student is allowed to go in-depth (hence, the name) in this topic

first, before he proceeds with the next topic. Preferably, no menus’ are shown to such

students, and all they need to access is a ‘next’ button, taking them to their next study

material, whether statically linked, or adaptively generated.

For the depth first strategy, again, the concepts have to be ordered in a hierarchy

first. After this, a few relations are needed. Thus, we introduce a relation from each

concept to each of its children, called next child XOR next sibling, see Fig. 9.

Fig. 10 The main relation implementing the ‘Depth First’, the logic in the constraint takes care

of showing the appropriate next concept, either the next child or the next sibling.

The condition must ensure that _X is the next sibling of _Y that needs to be shown,

as well as update the User Model variable that keeps track of the current position of

the learner within the hierarchical course. The condition shall only show the next

sibling if the concept does not have any children left to be shown.

Finally we create a relationship from the root to the root, which shows first the

concept unconditionally.

Breadth First

The breadth first strategy is used for global or holist learners. These learners like to

see the global ‘picture’ first, before they dive into any topic. For such students, menus

and other orientation devices are quite helpful.

Thus, implementation of this strategy has to start with the ordering of the concepts

in a hierarchy. Next, we draw relations between each concept and each of its children,

allowing them to show (all) the children if the parent has been shown. Finally we

create a relationship from the root to the root, which shows the first concept

unconditionally.

Fig. 11 The relation shows _Y if _X has been shown the condition is: _Y.parent==_X

Visual – Verbal

Visual-verbal preference corresponds to a strategy which doesn’t need concept

ordering. Students are shown visual material (graphs, pictures, video, flash,

simulations) if they have a visual preference, and verbal material (text, audio, etc.) if

they have a verbal nature. For visual-verbal we need only one relationship, one

standard prerequisite relationship with a constraint like _X.label ==

UM.preference. We also need to be able to offer the user some menu where he can

set his preference, or to introduce a number of settings concepts which are always

visible and a relationship on those, which manipulates the preference in the users UM.

Alternatively, the UM variables can be set via an initial questionnaire, or test.

Beginner – Intermediate – Advanced

The beginner-intermediate-advanced strategy is a fundamental strategy, dividing the

extant course material into three types: material aimed at beginners, material for

intermediate students, and material for advanced students. Typically, students that

have been identified as beginners are not allowed to see material from the higher

levels till their status is changed (by, e.g., reading all material in their level, or taking

a test).

For the strategy implementation in CAM, on one layer we draw a relation from the

start concept to every other concept to count the number of beginner, intermediate and

advanced concepts in the user model. On the level below we draw a relationship that

shows the concept from the start concept to each concept, with a condition like

_X.label == UM.knowledgelevel. We also include in the relationship the learner

UM state changing logic, which, e.g., counts the number of beginner or intermediate

concepts and changes the knowledge level from beginner to intermediate when the

number of beginner concepts not shown reaches 0; similar processing occurs for the

intermediate concepts.

Relatedness

The domain model (DM) used by CAM can inherit multiple layers of relations. These

relations can be further used in the adaptation process. For instance, an advanced

student can be shown all related concepts, whereas a beginner student is only shown

concepts within his own course.

For the relatedness strategy we draw a relationship between _Y and _X that shows

_Y. We then use a condition like: _Y IN_X.relatedness

In this section we have analyzed various adaptation and pedagogical strategies, and

how CAM would be able to represent them and improve the access of teachers to such

complex adaptation notions. In such a visual way, teachers can get to grips with the

authoring tasks more easily. Next, we are going to analyze issues appearing in the

authoring process, which need to be handled transparently, by the authoring system,

without the direct knowledge of the authors.

4 Termination and Confluence in Multi-Layer CAMs

The authoring process (for the concept structures and the adaptation) which is focused

on the creation of concept relationships, appears to be fairly simple. Using different

layers for different crts makes understanding the conceptual structure relatively easy

too. However, this simplicity is partly an illusion. Depending on how the concept

relationships are translated (using a translation model) to the low level adaptation

rules for the adaptation engine, the (graph-like) structure of concept relationships of a

single layer may already cause problems, and the combination of concept

relationships from different layers may cause even more problems. We illustrate this

with some examples.

Consider a simple structure where A is a prerequisite for B, B is a prerequisite for

C and C is a prerequisite for A. This may cause a problem or not, depending on how

prerequisites are used in the learning application.

• When “A is a prerequisite for B” results in links to B being recommended only

after learning enough about A it is possible that the cycle of prerequisites

causes the links to A, B and C to never become recommended to the learner.

(Needless to say this is a problem.)

• When “A is a prerequisite for B” means that a short explanation of A will

automatically be inserted into a page about B to compensate for the missing

foreknowledge then there need not be a problem. If A is accessed first it will

contain a prerequisite explanation of C, possibly preceded by a prerequisite

explanation of B. (In this way the cycle does not cause a problem.)

Problems with undesirable structures like cycles are relatively easy to detect within a

single layer. The problems become much more unpredictable when looking at the

adaptation rules that result from translating the concept relationships from all layers

together. The most common types of problems are termination and confluence.

4.1 Termination Problems

A simple example of where rule execution can run out of hand is when an author

creates knowledge propagation relationships. A page that is essentially about

Michelangelo may contain a brief description of some of his masterpieces, like “The

Last Judgment”. Our imaginary Dr. Davies may draw a “10% knowledge

propagation” relationship from “Michelangelo” to “The Last Judgment”. However,

there may also be a generic rule that states that whenever you learn something about

an artwork you also learn something (maybe also 10%) about the “creator” (artist) of

that artwork. It is possible that the knowledge propagation crt has a translation model

that will cause the translation of such a cycle to be an infinite loop of rule executions.

(Each knowledge increase of “Michelangelo” may involve a knowledge increase of

“The Last Judgment” and vice versa.) Disallowing cycles within a layer guarantees

that there are no termination problems within that layer. However, even when each

layer is without termination problems the interaction between rules of different layers

may still cause an infinite loop.

The static analysis proposed in [29] results in conditions that may be too restrictive

to apply them in multi-layer CAMs. The authoring tool might well disallow the

creation of harmless concept relationships just because the static analysis detects a

cycle, even when no infinite loop would be possible (when actually considering the

conditions of the rules and the possible effect of the actions of the rules).

So rather than performing such static analysis, it is possible to apply a heuristic that

is applied at runtime (in the adaptation engine) and that will ensure that there are no

termination problems:

• The first step is to perform static analysis to ensure that no termination

problem can be caused by the rules associated with the relationships of any

single layer.

• The second step towards a solution for termination is to assign a (different)

priority to each layer. (This is not to be confused with execution phases of

AHAM [29]. This is similar to priorities for adaptation strategies in the LAG

language [7], [14].)

• The third step is to disallow updates to an attribute A of a concept C when

C.A has been updated already by a rule associated with a higher priority

layer or when an update to C.A already triggered the execution of a rule at a

higher priority layer. (Note that just ensuring C.A has not been updated by a

rule of a higher level is not enough. The C.A updates as a trigger is really a

necessary additional condition.)

Although this method ensures that infinite loops are not possible, it makes the

behaviour of the adaptation engine dependent on the choice of the priorities of the

layers. We expect such problems to be rare, but nonetheless a system designer should

determine the proper priorities for the “predefined” layers that are made available to

authors (who do not define their own crts and translation models).

4.2 Confluence Problems

Confluence problems occur when more than one rule tries to update the same attribute

of the same concept. The order in which such updates are performed may determine

the resulting UM state.

• Static analysis can be used to ensure that there are no confluence problems

within a single layer.

• In addition to this analysis we again assign a (different) priority to each layer

and we disallow updates to attributes of concepts that were already updates

at a higher (priority) level.

Like for termination, the assignment of priorities to layers may potentially influence

the outcome (the UM instance) of the adaptation rule execution.

5 Related work

Authoring of adaptive hypermedia is notoriously difficult work [2]. Research on

improving this process ranges from ontology-based authoring [23], to integrating

standards and their representations [19], [22] , using data mining techniques [28], web

services [24], interfacing techniques between authoring systems [13], adaptation

languages [14].

The current work is based on prior developments of adaptive hypermedia

frameworks, like AHAM [29] and authoring frameworks for adaptive hypermedia,

such as LAOS [10] and LAG [7]. Moreover, it is based on systems for adaptive

hypermedia delivery, such as AHA! [15] and for authoring of adaptation, such as

MOT, My Online Teacher [11], APels [16], ACCT [17].

Finally, this research is based on evaluations of authoring processes for adaptive

hypermedia, as performed with various groups of students, in various locations, and

with different versions of constantly improving tools [12], [6], [8], [13], [20], [18],

[4]. Such research shows that, whilst having a higher flexibility and multiple layers

for authoring is advantageous [4], [7] it is difficult for authors to actually program the

adaptive behaviour of adaptation strategies [8], and it’s thus much easier to have them

reuse strategies at a higher granularity level, in a graphical interface [4]. As the best

paper of the 4
th

 International Workshop on Authoring of Adaptive and Adaptable

Educational Hypermedia (A3H) shows [25], a template-based approach of a graphical

nature is easier to handle by teachers, who in this way can better make use of the

flexibility that the CAM GRAPPLE tool is offering.

6 Conclusions and further work

In this paper we proposed the structure of Conceptual Adaptation Models, as used in

adaptive learning applications within the GRAPPLE project. We have shown that a

graphical authoring tool helps authors in creating conceptual structures (of concept

relationships) that guide the translation of CAMs to the adaptation rule language used

by an adaptation engine. Using very similar graphical interface elements, an author

can define a single specific concept relationship instance, a generic concept

relationship or a new concept relationship type and its meaning, using a simple

expression language.

The simple graphical approach to authoring does not alleviate the typical problems

of termination and confluence in the generated adaptation rules. We briefly showed

run-time heuristics that help avoid these problems in practice.

The graphical CAM authoring tool will be further developed in the coming

months, and its usability evaluated with course authors. Within the GRAPPLE project

work is proceeding in parallel, on the user modelling services and the adaptation

engine. The progress of these components will determine the specification and

implementation of translation models and a compiler from CAMs to low level

adaptation rules.

Acknowledgment.

This work has been performed in the framework of the IST project IST-2007-215434

GRAPPLE which is partly funded by the European Union. The authors would also

like to acknowledge the contributions of their numerous colleagues from all 14

GRAPPLE project partners. This work is based on findings from the ALS project

229714-CP-1-2006-1-NL-MPP.

References

1. Brown, E., Cristea, A., Stewart, C., and Brailsford, T. Patterns in Authoring of

Adaptive Educational Hypermedia: A Taxonomy of Learning Styles, International

Peer-Reviewed On-line Journal "Education Technology and Society", Special Issue

on Authoring of Adaptive Educational Hypermedia, Volume 8, Issue 3. (2005)

2. Brusilovsky, P. Developing adaptive educational hypermedia systems: From design

models to authoring tools. Authoring Tools for Advanced Technology Learning

Environment. Dordrecht. (2003)

3. Calvi, L., Cristea, A., Towards Generic Adaptive Systems: Analysis of a Case Study,

AH 2002, Adaptive Hypermedia and Adaptive Web-Based Systems. (2002)

4. Conlan, O., Wade, V.P., Evaluation of APeLS - An Adaptive eLearning Service

based on the Multi-model, Metadata-driven Approach, AH 2004, International

Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Eindhoven,

The Netherlands. (2004)

5. Cristea, A.I., Adaptive Course Creation for All, ITCC'04, International Conference

on Information Technology, Las Vegas, US, IEEE. (2004)

6. Cristea, A.I., Evaluating Adaptive Hypermedia Authoring while Teaching Adaptive

Systems, SAC'04, ACM Symposium on Applied Computing, Nicosia, Cyprus. (2004)

7. Cristea, A.I., Calvi, L., The three Layers of Adaptation Granularity, UM’03,

International Conference on User Modelling, Pittsburgh, US. (2003)

8. Cristea, A.I., Cristea, P., Evaluation of Adaptive Hypermedia Authoring Patterns

during a Socrates Programme Class, International Peer-Reviewed On-line & Print

Journal "Advanced Technology For Learning" 1(2), ACTA Press. (2004)

9. Cristea, A., De Bra, P., Explicit Intelligence in Adaptive Hypermedia: Generic

Adaptation Languages for Learning Preferences and Styles, HT 2005 CIAH

Workshop, Salzburg. (2005)

10. Cristea, A., de Mooij, A., LAOS: Layered WWW AHS Authoring Model and their

corresponding Algebraic Operators, WWW’03, The Twelfth International World

Wide Web Conference, Alternate Track on Education,Budapest,Hungary (2003)

11. Cristea, A., de Mooij, A., Adaptive Course Authoring: My Online Teacher, ICT’03,

International Conference on Telecommunications, Papeete, French Polynesia. (2003)

12. Cristea, A.I., De Mooij, A., Evaluation of MOT, an AHS Authoring Tool: URD

Checklist and a special evaluation class, CATE'03, International Conference on

Computers and Advanced Technology in Education, Rhodos, Greece. (2003)

13. Cristea, A.I., Stewart, C., Ashman, H. and Cristea, P., Evaluation of Adaptive

Hypermedia Systems’ Conversion, HT'05, Salzburg, Austria. (2005)

14. Cristea, A., Verschoor, M., The LAG Grammar for Authoring the Adaptive Web,

ITCC'04, International Conference on Information Technology, Las Vegas, US,

IEEE. (2004)

15. De Bra, P., Smits, D., Stash, N. (2006). The Design of AHA!4, ACM Conference on

Hypertext and Hypermedia, pp. 133, Odense, Denmark. (2006)

16. De Bra P., Brusilovsky, P., Conejo, R., Multi-Model, Metadata Driven Approach to

Adaptive Hypermedia Services for Personalization, AH 2002 Adaptive Hypermedia

and Adaptive Web-Based Systems. (2002)

17. Dagger, D., Wade, V.P., Colan, O., Developing Adaptive Pedagogy with the

Adaptive Course Construction Toolkit, ACCT, AH 2004, Adaptive Hypermedia and

Adaptive Web-Based Systems. (2004)

18. Dagger, D., Wade, V.P., Evaluation of Adaptive Course Construction Toolkit,

ACCT, A3EH, Adaptive Authoring for Educational Hypermedia, Workshop at

Artificial Intelligence in Education International Conference. (2005)

19. Gutierrez, S., Authoring of Adaptive Sequencing for IMS-LD , A3EH, 5th Adaptive

Authoring for Educational Hypermedia, Workshop AH 2007, Adaptive Hypermedia

and Adaptive Web-Based Systems, Corfu, Greece. (2007)

20. Hendrix, M., Cristea, A. and Joy, M., Evaluating the automatic and manual creation

process of adaptive lessons, ICALT 2007, IEEE International Conference on

Advanced Learning Technologies, Niigata, Japan. (2007)

21. Hendrix, M., Cristea A., Nejdl, W., Authoring Adaptive Educational Hypermedia on

the Semantic Desktop, International Journal of Learning Technology, IJLT. (2007).

22. Jesus G. Boticario & Olga C. Santos, A dynamic assistance approach to support the

development and modelling of adaptive learning scenarios based on educational

standards, A3EH, 5th Adaptive Authoring for Educational Hypermedia, Workshop

AH 2007, Adaptive Hypermedia and Adaptive Web-Based Systems, Corfu, Greece.

(2007)

23. Martin, B., Mitrovic, A., and Suraweera, P., Domain Modelling with Ontology: A

Case Study, A3EH, 5th Adaptive Authoring for Educational Hypermedia, Workshop

AH 2007, Adaptive Hypermedia and Adaptive Web-Based Systems, Corfu, Greece.

(2007)

24. Meccawy, M. Stewart, C. and Ashman, H., Adaptive Educational Hypermedia

Content Creation: A Web Service based Architecture, A3EH, 5th Adaptive Authoring

for Educational Hypermedia, Workshop AH 2006, Adaptive Hypermedia and

Adaptive Web-Based Systems, Dublin, Ireland. (2006)

25. Muñoz, F., Ortigosa, A., An Adaptive Course on Template-based Adaptive

Hypermedia Design, A3EH, 5th Adaptive Authoring for Educational Hypermedia,

Workshop AH 2006, Adaptive Hypermedia and Adaptive Web-Based Systems,

Dublin, Ireland. (2006)

26. Muntean, C.H., Muntean, G., McManis, J., Cristea, A., Quality of Experience-LAOS:

create once, use many, use anywhere, International Journal of Learning Technology,

Special Issue on Authoring of Adaptive and Adaptable Hypermedia, Vol 3, Issue 3.

27. Stash, N., De Bra, P., Incorporating Cognitive Styles in AHA! (The Adaptive

Hypermedia Architecture), IASTED International Conference Web-Based Education,

Innsbruck, Austria. (2004)

28. Vialardi, C., Bravo, J. and Ortigosa, A., Empowering AEH Authors Using Data

Mining Techniques, A3EH, 5th Adaptive Authoring for Educational Hypermedia,

Workshop AH 2007, Adaptive Hypermedia and Adaptive Web-Based Systems,

Corfu, Greece. (2007)

29. Wu, H. A Reference Architecture for Adaptive Hypermedia Applications, doctoral

thesis, Eindhoven University of Technology, The Netherlands, ISBN 90-386-0572-2.

4 The adaptive version of this paper is available on-line at http://aha.win.tue.nl/ahadesign/.

