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Abstract. Most of the existing work on information integration in the
Semantic Web concentrates on resolving schema-level problems. Specific
issues of data-level integration (instance coreferencing, conflict resolu-
tion, handling uncertainty) are usually tackled by applying the same
techniques as for ontology schema matching or by reusing the solutions
produced in the database domain. However, data structured according
to OWL ontologies has its specific features: e.g., the classes are organized
into a hierarchy, the properties are inherited, data constraints differ from
those defined by database schema. This paper describes how these fea-
tures are exploited in our architecture KnoFuss, designed to support
data-level integration of semantic annotations.

1 Introduction

Information integration (also known as knowledge fusion) is a well-recognized
problem, initially studied in the database research domain. The challenges here
included overcoming both schema-level and data-level heterogeneity [1]. Now,
with the emergence of ontologies and the Semantic Web, these problems are
studied in the context of semantic data structured according to ontologies.
Enterprise-level knowledge management is one of the relevant use cases. In this
scenario a corporate ontology is populated both automatically and manually
using information from different sources and documents. Thus, while there is
no schema-level heterogeneity, the data-level issues are crucial. In this paper
we focus on coreferencing: recognizing the cases when different sources refer to
the same real-world entities and unifying the URIs of such instances. The data,
which has to be integrated, is often noisy: instances have different naming for-
mats, automatic extraction algorithms do not have 100% quality, human editors
make occasional mistakes. The output of the coreferencing methods is also not
fully reliable. Multiple algorithms have been developed to deal with these prob-
lems (e.g., string similarity and set similarity metrics to handle coreferencing)
and many existing systems use them in combination (e.g., [2])
While information integration is well-studied in the literature, in the Semantic
Web community the research has primarily focused on schema-level matching
[4]. Data-level problems have been mostly considered auxiliary and usually tack-
led together with schema-level integration. The approaches developed in the



database community, on the other hand, do not take into account specific fea-
tures of semantic data such as the hierarchy of classes. In order to integrate
ontological data these features should be taken into account.
In this paper we present our architecture called KnoFuss, which focuses on
instance-level integration of data structured according to OWL ontologies. The
rest of the paper is organized as follows: in the section 2 we briefly discuss the
most relevant existing approaches. Section 3 describes the main principles of the
architecture. Section 4 describes the experiments we performed using datasets
from the domain of scientific publication. Finally, section 5 summarizes our con-
tribution and outlines directions for future work.

2 Related Work

Information integration has been an important topic of research for a long time,
in particular in the database research community. Performing integration re-
quires resolving schema-level and data-level heterogeneity issues [1] where the
latter primarily include (i) instance coreferencing, (ii) conflict detection and (iii)
inconsistency resolution. There are a number of approaches dealing with these
issues. A theoretical basis for solving the instance coreferencing problem (re-
ferred as record linkage) was defined in [5]. Since then, many solutions were
proposed [6], which can be roughly classified into (i) manually constructed rules,
(ii) supervised learning algorithms and (iii) unsupervised algorithms. Rule-based
approaches are hand-tailored to a specific domain and are hard to reuse. Super-
vised machine learning algorithms consider record linkage as a specific case of
classification [5], [7] or clustering [8] and produce decision models based on a set
of training examples. Such algorithms can be applied to different domains but
require sufficient training data. Finally, there are unsupervised methods, which
include string similarity (Jaro, Levenshtein, Monge-Elkan) and set similarity
(cosine, Jaccard, TF-IDF) metrics. Despite being the most generic, however,
these algorithms still require their parameters (weights and thresholds) to be
configured. In the Semantic Web domain these techniques are included in many
ontology matching systems [4].
Since there is no single best algorithm for all domains and the same method has
different optimal configuration parameters when applied to different data, one
system often employs several methods. The survey of ontology matching systems
given in [4] shows that the majority of currently available state-of-the-art on-
tology matching systems employ a combination of several basic algorithms. The
sets of used methods and their configuration information is more often managed
internally [3], [9]. However, some frameworks implement a more flexible approach
where the library of methods is extensible and configuration parameters can be
adjusted. The FOAM framework [10], primarily designed for schema-mapping,
includes a special configuration architecture APFEL [11], which learns optimal
parameters of matching methods by exploiting user feedback. eTuner [12] aims
at the same goal, but constructs an artificially distorted version of the ontology
to be mapped. The mappings between the original ontology and its distorted



version (known in advance) are used as a gold standard for the learning algo-
rithm, which produces the configuration parameters of atomic methods. Unlike
these two systems, MOMA [2] was specially designed to handle instance-level
coreferencing. The system employs an extensible library of matching methods
conforming to a uniform interface, invokes them separately and combines their
results afterwards. This system, however, assumes a data representation is sim-
ilar to relational databases without considering semantic links defined by the
ontology.
In our view, there is still a space for improvement to adjust existing approaches
to the Semantic Web data integration task. As was said, most of the ontology
matching systems primarily focus on the schema-level matching and are not
optimized for dealing with the data-level issues [4]. In particular, schema-level
matching systems, which employ a combination of individual matching tech-
niques, try to select the optimal algorithms’ parameters for a pair of ontologies
(e.g., [12], [9]). Data-level coreferencing requires more fine-grained tuning: op-
timal decision models for individuals belonging to different classes of the same
ontology might vary. On the other hand, the database record linkage systems do
not consider specific properties of ontological data, such as hierarchical relations
between classes. Our knowledge fusion architecture KnoFuss has been developed
to address these issues.

3 KnoFuss architecture

The current version of the KnoFuss architecture works under the assumption
that data to be merged are already structured according to the same OWL
ontology. This is a valid assumption, for instance, in the corporate knowledge
management scenario mentioned in the Section 1. KnoFuss carries out three
main remaining subtasks of the knowledge fusion process:

– Coreferencing. The output of this task is a set of mappings between indi-
viduals, which are believed to be identical.

– Conflict detection. This stage identifies all cases when integration of new
data will violate the ontological constraints and diagnoses each inconsistency.
The output of the task contains conflict sets: sets of statements contributing
to each inconsistency.

– Inconsistency resolution. This task actually integrates the data into the
target knowledge base, which includes processing inconsistencies.

In this paper we focus on the coreferencing stage. The theoretical basis for our
handling of inconsistency resolution is described elsewhere [13]. Each of these
subtasks can be performed by different methods, both generic and domain-
dependent (e.g., using key attributes or machine-learning models for corefer-
encing, hand-tailored rules or formal ontology diagnosis for conflict detection).
In order to support the selection of optimal methods depending on the do-
main, the architecture considers the basic techniques for each fusion subtask as



problem-solving methods [14]. Each method represents a separate module, for-
mally described in terms of its inputs, outputs and applicability conditions while
its internal behaviour is hidden from the system. The main components of the
architecture are:

– A library of problem-solving methods, containing algorithms dealing with
atomic tasks.

– A fusion ontology, describing the information needed to guide the fusion
process.

The capabilities of the methods are formally described using the fusion ontol-
ogy, which is itself represented in OWL and provides two kinds of knowledge
structures:

– Descriptors of problem-solving methods, tasks and application contexts. This
information is used to select and configure methods.

– Intermediate knowledge structures. These structures represent meta-level de-
scriptors of the methods’ inputs and outputs (e.g., mappings between indi-
viduals, sets of conflicting statements).

The fusion process is performed by the system as follows. The system receives
as its input a source RDF knowledge base (KB), containing new data to be
integrated. Then all tasks of the fusion process (coreferencing, conflict detection
and inconsistency resolution) are performed in sequence and produce as a result
a set of statements to be integrated into the target KB. Execution of each subtask
is controlled by a generic workflow, which (i) selects appropriate methods, (ii)
invokes the methods and collects their output and (iii) combines the output of
methods filtering out redundancies. In more detail this workflow is explained in
the following subsections.

3.1 Method selection

The system starts each atomic task with selection of appropriate methods. The
method selection is performed in two phases. First, the system pre-selects all
methods, which can potentially be applied to a domain. Appropriate methods
are selected based on method descriptor objects defined by the fusion ontology.
An example of such a descriptor describing the Jaro-Winkler string-similarity
coreferencing method is presented in Table 1. The system selects all applicable
methods by running the SPARQL queries specified as methods’ selection criteria.
A method descriptor defines the most general conditions, in which the method
can be applied, together with the default configuration parameters. In the ex-
ample case in Table 1 these include just the threshold and the set of relevant
attributes, but other algorithms may involve more complex decision models.
After the set of applicable methods is selected, the system tries to pick up the
optimal parameters of the algorithm given the data to which it is applied. It
is often the case that the same method can be applied to a wide range of data
instances: for instance, string similarity coreferencing algorithms are applicable



Table 1. Coreferencing method descriptor

Method Label-based Jaro-Winkler matcher

Inputs
SourceKnowledgeBase :type KnowledgeBase;
TargetKnowledgeBase :type KnowledgeBase;

Outputs
MergeSets :type list of MergeSet - Set of
possible mappings between instances of source and
target knowledge bases

Tackles Coreferencing

Selection criterion
SELECT ?uri WHERE {
?uri rdfs:label ?label }

Reliability 0.9

Description
A generic method, which performs matching based on the
label similarity measured using Jaro-Winkler metrics.

Parameters

Threshold 0.87

Attributes rdfs:label

to any individuals, which have string properties. However, the performance of
an algorithm and its optimal settings may differ when it is applied to individu-
als of a different class. For instance, a Jaro-Winkler string similarity algorithm
used to find identical scientific papers must have higher threshold than when it
is applied to disambiguate the authors of the papers. Paper titles have gener-
ally longer string length and more consistent format, while people’s names allow
initial abbreviations and titles (like Dr., Prof.), which require the algorithm to
be more “tolerant”. Thus, as was said in Section 2, a more fine-grained method
configuration is needed. The concept of application context represents such a
configuration. Application contexts specify the parameters of a method when
applied to individuals of a particular type. These parameters override the de-
fault values defined in the method descriptor. An example of the application con-
text for the Jaro-Winkler string similarity method applied to individuals of class
opus:Publication describing scientific publications in the SWETO-DBLP ontol-
ogy is given in Table 2. Application contexts can be organized hierarchically (Fig.

Table 2. Application context example

Method Label-based Jaro-Winkler matcher

Selection criterion
SELECT ?uri WHERE {
?uri rdf:type opus:Publication .
?uri rdfs:label ?label . }

Linked to class opus:Publication

Reliability 0.95

Parameters

Threshold 0.93

Attributes rdfs:label, opus:year



1) following the taxonomy defined by the domain ontology. Thus, there can be,
for instance, a specific configuration for journal articles, which use more specific
features then the generic publication coreferencing. By default each application
context corresponds to one class in the ontology. Context-dependent method con-

Fig. 1. Method selection using hierarchical application contexts.

figuration requires optimal parameters to be assigned. Assigning them manually
is a task requiring significant user effort especially in cases when the domain
ontology contains individuals of many different classes. A common way to assign
the optimal parameters is to employ machine learning. In the next subsection
we discuss how the class hierarchy defined by the domain ontology can be used
to enhance the learning procedure.

3.2 Using class hierarchy to learn optimal method parameters

Machine learning can be used to generate optimal parameters for a method
applied to a specific class of individuals and estimate its reliability. But in order
to train a method to match individuals of a certain class we need sufficient
training examples. Obtaining these for each ontological class is often not feasible.
Ontological schemata can be exploited in two ways to manage a limited set of
training data and assist the learning mechanism:

– Training instances belonging to different subclasses of the same superclass
can be combined together.

– Training instances belonging to a subclass can be used to learn a generic
decision model for its superclass.

Let’s assume that in the ontology we have a class C and its subclasses C1...Cn

and for each class we have a set of known individuals Di. For subsets of these
individuals Ti v Di we also know the correct identity relations. Pairs of these
individuals constitute the training set Si where pairs of coreferent individuals
serve as positive examples and pairs of non-coreferent individuals constitute
negative examples. Let fi represent a set of potentially relevant attributes for
each class Ci (e.g., this may include all properties within a range n). Now,



suppose, we only have training instances for a subset of classes C1...Cn, i.e.,
|Si| > 0 where i ≤ m < n and |Si| = 0 where i > m. The learning algorithm
takes as input a set of training examples S and relevant attributes f and produces
a decision model h : (x; y) → P (x ≡ y). During the configuration phase we train
the learning algorithm to produce m+1 decision models: for each Ci where i < m
and the superclass C. The learning algorithm for the superclass C will take as
input the union of all training sets S =

⋃m
i=1 Si. The set of relevant features will

only contain the features of the class C: f =
⋂n

i=1 fi. Then the accuracy of each
learned model is evaluated on a set of test examples. The algorithm is included
into the library of matching methods and each learned model is described as
a separate application context. The reliability of the algorithm in each context
is assigned according to the achieved accuracy on the test set. If the accuracy
achieved for the model trained for the exact subclass Ci is less than for the
superclass C then such a model will not be chosen.

3.3 Method invocation and handling results

After the system has selected applicable methods and has picked the best known
configuration parameters for them it proceeds with method invocation. All meth-
ods from the selected set are invoked in sequence and their results, structured
according to the fusion ontology, are added to the source KB. In cases when
the results of methods conflict with each other, only the results produced by
the most reliable method are retained. An object representing the result of a
method preserves a reference to the method descriptor. Thus, the reliability of
the method’s output is considered the same as the reliability of the method itself
in the context, in which it was invoked. Then the source KB together with the
accumulated intermediate information is passed to the next stage.

4 Evaluation

In order to test the system we used the following datasets from the domain of
scientific publications:

– AKT EPrints archive1. This dataset contains information about papers pro-
duced within the AKT research project.

– Rexa dataset2. The dataset extracted from the Rexa search server, which was
constructed in the University of Massachusets using automatic IE algorithms.

– SWETO DBLP dataset3. This is a publicly available dataset listing publi-
cations from the computer science domain.

The SWETO-DBLP dataset was originally represented in RDF. The two other
datasets were extracted from the HTML sources using specially constructed
wrappers and structured according to the SWETO-DBLP ontology (Fig. 3). We
performed experiments with the following matching algorithms:
1 http://eprints.aktors.org/
2 http://www.rexa.info/
3 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus august2007.rdf



Fig. 2. Class hierarchy in the SWETO-DBLP ontology

– Jaro-Winkler metrics directly applied to the label.
– L2 Jaro-Winkler applied to the label.
– Average L2 Jaro-Winkler over the properties of the class Publication.
– Average L2 Jaro-Winkler over all available properties.
– Adaptive learning clustering algorithm employing TF-IDF and N-gram met-

rics [8].

The Jaro-Winkler algorithm was used as a representative of string matching al-
gorithms (it outperformed Levenshtein on our dataset during the preliminary
tests). L2 Jaro-Winkler is a mixture of string similarity and set similarity mea-
sures: it tokenizes both compared values, then each pair of tokens is compared us-
ing the standard Jaro-Winkler algorithm and the maximal total score is selected.
It is able to work in cases when the order of words in a multi-word string value is
not important for establishing their identity (e.g., “Enrico Motta” and “Motta,
Enrico”). The set of relevant attributes included all immediate datatype prop-
erty values. We assumed that the algorithms did not have any domain-specific
knowledge, so such common techniques as analyzing co-authors to disambiguate
a person were not used. The links between papers and authors also were not ex-
ploited because of this. First, we trained each algorithm to recognize matching
individuals of each immediate class (Person, Article and Article in Proceedings).
Then, we combined the individuals of classes Article and Article in Proceedings
and performed the tests for their superclass Publication (only the properties
common for the superclass were used in this case). The results of our tests are
given in the Table 3. As a performance metric we used the commonly employed
F1 measure, which combines precision and recall. Standard deviation of this
measure obtained after 5 tests (σ) is given to indicate the robustness of the algo-
rithm in each case. The results indicate that a decision model over the combined
dataset (Publication) was usually more robust considering the standard deviation
in comparison with classes with few training instances (Article), although the
performance was sometimes lower due to spurious mappings between instances
belonging to different classes (for the clustering method). The later problem,
however, is handled at the inconsistency resolution stage.
However, there are also important factors, which limit the possibility for the



Table 3. Test results: coreferencing.

Datasets Article Article in Proceedings Publication Person

F1 σ F1 σ F1 σ F1 σ

AKT/Rexa

Direct Jaro-Winkler (label) 0.92 0.09 0.85 0.03 0.87 0.01 0.29 0.01

L2 Jaro-Winkler (label) 0.89 0.07 0.9 0.01 0.9 0.01 0.84 0.01

L2 Jaro-Winkler (label+year) 0.9 0.06 0.92 0.02 0.93 0.03

L2 Jaro-Winkler (all) 0.48 0.11 0.74 0.03

Clustering 0.69 0.39 0.85 0.043 0.82 0.045

AKT/DBLP

Direct Jaro-Winkler (label) 0.87 0.05 0.94 0.01 0.93 0.02 0.10 0.004

L2 Jaro-Winkler (label) 0.66 0.1 0.52 0.03 0.55 0.01 0.63 0.03

L2 Jaro-Winkler (label+year) 0.88 0.07 0.88 0.01 0.89 0.02

L2 Jaro-Winkler (all) 0.24 0.06 0.54 0.03

Clustering 0.75 0.16 0.9 0.03 0.83 0.09

Rexa/DBLP

Direct Jaro-Winkler (label) 0.9 0.04 0.91 0.01 0.92 0.01 0.90 0.003

L2 Jaro-Winkler (label) 0.7 0.03 0.7 0.01 0.7 0.01 0.72 0.004

L2 Jaro-Winkler (label+year) 0.93 0.02 0.88 0.05 0.89 0.01

L2 Jaro-Winkler (all) 0.89 0.02 0.89 0.02

Clustering 0.86 0.04 0.89 0.01 0.89 0.03

methods’ reuse. First, in order to reuse coreferencing methods between classes
linked into a hierarchy we have to assume that the properties significant for iden-
tifying the objects are inherited. While this is a common pattern, which holds
in our scenario, it may not be the case in some ontologies. Second, differences
between property values’ formats in different datasets can limit the reuse of the
method. For instance, a pair of labels “Sleeman, Derek” in EPrints and “Derek
Sleeman” in DBLP could not be caught by the direct Jaro-Winkler algorithm,
which was the best for the pair Rexa/DBLP.

5 Conclusion and future work

In this paper we have presented the architecture KnoFuss aimed at performing
data-level fusion of OWL knowledge bases. We consider the method selection
mechanism, which allows the system to pick and configure individual methods
considering the class hierarchy, as the main contribution described in the paper.
We have implemented the architecture described in the paper and performed
initial tests using datasets from the publications domain.
There are several directions we consider important for future work. First, the
current version of the system operates under the assumption that the knowledge
bases to be integrated are structured according to the same ontology. In order
to be used in a multi-ontology environment the architecture must be able to
incorporate the results produced by ontology matching algorithms. Another issue
concerns the coreferencing method selection, which at the moment is primarily



based on the class to which an individual belongs. However, it is often the case
that method performance may significantly depend on the data format, which in
turn depends on the data source. In order to improve the system’s performance,
an efficient mechanism to pick up an optimal method for an unknown source has
to be implemented.
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