
A. Gangemi and J. Euzenat (Eds.): EKAW 2008, LNAI 5268, pp. 32–47, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Natural Language-Based Approach for Helping in the
Reuse of Ontology Design Patterns

Guadalupe Aguado de Cea, Asunción Gómez-Pérez,
Elena Montiel-Ponsoda, and Mari Carmen Suárez-Figueroa

Ontology Engineering Group
Universidad Politécnica de Madrid, Facultad de Informática, Dpto. de Inteligencia Artificial

Campus de Montegancedo s/n, 28660-Boadilla del Monte, Madrid
{lupe, asun, mcsuarez}@fi.upm.es,
emontiel@delicias.dia.fi.upm.es

Abstract. Experiments in the reuse of Ontology Design Patterns (ODPs) have
revealed that users with different levels of expertise in ontology modelling face
difficulties when reusing ODPs. With the aim of tackling this problem we pro-
pose a method and a tool for supporting a semi-automatic reuse of ODPs that
takes as input formulations in natural language (NL) of the domain aspect to be
modelled, and obtains as output a set of ODPs for solving the initial ontological
needs. The correspondence between ODPs and NL formulations is done
through Lexico-Syntactic Patterns, linguistic constructs that convey the seman-
tic relations present in ODPs, and which constitute the main contribution of this
paper. The main benefit of the proposed approach is the use of non-restricted
NL formulations in various languages for obtaining ODPs. The use of full NL
poses challenges in the disambiguation of linguistic expressions that we expect
to solve with user interaction, among other strategies.

Keywords: Ontology Design Patterns Reuse, Lexico-Syntactic Patterns, ontology
modelling, restricted vs. unrestricted NL.

1 Introduction

Ontology modelling has become one of the main issues in the current Ontology Engi-
neering research, since ontologies are becoming more and more popular among a
wider range of users. Many efforts have been directed to the creation of methodolo-
gies for guiding users in the development of ontologies. Some of the well-known
methodological approaches are METHONTOLOGY [12], On-To-Knowledge [28],
and DILIGENT [20]. They provide guidelines to help users building ontologies from
scratch, but lack guidelines for building ontologies by reusing available ontological
and non ontological resources. In this regard, one of the crucial issues in ontology
development is the need for guidelines or methods in the reuse of Ontology Design
Patterns (ODPs hereafter). ODPs have been defined as archetypal solutions to design
problems [10]. As already proven in Software Engineering, field in which the reuse of
object-oriented design patterns has a longer tradition, design pattern reuse is deemed
especially suitable for speeding up the development of resources, because not only

 Natural Language-Based Approach for Helping in the Reuse of ODPs 33

does it encourage the reuse of best practices and improves communication among
users, but it also allows less experienced users to produce a better design [21]. De-
sign pattern reuse in object-oriented design is an extended practice, well supported by
design pattern repositories and manuals as [3,9]. However, most of them presuppose
prior design knowledge and expertise. This fact and other limitations are being re-
cently discussed in public forums1. The main limitations are related to the lack of
general methodologies or standards for the reuse of the different pattern repositories,
since some efforts in that sense are limited to recommendations for local use devel-
oped by the authors of the manuals themselves.

A similar situation is to be found in the Ontology Engineering field, in which
ODPs have emerged as a way for helping ontology practitioners to model OWL on-
tologies. The W3C Semantic Web Best Practices and Deployment Working Group2
proposes patterns for solving design problems for OWL, independently of a particular
conceptualization, thus addressing logical problems. In [19] some well known Seman-
tic Web best practices related to W3C activities are presented in a so-called cook-
book style, which makes easier the identification and application of best practices.
Additionally, [10] presents patterns for solving (in OWL or other logical languages)
design problems for the domain classes and properties that populate an ontology, thus
addressing content problems. In the NeOn project3, special attention is also being
devoted to ODPs. In D5.1.1 [30], a general template for describing ODPs has been
created, and an initial repository of OWL-based ODPs is presented. In the same line,
D2.5.1 [22] classifies ODPs in Structural, Correspondence, Content, Reasoning, and
Presentation ODPs, and provides a repository of Content ODPs. This latter repository
is being extended, and it is expected to be available on-line in 2008 at the Ontology
Design Patterns.org4 wiki page. However, despite reported initiatives, no effort has
been put in the creation of methods per se. This need is, if anything, more urgent if
we take into account results of experiments on ODPs reuse, which shed some light
about the difficulties users encounter when selecting the appropriate ODP during
ontology development (cf. section 2).

Also related with the ontology development, there is a general concern about
bringing ontology methods and technologies closer to the untrained user in ontology
modeling. In this sense, there exist some initiatives based on the creation of controlled
languages that make ontology languages based on logics more understandable to non
logicians. Such controlled languages allow untrained users to develop ontologies, but
without taking into account ODPs (cf section 3).

Therefore, the aim of our research is to alleviate to some extent the problems naive
users encounter when modelling ontologies reusing ODPs, by means of a method and
the tool that supports it, for semi-automatically reusing ODPs starting from full Natu-
ral Language (NL) formulations of domain aspects. The method and the tool rely on a
repository of Lexico-Syntactic Patterns (henceforth LSPs) associated to ODPs, and on
NL processing tools that annotate the user input with lexical and syntactic informa-
tion. In this paper, our main contribution consists of an excerpt of the initial reposi-
tory of LSPs for the English language, as well as the foreseen user interaction for
solving problems imposed by the use of full NL.

1 http://www.pattern.ijop.org
2 http://www.w3.org/2001/sw/BestPractices/
3 http://www.neon-project.org
4 http://www.ontologydesignpatterns.org

34 G. Aguado de Cea et al.

The reminder of this paper is structured as follows. Section 2 describes two pre-
liminary experiments on ODPs reuse that show up some of the problems faced by
users. In section 3 we discuss related work on controlled languages for helping naive
users in ontology modelling. The proposed method and the tool workflow are briefly
outlined in section 4, and then, this section is devoted to LSPs identification and in-
cludes an excerpt of the preliminary repository of LSPs for English. The method
workflow is exemplified in section 5, and we conclude in section 6.

2 Motivation

The development of ontologies using directly ontology languages, such as OWL DL,
is not as trivial as reported in [23]. Alan Rector et al. [23] present the most common
problems, errors, and misconceptions on understanding OWL DL as well as tips on
how to avoid such pitfalls in building OWL DL ontologies. In [23] it is stated that for
most people it is very difficult to understand the logical meaning and potential in-
ferred statements of any DL formalism, including OWL DL. Such a paper mentions
that one of the most common errors in building ontologies in OWL is to omit the
disjointness axioms, when taxonomies are being modeled within ontologies.

Apart from that, it is known that time and resources used for the development of
ontologies can be reduced by means of reusing ODPs. Informal evidence such as
subjective experience reports of ontology engineers have so far shown the benefits of
using patterns in ontology engineering. In fact, logical and content patterns as defined
in [30] have for example been used for teaching, in tutorials and summer schools, and
it has, according to the tutors, improved the way students solve modelling tasks.
However, the reuse of ODPs is not so flawless, as two experiments carried out in the
context of the NeOn project show.

These two preliminary experiments involving students at Universidad Politécnica
de Madrid (UPM) and at the 5th Knowledge Web Summer School on Ontological
Engineering and the Semantic Web (SSSW07) were designed and conducted during
2007. The experiments gave some very important initial results and insights on how
subjects really perceive, understand, and use ODPs.

The first experiment was carried out with 69 undergraduate students attending the
“Artificial Intelligence” course at UPM Facultad de Informática. Students were pro-
vided with 13 simple modelling problems they had to solve using ODPs, and white
papers. They had background in database modelling (e.g., entity relationship), soft-
ware engineering modelling (e.g., UML), and AI modelling (e.g., frames, semantic
networks, DL). The goal was to test if, given a modelling problem expressed in NL,
students were able to identify the most appropriate pattern for such a problem. When
this was not the case, the objective was to know whether a wrong pattern or antipat-
tern was typically used instead of the most appropriate one.

General conclusions are that 59% of the solutions provided by students corre-
sponded with the expected ODP, that is, the pattern modelling the given problem.
22% of the solutions included a wrong pattern, 11% were empty, and 8% of the an-
swers were wrong but without involving any ODP. Focusing on wrong patterns, we
can extract the following conclusions: subclass-of relation is mainly confused with
exhaustive classes and disjoint classes; exhaustive classes is mainly confused with

 Natural Language-Based Approach for Helping in the Reuse of ODPs 35

subclass-of relation and disjoint classes; and part-whole relation is mainly confused
with subclass-of relation. Concrete results related with the aforementioned conclu-
sions are shown in Table 1.

Table 1. Results of the first experiment

The second experiment was carried out with 50 Master and PhD students attend-
ing the SSSW07. Students had different backgrounds in modelling (databases, soft-
ware, etc.) but no extensive practical experience in ontology modelling. The goal was
to test if a subset of logical and content design patterns described in NeOn deliverable
D5.1.1 [30] was well explained, and if patterns were easy to understand and to apply
in specific modelling problems.

The experiment was divided into two parts. Students had 45 minutes to carry out
the first part of the experiment, and 45 minutes to carry out the second part of the
experiment. They were provided with 10 modelling problems for the first part, and
another 10 for the second. In both cases, students had to solve modelling problems
using ODPs. However, in the first part they had no external support, while in the
second part they were provided with the NeOn catalogue of ODPs [30].

From the first part of the experiment, in which students solved modelling problems
without the ODPs catalogue, we draw the following conclusions:

 66% of the students did not identify exhaustive classes; but provided solutions
including a wrong pattern or antipattern, mainly object property or subclass-of.

 74% of the students did not correctly identified n-ary relation, mistaking such
pattern for object property in most of the cases.

 A considerable number of students mistook part-whole for subclass-of or object
property.

36 G. Aguado de Cea et al.

From the second part of the experiment, in which students approached modelling
problems using the NeOn ODPs catalogue, we draw the following conclusions:

 52% of the students confused subclass-of with disjoint classes.
 62% of the students confused exhaustive classes with subclass-of.
 66% of the students confused disjoint classes with exhaustive classes.
 54% of the students confused n-ary relation with object property or datatype

property.
 A considerable number of students mistook part-whole for object property, sub-

class-of or subproperty-of.

Taking into account the results of both experiments, we can conclude that guide-
lines to easily differentiate, first, subclass-of relation from disjoint classes or exhaus-
tive classes, and, second, part-whole relations from subclass-of and object property,
should be provided. Based on this, our research aims at tackling these difficulties (as
shown in the LSPs repository), without leaving aside other patterns, with the idea of
providing an easy identification of the ODPs included in D5.1.1 to users in general,
but centred in naive users.

3 Related Work

Regarding the idea of facilitating ontology modelling and bringing ontology tech-
nologies closer to the average user, some research has been devoted to the creation of
syntaxes or controlled languages5 to make ontology languages more readable and
understandable to naive users. Some examples of controlled languages are: the Man-
chester Syntax [14], the Attempto Controlled English (ACE) [15], the Rabbit syntax
[7], the Sydney OWL Syntax [6], or CLOnE (Controlled Language for Ontology Edit-
ing) [8]. The main idea underlying controlled languages is to allow naive users to
express their modelling needs following certain syntactic rules. In return, they obtain
an ontology that represents the knowledge associated to the users needs. In the ana-
lyzed controlled languages, the obtained ontology is built without using ODPs.

The Manchester Syntax came into existence as a result of teaching experiences on
OWL intended for domain experts that made evident that non-logicians had difficul-
ties in understanding the OWL syntax [14]. The result was a syntax mainly based on
NL keywords in English (and) equivalent to logical expressions (intersectionOf).
With the aim of avoiding some of the drawbacks of the Manchester Syntax, mainly
related to the unnaturalness of the resulting sentences [15], further controlled lan-
guages were created as ACE, Rabbit or the Sydney Syntax. These are also based on a
subset of English and follow similar approaches, which is why a task force was
formed in 2007 to work towards a common Controlled Natural Language Syntax for
OWL 1.1 [32]. In much the same way, CLOnE and its software implementation CLIE,
proposed not only a controlled language based on the English grammar, but also an
NL interface to help users build ontologies, since they considered common ontology
editors to be designed for ontology engineering experts.

5 A controlled language is an engineered subset of a natural language with explicit constraints

on grammar, lexicon, and style. [32].

 Natural Language-Based Approach for Helping in the Reuse of ODPs 37

Undoubtedly, the analyzed approaches allow users to build ontologies using a syn-
tax more closed to NL than to OWL. However, there are still some limitations regard-
ing the efforts users need to make in order to become familiar with these controlled
languages before being able to start using them. Furthermore, sentences resulting
from the use of controlled languages are quite artificial, since they just manage to
disguise the underlying OWL syntax (see examples from [32,8] in Table 2), what
makes learning even harder. Finally, they all rely on the English syntax, without tak-
ing into account other languages.

Table 2. Examples of sentences resulting from the use of controlled languages

Approach Resulting sentence
ACE Every river-stretch has-part at most 2 confluences.
Rabbit Every Bourne is a kind of Stream.
Sydney Syntax The classes petrol station and gas station are equivalent.
CLOnE Projects have string names.

On the contrary, our natural language approach for facilitating the ontology model-

ling to the average user wants to go a step further to allow naive users to express the
domain aspect they want to model in unrestricted NL. We aim at being able to move
away from ontology modelling paradigms or languages, and concentrate on the do-
main parcels (s)he needs to formalize. The obvious consequence of committing to
naturalness is to deal with language ambiguities, which we expect to solve resorting
to users feedback (see section 5) or accessing linguistic resources, among other strate-
gies. Additionally, we want to provide a multilingual modelling environment in which
not only is the interface multilingual, but also the sentences that express the domain
aspect to be modelled can be written in several languages. Actually, we expect to
cover English, Spanish, and German in the first prototype of the tool. Finally, our
approach is based on consensual modelling solutions, i.e., ODPs for creating the on-
tology that models user needs.

4 Reuse of Ontology Design Patterns by Naive Users

With the aim of helping users with different backgrounds and expertise in ontology
modelling to reuse ODPs, we propose a method for the reuse of ODPs (already out-
lined in [18,31]) that has as a starting point a precise definition in NL of the phe-
nomenon or domain aspect the user wants to model in the ontology, and as a target
one, the obtainment of a NeOn UML diagram representing the suitable ODP instanti-
ated with information from the input (see Fig. 1). We assume that the user has a good
command of the domain (s)he wants to model, and that the information expressing the
modeling aspect in NL corresponds to the knowledge (s)he wants to represent6. Note
that this method allows users to freely introduce a sentence in NL, without any kind of
restrictions as imposed by controlled languages, which in some cases may imply

6 If the user introduces a sentence like Animals are divided into vertebrates and omnivores, the

system will not analyze whether such a sentence is adequate from the content viewpoint.

38 G. Aguado de Cea et al.

further actions, such as interaction with the user for refining the input (as will be ex-
plained in section 5). The method can be divided in 3 main tasks:

1) Task 1. ODPs Formulation. The goal of this task is to formulate in full NL the
domain aspect to be modeled: the user has difficulties in modeling a certain do-
main parcel and expresses that knowledge in NL.

2) Task 2. ODPs Refinement. The goal of this task is to refine the input from Task 1.
This task is only carried out when there is no direct correspondence to one ODP.
The user may have to answer a set of refining questions. Refinement may be re-
quired because of ontology enrichment needs or lexical ambiguities.

3) Task 3. ODPs Validation. The goal of this task is to confirm that the resulting
ODP meets user expectations.

The tool that supports this method is called S.O.S., System for Ontology design pat-
tern Support, and enables a semi-automatic selection of ODPs, and its integration in
the ontology being built. This tool is under development and will be integrated as a
plug-in in the NeOn toolkit7, and used in combination with its ontology editor. The
underpinnings of the S.O.S. are constituted by a set of LSPs, since they are the neces-
sary mechanisms to bridge the gap between NL formulations and ODPs.

Fig. 1. S.O.S. Workflow

4.1 From Natural Language to Ontology Design Patterns

The central part of this research was the enrichment of the ODPs described within the
NeOn project (available in [30]) with an NL field. This NL field consists of a set of
LSPs that represent the most usual ways a language has for conveying the conceptual
relations formalized in ODPs. LSPs are defined here as formalized linguistic schemas
or constructions derived from regular expressions in NL that consist of certain lin-
guistic and paralinguistic elements, following a specific syntactic order, and that

7 http://www.neon-toolkit.org/

 Natural Language-Based Approach for Helping in the Reuse of ODPs 39

permit to extract some conclusions about the meaning they express (inspired in
[13,17]). Our approach to derive LSPs from NL formulations is based on the assump-
tion that any language has a number of lexical and/or syntactical mechanisms to relia-
bly convey a relation of interest, which in this case is the one represented by the ODP.
Contrary to Hearst patterns8 [13], whose main elements were prepositional phrases,
paralinguistic signs or conjunctions, in the first stage of this research we have just
considered verb-oriented LSPs in the sense of [27, 5], which are mainly composed by
tuples of subject-verb-object, although we also consider compound sentences, i.e.,
sentences in which more than one verb is involved. We assume that for expressing
how concepts are related in ontologies, we make use of verbs in affirmative or de-
clarative sentences in the simple present tense9. In this kind of patterns, verbs are the
ones that carry the semantics of the relation.

The idea of applying LSPs to discover semantic relations was introduced in Compu-
tation by Hearst [13] in the early 1990s. The goal of her research was the automatic
acquisition of lexical syntax and semantics from machine readable dictionaries. Since
then, many authors have applied LSPs for the automatic discovery of semantically
related lexical items from unstructured texts with different purposes. In Ontology
Engineering this has been mainly applied with the aim of automatically or semi-
automatically learning classes and/or instances to enrich or populate ontologies
[2,4,11,24,26,33]. A second line of research which strongly relies on the use of LSPs
is the one that tries to learn taxonomical and non-taxonomical relations between con-
cepts for the construction of ontologies [2,5,16,25,29].

Our approach, however, contributes to the research on LSPs in a new and promising
perspective that focuses on the support to ontology modelling. In this sense, LSPs are
rather a means than an end in itself, because they are the means to identify those NL
expressions that instantiate them, with the end of establishing a correspondence to
ODPs. Needless to say that most of the research on LSPs has been widely done for the
English language, although some scarce attempts have been carried out for French
[16], German [33], or Spanish [1] covering different semantic relations. In our case,
we aim at identify LSPs for English, Spanish and German corresponding to the same
set of ODPs.

To illustrate the process of LSPs identification, let us consider the following sen-
tence in English: Medications are generally classified into two groups: over-the-
counter (OTC) medication and prescription only medicines (POM).

In this sentence, the verb classify into indicates a hypernym-hyponym relation, in
which the superclass is at the left-hand side of the verb, and the subclasses at the
right-hand side. In fact, there is a group of sentences constructed in a similar way
from which we could draw an LSP embracing all of them (see also Table 3 for sym-
bols and abbreviations in LSPs):

NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP <subclass>

8 Some examples of Hearst patterns are: (1) NP such as {NP1, NP2… (and | or) NPn},

(2) NP {,NP}* {,} or other NP, and (3) NP {,} especially {NP,}* { or | and } NP.
9 For example: Animals are divided into two major categories: vertebrates and invertebrates,

would be the usual way of describing domain knowledge.

40 G. Aguado de Cea et al.

Table 3. Restricted symbols and abbreviations in LSPs

SYMBOLS
&

ABBREVIATIONS
DESCRIPTION

AP<…>

Adjectival Phrase. It is defined as a phrase whose head is an adjective
accompanied optionally by adverbs or other complements as prepositional
phrases. AP is followed by the semantic role played by the concept it represents
in the conceptual relation in question in <…>, such as e.g., property.

CATV
Verbs of Classification. Set of verbs of classification plus the preposition that
normally follows them. Some of the most representative verbs in this group are:
classify in/into, categorize in/into, sub-classify in/into.

CD Cardinal Number.

CN
Class Name. Generic names for semantic roles usually accompanied by
preposition, such as class, group, type, member, subclass, category, part, set, etc.

COMP
Verbs of Composition. Set of verbs meaning that something is made up of
different parts. Some of the most representative ones are: consist of, compose of,
make up of, form of/by, constitute of/by.

NP<…>

Noun Phrase. It is defined as a phrase whose head is a noun or a pronoun,
optionally accompanied by a set of modifiers, and that functions as the subject or
object of a verb. NP is followed by the semantic role played by the concept it
represents in the conceptual relation in question in <…>, e.g., class, subclass.

PARA Paralinguistic symbols like colon.

() Parentheses group two or more elements.

* Asterisk indicates repetition.

[]
Elements in brackets are meant to be optional, which means that they can be
present either at that stage of the sentence or not, and by default of appearance,
the pattern remains unmodified.

¬ Elements preceded by this symbol should not appear in the pattern.

The sketched process for identifying LSPs is not always so trivial, since ODPs are
organized in such a way that they do not always coincide with the way NL expresses
conceptual relations. It may happen that an LSP corresponds to more than one ODP.
This occurs when, e.g., some NL constructs represented by the same LSP have a dif-
ferent meaning because the verb -which is the one that conveys the semantic relation
in our patterns- is polysemous10. In order to account for the correspondence between
LSPs and ODPs, we decided to classify LSPs in three types:

1. 1 LSP corresponds to 1 ODP
2. 1 LSP corresponds to N ODPs
3. 1 LSP corresponds to the combination of N ODPs

According to this classification, LSPs that are directly identified to one ODP and
cannot be associated to a different one belong to the first group. LSPs that can corre-
spond to more than one ODP because the verb they contain is polysemous, or because

10 Words that have multiple meanings are considered polysemous or polysemic

[http://www.merriam-webster.com/dictionary/]

 Natural Language-Based Approach for Helping in the Reuse of ODPs 41

different modelling decisions can be taken, fall into the second group. In this case, a
process of disambiguation or refining is needed in order to obtain the ODP that corre-
sponds to the input sentence. Finally, the third group includes those LSPs that are
realized by two or more ODPs, which means that in order to represent the information
expressed in NL, a combination of various ODPs is needed. For the purpose of exem-
plification, section 5 will be devoted to correspondence case 2, 1 LSP corresponds to
N ODPs.

4.2 Preliminary Repository of LSPs

At this stage of the research, we have identified a set of LSPs from NL expressions in
English, Spanish and German. LSPs are considered to be language dependant and not
interchangeable among different NLs, despite some overlapping [16]. Currently, the
LSPs identification process is in a more advanced stage for English, and in a more
initial one for Spanish and German. For space reasons, we have just included here
LSPs for English. Then, in order to complement NeOn ODPs with NL information by
means of LSPs, we designed a template for a unified description of LSPs that consists
of four slots, as shown in Table 4:

 LSPs Identifier. This mandatory slot contains an acronym composed of: LSP,
plus the acronym of the relation captured by the ODP, plus the ISO-639 code for
representing the name of the language for which the LSP is valid.

 NeOn ODPs Identifier. This mandatory slot inherits the ODP identifier used in
the NeOn ODPs repository within D5.1.1 [30]. Identifiers are composed of the
component type (e.g. LP standing for Logical Pattern, or CP for Content Pattern),
component (e.g. SC standing for SubClassOf), and number of the pattern (01).

 Formalization. This mandatory slot includes the various LSPs that express the
relation contained in the corresponding ODPs. LSPs have been formalized ac-
cording to a BNF extension (see Table 3).

 Examples. This optional slot shows some examples of sentences in NL that match
the LSPs in question.

Table 4. Template for LSPs

LSP Identifier An acronym composed of LSP + ODP component + ISO code for language

NeOn ODPs
Identifier

An acronym composed of component type + component + number

Formalization LSPs formalized according to BNF extension

Examples Sentences in NL that exemplify corresponding LSPs

From the LSPs identified up to now, we present here a preliminary excerpt, which
includes LSPs for the following NeOn ODPs [30]: subclass-of relation, equivalence
relation between classes, object property, datatype property, disjoint classes, simple
part-whole relation, and participation.

According to the classification presented in section 4.1, we divide the LSPs reposi-
tory in 3 sets: (1) 1 LSP corresponds to 1 ODP; (2) 1 LSP corresponds to N ODPs;
(3) 1 LSP corresponds to the combination of N ODPs.

42 G. Aguado de Cea et al.

(1) 1 LSP corresponds to 1 ODP

Table 5. LSPs corresponding to subclass-of relation ODP

LSP Identifier LSP-SC-EN

NeOn ODPs
Identifier

LP-SC-01

1 NP<subclass> be [CN] NP<superclass>

2 [(NP<subclass>,)* and] NP<subclass> be [CN] NP<superclass>

3
[(NP<subclass>,)* and] NP<subclass> (group in|into|as) | (fall into) |
(belong to) CN NP<superclass>

4
NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP
<subclass>

Formalization

5
There are CD CN NP<superclass> PARA [(NP<subclass>,)* and]
NP<subclass>

1 An orphan drug is a type of drug.

2 Odometry, speedometry and GPS are types of sensors.

3 Thyroid medicines belong to the general group of hormone medicines.

4
Membrane proteins are classified into two major categories, integral
proteins and peripheral proteins.

Examples

5 There are two types of narcotic analgesics: the opiates and the opioids.

Table 6. LSPs corresponding to object property ODP

LSP Identifier LSP-OP-EN

NeOn ODPs
Identifier

LP-OP-01

Formalization 1 NP<class> VB ¬ (be | have | CATV) NP<class>

Examples 1 Birds build nests.

Table 7. LSPs corresponding to datatype property ODP

LSP Identifier LSP-DP-EN

NeOn ODPs
 Identifier

LP-DP-01

1
Property|ies | characteristic|s | attribute|s of NP<class> be [PARA]
[(NP<property>,)* and] NP<property>

Formalization

2 NP<class> be [(AP<property>,)*] and AP<property>

1 Properties of mammals are hair, sweat glands, milk, and giving live birth.
Examples

2 Metals are lustrous, malleable and good conductors of heat and electricity.

 Natural Language-Based Approach for Helping in the Reuse of ODPs 43

Table 8. LSPs corresponding to disjoint classes ODP

LSP Identifier LSP-Di-EN

NeOn ODPs
 Identifier

LP-Di-01

Formalization 1 NP<class> differ | be different from NP<class>

Examples 1 Non-opioid agents differ from opioid agents.

Table 9. LSPs corresponding to simple part-whole relation ODP

LSP Identifier LSP-PW-EN

NeOn ODPs
Identifier

CP-PW-01

1 (NP<part>,)* and NP<part> COMP [CN] NP<whole>
Formalization

2 NP<whole> be COMP [CN] (NP<part>,)* and NP<part>

1 Proteins form part of the cell membrane.

Examples
2

A state machine workflow is made up of a set of states, transitions, and
actions.

Table 10. LSPs corresponding to participation ODP

LSP Identifier LSP-PA-EN

NeOn ODPs
 Identifier

CP-PA-01

Formalization 1
NP<object> participate | take part in [(NP<event>,)* and] NP<event> [in|
from | during] [NP<time-interval> to NP<time-interval>]

Examples 1 Project managers participate in business unit management and marketing.

(2) 1 LSP corresponds to N ODPs

Table 11. LSPs corresponding to subclass-of relation and simple part-whole relation ODPs

LSP Identifier LSP-SC-PW-EN

NeOn ODPs
Identifier

LP-SC-01

CP-PW-01

1 NP<class> include | comprise [(NP<class >,)* and] NP<class>

Formalization
2

NP<class> be divided | split | separate in|into | [CN] [(NP<class >,)* and]
NP<class>

1

Arthropods include insects, crustaceans, spiders, scorpions, and centipedes.
(LP-SC-01)

Reproductive structures in female insects include ovaries, bursa copulatrix
and uterus. (CP-PW-01)

Examples

2

Marine mammals are divided into three orders: Carnivora, Sirenia and
Cetacea. (LP-SC-01).

The cerebrumis divided into two major parts: the right cerebral hemisphere
and left cerebral hemisphere. (CP-PW-01)

44 G. Aguado de Cea et al.

Table 12. LSP corresponding to object property, datatype property and simple part-whole
relation ODPs

LSP Identifier LSP-OP-DP-PW-EN

NeOn ODPs
Identifier

LP-OP-01

LP-DP-01

CP-PW-01

Formalization 1 NP<class> have NP<class>

Examples 1
Birds have feathers. (The three ODPs could correspond to the LSP
expressed in this sentence. A modelling decision has to be taken according
to the user’s needs).

(3) 1 LSP corresponds to the combination of N ODPs

Table 13. LSP including subclass-of relation and disjoint classes ODPs

LSP Identifier LSP-SC-Di-EN

NeOn ODPs
Identifier

LP-SC-01 + LP-Di-01

1 NP<superclass> be | CATV [either] NP<subclass> or NP<subclass>

Formalization
2

NP<superclass> be divide in|into | split | separate in|into [either]
NP<subclass> and NP<subclass>

1 Animals are either vertebrates or invertebrates.
Examples

2 Sensors are divided into two groups: contact and non-contact sensors.

5 An Example of ODPs Reuse by Naive Users

In this section, our aim is to exemplify the proposed method, which is supported by
the S.O.S. tool.

Task 1.: Let us imagine that the user introduces the following sentence in English in
the S.O.S. input window: Arthropods include insects, crustaceans, spiders, scorpions,
and centipedes. For exemplifying the method, we assume that the user wants to repre-
sent a subclass-of relation.

Task 2.: The system would identify that the resulting tagged sentence has a corre-
spondence with the LSP identified as LSP-SC-PW-EN (see Table 11) in the LSPs
repository presented in section 4.2. Whenever the correspondence is 1 LSP to N
ODPs, a refinement process is needed. As already introduced, this situation results
from the ambiguity present in the polysemous verb include, since it can correspond to
two ODPs, one modelling the subclass-of relation, and the other modelling the simple
part-whole relation. For these cases, an option would be to interact with the user by
means of the so-called refining questions. In this example, questions would be:

 Natural Language-Based Approach for Helping in the Reuse of ODPs 45

a) Are insects, crustaceans, spiders, scorpions, and centipedes, types of arthropods?
b) Are insects, crustaceans, spiders, scorpions, and centipedes, parts of an arthropod?
The answer to the first question should be yes, and to the second, no, if the input sen-
tence wants to model a subclass-of relation, as we suppose in this example. In this
way, the system would help users to come to the right decision. Once the correspon-
dence to the subclass-of relation ODP has been obtained, it would be recommendable
from an ontological viewpoint to enrich this relation with knowledge about disjoint-
ness and exhaustiveness. A similar strategy has been also designed with the end of
finding out if the classes in a subclass-of relation are additionally disjoint and/or ex-
haustive (cf. [18]), although further strategies that do not require user interaction are
being explored.

Task 3.: The system returns a UML diagram modelling, in this case, the subclass-of,
and additionally disjoint or exhaustive classes relations depending on users answers
[18]. The UML diagram is fulfilled with information from the NL sentence. This
diagram is accompanied by an explanation in NL of the model to instruct the user in
the modelling of ontologies. In this way, the user has a new opportunity to check if
the returned UML diagram complies with his or her expectations. If (s)he finally
accepts the output, it is then integrated into the ontology being developed.

Seemingly, a sentence like Birds have feathers corresponding to LSP-OP-DP-PW-
EN (LSP for object property, datatype property and simple part-whole relation) needs
to be disambiguated because three different modelling solutions are possible. Here,
however, we are not only dealing with the multiple polysemous senses a verb can
have, but also with the different modelling decisions the user can take according to his
or her needs, that is, (a) feather as a class related to the class bird, (b) feather as a
property of bird, or (c) feather as parts of bird. Conscious of the intricacy, but at the
same time the importance of such a modelling problem, we are currently investigating
different approaches to deal with this and other difficulties that arise when dealing
with full NL.

6 Conclusions and Further Lines of Work

Results of initial experiments on ODPs reuse have strengthen the hypothesis that even
users with some background on ontology modelling face difficulties when reusing
ODPs for their needs. Based on these results and due to the lack of guidelines that
may help users in building ontologies by reusing Ontology Design Patterns (ODPs),
we have proposed a novel method for the reuse of ODPs aimed at naive users. There-
fore, with the aim of proposing a method that can guide naive users in the reuse of
ODPs, we have analyzed controlled languages designed to facilitate untrained users
the process of ontology modelling. The main limitations of such approaches, which
are not ODPs centred, are related with (a) the efforts users have to make for getting
trained in the use of such languages, and (b) the fact that they are constrained to the
English language, without taking into account other languages.

Consequently, our approach wants to go a step further in the sense of allowing on-
tology modelling by means of the reuse of ODPs starting from full NL formulations
in several languages. In order to enable this process, we designed the S.O.S. system
that used in combination with the NeOn toolkit ontology editor, will permit ODPs

46 G. Aguado de Cea et al.

reuse from NL expressions of the domain aspect to be modelled. The S.O.S. system
relies on a set of Lexico-Syntactic Patterns for bridging the gap between a NL input
and the corresponding set of ODPs, from which we have included an excerpt in this
paper. However, the correspondence between NL formulations and ODPs is not al-
ways so trivial, even less if we take into account two key factors: (1) language ambi-
guities, and (2) differences between how natural languages express conceptual rela-
tions, and how ODPs do. While some of this complex issues can be solved with user
interaction, as we have shown in section 5, our future work will concentrate on de-
signing additional strategies for solving these and other related problems.

Acknowledgments. Research for this paper has been supported by the project Lifecy-
cle support for networked ontologies (NeOn) (FP6-027595). In addition, it is partially
co-funded by an I+D grant from the Universidad Politécnica de Madrid.

References

1. Álvarez de Mon, I., Aguado de Cea, G.: The phraseology of classification in Spanish: inte-
grating corpus linguistics and ontological approaches for knowledge extraction. Presented
in BAAL/IRAAL (2006)

2. Aussenac-Gilles, N., Jacques, M.P.: Designing and Evaluating Patterns for Ontology En-
richment from Texts. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI),
vol. 4248, pp. 158–165. Springer, Heidelberg (2006)

3. Bushmann, F., Meunier, R., Rohnert, H., Sommerland, P., Stal, M.: Pattern-oriented soft-
ware architecture. A system of patterns. John Wiley & Sons, Chichester (1996)

4. Charniak, E., Berland, M.: Finding parts in very large corpora. In: Proc. of the 37th Annual
Meeting of the ACL, pp. 57–64 (1999)

5. Cimiano, P., Johanna, W.: Automatic Acquisition of Ranked Qualia Structures from the
Web. In: Proc. of the Annual Meeting of the ACL, pp. 888–895 (2007)

6. Cregan, A., Schwitter, R., Meyer, T.: Sydney OWL Syntax -towards a Controlled Natural
Language Syntax for OWL 1.1. In: Proc. of OWLED (2007)

7. Dolbear, C., Hart, G., Goodwin, J., Zhou, S., Kovacs, K.: The Rabbit language: descrip-
tion, syntax and conversion to OWL. Ordenance Survey Research. Technical Report
(2007)

8. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.: CLOnE:
Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S., Noy, N., Alle-
mang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 142–155. Springer, Heidelberg (2007)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, New York (1995)

10. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Musen, M.A., et
al. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 262–276. Springer, Heidelberg (2005)

11. Girju, R., Badulescu, A., Moldovan, D.: Learning Semantic Constraints for the Automatic
Discovery of Part-Whole Relations. In: Proc. of the HLT-NAACL 2003 (2003)

12. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer,
Heidelberg (2003)

13. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: Proc. of
14th International Conference on Computational Linguistics, pp. 539–545 (1992)

14. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.: The
Manchester OWL Syntax. In: Proc. of OWLED (2006)

 Natural Language-Based Approach for Helping in the Reuse of ODPs 47

15. Kaljurand, K., Fuchs, N.: Verbalizing OWL in Attempto Controlled English. In: Proc. of
OWLED (2007)

16. Marshman, E., Morgan, T., Meyer, I.: French patterns for expressing concept relations.
Terminology 8(1), 1–29 (2002)

17. Meyer, I.: Extracting knowledge-rich contexts for terminography. In: Borigault, D., Jac-
quemin, C., L’Homme, M.C. (eds.) Recent Advances in Computational Terminology, pp.
279–302. John Benjamins, Amsterdam (2001)

18. Montiel-Ponsoda, E., Aguado de Cea, G., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Help-
ing Naive Users to Reuse Ontology Design Patterns. In: Proc. of the 1st Workshop on
Knowledge Reuse and Reengineering over the Semantic Web at ESWC 2008 (2008)

19. Pan, J.Z., Lancieri, L., Maynard, D., Gandon, F., Cuel, R., Leger, A.: Knowledge Web De-
liverable D1.4.2.v2. Success Stories and Best Practices (2007)

20. Pinto, H.S., Tempich, C., Staab, S.: DILIGENT: Towards a fine-grained methodology for
DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: López de
Mantaras, R., Saitta, L. (eds.) Proc. of ECAI 2004, pp. 393–397. IOS Press, Amsterdam
(2004)

21. Prechelt, L.: An experiment on the usefulness of design patterns: Detailed description and
evaluation. Technical Report. University of Karlsruhe (1997)

22. Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M.C., Montiel-
Ponsoda, E., Poveda, M.: NeOn D2.5.1. A Library of Ontology Design Patterns: reusable
solutions for collaborative design of networked ontologies. NeOn project (2008)

23. Rector, A., Drummond, N., Horridge, M., Rogers, M., Knublauch, H., Stevens, R., Wang,
H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors
& Common Patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW
2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)

24. Reinberger, M.L., Spyns, P.: Discovering knowledge in texts for the learning of DOGMA-
inspired ontologies. In: Proc. ECAI-Workshop Ontology Learning and Population (2004)

25. Sánchez, D., Moreno, A.: Learning non-taxonomic relationships from web documents for
domain ontology construction. Data Knowledge Engineering 64, 600–632 (2008)

26. Snow, R., Jurafsky, D., Andrew, Y.N.: Learning syntactic patterns for automatic hypernym
discovery. Advances in Neural Information Processing Systems 17 (2004)

27. Specia, L., Motta, E.: A Hybrid Approach for Relation Extraction Aimed at the Semantic
Web. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.)
FQAS 2006. LNCS (LNAI), vol. 4027, pp. 564–576. Springer, Heidelberg (2006)

28. Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge Processes and Ontologies. IEEE
Intelligent Systems 16(1), 26–34 (2001)

29. Staab, S., Maedche, A.: Ontology Learning for the Semantic Web. IEEE Intelligent Sys-
tems, Special Issue on the Semantic Web 16(2), 72–79 (2001)

30. Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A., Gómez-Pérez, A., Lehmann, J., Le-
wen, H., Presutti, V., Sabou, M.: NeOn D5.1.1. NeOn Modelling Components. NeOn Pro-
ject (2007)

31. Suárez-Figueroa, M.C., Aguado de Cea, G., Buil, C., Dellschaft, K., Fernández-López, M.,
García, A., Gómez-Pérez, A., Herrero, G., Montiel-Ponsoda, E., Sabou, M., Villazon-
Terrazas, B., Yufei, Z.: NeOn D5.4.1. NeOn Methodology for Building Contextualized
Ontology Networks. NeOn project (2008)

32. Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A Comparison of three
Controlled Natural Languages for OWL 1.1. In: OWLED (2008)

33. Xu, F., Kurz, D., Piskorski, J., Schmeier, S.: A Domain Adaptive Approach to Automatic
Acquisition of Domain Relevant Terms and their Relations with Bootstrapping. In: Proc.
of the 3rd LREC (2002)

	Natural Language-Based Approach for Helping in the Reuse of Ontology Design Patterns
	Introduction
	Motivation
	Related Work
	Reuse of Ontology Design Patterns by Naive Users
	From Natural Language to Ontology Design Patterns
	Preliminary Repository of LSPs

	An Example of ODPs Reuse by Naive Users
	Conclusions and Further Lines of Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

