
Constructing a Safety Case for
Automatically Generated Code from

Formal Program Verification Information

Nurlida Basir1, Ewen Denney2, and Bernd Fischer1

1 ECS, University of Southampton, Southampton, SO17 1BJ, UK
(nb206r,b.fischer)@ecs.soton.ac.uk
2 USRA/RIACS, NASA Ames Research Center

Mountain View, CA 94035, USA
Ewen.W.Denney@nasa.gov

Abstract. Formal methods can in principle provide the highest levels of assur-
ance of code safety by providing formal proofs as explicit evidence for the as-
surance claims. However, the proofs are often complex and difficult to relate to
the code, in particular if it has been generated automatically. They may also be
based on assumptions and reasoning principles that are not justified. This causes
concerns about the trustworthiness of the proofs and thus the assurance claims.
Here we present an approach to systematically construct safety cases from in-
formation collected during a formal verification of the code, in particular from
the construction of the logical annotations necessary for a formal, Hoare-style
safety certification. Our approach combines a generic argument that is instanti-
ated with respect to the certified safety property (i.e., safety claims) with a de-
tailed, program-specific argument that can be derived systematically because its
structure directly follows the course the annotation construction takes through the
code. The resulting safety cases make explicit the formal and informal reasoning
principles, and reveal the top-level assumptions and external dependencies that
must be taken into account. However, the evidence still comes from the formal
safety proofs. Our approach is independent of the given safety property and pro-
gram, and consequently also independent of the underlying code generator. Here,
we illustrate it for the AutoFilter system developed at NASA Ames.
Keywords: Automated code generation, formal program verification, Hoare logic,
fault tree analysis, safety case, Goal Structuring Notation.

1 Introduction

Model-based design and automated code generation have become popular, but substan-
tial obstacles remain to their widespread adoption in safety-critical domains: since code
generators are typically not qualified, there is no guarantee that their output is safe, and
consequently the generated code still needs to be fully tested and certified. Here, for-
mal methods such as formal software safety certification [6] can be used to demonstrate
safety of the generated code (i.e., that the execution of the code does not violate a spec-
ified property) by providing formal proofs as explicit evidence or certificates for the
assurance claims. However, several problems remain. For automatically generated code



it is particularly difficult to relate the proofs to the code; moreover, the proofs are the
final stage of a complex process and typically contain many details. This complicates
an intuitive understanding of the assurance claims provided by the proofs. Hence, it is
important to make explicit which claims are actually proven, and on which assumptions
and reasoning principles both the claims and the proofs rest. Moreover, the complexity
of the tools used can lead to unforeseen interactions and thus causes additional concerns
about the trustworthiness of the assurance claims. We thus believe that traceability be-
tween the proofs on one side and the certified program and the used tools on the other
side is important to gain confidence in the formal certification process.

Here, we address these problems and present an approach currently under develop-
ment to systematically derive safety cases from information collected during the formal
software safety certification phase, in particular the construction of the necessary log-
ical annotations. The purpose of these safety cases is to provide a “structured reading
guide” for the program and the safety proofs that will allow users to understand the
safety claims without having to understand all the technical details of the formal ma-
chinery. We use a fault tree analysis to identify possible risks to the program safety
and the certification process, as well as their interaction logic, and thus to derive the
structure of the safety cases. We then use a generic, multi-tiered argument [3] that is
instantiated with respect to a given safety property and program. Its three tiers together
constitute a single safety case that justifies the safety of the program. The upper tier
simply instantiates the notion of safety and the formal definitions for the given safety
property while the two lower tiers argue the safety of the program as governed by the
property. The lower tiers are constructed individually to reflect the program structure.
This can be done systematically because their structure directly follows the course the
annotation construction takes through the program. In principle, our approach is thus in-
dependent of the given safety property and program, and consequently also independent
of the underlying code generator [10].

We have developed the overall structure of the generic safety case and manually
instantiated it for several examples, using only information logged during annotation
construction. We expect that this process can be automated easily and that it will fur-
thermore be straightforward to integrate with existing tools to construct safety cases
such as Adelard’s ASCE tool [1]. The program safety case will eventually be comple-
mented by an additional safety case that will argue the safety of the underlying safety
logic (the language semantics and the safety policy) with respect to the safety property
(i.e., safety claims), as well as other components such as the theorem prover. This will
clearly communicate how the safety claims, key safety requirements, and evidence for
the program safety are connected. We expect that this will alleviate distrust in code
generators, which remains a problem for their use in safety-critical applications.

2 Background

Here, we give a brief overview of automated code generation; we focus on the certifi-
able code generation approach, where the assurance is not implied by the trust in the
generator but follows from an explicitly and independently constructed argument for
the generated code.



2.1 Assurance for Automated Code Generation

Automated code generation [5] is a technique for automatically constructing software
from (high-level) problem specifications or models. Code generators typically work by
adapting and instantiating pre-defined code fragments for (parts of) the problem spec-
ification, and composing these partial solutions. They have a significant potential to
eliminate manual coding errors and reduce costs and development times. Obviously, to
realize any benefits from code generation, the generated code needs to be shown cor-
rect or at least safe. In correct-by-construction techniques such as deductive synthesis
[23] or refinement [22] this is done by a mathematical meta-argument. However, such
techniques remain difficult to implement and extend and have not found widespread
application. A formal verification of the generator would provide a similar level of
assurance, but remains unfeasible with the existing program verification techniques.
Currently, generators are thus validated primarily by testing [24], in line with software
development standards for safety-critical domains such as DO-178B [21]. However,
this time-consuming and expensive process slows down generator development and ap-
plication, and only few generators have been qualified.

We believe that product-oriented assurance approaches are a viable alternative to
the process-oriented approaches outlined above. Here, checks are performed on each
and every generated program rather than on the generator itself. Hence, assurance is not
implied by the trust in the generator but follows from an explicitly constructed argument
for the generated code. In our approach [8, 9, 11], we focus on safety properties, which
are generally accepted as important for quality assurance and are also often used in code
reviews of high-assurance software. We then use program verification techniques based
on Hoare logic to formally demonstrate that the generated code satisfies the safety prop-
erties of interest. Our approach generally follows similar lines as proof carrying code
[16] but it works on the source code level instead of the object code level [6]. However,
both approaches exploit formal safety proofs as explicit evidence or certificates for the
assurance claims over the untrusted code.

2.2 Formal Software Safety Certification

The purpose of software safety certification is to demonstrate that a program meets its
high-level requirements and remains safe in the presence of known hazards. Formal
software safety certification uses formal techniques based on program logics to show
that the program does not violate certain conditions during its execution. A safety prop-
erty is an exact characterization of these conditions, based on the operational semantics
of the programming language. Each safety property thus describes a class of hazards.
A safety policy is a set of Hoare rules designed to show that safe programs satisfy the
safety property of interest. In our framework, the rules are formalized using the usual
Hoare triples extended with a “shadow” environment which records safety information
related to the corresponding program variables, and a safety predicate that is added to
the computed verification conditions (VCs) [6]. However, here we focus on the infor-
mation provided by constructing the annotations, and leave the details of constructing
(i.e., applying the Hoare rules) and proving (i.e., calling the theorem prover) the VCs to
the complementary system-wide safety case.



Formal software safety certification follows the same technical approach as pro-
gram verification. A VC generator (VCG) traverses the code backwards and applies the
Hoare rules to produce VCs, starting with any safety requirements on output variables.
If all VCs are proven by an automated theorem prover (ATP), we can conclude that the
program is safe wrt. the given safety property. This approach shift the trust burden from
the program to the certification system: instead of having to trust an arbitrary program
to be safe, users have to trust the certifier to be correct.

Code

                                                                                Certification System

 Code Generator Verification Condition Generator  Theorem Prover Proof Checker

annotated code

VCs proofsAnnotation Inference System
Safety Case Generator proofs

inference information (structure of arguments) 
Simplifier

Domain Theory
SVCs

safety arguments
code annotated code

rewrite rules axioms/lemmas
proofs (evidence)

Safety Cases Certificate

Hoare rules

 Trusted ComponentUntrusted Component

Safety Property Safety Policysafety notionsafety notion
Fig. 1. System Architecture

Figure 1 shows the overall system architecture of our certification approach. In this,
the original code generator (in this case, the AutoFilter system [28]) has been extended
with the annotation inference subsystem and the standard machinery of Hoare-style
verification techniques (i.e., VCG, simplifier, ATP, domain theory, and proof checker)
to achieve a fully automated verification of the generated code. The architecture dis-
tinguishes between trusted (in grey) and untrusted components (in white) as shown in
Figure 1. Trusted components must be correct because any errors in them can compro-
mise the assurance provided by the overall system. Untrusted components, on the other
hand, are not crucial to the assurance because their results are double-checked by at
least one trusted component.These components and their interactions are described in
more detail in [6, 8, 9].

Rather than acting as a black-box verification tool which provides a simple pass/fail
result, our certification approach provides a structured safety arguments, supported by
a body of evidence (i.e., safety cases) to demonstrate why the generated code can be
assumed to be sufficiently safe. The safety case is generated from the analysis of the
code and provides a high-level traceable argument of how the code complies with the
specified safety property. The inference engine supplies information to the safety case
generator, which renders this along with the code. The safety case generator identifies
each part of the program that can draw attention to potential certification problems and
select appropriate evidence to reason correctness of the underlie safety claims and the



certification process. By elucidating the reasoning behind the certification process, there
is less of a need to trust the tool.

Here, we use initialization safety (i.e., each variable or individual array element has
explicitly been assigned a value before it is used) as an example, but our framework
can handle a variety other safety properties including absence of out-of-bounds array
accesses [6]; we expect that other properties handled by proof-carrying code such as
null pointer dereferences [16] can be formalized easily. However, we are not restricted
to showing exception freedom but can also encode domain-specific properties such as
matrix symmetry or coordinate frame consistency (which requires significant proofs
involving matrix algebra and functional correctness), whose violation will not immedi-
ately cause a run-time exception but still renders the code unsafe.

The Hoare-approach to safety certification is more flexible than special-purpose
static analysis tools such as PolySpace [18] that can only handle the comparatively
simple language-specific properties. It also provides explicit evidence in form of proofs,
which static analysis tools typically lack.

2.3 Annotation Inference

In order to achieve a fully automated verification, a program logic requires annotations
(i.e., pre- and post-conditions, and loop invariants) at key program locations. These
annotations serve as lemmas that facilitate the proof of VCs, but they have to be estab-
lished in their own right (i.e., they will produce VCs that show that they hold at their
given location). The purpose of annotation inference [8, 9] is to construct these anno-
tations automatically, by analyzing the program structure. In our case, the annotations
must formalize all pertinent information that is necessary for the ATP to prove that all
potentially unsafe locations are in fact safe. If the program is safe, this information
will be established or “defined” at some location (which we thus call a definition) and
maintained along all control-flow paths to all the potentially unsafe locations, where
it is used. The idea of the annotation inference algorithm, therefore, is to “get the in-
formation from definitions to uses”, i.e., to find the endpoints of all such generalized
def -use-chains, to construct the formulae used in the annotations, and to annotate the
program along the paths.

The annotation inference algorithm itself is generic, and parametrized with respect
to a library of coding patterns that depend on the safety policy and the code gener-
ator. The use of these patterns isolates the annotation construction from the internal
details of the code generation and also allows us to a certain degree to handle code
that has been modified manually. The patterns characterize the notions of definitions
and uses that are specific to the given safety property. For example, for initialization
safety, definitions correspond to variable initializations while uses are statements which
read a variable, whereas for array bounds safety, definitions are the array declarations
(where the shadow variables get their values from the declared bounds), while uses
are statements which access an array variable. The inferred annotations are thus highly
dependent on the actual program and the properties being proven. For example, for
initialization safety, an invariant on a for-loop might express that an array has been ini-
tialized up to the loop index (∀j ≤ i ·Ainit[j] = INIT). The VCG will turn this annotation
into three VCs, corresponding to establishing the invariant on loop entry, preservation



of the invariant by the loop body, and implication by the “exit form” of the invariant
(i.e., over the loop bounds) of the loop post-condition. For other safety properties, the
annotations can be seen as encapsulating the safety requirements directly. In the case of
the symmetry policy, a postcondition ∀i, j · M [i, j] = M [j, i] expresses the symmetry
of M . Again, this will be converted into VCs and checked by the prover. However, it
is the def -use-dependencies, rather than the annotations or the VCs, which govern the
overall structure of both the safety argument and the safety case.

3 Hazard Analysis for Formal Program Verification

While formal program verification has become a viable alternative in demonstrating
program safety, doubts about the trustworthiness of the verification proofs remain.
These doubts concern not only the correctness of the proofs (i.e., whether each proof
step is legal in the underlying calculus) or the correctness of any of the other tools that
handle the verification conditions, but also the question whether the proofs actually en-
tail program safety. Since there are many possible ways in which the trustworthiness
can be compromised, a fault tree analysis is required to identify the chain of causes and
their interaction logic that initiate this undesired event.

However, our situation is complicated by the fact that the code generator is a meta-
level system, and we do not know the application context of the generated program. In
order to analyze the situation already at this meta-level (rather than deferring this to the
final application), we need to make the simplifying but conservative assumption that
every violation of the safety property is a “potential condition that can cause harm to
personnel, system, property or environment”, i.e., a hazard [15].

A further complication is caused by the fact that the certification system is purely
observational in the sense that it cannot introduce any additional hazards as defined
above, but should nonetheless be included in the hazard analysis. We thus need to look
at the interaction between the code generator and the certification system to identify
faults of the combined system. We consider two sets of indicators, namely the output
of the code generator, or more precisely, whether the generated code is safe or unsafe,
and the output of the certification system, or more precisely, its claim about the safety
of the code (i.e., safe, unsafe, or unknown). We then consider all situations in which
these two indicators do not agree as abnormal or faults of the combined system. The
most critical fault, on which we concentrate here, occurs if the code exhibits an unsafe
behavior when it is executed but the certification system claims that all safety properties
were proven to hold.

The fault tree shown in Figure 2 demonstrates how the combinations of events that
could lead to the top-level hazard (i.e., an undetected violation of the safety property)
are linked together. It focuses on showing possible events that might invalidate the
safety claim construction as it follows the structure of the generated code. A complete
analysis would also need to look at other hazards, e.g., incorrect proofs or inconsistent
axioms; the corresponding fault tree will lead to the system-wide safety case and is left
for future work.

Figure 2 shows that there are two potential causes for the top-level hazard, either
a missed potentially unsafe location in the code or the certification system erroneously



concluded that all locations in the code are safe. Potentially unsafe locations in the
generated code can be missed because of

– an incomplete or incorrect formalization of the safety policy corresponding to the
given safety property (i.e., the failure to detect a location as potentially unsafe),

– an incomplete or incorrect representation of the safety requirements in critical an-
notations (e.g., a wrong global post-condition on the output variables),

– missing VCs (e.g., due to errors in the VCG), or
– incomplete coverage of the program, missing claims for any variable, occurrence

or path in the program.

Here, our safety case will focus on the last cause, as it is the only cause directly related
to the code generator. All other causes will be handled by the complementary system-
wide safety case.

 Undetected violation of the given 
safety property 

Missed potentially unsafe location 
in the program 

Erroneous conclusion that all 
locations in the program are safe 

Missing 
VCs 

 

Missing or 
incorrect 
critical 

annotations 

Incomplete or 
incorrect 

formalization of 
safety policy  

Incorrect 
safety 

obligation 

 

VCG 
constructed 

incorrect 
VCs 

Incorrect 
hypothesis 

from 
definition 

Hypotheses 
not maintained 
correctly along 

paths 

Hypotheses 
for different 

paths 
inconsistent 

Incorrect 
critical 

annotation  

Incorrect 
formalization 

of safety 
policy 

Incorrect 
safety 

predicate 

 

Definition on 
incorrect 

path 

 

Definition 
has incorrect 
annotation 

 

OR 

OR 

OR 

Missing 
occurrences  

OR 

OR 

Incomplete 
program 
coverage  

 

Incorrect 
hypotheses at 
the particular 

location  

Incorrect 
proof 

OR OR 

Missing 
variables  

Missing 
paths  

Fig. 2. Fault Tree for Program Verification

Since any location is considered safe if a proof for its corresponding safety obliga-
tion can be found, assuming the hypotheses available at that location, the conclusion
that the program is safe at all locations can be wrong due to three reasons:

– the proof can be technically wrong (i.e., not conform to the inference rules of the
underlying calculus), or

– the safety obligation that is proven can be wrong (i.e., does not imply the safety of
the location), or

– the hypotheses used in the proof can be wrong (i.e., do not hold at the location).

Here, we concentrate on the last two reasons and rely on proof checking [29] to mitigate
the hazards connected with the first cause. The safety obligation can be wrong if any



of the critical annotations are wrong (similar to the case of missing a potentially unsafe
location described above), or if the safety policy (including the safety predicate) or its
implementation in the VCG are wrong. The hypotheses can be wrong because they
have been constructed wrongly at a definition or result from a definition that is on an
incorrect path, or because they are not maintained along the paths from the definition to
the use, or because the different hypotheses from the different paths are inconsistent to
each other.

4 Constructing Safety Cases via Annotation Inference

In our work, we consider each violation of the given safety property by the generated
code as a hazard. The purpose of the safety case described here is to construct a safety
case that argue that the safety property is in fact not violated and thus that the risk
associated with this hazard (as identified in section 3) is controlled or mitigated and can
not lead to a system failure.

Safety cases [4] are structured arguments, supported by a body of evidence, that
provide a convincing and valid case that a system is acceptably safe for a given ap-
plication in a given operating environment. In our case, the high-level structure of this
argument is constructed from information collected by the annotation inference algo-
rithm. However, the evidence still comes from the formal safety proofs. The safety case
makes explicit the formal and informal reasoning principles, and reveals the top-level
assumptions and external dependencies that must be taken into account. It also provides
information about why the generated code can be assumed to be sufficiently safe. It can
thus be thought of as “structured reading guide” for the safety proofs and act as a trace-
able route to the safety requirements, safety claims and evidence that are required to
show safety of the generated code.

We use the Goal Structuring Notation [14] as technique to explicitly represent the
logical flow of the safety argument. Basically, the safety arguments presented here in-
dicates a linkage between evidence (i.e., formal proofs) and safety claims i.e., that there
is no violation to the given safety property that lead to the incorrect formal proofs, and
thus the code is indeed safe with respect to the initialization before use safety prop-
erty. Here, we provide a simplified overview of this safety case. We concentrate on its
generic structure and describe its different tiers. We further concentrate on the program
itself, leaving the remaining elements (i.e., the formal framework, the certification sys-
tem and its individual components, and the safety proofs) of the combined safety case
for future work.

4.1 Tier I: Explaining the Safety Notion

Figure 3 shows the the top tier of the safety case. It starts with the top-level safety goal
(i.e., the safety of the generated code with respect to the safety property of interest) and
shows how this is achieved by a defensible argument based on the partial correctness of
the generated code. The argument stresses the meaning of the Hoare-style framework,
specialized to the given safety property. However, the argument structure remains inde-
pendent of the property. Here, contexts explain the informal interpretation of key no-
tions like “safe” and “safety property”. Constraints outline limitations of the approach,



in particular, the fact that certification works on an intermediate representation of the
source code and only shows a single property, e.g., init-before-use. Hyperlinks refer to
additional evidence in the form of documents containing, for example, the model from
which the source code has been generated.

Goal: The code is safe to execute 
wrt. the “init-before-use” safety 
property 

Context: safe = code does not 
violate given safety property 
during execution  

Context: Generated by Autofilter 
from the model quaternion_ds1 

Constraint: Certification works on 
intermediate representation only 

Context: safety property = 
requirement to be maintained 
continuously by program 

Context: init-before-use = 
variable or array element is 
explicitly assigned by a value 
before it is read 

Constraint: focus on given safety 
property only  

Goal: all read accesses to all 
variables are safe wrt.  
init-before-use  
 

Goal: Formalization of safety 
policy is adequate 
 

Model: Hoare-style program 
verification using specific proof 
rules 

Justification: proof of 
correctness ensure safety of 
execution 
 

Constraint: partial correctness 
proof only (no termination) 

Model: Semantic safety 
definition n, n’ |= x safe init iff 
xinit = init 

Justification: safety policy 
defined in terms of read accesses 

Context: safety policy = set of 
Hoare rules designed to show 
that safe programs satisfy the 
safety property of interest 

Context: “shadow variable” 
record safety-relevant 
information for variables 

Strategy: Argument 
based on partial 
correctness wrt.      
init-before-use policy 

J 

J 

Fig. 3. Tier I of Derived Safety Case: Explaining the Safety Notion

The key strategy at this tier and its model (i.e., a Hoare-style partial correctness
proof using the dedicated proof rules of the init-before-use safety policy) as well as its
limitations (i.e., no termination proof) are made explicit. The strategy reduces show-
ing the safety of the whole program to showing the safety of all read accesses, which
emerges as first subgoal. This is justified by the fact that the safety property is defined
in terms of variable read accesses. The subgoal is further elaborated by a model of the
semantic safety definition, which exactly defines what is meant by “safe”, using the
notion of shadow variables given as context. The strategy’s second subgoal is to show
that the safety policy adequately represents the safety property, which is also the foun-
dation of the strategy’s original justification (i.e., the claim that the proofs ensure the
safe execution of the program). This subgoal is not elaborated further in this safety case
but leads to the complementary safety case for the safety logic.

4.2 Tier II: Arguing over the Variables

The second tier reduces the safety of all variables in two steps, first to the safety of each
individual variable (justified by the fact that the safety property is defined on individual
variables) and then to the safety of the individual occurrences. Note that the number of



subgoals of both strategies (see Figure 4 for the goal structure) and the safety conditions
are program-specific. This information is provided by the annotation inference.

Both strategies are predicated on the assumption that they iterate over the complete
list of variables (resp. occurrences). Each individual occurrence then leads to a subgoal
to show that the computed safety condition is valid at the location of the variable’s
occurrence. This reduction to a formal proof obligation is justified by the soundness and
completeness of the safety policy; in addition, the specific form of the safety condition
is also justified. Note that some of the root cause identified in the fault tree remain
as assumptions in the safety case (i.e., the list of variables and their occurrences are
assumed to be complete). However, these can be checked easily, since they require no
deep analysis of the generated code; in fact, the check could be automated easily.

Goal: all read accesses to all 
variables are safe wrt.  
init-before-use 

Justification: Safety property 
defined on individual variables 
 

Assumption: Complete list of 
variables  
 

Goal: xinit is safe  
 

Goal: xhatmin is safe  
 

Goal: r is safe  
 

Justification: Only read 
accesses can violate safety 
property 

Assumption: Complete list of 
occurrences  
 

Goal: xhatmin is safe at location 
#161 

Goal: xhatmin is safe at location 
#265  

Goal: xhatmin is safe at location 
#294  

Goal: Safety condition xhatmin init 

(3,0) = init holds at this location 
 

Justification: Safety condition is 
derived by instantiation of the  
safety predicate over 

Justification: Soundness and 
completeness of safety policy 
 

Strategy: Argument over 
all read access 
occurrences of xhatmin 

Strategy: Argument over 
each variable individually 
 

J J 

A J 

A J 

Fig. 4. Tier II of Derived Safety Case: Arguing over the Variables

4.3 Tier III: Arguing over the Paths

The final tier (see Figure 5 for the goal structure) argues the safety of each individual
variable access, using a strategy based on establishing and maintaining appropriate in-
variants. This directly reflects the course the annotation inference has taken through the
code. The first subgoal is thus to show that the variable safety is established on all paths
leading to the current location, using an argument over all definition locations. Here,
the model for the subgoal corresponds to the pattern that was applied during annotation
inference to identify the definition. Each definition thus leads to a corresponding sub-
goal and then further to any number of VCs, although here only a single VC emerges in



 

Model: Matrix 
assignment 

Assumption: 
Complete list of paths  

Model: Series 
of assignment 

Goal: xhatmin is 
defined in lines 
154-159 

Goal: VC #17  
is proven 
 

Goal: VC #04  
is proven 
 

Goal: VC #07  
is proven 
 

Goal: VC #14  
is proven 
 

Goal: Safety condition xhatmin init  

(3,0) = init holds at this location 
 

Assumption: Complete 
list of VCs  

Goal: Variable safety from all  
paths implies safety condition 
 

Goal: Variable safety is established 
on all paths to this location 
 

Goal: Variable safety is maintained 
on all paths to this location 
 

Goal: VC #30 
is proven 
 

Goal: xhatmin is 
defined at line 
288 

Goal: variable 
safety maintained 
on path #1 

Goal: variable 
safety maintained 
on path #4 

Strategy: Argument over 
establishment, maintenance 
and strength of variable safety  
 

Strategy: Argument over 
establishment of variable 
safety   

Strategy: Argument over 
all paths   

A 

A 

Fig. 5. Tier III of Derived Safety Case: Arguing over the Paths

both cases. The proof from these VCs demonstrate that the risk identified in the hazard
analysis (cf. Figure 2) does not occur for the given program.

Goals that concern properties of the program (e.g., “xhatmin is defined”) are decom-
posed into subgoals that comprise program-independent tasks for the prover, i.e., VCs.
The validity of the construction of the VCs depends on the soundness of the rules of the
VCG, the simplifier, and the definition of the safety policy, while the correspondence
to program locations is based on tracing information added by the VCG and retained
during the certification process. We have omitted these details from the safety case.

The second subgoal of the top-level strategy is to show that the established vari-
able safety is maintained along all paths. This proceeds accordingly and the VCs again
demonstrate that the identified risk is mitigated. The final subgoal is then to show that
the variable safety implies the validity of the safety condition. This can again lead to
any number of VCs. If (and only if) all VCs can be shown to hold, then the safety prop-
erty holds for the entire program. The evidence for the VCs is provided by the formal
proofs; we plan to convert these into safety cases as well.

5 Related Work

Most previous work on assurance for automated code generation has focused on tech-
niques to ensure the correctness of the code generator. Whalen et al. [27] describe a
minimum set of requirements for creating code generators that are fit for application
in safety-critical systems. However, this set includes a formal correctness proof of the
translation implemented by the generator (more precisely, an equivalence proof be-
tween model and generated code), which practically feasible only for generators with
very similar input and output notations. Our approach, in contrast, is applicable for a



much wider range of generators. Stürmer et al. [24, 25] present a systematic testing ap-
proach and safeguarding techniques for model-based code generation tools. However,
the effort easily becomes excessive and testing on its own is insufficient to provide
enough assurance for safety-critical systems. Instead, some other basis is required to
trust automatically generated code. Both O’Halloran [17] and Denney et al. [11] thus
suggest that there should be explicit proofs for the correctness of the generated code
rather than just trust the correctness of the generator itself.

Only program verification can prove that of program is free of certain defects or
does have a certain property of interest. Traditionally, program verification concentrates
on showing full functional equivalence between specifications and programs, as for ex-
ample the KIV system [19]. Necula [16] introduced proof-carrying code (PCC) as new
technique to formally verify untrusted code based on specific safety property. PCC and
related verification techniques (including our certification approach) generate a large
amount of formal mathematical proofs, which cannot be easily understood by users.
Consequently, the proofs only tell whether a program is safe or unsafe, but offer no
insight into or explanation of the underlying reason. Only few tools combine program
verification and documentation, for example the PolySpace static analysis tool [18]. It
analyzes programs for compliance with fixed notions of safety, and produces a marked-
up browsable program together with a safety report as an Excel spreadsheet. However,
unlike our approach, PolySpace does not describe the construction of the underlying
safety claims or their relation to the program.

Hughes [13] argues that explanations are appropriate only when we are seeking to
understand why something occurred while arguments are appropriate when we want
to show that something is true. The argumentation (i.e., safety cases [4, 14]) has been
adopted across many industries especially in safety-critical systems. For example, Wea-
ver [26] presents arguments that reflect the contribution of software to critical system
safety and Reinhardt [20] presents arguments over the application of the C++ program-
ming language in safety-critical systems. Audsley et al. [2] present arguments over the
correctness of specification mapping from system model to code and subsequent trans-
lation into code. In [12], Galloway et al. present a generic argument for technology sub-
stitution i.e., argue for the safety of substitution of testing with proof-based verification
in the context of certification standards like DO-178B [21]. They present an argument
on how can we reasonably conclude, from the evidence available, that the replacement
technology is at least as convincing as the evidence produced by testing and there is no
impact on system safety. All of this work remains completely generically. While our
approach uses a generic argument over safety of the generated code with respect to the
safety property of interest, it then shows how this is achieved for the specific code, by
constructing a specific defensible argument based on the partial correctness of the gen-
erated code. However, our approach remains independent of the given safety property
and program, and consequently also independent of the underlying code generator.

6 Conclusions

We believe formal methods such as formal software safety certification can provide the
highest level of assurance of the code’s safety, and have described an approach whereby



the inference of annotations drives both formal safety proofs and the construction of a
safety case. Here, assurance is not implied by the trust in the generator but follows from
an explicitly constructed argument for the generated code.

However, the proofs by themselves are no panacea, and it is important to make
explicit which claims are actually proven, and on which assumptions and reasoning
principles both the claim and the proof rest. We believe that purely technical solutions
such as proof checking [29] fall short of the assurance provide by our safety case, since
they do not take into account the reasoning that goes into the construction of the VCs.
Here, we use formal proofs only as evidence and base the argumentation structure de-
rived from the course the annotation inference has taken through the code. We consider
the safety case as a first step towards a fully-fledged software certificate management
system [7].

The work we have described here is still in progress. So far, we have developed the
overall structure of the generic program safety case and instantiated it manually. The
example shown here uses code generated by our AutoFilter system [28], but the un-
derlying annotation inference algorithm has also been applied to code generated from
Matlab models using Real-Time Workshop, and we are confident that the same deriva-
tion can be applied there as well. Future work will focus on complementary safety cases
that argue the safety of the certification framework itself, in particular the safety of the
underlying safety logic (the language semantics and the safety policy) with respect to
the safety property (i.e., safety claims) and the safety of other certification components
such as the domain theory and the theorem prover.

We believe that the result of our research will be a combined safety case (i.e., for the
program being certified, as well as the safety logic and the certification system) that will
clearly communicate the safety claims, key safety requirements, and evidence required
to trust the generated code.
Acknowledgements. This material is based upon work supported by NASA under awards NCC2-
1426 and NNA07BB97C. The first author is funded by the Malaysian Government, IPTA Aca-
demic Training Scheme.

References

1. ASCE home page (2007), http://www.adelard.com/web/hnav/ASCE
2. Audsley, N. C., Bate, I. J., Crook-Dawkins, S. K.: Automatic Code Generation for Airborne

Systems. In: Proc. of the IEEE Aerospace Conference, pp. 11. IEEE (2003)
3. Basir, N., Denney, E., Fischer, B.: Deriving Safety Cases for the Formal Safety Certifica-

tion of Automatically Generated Code. In : Huhn, M., Hungar, H., (eds), SafeCert 2008 Intl.
Workshop on the Certification of Safety-Critical Software Controlled Systems, ENTCS. El-
sevier (2008)

4. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Redmill, F., An-
derson, T. (eds), Industrial Perspectives of Safety-critical Systems: Proc. 6th Safety-critical
Systems Symposium, pp. 194-203. Springer (1998)

5. Czarnecki, K., Eisenecker, U. W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley (2000)

6. Denney, E., Fischer, B.: Correctness of source-level safety policies. In: Araki, K., Gnesi, S.,
Mandrioli, D., (eds), Proc. FM 2003: Formal Methods, LNCS 2805, pp. 894–913. Springer
(2003)



7. Denney, E., Fischer, B.: Software certification and software certificate management systems
(Position paper). In: Proc. ASE Workshop on Software Certificate Management Systems, pp.
1-5. ACM (2005)

8. Denney, E., Fischer, B.: A generic annotation inference algorithm for the safety certifica-
tion of automatically generated code. In: Jarzabek, S., Schmidt, D. C., Veldhuizen, T. L.,
(eds), Proc. Conf. Generative Programming and Component Engineering, pp. 121-130. ACM
(2006)

9. Denney, E., Fischer, B.: Annotation inference for safety certification of automatically gen-
erated code (extended abstract). In: Uchitel, S., Easterbrook, S., (eds), Proc. 21st ASE, pp.
265-268. IEEE (2006)

10. Denney, E., Trac, S.: A Software Safety Certification Tool for Automatically Generated
Guidance, Navigation and Control Code. In: Electronic Proc. IEEE Aerospace Conference.
IEEE (2008)

11. Denney, E., Fischer, B.: Certifiable program generation. In: Proc.Conf. Generative Program-
ming and Component Engineering, LNCS 3676, pp. 17-28. Springer (2005)

12. Galloway, A., Paige, R.F., Tudor, N. J., Weaver, R. A, Toyn, I., McDermid, J.: Proof vs
testing in the context of safety standards. In:The 24th Digital Avionics Systems Conference,
vol. 2., pp. 14. IEEE Press (2005)

13. Hughes, W.: Critical Thinking. Broadview Press (1992)
14. Kelly, T. P.: Arguing safety a systematic approach to managing safety cases. PhD Thesis,

University of York (1998)
15. Leveson, N. G.: Safeware: System Safety and Computers. Addison-Wesley (1995)
16. Necula, G. C.: Proof-carrying code. In: Proc. 24th Conf. Principles of Programming Lan-

guages, pp. 106-119. ACM (1997)
17. O’Halloran, C.: Issues for the automatic generation of safety critical software. In: Proc.15th

Conf. Automated Software Engineering, pp. 277-280. IEEE (2000)
18. PolySpace Technologies, http://www.polyspace.com
19. Reif, W.: The KIV Approach to Software Verification. In: KORSO: Methods, Languages and

Tools for the Construction of Correct Software, LNCS 1009, pp. 339-370. Springer (1995)
20. Reinhardt, D. W.: Use of the C++ Programming Language in Safety Critical Systems. Master

Thesis, University of York (2004)
21. RTCA, “Software Considerations in Airborne Systems and Equipment Certification”. RTCA

(1992)
22. Smith, D. R.: KIDS: A semi-automatic program development system. IEEE Trans. on Soft-

ware Engineering, vol. 16(9), pp. 286-290. IEEE (1990)
23. Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., Underwood, I.: Deductive compo-

sition of astronomical software from subroutine libraries. In: Proc. 12th Conf. Automated
Deduction, LNAI 814, pp. 341-355. Springer (1994)

24. Stürmer, I., Conrad, M.: Test suite design for code generation tools. In: Proc. 18th Conf.
Automated Software Engineering, pp. 286-290. IEEE (2003)

25. Stürmer, I., Weinberg, D., Conrad, M.: Overview of Existing Safeguarding Techniques for
Automatically Generated Code. In: Proc. of 2nd Intl. ICSE Workshop on Software Engineer-
ing for Automotive Systems, pp. 1-6. ACM (2006)

26. Weaver, R. A.: The Safety of Software–Constructing and Assuring Arguments. PhD Thesis,
University of York (2003)

27. Whalen, M. W., Heimdahl, M. P.E.: On the requirements of High-Integrity Code Generation.
In: Proc. 4th High Assurance in Systems Engineering Workshop, pp. 217-224. IEEE (1999).

28. Whittle, J., Schumann, J.: Automating the implementation of Kalman filter algorithms. ACM
Transactions on Mathematical Software, vol. 30(4), pp. 434-453. ACM (2004)

29. Wong, W.: Validation of HOL proofs by proof checking. Formal Methods in System Design:
An International Journal, vol. 14, pp. 193-212. Kluwer Academic Publishers (1999)


