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Abstract

Modem society is increasingly dependent on the correct functioning of software and 

increasingly so in areas that are considered safety related or safety critical. Therefore, there 

is an increasing need to be able to verify and validate that the software is in fact correct and 

will perform its intended function. Many approaches to this problem have been proposed; 

however, none seems likely to supplant the role of testing in the near future.

If we accept that there is, and will be, a continuing need to be able to test software then 

the question becomes one of how can this be done effectively, both in terms of ability to 

detect errors and in terms of cost. One avenue of research that offers prospects of 

improving both of these aspects is the automatic generation of test data.

There has recently been a large amount of work conducted in this area. One particularly 

promising direction has been the application of ideas from the field of experimental design 

and in particular, the field of f-way adequate factorial designs.

The area however, is not without issues; there is evidence that the technique is capable 

of detecting errors but that evidence is not unequivocal. Moreover, as with almost all work 

in the area of automatic test generation, there has been very little comparative work 

comparing the technique with other test data generation techniques. Worse, there has been 

effectively no work done that compares any automatic test data generation technique with 

the effectiveness of tests generated by humans. Another major issue with the technique is 

the number of tests that applying the technique can result in. This implies that there is a 

need for an automated oracle if the technique is to be successfully applied. The flaw with 

this is of course that in most situations the oracle is the human that is conducting the tests, 

a point often ignored in testing research.

The work presented here addresses both of these points. To do this I have used a code 

base taken from an industrial engine control system that has an existing set of high quality 

unit tests developed by hand. To complement this, several other techniques for 

automatically generating test data have been applied, namely random testing, random 

experimental designs and a technique for generating single factor experiments. To address 

the issue of being able to compare the error detection ability of all of the sets of test 

vectors, rather than the usual effectiveness surrogates of code coverage I have used

6-220



mutation analysis on the code base to directly measure the ability of each set of test vectors 

to discover common coding errors. The results presented here show that test data 

generation techniques based on t-way factorial designs are at least as effective as hand

generated tests and superior to random testing and the factor experimental technique.

The oracle problem associated with the factorial design techniques was addressed using 

a test set minimisation approach. The mutation tool monitored which vectors could “kill” 

which code mutants. After a subset of the test vectors had been run, the most effective 

vectors were retained and the rest discarded. Likewise, mutants that were killed were 

removed from further consideration and the process repeated. Experimental results show 

that this minimisation procedure is effective at reducing computational overhead and is 

capable of producing final sets of test vectors that are comparable in size with the sets of 

hand-generated tests and so amenable to final hand checking.
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Introduction

1. Introduction

1.1 Background

Software in modem industrial society is ubiquitous. We use it in our everyday lives to 

wash our clothes, transport us to and from our place of work, keep our homes comfortable 

and even monitor our health. Given the volume of software that we depend on and given 

that a significant proportion can be considered safety related if not safety critical then there 

is a large and growing need to be able to verify and validate the correctness of that 

software.

To consider how many software controlled devices we rely on we need only consider the 

modem automobile, which can have in excess of 60 individual programmable electronic 

control units [190]. These entertain us, make us comfortable and translate the driver’s 

commands to accelerate and decelerate the vehicle into control actions on the engine and 

coordinate these with torque demands from other systems such as anti-lock braking 

systems (ABS) and the transmission.

Kopetz [198] considers many of these systems to be safety critical. For example, if an 

adaptive cruise control (ACC) system (Valentine [307]) allows a vehicle under its control 

to approach too closely to another vehicle then there may be insufficient room to slow the 

vehicle safely. With some systems being considered today the situation is even more 

extreme. Consider steering systems; these can range from what Ackermann [3] describes 

as “disturbance attenuation” (pg.23) systems acting through electric power assisted 

steering through to full steer-by-wire systems that remove the mechanical connection 

between the driver and the vehicle which require both fault tolerant hardware and software 

(Isermann, et al. [179]). With such systems there may be no possibility of human 

intervention if a failure occurs1.

Failures in systems containing software are attributable not only to faults within the 

software but also incorrect specifications, faults in the compiler and even the micro 

processor that the software executes on. That there are multiple insertion points for errors, 

from conception through implementation and into deployment is well documented by

1 For example at highway speeds in a tunnel the collision time is less than the typical human reaction time.
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Abdellatif-Kaddour, Thvenod-Fosse and Waeselynck [1], Fetzer [119], and Ellims [110]. 

That these all can, and do have visible effects on deployed systems is witnessed by the 

numerous cases documented by Neumann [241], Leveson [213] and Peterson [264]. Thus 

there is still a need for improved methods of verifying and validating software based 

systems.

1.2 Approaches to Verification and Validation

Multiple approaches have been used for verifying and validating software, ranging from 

informal techniques such as code walkthroughs through testing and on to formal 

verification. However, no technique of itself appears to be completely satisfactory.

1.2.1 Formal Methods

For example if we consider formal methods which at least on the surface appear to offer 

a solution, we find that even systems that have been formally proved to be correct still 

suffer from some hard problems.

Fetzer [119], Ellims [110] have pointed out virtually all elements in the execution chain 

such as unverified compilers, microprocessor hardware may contain faults which can affect 

the reliability and safety of the final system. In addition the environment itself can effect 

the final system behaviour and it is usually necessary to included in any analysis sensors 

and actuators of varying quality.

Within the formal method community Kneuper [194] highlights some of the same issues 

as [119], [110] and goes on to highlight that formal methods only account for part of the 

problem and are perhaps not ideally suited to some of the “softer” elements of software 

design such as usability of human machine interfaces.

Then there is the problem of whether or not the requirements from which the formal 

specifications are derived are either correct or even complete. Kneuper [194] notes that it is 

possible to “create an incorrect specification which, even when implemented correctly, still 

results in a faulty program” (pg. 392).

The classic example here is of course Naur’s text formatting program [240] which while 

not formally proved correct, was intended to demonstrate how such a process can be 

applied. Goodenough and Gerhart [134] report that there are at least seven errors in the
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algorithm as published. Moreover they also point out that London [217] corrects four of 

the seven errors in the original code and goes on to “prove” the resultant program correct. 

Goodenough and Gerhart also note that had the program been run with the example text 

around half of the errors would have been located.

A less well known example is the application of simulated annealing to generate test 

scenarios by Abdellatif-Kaddour et al. [1] to the control of a steam boiler. The system is of 

particular interest here as it has been extensively studied as an application of formal 

methods to a realistic system by Abrial et al. [2] amongst others. Abdellatif-Kaddour et al. 

claim to have found a number of new scenarios that can lead to a boiler explosion that are 

not explicitly exposed by any of the formal systems analysis documented in [2]. However 

they note the problem in general is with the requirements not with the analysis; a point also 

noted by Cuellar and Wildgruber [85].

These two examples suggest that formal methods are probably not a complete solution, 

if for no other reason than human fallibility. This suggests that testing still has a role to 

play when developing software and perhaps especially when developing complex, safety 

critical systems.

1.2.2 Dynamic Testing

The term testing is usually understood to mean dynamic testing which the Oxford 

Dictionary o f Computing defines as “any activity that checks by means o f actual execution 

whether a system or component behaves in the desired manner”. This brings out the first of 

the issues that need to be considered: how is desired behaviour defined and can we 

effectively distinguish desired from undesired behaviour? The definition continues to state 

that “the system (under test) is supplied with input data, known under these circumstances 

as test data”. Given the first point above, one would ideally wish to select test data that 

will reveal undesirable behaviour.

That test data generation is an issue has been stated many times; for example Ould [257] 

states that this is the most significant issue associated with testing. While it is certainly a 

significant issue, it possibly overstates the case. As noted in the initial paragraph of this 

section and by DeMillo and Offutt [100] the major issue is possibly “the oracle problem”: 

knowing when a “failure” has occurred, i.e., effectively distinguishing desired from
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undesired behaviour which is generally known as the oracle problem. As highlighted by 

Weyuker [323] this can sometimes be an acute problem, for example when the correct 

results are not known or possibly even knowable before the program has been run. This 

remains primarily a human centred activity requiring the tester to calculate expected results 

by some other means or to be able to test results in a manner that do not require knowledge 

of the expected results, for example using metamorphic testing as explored2 by Chen, 

Cheung and Yiu [54].

There are other problems associated with the test process, for example in investigating 

how testing is performed Teasley, Leventhal and Rohlman [293] discovered what they 

termed a positive test basis, that is input test data is skewed to demonstrating that software 

works rather than that it does not. Stacy [289] attempted to set this within a wider context 

of general cognitive bias and Watkins [315] offered this as a justification for automating 

the process of test data generation. Ellims, Bridges and Ince [112] offer an alternative 

reason for automating the process, at least for unit testing, in that it can be disliked 

intensely by those applying it.

1.2.2.1 Good Tests

Given that it is desirable for a number of reasons to automate or at least partly automate 

the test data generation the issue then becomes one of how to generate “good” tests, that is 

those that will differentiate desirable from undesirable behaviour. However, one of the 

longstanding major issues in test data generation is providing an exact or at least workable 

definition of what the term “good” actually means.

For example, Myers [238] states that the purpose of testing is to find bugs. While this 

may be a valid statement about a single aim of the testing process, it is of no practical use 

in defining a procedure for finding either bugs or for generating tests that will reveal their 

presence, especially if no “bugs” exist to be detected.

Myers [238] does however suggest an alternative: a graded set of code coverage criteria 

which require an increasingly rigorous set of requirements for testing the logic, or more 

correctly, the control flow of a program.

2 Developed from suggestions in Weyuker’s paper on testing un-testable programs [323].
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The set of criteria given is as follows;

• statement coverage: every statement is executed at least once.

• decision (branch) coverage: each decision is evaluated to true and to false.

• condition coverage: executing each condition in a decision takes on all outcomes at least 

once.

• decision/condition coverage: each condition takes on all possible outcomes at least once 

and each decision takes on all outcomes at least once.

• multiple condition coverage: all possible combinations of condition outcomes are tested.

A more precise statement of the problem is given by Edvardsson [108] in terms of 

program paths i.e. that “given a program P and a (unspecific) path u, generate input x 8 S, 

so that x traverses u” (pg. 3), where S is the set of all possible inputs.

Historically this approach has resulted in the generation of a number of path-based test 

adequacy measures such as statement, branch, path coverage and so on. This in turn has led 

to a large amount of work on generating test data that meet or model those adequacy 

criteria.

There is however a fundamental flaw in this approach in that it is clearly possible to 

execute all paths in a program without finding flaws that are present simply because they 

are not associated with which path is taken (i.e. domain faults) but rather with what 

computations are performed on a path. Hamlet has noted this issue on a number of 

occasions [149], [150].

Another approach is to view the problem as a data selection task. That is, rather than 

attempting to select data that executes specific paths, we select data based on properties 

that are intrinsic to the data and the problem. There are a number of such techniques 

including random testing, boundary value testing and combinatorial techniques. However, 

again it is a trivial exercise to show that on its own data selection is not a completely 

adequate approach, because it is possible that a branch or path will not be taken.

1.2.2.2 Limits o f Testing

An obvious question to ask is: what types of errors will a test generation method 

discover? In their seminal investigation of what constitutes a “good” test, Goodenough and 

Gerhart [134] have observed, that to be useful, a test generation technique has to be
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reliable. Defined informally, a reliable test is one that is “designed not so much to exercise 

program paths as to exercise paths under circumstances such that an error is detectable if 

one exists” (pg. 164).

Howden [169] defines the reliability requirement more formally as follows, if P is a 

program to implement function F  on domain D, then a test set T c  D is reliable if:

. V f e T, Pit) = Fit) => V t £ D, Pit) = F(t)

However in the same paper he proves that there is no computable procedure that can be 

used to generate a nonempty finite set that can show that P(t) = F(t) and draws the 

implication that “the best that can be hoped for  are test strategies which work for  

particular classes o f programs” (pg. 208).

1.2.2.3 Testing in the Real World

Howden’s result above could be depressing if it were not that in practice testing does 

seem to be effective at producing reliable code, at least in some safety related applications. 

This has even been commented on by Hoare [162].

Kopetz [198] estimates that, in automotive applications, from the data available from the 

AD AC3 [4] that the number of safety related failures in cars is in the order of 10'9 per hour 

of operation. McDermid and Kelly [222] have used data compiled by Ellims [110] from 

vehicle recall data and accident statistics to calculate potential failure rates for safety 

critical automotive systems, both giving a figure of 10“ per hour per system.

Shooman [285] performed a similar study using Federal Aviation Authority (FAA) 

Airworthiness Directives and information on aircraft utilisation, arriving at a similar value 

of around 10 "7 failures per hour.

1.3 Automated Testing

In this chapter, it has been argued that there is a significant need to be able to verify and 

validate safety related and safety critical software and that not even formal methods are a 

complete solution to the problem.

3 The German equivalent of the Automobile Association (AA).
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The focus is then moved to what is probably the method most used in practice for 

verification and validation: dynamic software testing. Several issues associated with testing 

are examined. These include the need to be able to build “good” test sets, and what exactly 

good could mean in practice and the problem of determining whether a test passes or fails. 

The final parts of the discussion examine two aspects of testing, first: what degree of 

reliability we can place on it from a theoretical view and, second, how well it seems to 

actually perform in practice.

The last section of this discussion suggests that even though our definitions of what a 

good test is or might be are weak and theoretically most techniques cannot be considered 

to be reliable, in practice testing, used along with other verification techniques does seem 

to be reasonably effective.

The incentives to automate testing as much as possible are strong: it is reasonably 

effective and unlikely to be displaced by formal methods completely and will therefore 

continue to be performed, given the fact that human generated tests are subject to cognitive 

bias and that in general testing is disliked provides a strong incentive to automate it as 

much as possible.

Thus the focus of the research carried out here to find an effective technique for 

automatically generating tests with the information that is readily available on most 

development programs. To do this two further criteria can be given. First, the technique 

has to perform at least as well as human testers. Second, the oracle problem must remain 

tractable for humans to deal with.

1.4 Key Contributions

This thesis makes the following contributions to research in this area.

First, it provides a direct comparison with a number of methods for automatically 

generating test sets including random, base choice and high factor f-way adequate test sets, 

and uniquely against human generated test sets developed as part of normal software 

production process. Importantly mutation analysis has been used to increase the 

discrimination ability of the tests which allows differences between the performance of 

techniques to be more easily shown. The research presented here shows that:
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• while randomly generated test sets can be effective they are not reliable;

• that contrary to results previously published, the base choice technique performs very 

poorly;

• that high factor t-way adequate test sets are in general competitive with hand-generated 

test sets.

Second, it provides a practical method for incorporating high factor f-way testing and 

mutation analysis into a development process, which can avoid much of the computational 

overhead that may otherwise be encountered.

Third, it advances the art of mutation by showing that not only are variable declarations 

a legitimate target for mutation but that such mutations are detectable.

1.5 Structure of the Thesis

The thesis is divided into seven major chapters and an appendix as follows;

• Chapter 2 provides an overview of techniques that have been used to automatically 

generate tests data.

• Chapter 3 is a detailed review of work published in the area of using combinatorial 

techniques to automatically generate test data.

• Chapter 4 takes the results of the analysis of the technique performed in chapter three 

and highlights the weakness with the current state of the art and puts forward a program 

of work to be undertaken to address those weaknesses.

• Chapter 5 provides the detail of a number of experiments undertaken to investigate the 

hypothesis’s developed in Chapter 4.

• Chapter 6 presents the discussions and final conclusions.

• Chapter 7 provides an analysis of how the research present here can be carried forward.

• Appendix A, examines in detail the Csaw mutation tool and compare its capabilities with 

other existing work.
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2. Automatic Test Data Generation: an Overview

2.1 Introduction

A large number of techniques have been investigated to automatically generate test data 

for software. This section examines those techniques that are directly applicable to the 

types of information that are currently available, i.e., the code itself, and information about 

the data that is being operated on and is produced. Information available from requirements 

can of course be implicitly included in this but techniques such as formal methods have 

been excluded. Although such methods are used in a limited number of high integrity 

situations, their use in industry currently is not that wide spread.

The techniques discussed in this chapter have been classified very broadly into four 

main areas:

• Section 2.2 on random testing;

• section 2.3 on mathematically inspired techniques;

• section 2.4 on adaptive testing;

• section 2.5 on symbolic execution.

Each of these sections in turn includes a brief introduction to the technique being 

examined, a review of the work conducted, an analysis of the literature and a summary.

2.2 Random Testing

2.2.1 Random Testing: Introduction

The traditional view of random testing is summed up by Myers [238] who stated that 

“probably the poorest methodology o f all is random testing” (pg. 36). Arguments against 

random testing are based for the most part on the concept that test data selected randomly 

will have a low probability of detecting an error. Myers used this argument as did Beizer

[31] who stated that, relative to the boundary value analysis criteria of verifying boundaries

and testing at points where it is known that bugs reside; "what is the probability that a set 

of randomly chosen test points will meet the above criteria? End o f argument against 

random testing" (pg 200).
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However, this view was questioned by Duran and Ntafos [107]. Their study consisted of 

two main parts: firstly, a simulation of the expected effectiveness of random versus 

partition testing and, secondly, an examination of the fault detecting ability of random 

testing on a small set of programs.

Work on random testing falls broadly into three main categories: simulation studies such 

as those performed by Duran and Ntafos [107]; analytical studies such as those performed 

by Weyuker and Jeng [325]; and a large body of work that, as suggested by Ince [175], 

uses random testing as base method for comparison with other more complex techniques in 

experimental studies.

2.2.2 Random Testing: the Technique

Ince [176] has defined random testing as a process that involves the random selection of 

data values from the input domain of the software unit under test. It is usually assumed that 

the input domain is the set of integers from m to n and in such a domain the mechanical 

process of generating the data is well understood. However, it should be noted that 

different programs require different types of random data to be generated. For example, in 

the experiments conducted by Frankl and Weiss [125] [121], the authors noted that each 

program used in their experiment required its own method of selecting “random” test sets.

The observation that random test data generation is conceptually simple only when 

numbers are considered is noted by Hamlet [150] who used the example of test data 

generation for a compiler to illustrate this issue. Random test generation has been used for 

compiler testing by Bird and Munoz [36] but because of their need for programs that both 

compiled and ran, the construction scheme adopted by them appears relatively complex. 

Therefore, it would appear that there is a continuum of programs that range from those in 

which it is trivial to generate random test data, to those for which it is probably impossible 

and/or meaningless, for example, software that simulate physical systems such as the state 

of the atmosphere or structures such as oilrigs.

There is also the issue of how random data should be extracted from the input domain. 

For example, it is usually assumed that random data is generated from a uniform 

distribution with replacement, i.e., that all inputs have equal probability of being selected. 

However, it may be advantageous to select from a different distribution. In particular, if
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statistical inferences are to be derived from random testing, then the distribution of test 

cases should perhaps mimic the operational profile of the program in use. Hamlet [150] 

noted, however, this approach is not without its own problems. For example, the 

operational profile may be unknown or uninteresting.

2.2.3 Random Testing: Simulation Studies

The work reported in Duran and Ntafos [107] is based on the idea of partitioning a 

domain D into k subdomains, of size d\..d^ where each subdomain has associated

with it a failure rate of &y. Thus for a single test vector selected randomly from D, there is a 

probability py that it will execute in subdomain A- It is assumed that the number of test 

vectors n is equal to k for both random and partition testing and that for partition testing 

one test vector is selected from each subdomain4.

Duran and Ntafos performed a number of simulations with varying values for k, fy and p\ 

and reached the conclusion that random testing is an effective test technique if it is 

assumed that it is less expensive5 to generate random test vectors than to use another 

technique, for example hand-generated partition testing.

Hamlet and Taylor [152] performed a similar set of experiments, as it was felt that the 

results presented by Duran and Ntafos [107] were “counterintuitive”. The experiments 

reported used the same model as Duran and Ntafos [107] and arrived at essentially the 

same conclusion: that is, a small increase in the number of randomly generated test vectors 

would be sufficient to overcome any advantage that partition testing may have. An 

investigation into the effects of homogeneity6 also produced similar results. However, it is 

significant that for small failure-prone partitions, they found that partition testing 

performed better than random testing.

4 Weyuker [325] gives a clear and detailed exposition of the background theory and assumption used in Duran and Ntafos

[107] and Hamlet and Taylor [152].

5 An exact definition is not supplied by the authors who use the term “cost effective”, it is assumed that they are 

considering total monetary cost.

6 A homogeneous subdomain is one where any input will reveal a failure if one is present, i.e., probability of failure in the

subdomain is 1 or 0.

28 - 220



Automatic Test Data Generation: an Overview

The simulations performed by Tsoukalas et al. [304] also showed similar results thereby 

adding more weight to the argument that random testing was more “cost effective” than 

partition testing. Moreover, under the assumptions built into their model they gave an 

experimentally verifiable prediction that 2 n test vectors generated at random were required 

to achieve the same or better fault detection probability as n test vectors generated using 

partition testing techniques.

The simulations conducted by Ntafos [244] seem to demonstrate that for lower numbers 

of tests, partition testing outperforms random testing when tests are allocated 

proportionally to the size of the partition as proposed in by Chen and Yu [56]. However as 

in previous simulation studies, there is a region where proportional partition testing 

performs better than random testing overall. Overall, the conclusion that Ntafos comes to is 

that if the cost of performing random testing is lower than the cost of performing partition 

testing then random testing still has the advantage.

This body of work seems to show that partition testing may be of little value if the cost 

of testing using randomly generated test vectors is lower than of partition testing. 

Nevertheless, whether this is in fact the case this remains an open question and is 

dependent on a number of factors.

How representative of real programs are the simulations? For instance, we must consider 

that some partitions may be much more difficult to hit than other partitions. Experimental 

work in section 2.2.5 seems to indicate that is indeed the case as demonstrated empirically 

by Michael et al. [232]. Random testing may not do as well here as partition testing.

How well do partitions model actual partition sizes? It could be that real programs 

contain many more small partitions than larger ones, for example, it is not unknown for 

code to fail on single values.

What is the true cost of performing random testing? The assumption that is generally 

made that it is lower. However it is not clear that this is the case in practice, for example 

the generator described in Bird and Munoz [36] is highly complex and Frankl and Weiss 

[125] commented on the need to build problem specific generator functions as does Hamlet 

[150]. Claessen and Hughes [61] also noted that fine-grained control of the generation 

process is necessary for testing to be effective.
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Finally, there is the need for an effective oracle. The cost of testing has two major 

components: one of which is the generation of test data; the other is being able to recognise 

that a test has failed. It may be that this second component is more expensive for random 

generators than partition testing simply because that the data generated follows no pattern.

2.2.4 Random Testing: Analytical Studies

Weyuker and Jeng [325] performed an analysis of random versus partition testing using 

the models proposed by Duran and Ntafos [107] and Hamlet and Taylor [152] as the 

starting point. They concluded that, as suggested by Hamlet and Taylor, the effectiveness 

of partition testing depends on how inputs that result in failures are concentrated within 

partitions. Therefore, partition testing can be better, the same as, or worse than random 

testing. Optimally, partitions should be selected to concentrate faults within particular 

partitions. However in general there is often no such effective partitioning strategy.

Work by Chen and Yu [56], [57] showed that under certain assumptions partition testing 

will perform better than random testing, namely when the number of test cases is equal, 

when test cases are selected from a uniform distribution with replacement, when almost all 

subdomains are homogenous and that for some domains the number of failures is small. In 

[58] Chen and Yu proposed a technique for allocating tests across partitions. However, the 

practical utility of their approach may be low because while the first two conditions are 

trivial to meet, in practice the second two may not hold. In particular, the assumption on 

subdomans being homogeneous may be incorrect given that boundary testing appears to be 

such an effective technique (see section 2.2.5).

Nair et al. [239] examined the issue of partition versus random testing from the view that 

partition testing could be considered to be stratified random sampling. The authors stated 

that “it is well-known in the statistical literature that stratified sampling enjoys many 

advantages over simple random sampling” (pg. 168). Taking this approach they reached a 

rather more unequivocal view on the effectiveness of the two techniques than the majority 

of other work. Namely that in general partition testing is superior if the partitions are not 

selected at random and the test cases are selected independently. It is interesting that this 

result was obtained by mathematicians and appeared in that literature rather than the 

traditional computer science literature.
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The approach taken in the analytical work by Frank! et al. [123] examined delivered 

reliability. That is the probability that the software will fail when operating under its 

operational profile, rather than the probability of finding a defect as used in the Duran and 

Ntafos [107] study and this is an interesting variation on the usual effectiveness measures. 

However, again the results are not unambiguous. Once more we have an analysis that 

indicated that the relative advantage the two techniques have over each other is dependent 

on the nature of the problem.

Gutjahr [148] examined the same problem, but extended the deterministic model used 

with a probabilistic one. The main conclusion of this work was that in certain 

circumstances partition testing could be up to k times more effective (upper bound) than 

random testing, where k is the number of partitions. This situation arises, the authors show, 

when there are many small sub-domains and a few large sub-domains and when the sub- 

domains are homogeneous.

The results given in Boland, Singh and Cukic [38] are significant as they confirm the 

results presented in Weyuker and Jeng [325] and Gutjahr [148] using vector ordering 

techniques. Like Nair et al. [239], Boland, Singh and Cukic [38] stated under what 

conditions partition testing can be expected to perform better than random testing. 

However, unlike Nair et al. [239], these conditions are based on the relative values of the 

failure rates and as such are of only limited utility in practice.

As with the models used in the simulation experiments, the analytical studies are 

simplifications of an actual partition testing situation and, as before, the validity of the 

simplifying assumptions actually are not clear.

2.2.5 Random Testing: Empirical Results

Given the results above, we need to examine the literature to see what supporting 

evidence, if any, is available to support the view of the simulation studies that random 

testing is more effective than partition testing. There are several specific questions that 

need to be addressed:

• What effect does the size of the partitions have?

• How representative of real programs are the simulations?
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• Do experimental results support the idea that random testing requires only a limited

number of more test cases?

The most studied program in testing literature is the triangle program introduced by 

Myers [238]. Gutjahr [148] examined a version of the triangle program and found that the 

size of the partitions for equilateral, isosceles and scalene triangles were O(n), O(n2) and 

0(«3) respectively7 where n is the size set of integers. Thus the partition containing 

equilateral triangles is extremely small8 compared with the other two partitions and thus we 

should expect the program to be difficult to test using randomly generated data.

This is, in fact what was observed, by both Deason et al. [97] and Michael et al. [232] 

when performing random tests on versions of the triangle program. In [97] it was found 

that there was no improvement in the number of condition outcomes covered when the 

number of test vectors was increased from 45 to 504. In Michael et al. [232] 10,000 test 

vectors were tried but random testing never exceeded 49% condition/decision coverage.

Additional evidence comes from Jones et al. [183] who compared randomly generated 

test sets against data generated by adaptive methods (see section 5.2) for four small 

programs. In all cases, the number of random test cases required to achieve branch 

coverage agreed closely with what would be expected from the partition sizes.

It should be expected that this type of situation would meet the requirements that several 

authors deem necessary for partition testing to be more effective than random testing. This 

type of small partition does seem to occur in practice. For example, in an experiment that 

tested N-version programming, Vouk, McAllister and Tai [312] discovered a set of faults 

with probabilities of detection by random testing of 1 0 ‘6, 1 0 ~12, 1 0 " 24 and 1 0 ‘36.

Similarly, Michael et al. [232] performed a number of tests on synthetically generated 

programs with varying levels of nesting and condition complexity. Their results for the 

percentage coverage of condition/decisions are summarised in Table 1, where the nesting 

levels used were 0, 3 and 5 as shown in the top row of the table, and the condition 

complexity levels used were 1 , 2  and 2  as shown in the first column.

7 The values given in the paper are incorrect due to a printing error, personal communication 2002.

8 The ratio is for n/n2 is 1.5 x 10'5 and n /n3 is 2.3 x 10'10 for 16 bit integers.
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Table 1. Summary of the percentage condition/decision coverage achieved for synthetic 
programs generated as part of a study by Michael et al. [232].

0 3 5

1 95 78 73

2 61 48

3 47 27

These results indicate that there is an effect related to nesting and conditional 

complexity that has not been taken into account with the model of partitions used in 

simulation and analytical studies.

In light of the above discussion it is instructive to look at the small programs examined 

in a number of studies - namely Duran and Ntafos [107], Frankl and Weiss [125], [121] 

and Michael, McGraw and Schatz [232], on which random testing was successfully 

performed.

When this is done, one feature is readily apparent. The majority of the programs have a 

single input presented either in the form of an array or a matrix. Therefore, the data space 

may not form partitions of the type exhibited by the triangle program or programs such as 

those simulated in Michael et al. [232]. Even the programs that take two inputs place few 

constraints on what can be valid combinations. For example, any two numbers have a 

greatest common denominator (GCD) that can be found using Euclid’s algorithm. Thus, 

they do not provide strong supporting evidence for the effectiveness of random testing.

The results given by Frankl, Weiss and Hu [121] for the expected number of tests cases 

that are required to make random testing as effective as the data flow and mutation 

techniques are interesting. Of the 18 variations of the nine programs examined, for six the 

random test set was projected to require the same number of test vectors. For three 

programs the expected test sizes were two or three times the “optimal” size; one program 

each at factors of four, six, seven, ten and twelve times the “optimal” size. Finally, for four 

of the subjects the authors projected that an infinite number of random tests would be 

required.

Empirical work performed by Thevenod-Fosse et al. [294], [296] provide comparative 

results relative to mutation adequacy for three techniques; random testing with uniform 

distributions; statistical random testing; and structural test sets constructed to meet 

coverage adequacy requirements on the four programs. Their major results were that;
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• Uniform random testing performed poorly: killing only 76% of mutants, leaving 685 

alive. Structural testing killed 85-99% leaving between 312 and 405 alive9. Statistical 

testing killed 99% leaving only 6  alive.

• Random testing performed well on two programs but very poorly on the other two.

• There was no relationship seen between the stringency of the structural criteria and its 

performance.

Furthermore, significant numbers of random test cases were required, with 850 being 

used for one program, which would be a significant overhead if results needed to be 

examined manually. However, this work does provide some empirical support for Chen’s 

[56] assertion that it is more effective to allocate tests proportionally.

This work by Thevenod-Fosse et al. [296] also supports the observations by Frankl, 

Weiss and Hu [121] that in some cases random testing performs very badly. Here, random 

testing performed well for only 2 of 4 test programs and for one performed very badly 

killing fewer than 60% of the mutants. Results from latter work by Thevenod-Fosse and 

Waeselynck [295] were no more encouraging with only five of twelve faults detected.

Other experiments have provided mixed results. Hutchins et al. [174] examined a set of 

seven programs of 141 to 512 lines of code to investigate the effectiveness of dataflow and 

control flow adequacy criteria for discovering seeded faults. Of the 106 faults investigated 

in detail, dataflow adequate test sets out performed edge adequate and random test sets in 

31 cases; and edge adequate sets out performed dataflow and random in 25 cases. For a 

further 32 cases there was no difference in the performance of dataflow and edge adequate 

sets but both out performed random test sets. In nine cases, the random test sets 

outperformed dataflow and edge adequate test sets. Finally, nine could not be classified. In 

addition, it was found that only test sets in the 99-100% dataflow and edge coverage area 

were really effective and that a predicted 160% increase in the size of the random test sets 

would give the same test effectiveness.

Reid [269], [270] conducted a set of experiments on 20,000 lines of production avionics 

software written in Ada. In [269] Reid examined the effectiveness of equivalence 

partitioning, boundary value analysis and random testing; this work was extended in [270]

9 This varied according to which test adequacy criteria test sets were designed to meet.
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to encompass modified condition/decision coverage (MCDC) and branch condition 

combinations testing. Reid concluded that random testing seemed to have the advantage 

over equivalence partitioning that required similar numbers of test cases. It was noted that 

equivalence partitioning was better at revealing sub-domains but that these occurred in 

only three of the 17 modules studied. Significantly, random testing was nowhere near as 

effective as boundary value analysis - approximately 35,000-50,000 test cases were 

required for random testing to show the same fault detection rate.

Frankl and Iakounenko [124] investigated the fault detection ability of branch adequate, 

all-uses adequate and random testing for fixed test set sizes drawn from a universe of 

10,000 random test cases generated using a generator developed by Pasquini et al. [262] 

for an antenna configuration program developed for the European Space Agency. The 

major findings of this study were that for 7 of the 8  faults present there was large increase 

in effectiveness as coverage increased and both techniques were more effective than 

random tests set of the same size.

Frankl and Deng [122] used the same experimental technique to investigate the results 

from [124] using a larger sample (100,000 cases) of randomly generated vectors to create 

fixed size test sets to meet branch and dataflow adequate coverage criteria. They then 

compared the effectiveness of those sets to results obtained from operational testing. The 

results from this empirical study were similar to [124] in that test sets with high coverage 

had higher values of reliability improvement than random test sets of the same size (50 

vectors). Furthermore, as the coverage increased probability of achieving higher reliability 

also increased. However, the authors noted the extra cost associated with applying these 

techniques.

The experiments detailed above probably comprise the best empirical evidence available 

that compare partitioning and random testing. In summary:

• All the studies found that for the majority of cases partition testing performed better than 

random testing for the same number of test cases.

• When random testing appeared as effective as partition testing, the number of extra test 

cases were close to the number predicted by simulation studies most notably the factor 

of two predicted in Tsoukalas et al. [304].
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• When random testing did not do as well as a coverage based adequacy criteria it fails 

spectacularly, most notably in examples provided by Frankl and Weiss [121], Reid 

[269], [270] Deason [97] and Michael et al. [232] where the number of additional test 

cases required for random testing to be as effective was orders of magnitude larger.

One further experiment is of interest, Godefroid et al. [131] used symbolic execution 

targeted at finding data to locate execution failures (exceptions) and assertion violations. 

Empirical evaluation was performed on a small air-conditioning control example and on an 

implementation of the Needham-Schroeder public key authentication protocol. In both 

cases, assertion violations were located in reasonable time periods ( 1  second and 2 2  

minutes); in neither case did random testing find solutions after several hours of searching.

The conclusion that can be drawn from this is that although randomly generated tests can 

theoretically be expected to perform well in some, or possibly even most cases, in general 

the technique does not appear to be reliable in extremis.

In light of the above, it still seems necessary to try to establish a better understanding of 

what the limitations of random testing are using an empirical approach. This may be 

possible using a simulation method similar to that used by Michael et al. [232] and by 

examining a larger set of programs drawn from industrial applications. It is worrying that 

essentially the same observation on needing a better understanding of random testing was 

made by Ince [175] over two decades ago and that the question appears to be no closer to 

being finally resolved.

An interesting question that arises out of the work surveyed is whether we are examining 

the correct question. The majority of the investigations have compared random testing with 

partition testing where a very generous definition of what constitutes a partition has been 

allowed, most notably based on code coverage or data flow criteria. Chen et al. [55] have 

noted that both simulation studies and analytical work make the assumption that any data 

point in a partition is as good as any other. However there are indications that stronger 

partitioning criteria such as those imposed by boundary value analysis are much more 

effective than randomly generated tests (for example, Reid [269], [270]). Nair et al. [239] 

make this point particularly strongly by stating that “/o r any given partitioning o f the input 

domain, gains in efficiency can be achieved by judiciously choosing the test allocation
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scheme. The importance o f doing this does not seem to be fully appreciated in the software 

testing literature” (pg. 168).

2.2.6 Random Testing: Summary

The critical paper in the literature on random testing is the seminal work by Duran and 

Ntafos [107], which challenged the traditional view that the technique is not being very 

useful as expressed by authors such as Myers [238] and Beizer [31]. This critical paper in 

turn has lead to an avalanche of work that has both simulated the situation such as Hamlet 

and Taylor [152], Tsoukalas et al. [304] and Ntafos [244] in an attempt to clarify the 

situation. Likewise a large amount of rather inconclusive analytical work first by Weyuker 

and Jeng [325] and latter led by Chen [56], [57], [58]10 has been performed in an attempt to 

refute the view. The only clear argument against the effectiveness of random testing comes 

from Nair et al. [239].

Finally, the strongest argument against the usefulness of random testing comes from 

examining the empirical work performed by researchers such as Frankl and Weiss [121], 

Reid [269], [270] Deason [97] and Michael et al. [232]. This work demonstrates that the 

number of additional test cases required for random testing compared with partition testing 

can be orders of magnitude larger than those required for techniques based on partition 

testing.

Figure 1 shows the chronological progression on work cited in this section as divided 

into the three major themes examined, that is simulation studies, analytical studies and 

empirical work. In addition, papers that have directly used the triangle program have been 

highlighted.

10 More papers than this have been produced but have not been cited in the interests of brevity.
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2.3 Mathematically Inspired Techniques

2.3.1 Mathematically Inspired Techniques: Introduction

This section covers a number of techniques for generating test data based on 

mathematical relationships between data items. The concept of using data coverage as a 

testing criterion was first proposed by Sneed [288]. However, while Sneed’s work bears 

some similarity with the techniques discussed here in that it uses defined domains, it 

differs in that it does not propose a technique for generating the required data, but rather 

concentrates on the dynamic measurement of data coverage.

Grindal, Offutt and Andler [140] have classified the majority of the methods discussed in 

this section as combinatorial techniques. These authors provide taxonomy for 

combinatorial techniques based on the construction methods and degree of randomness 

involved in their construction. However, this classification sometimes separates techniques 

that result in test sets with similar properties and sometimes groups together techniques 

that produce test sets with differing properties. Consequently, an alternative classification 

is used here that closely matches the major points of the subsumes relation developed by 

Grindal et al. [140], but distinguishes between the techniques based on the authors 

intentions.

The three classifications used here are as follows:

• Geometric techniques.

• Boundary following techniques.

• Combinatorial techniques.

Although all these techniques can be considered to involve systematically finding 

combinations of data values (as opposed to a possibly non-systematic data set constructed 

by hand), there are several features that differentiate between the techniques. For example, 

the original motivation of the techniques originators appears to be different. Thus, the 

primary aim of Malaiya [219] was to remove a perceived weakness in random testing by 

ensuring points are maximally separate and even suggests that his technique could be 

combined with combinatorial techniques. In Cohen et al. [67] the aim was to cover all 

pairwise interactions between variables.
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Similarly, the selection of data points is different in each technique. For example, anti

random testing [219] attempts to gain maximal coverage of the input data space. Hoffman 

et al. [164] applied domain boundary value testing, whereas combinatorial work is focused 

on input space partitioning (Ammann and Offutt [8 ]) using techniques such as equivalence 

partitioning and Ostrand and Balcer’s [256] category-partitioning technique.

The original authors of the techniques presented here do not cite each other’s work, i.e., 

Mandle [220] is not cited by Malaiya [219] whereas Cohen et al. [67] does cite this work 

but does not cite Malaiya [219].

There are a number of techniques examined that do not fit into the combinatorial 

framework but nevertheless are based on mathematical concepts.

Support for the view that these techniques are best treated separately comes indirectly 

from the subsumes relationship given in Grindal et al. [140] for t-way coverage for 

combinatorial techniques and explicitly excludes the anti-random [219] and boundary 

following techniques developed in Hoffamn et al. [164].

Despite the differences highlighted above it is believed that it would be more appropriate 

to keep the topics grouped together to emphasize the connections between them rather than 

separate them out into distinct parts. As a result, this section is somewhat longer than other 

sections.

2.3.2Mathematically Inspired Techniques: Geometric Methods

Malaiya [219] proposed a scheme where distance is defined either in terms of Cartesian 

coordinates (Euclidian distance) or Hamming distance. Perhaps, somewhat surprisingly, 

the technique was not applied directly but was utilised via checkpoint encoding in which 

selected points were encoded as binary fields within a single bit string. One advantage of 

this scheme is, of course, that each vector in a test set can be represented as a single bit 

string, which reduces the computational overheads of applying the technique. Table 2 

shows a simple case of a checkpoint encoding of a single integer variable.

Another of the claimed advantages of this encoding scheme is that it allows objects such 

as data structures to be assigned distances. The exact encoding of the variables is 

dependent on an analysis that uses techniques such as domain, partition and boundary 

analysis, all of which could be partly automated.
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Table 2. Assignment of checkpoint codes to values of a variable.

min - 1 min internal internal max max + 1

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1

Malaiya [219] also suggested that this technique could be combined with the 

combinatorial strategies discussed in section 2.3.4 and chapter 3 but did not elaborate on 

this concept.

Yin et al. [343] expanded on the work developed by Malaiya [219] by presenting an 

extended example of testing the triangle program. The main focus of their work was to 

obtain effective code coverage. To achieve this, several attempts at generating adequate 

specifications for the data relationships were required. In addition, the data specification 

was quite complex, which reduced the practical utility of the technique.

Wu et al. [337] and Yin [342] explored the applicability and effectiveness of anti

random versus random testing for hardware fault coverage for simple types of fault, i.e., 

stuck-at and bridging faults. Although [337] reported that for small numbers of vectors 

(50-60), anti-random data performed significantly better than randomly generated vectors, 

the results in Yin [342] did not replicate this. Interestingly Wu et al. [337] investigated the 

effectiveness of selecting inputs to ensure an anti-random pattern for output data. Their 

analysis showed no clear advantage (nor disadvantage) over anti-random testing applied to 

input data and the authors speculate this is because the anti-random properties of the output 

data were not preserved internally.

A variation of the distance function was proposed by Mayrhauser and Bai [311] to 

improve the computational efficiency of the geometric technique. In particular the original 

method required enumeration of the input space and distance computations for all vectors 

and the vector representations had to be binary, hence the introduction of checkpoint 

encoding. It was proposed by these authors that this approach might lead to the types of 

issues with fault detection effectiveness that were suggested by work reported in Hamlet 

and Taylor [152], which dealt with partition versus random testing.

The last of these points is interesting in the light of results by Nair [239] and Guntjahar 

[148] on random versus partition testing. Those results suggest that the overlaying of 

partitions via check-point encoding could potentially be the more effective approach.
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The solution proposed by Mayrhauser et al. [311] to the issue of checkpoint encoding is 

threefold:

• average all existing test vectors into a single vector, the centroid;

• locate the set of vectors that are orthogonal to the centroid;

• determine which of the orthogonal vectors is maximally distant.

Mayrhauser et al. expressed their solution in terms of binary vectors where each bit 

represented a dimension of the problem space. However, in principle it could be extended 

to deal with integer and floating point values.

Kobayashi et al. [197] conducted experiments with anti-random testing and found that 

results were better than random testing. This work is examined further in chapter 3.

Finally, in Chan et al. [53] it was observed that failure causing regions fall into one of 

three types: point failures, “strips” though a domain and “blocks” within the domain. To 

improve the probability of hitting one of these failure-causing regions - in particular the 

strip and block type regions they proposed a technique closely allied to anti-random testing 

- Adaptive Random Testing (ART). This technique uses essentially the same measure of 

distance as Malaiya [219] but without the checkpoint encoding and also uses a randomly 

generated candidate test set in a similar manner to Cohen et al. [67] to select the member 

furthest away for all data points currently selected.

Chan has continued to build on this work in a regular series of papers that investigate 

variations on the ART technique. While all of these are interesting, none demonstrated a 

significant improvement on the basic scheme. Furthermore, while the concept of anti

random testing is of itself interesting, new work in the field seems to have declined 

drastically. This has possibly come about because of a number of factors, including:

• issues highlighted by Yin et al. [343] that concern the difficulty in selecting effective 

encoding of the data;

• results from Mayrhauser and Bai [311] and Yin [342]„that suggest that the technique 

may not always be competitive with random testing for small test sets.

2.3.3 Mathematically Inspired Techniques: Boundary Following

Boundary value testing as defined by Myers [238] is an extension of equivalence 

partitioning. The primary assumption with equivalence partitioning is that any value within
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a partition can be used for a test and that any value is good as any other. Boundary value 

testing however requires that values be selected at the edges or boundaries of a partition 

rather than anywhere within the partition.

Both Myers [238] and Howden [172] provide a similar set of “rules” for selecting values 

including:

• variables that have a range of values, select the values for the end of the ranges, invalid 

cases and the interior of the range,

• variables that have a number of values (e.g. arrays), test the values at the ends and one in 

from the end.

In addition, both authors recommend that the rules be applied to out-of-range values in 

the same way. Howden extends this to include testing of all values for variables with 

discrete values (e.g. enumerations in C) and to include the value zero for ranges which 

include it.

Hoffman has been involved in a series of papers that used these principles for automated 

test case generation. The basic framework was laid out by Hoffman and Breakley [163] in 

a paper that introduced some of the key concepts. In particular the technique of 

representing the test cases as a set of n-tuples is presented as a core idea along with the 

concept of a generator (iterator) for constructing valid ^-tuples.

Hoffman and Strooper [165] extended this work by Hoffman and Breakley [163] and 

investigated in more depth how automatic generation of data can be reconciled with the 

oracle problem by giving examples of functional testing, trace invariants and large scale 

random testing.

Hoffman, Strooper and White [164] have attempted to codify these rules as explicit 

definitions and have provide formal definitions of what constitutes a boundary. These 

definitions comprise two major variants as follows: k-bdy(D), the kth boundary of domain
tf iD and &-per(D) which is the k perimeter of the domain D. In addition, two variants of 

these are defined, &*-bdy(D) and k*-per(D) which informally11 comprise the union of the 

boundaries or perimeters for i= l..k.

11 In the interests of brevity complete details are omitted, see [164] for the mathematical definitions.
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For example given two variables x  and y with domains defined as D(pc) = [0, 5] and D(y) 

= [0,6] then for the single domains the boundary sets are shown in Table 3.

k k-bdy(x) k-bdy(y) k*-bdy(x) k*-bdy(y)

1 {0,5} {0,6} {0,5} {0, 6}

2 {1,4} {1,5} {0,1,4,5} {0, 1,5,6}

3 {2,3} {2,4} {0,1,2, 3,4,5} {0,1, 2,4, 5, 6}

4 {2,3} {3} {0,1,2, 3,4,5} {0,1,2, 3,4, 5, 6}

Table 3. An example of boundary sets over the domains D(x) = [0, 5] and D(y) = [0,6].

These concepts can be extended to a boundary set for multiple domains as stated above 

by taking the Cartesian product of k-bdy(D) for all domains and for £*-bdy(D) by forming 

the union of the sets.

Boundary types can be represented in a matrix (after Hoffman et al. [164]) as shown in 

Figure 2. Figure 2(a) shows the points selected for l-bdy(x, y) and Figure 2(b) shows the 

arrangement for 2-bdy(x, y). In Figure 2(c) the union of these sets, 2*-bdy(x, y) is given.

(a) (b) (c)
Fig. 2. Boundary values as defined by Hoffman et al. [164] in diagrams (a) to (c).

The perimeter relation k-per(D) can be displayed in the same manner and l-per(x,y) and 

2-per(x,y) are shown in Figure 3(a) and Figure 3(b) respectively.
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1 1 1 1 1  
1  . . . 1

1 1 1 1 1
(a)

2 2 2
2 . 2
2 . 2
2 . 2
2 2 2

(b)
Fig. 3. Perimeter sets as defined by Hoffman et al. [164] for the domains defined above.

It can be seen that the lower order (k < 2) definitions for boundaries do not match the 

traditional definitions of boundary value testing, whereas the definition of the perimeter 

exceeds the normal requirements by including all values on the edges.

An indication of what effect this had on coverage can be obtained from examining the 

major empirical results presented in Hoffman, Strooper and White [164] for a sort 

function. These results indicate that 1-bdy and l*-bdy do not provide adequate statement 

coverage whereas 2*-bdy and the lower order k-per versions did. In both of these cases, 

however, there was a better approximation to the traditional definitions of boundary value 

testing. The better match provided by both the perimeter variants also appeared to translate 

into a better fault detection ability, with the majority of the lower-order perimeter variants 

detecting all the seeded faults.

Daley, Hoffman and Strooper [94] extended the work presented in Hoffman, Strooper 

and White [164] in a number of ways. First they applied it to testing Java classes. Second, 

they extended the test generation framework to allow more automation. Third and most 

significantly, they investigated the concept of chaining domain dependencies. Dependent 

domains are quite common in practice. For example given an array, the valid values of the 

index are dependant of the size of the array. The example used in [94] is a windowing 

manager for a spreadsheet-like application. The dependent data here was the window 

position on the screen, the position being dependent on the shape of the table and the 

cursor position. Unfortunately, the process of defining and generating data based on 

dependent domains is not fully automated and requires code to be generated manually.

Given the results from Reid [269], [270] and the conventional wisdom as stated by 

Beizer [31] that errors “hide in the corners” (pg.198), the domain following technique 

seems quite promising. However more empirical work is required to confirm this and this 

does not seem to be forthcoming. There is however one weakness in the technique: an
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effective oracle is required to allow running the number of test cases a technique such as 

2 *-per would create.

2.3.4 Mathematically Inspired Techniques: Combinatorial

This section is a summary; chapter 3 contains a detailed review of the same subject 

matter.

2.3.4.1 Combinatorial Techniques

In at least one sense most techniques that are used to generate test data can be considered 

combinatorial techniques because combinatorics involves selecting or arranging a set of 

“objects” from some finite set of objects such as the set of valid integers and Cameron [52] 

defines it as “the art o f arranging objects according to specified rules’’ (pg. 2 ).

The two most widely known combinatorial structures are combinations and 

permutations. That is, an unordered set of r objects from a set of n objects and the number 

of ways of ordering n different objects.

Two examples illustrate the limits of what constitute combinatorial. The simplest case of 

a combinatorial technique is one where, given a set of inputs a single value is selected for 

each input. This produces exactly one test case and, is in general, of little utility although 

for straight-line code it would be statement and branch adequate. The most complex 

example of a combinatorial technique is one in which all values for all variables are used.

While the first case is of little practical value because of its potential weakness in 

detecting faults or obtaining coverage, the second suffers from the fact that there are too 

many test cases and the amount of time required to both run and examine the results is 

excessive, if even possible.

In between these two extremes, there are several techniques for generating sets of test 

vectors that are potentially more useful. These techniques provide a means of selecting 

data from a set that maximises the probability that interactions between variables will be 

tested and that results in a set of vectors, that although large, is capable of being executed 

in a reasonable time period. A large amount of this work examines the construction of test 

sets in which all pairs, triples, etc. of values for all variables taken n at a time are 

generated, as well as the effectiveness of those test sets.
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The motivation for using test sets constructed in using these techniques is derived from 

the way that statistical experiments in various fields are conducted to maximise the amount 

of information obtained for the minimum amount of effort. The general topic is called 

design of experiments and the specific example used in research is termed factorial 

experiments and is covered widely in areas such as industrial quality control and 

engineering (Diamond [101]), psychology (Keppel and Saufley [189]) and biology 

(Fowler and Cohen [120]) even at an undergraduate level.

The combinatorial structure that forms the usual starting point for discussion in factorial 

experiments is the Latin square. This is an A by A matrix that has the property that the 

values from 1 .. N  inclusive appear in each row or column exactly once. An example is 

shown in Figure 4, which represents the interaction of three variables each taking four 

values. The values of the first variable being the row indices, the values of the second 

variable the column indices and the values of the third variable are the values in the set {A, 

B, C, D}.

variable 2

A B C D

B C D A

C D A B

D A B C

Fig. 4. An example of a Latin square.

Thus, we have a set of sixteen test vectors v i .. v\e that can be read from the matrix: as 

follows:

v1 = { l,l,A }  v2 = {1, 2, B} v 3 = {1,3,C} ... vi6={4,4,C}

Note that in the mathematical literature, the variables under consideration are normally 

referred to as factors and the different values that each factor can take on are referred to as 

levels rather than values. However, in this work, the more usual terms used in 

programming, i.e., variables and values will be retained.
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To deal with more values we need to create a larger Latin square. However, it should be 

noted that there is no Latin square for N  = 6 12 and it is not uncommon for a Latin square 

for a particular value not to exist. To deal with more variables we need to form a Greco- 

Latin square13 using two orthogonal Latin Squares14 as shown in Figure 5.

4 3 2 1

3 2 1 4

2 1 4 3

1 4 3 2

A 4 B, 3 C, 2 D, 1

B, 3 C, 2 D, 1 A , 4

C, 2 D, 1 A , 4 B, 3

D, 1 A ,4 B, 3 C, 2

A B C D

B C D A

C D A B

D A B C

Square 1 Square 2 Resultant

Fig. 5. Combining Latin squares to cover a fourth variable.

Clearly, this process can become more difficult as the number of variables or the values 

increases. For example, consider the situation where the variables have an uneven number 

of values. If one variable has nine values we deem “of interest,” then even if all the other 

variables have only three or four values of interest we are forced to use a large array to deal 

with just one variable.

A solution to this sort of problem is to remove the requirement for using a balanced 

design. A Latin square is balanced as all the values are used the same number of times. 

This leads to the concept of a covering array (CA). Informally, a covering array is a set of 

vectors where the set as a whole is guaranteed to meet some covering property, often that 

all pair-wise (2 -way) interactions between values of all variables are present.

A pair-wise (2-way) adequate test set is one where all 2-way interactions between n 

input variables Vi to vn will be covered. In the test set there will be a vector such that for 

every value that the variable Vi is allowed to take it will be paired with each value the 

variable Vj is allowed to take for all i and j, where i =£ j.

12 The problem for N= 6 is originally proposed by Euler.

13 Cameron [52] explains the terminology derives from using Latin characters for the first square and Greek for the 

second orthogonal square.

14 Two Latin squares A = (a )̂ and B = ( b y )  are orthogonal if there exists unique values i and j such that â  =£ b y -  Vi,j. For 

further details see Cameron [52].
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An important consideration is which values each variable will be allowed to take on. In 

general the tester will select data points for each input variable that are of “interest” based 

on criteria such as data input ranges, domain partitioning and other heuristic rules. 

Selection of all values is impossible except where only a small number of values are 

allowed such as for enumerations.

To make this more concrete consider a function with three input variables, vi, V2 and V3 

that take on the values «i, <2 2 , <23 and b\, &2 and c\, C2 respectively. Then a 2-way adequate 

test set that ensures that a vector exits that contains all values of vi paired with all values of 

V2 and all values of V3 and all pairs of V2 and V3 . A set of seven test vectors for this example 

is shown in Figure 6 .

1 ai b2 Cl
2 a2 bi c 2
3 a3 bi Cl
4 a2 b2 Cl
5 ai b2 c2
6 a3 b2 c2
7 ai bi Cl

Fig. 6 . An example seven vector, 2-way adequate test set for 3 variables.

Larger values of t can be used, for example t = 3 would involve matching all sets of 

three variables and t = 4, four variables in the same way.

It should also be noted that this terminology in this area is not yet fixed. Some work such 

as Cohen et al. [67] refers to covering arrays that meet the pairwise criteria using that term, 

the term 2-way is also used for example by Lei et al. [211], [210] and as the number of 

factors increase above t = 2 (pairwise) that terminology is becoming more common. Thus a 

pairwise covering array can also be said to be a 2-way covering array. For higher order 

covering arrays the terms or n-way or t-way or 2-wise can be used as can the term 2- 

covering, as in 3-way or 3-covering. In addition, some authors also refer to the strength of 

a covering array. For example a CA of strength t = 3 is a 3-way or a 3-wise CA.

The term “design” is also used when talking about covering arrays. For example, an 

orthogonal array (e.g. a Latin square) can be described as a balanced experimental design 

and an unbalanced design is also referred to as an incomplete design.
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Formally, (after Cohen and Colboum [76]) an orthogonal array OAx(N\ t, k, v) is a N  x k 
array on v symbols such that every sub-array contains ordered subsets of size t from v 

symbols exactly X times. Here, N  is the number of rows, t is the “strength” of the array 

(e.g. t = 2  is pairwise), k is the number of parameters and v is the number of values of each 

parameter. Normally, X is taken to be one and the subscript is dropped. When N  = v the 

OA is optimal.

A covering array CA(N; t, k, v) is a N  x k array on v symbols such that every N  x t sub

array contains all ordered subsets from v symbols of at least size t.
The other object that needs to be defined here is the mixed level covering array because 

in the context of testing this is the most interesting case. A mixed level array has a variable 

number of values for each parameter and is denoted as MCA{N\ t, k, (vi, V2 . . .Vk)) where v =

Vi which can also be written as MCA(N\ t, (wirl, W2r2... wsrs)). For example MCA(N; 2, 

(51, 38, 22)) or more usually as MCA(N\ 2, 51, 38, 22), has a strength of 2 (2-way) and has 

one parameter (rl) with five values, eight parameters (r2 ) with three values and two 

parameters (r3) with two values.

2.3.4.2 t-way Test Set Generation

The original work with 2-way adequate test sets by Mandl [220] was derived directly 

from the design of experiments field (e.g. Diamond [101]) and used the same techniques to 

construct the test sets based on Latin and Greco-Latin squares. Williams and Probert [331] 

used Galois Fields'to construct larger arrays that potentially address some shortcomings of 

Greco-Latin squares. Stevens and Mendelsohn [291] investigated the use of an existing set 

of covering arrays as a basis for constructing larger arrays in which gaps were filled using 

simulated annealing; a similar approach was taken by Williams [330] for MCA’s of 

strength-2. Daich [89], [90] implemented a tool based on similar ideas that used a 

spreadsheet that also removes redundant tests where possible. Cohen et al. [76] performed 

the most recent work. In this work, researchers stitched together smaller sub-arrays created 

by other techniques such as simulated annealing and/or constructive algorithms such as the 

greedy heuristic methods from Cohen et al. [67] with good results.
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However, although the use of orthogonal arrays is an active research area in mathematics 

it has received less attention than other techniques for generating tests. The majority of the 

effort has been focused on using greedy heuristics or techniques based on large search 

spaces.

The original work with greedy algorithms was undertaken by Sherwood and documented 

in two ATT Technical reports by Sherwood [281], [282]15 and in a later publication [280]. 

This work was developed further in the Automatic Efficient Test Generator (AETG) by 

Cohen et al. [6 8 ], [70], [6 6 ], [67]. The AETG tool extended the capabilities of the higher 

factor r-way adequate tests. A similar test generator for 2-way tests was proposed by Tung 

and Aldiwan [305] and used in Smith et al. [287], [286] in testing spacecraft navigation 

software. Later Colboum, Cohen and Turban [79] presented a deterministic algorithm for 

generating 2-way adequate tests using similar principles to AETG and work by Bryce, 

Colboum and Cohen [46] provides a framework for encapsulating all of these techniques 

within a single structure.

A different approach for generating 2-way adequate test sets was taken by Lei and Tai 

[212], [292] who generated an initial set of vectors adequate for the first two variables and 

extended this initial set for each subsequent variable. This work was extended to r-way 

adequate test sets as reported in Lei et al. [211], [210] and applications of using the 

approach reported in Kuhn and Okun [201] and Kuhn et al. [204].

The simplest variation of a /-way adequate generation scheme -  the “base choice” 

method was formally identified by Ammann and Offutt [9] although it has probably been 

used if not defined previously. This method has also been used by Cohen et al. [69] and re

invented by Xu et al. [339]. The “base-choice” method is a single factor experiment i.e. t = 

1 where variables are changed one at a time for each of their selected values.

Metaheuristic search techniques have also been applied to the problem of generating 

covering arrays and t-way adequate test sets. As noted above, Stevens and Mendelsohn 

[291] used simulated annealing in conjunction with existing orthogonal or covering arrays. 

Investigations of metaheuristic techniques for generating covering arrays by

15 These can be found at http://testcover.com/pub/background/catsl.htm and 

http://testcover.com/pub/background/cats2.htm as of 22 April 2005.
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mathematicians have found simulated annealing to be an effective technique, work having 

been done by both Nurmela and Ostergard [245] and Stardom [290]. Stardom also 

investigated Tabu search and genetic algorithms. A large amount of work on generating 

covering arrays for testing has been performed by Cohen et al. [76], [77], [72] who also 

investigated the generation of variable strength covering arrays, i.e., those which are /-way 

adequate for some subset of the variables and (f-rcj-way adequate for all variables

Several researchers have investigated the use of genetic algorithms for producing 

covering arrays. Early work by Ashlock [21] reported disappointing results on larger 

systems. Similarly, Stardom [290] also reported that genetic algorithms performed worse 

than either simulated annealing or Tabu search. Shiba, Tsuchiya and Kikuno [284] 

investigated the application of genetic algorithms and ant colony optimization (Dorigo and 

Gambardella [105]) to the problem and found that the size of test sets generated by these 

methods were comparable with test sets generated using simulated annealing by Cohen et 

al. [76], with IPO by Lei and Tai [212] and with AETG from Cohen et al. [67].

Other techniques have been applied to the problem of /-way test set generation. For 

example Williams and Probert [332] developed a formal framework for thinking about 

various types of interaction coverage included /-wise coverage criteria. Building on this 

framework, Williams [333] reformulated the task as a {0, 1} integer programming 

problem. However, the reported results were disappointing even for small systems and the 

method was deemed to be impractical because of the time required to solve the problems 

and because of resource consumption. Kobayashi et al. [196] proposed yet another method 

for generating 2 -way adequate test sets.

Hnich, Prestwich and Selensky [160] used a SAT16 formulation of the problem and 

constraint programming to find provably minimal covering sets for a small number of 

problems with Boolean values and improved on their results in [161]. However, these 

researchers also concluded that their technique may only be useful for problems up to a 

certain size. Building on the work by Hnich et al., Yan and Zhang [340] applied special 

purpose SAT solvers utilizing exhaustive backtracking search. As with Hnich et al., they 

concluded that the time complexity might limit the use of their technique. It will be

16 SAT is shorthand for the satisfaction problem, the first problem to be formally proved as NP-complete.

52 - 220



Automatic Test Data Generation: an Overview

interesting to see if any more attempts are made to purse this avenue of research as a direct 

means of generating covering arrays.

The final technique that needs to be mentioned here are random designs. While these 

strictly speaking are not necessarily /-way adequate (depending on their construction 

method), they have been used with some success by Dunietz et al. [106] and Schroeder et 

al. [277], who concluded that for the same size test sets random designs were as effective 

as /-way adequate designs of the same size. The one main advantage of random designs is 

that their construction complexity is much lower.

The work cited above concentrates on finding methods to generate the smallest possible 

covering array and largely ignores some of the problems that can possibly occur with real 

systems such as constraints on allowed variable values in a vector. A list of issues that can 

occur is given in Czerwonka [87] where a /-way test generation tool developed at 

Microsoft is described. These issues include:

• seeding -  where the vector set is initially seeded with a set of vectors defined elsewhere;

• mixed strength covering arrays -  mentioned by Cohen et al. [67] where seeding is a 

suggested implementation mechanism and by Cohen et al. [77] who build mixed levels 

into the generation process;

• constraints or exclusions -  that is pairs, triples etc. of parameter values that are not valid 

within a single vector. Sherwood [280] suggested using disjoint subsets of the input 

model to deal with this issue.

• negative or error values -  again mentioned by several authors, including Cohen et al. 

[67] but not covered directly by any generation tool;

• adding weighs to parameter values - a method that may allow the generated covering 

array to be biased to better coverage of selected values.

The addition of weights to variables has been investigated in several studies led by 

Colboum and Bryce. In [78] a theoretical study was undertaken to demonstrate how the 

use of assigned weights can be used to force evaluation of pairs of dynamically selected 

web services and to prioritise testing based on how “trusted” a web site was and to delay 

testing of less probable pairings. In [43] and [44] weights were used to prioritise the 

generation of vectors that covered as many new /-way tuples as possible. The reasoning
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behind this approach being that for covering arrays with high factors (t > 3) it may not be 

possible to execute all tests and, given work by Kuhn et al. [313]. [202], [203] that shows 

factors greater than three are often required, it is assumed that preference should be given 

to the vectors that cover the most interactions. In [44] it is also shown that weights can be 

used to limit, but not eliminate, the number of invalid value combinations that can occur in 

a vectors. That is, adding weights can implement a weak form constraint.

This work was continued in Bryce et al. [45] where a hybridised vector generation 

technique is investigated. The technique used a greedy algorithm such as AETG to find an 

initial vector and then applied a search technique such as simulated annealing or Tabu 

search to improve the vector.

The issue of dealing with constraints fully was tackled in a series of papers by Cohen et 

al. [74], [73], [75] using a hybrid approach where a greedy algorithm (AETG) is used to 

produce candidate vectors. This is supplemented by a SAT based constraint solving system 

that checks that the value to be added to a vector is valid and violates no constraints. This 

seems to be a remarkably elegant and efficient solution to the problem. The use of the SAT 

solver allows the constraints to be specified as Boolean expressions in conjunctive normal 

form and, despite the extra work required to check for validity, the approach results in both 

a saving in time and in slightly smaller sets of test vectors.

Equally importantly, this series of papers justified the need to be able to be able to 

accommodate constraints in real work test situations by examining the options available for 

several large, configurable sets of software. These included the SPIN model checker, the 

GCC optimiser, the Apache HTTP server and Bugzilla. The papers showed that on average 

the AETG algorithm with constraint handling produces system test vectors where only 3% 

of the vectors contained no constraint violations.

23.4.3 Field studies

Field studies fall into a number of classes. For instance, there are observational studies 

such as those conducted by Dalai et al. [93], [92] and Bell and Vouk [32] that provide 

some evidence for the effectiveness of the technique and that are useful because they make 

interesting observations on issues involved in using the techniques in practice. There are 

other similar reports on the use of the techniques which provide some details on what was
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done but that do not supply the details that are needed to allow a direct comparison with 

other techniques, for example Perkinson [263], or only estimates the improved 

effectiveness of the technique as in Burroughs et al. [51] and Huller [173].

There is also a body of work that provides better evidence for the techniques 

effectiveness in practice, including various papers by Cohen et al. [6 8 ], [70], [67] that 

contain partial results from various studies and that seem to be strongly related to work 

reported in Cohen et al. [69].

Work with more detail, i.e., work that provides measured data not just estimates is 

supplied by Burr and Young [50] for code coverage and by Smith et al. [287], [286] in 

relation to faults discovered by applying different test generation strategies. Whereas the 

first of these studies demonstrates reasonable code coverage, the second indicated that 2 - 

way testing at least is not always effective.

The final set of papers discussed in this section is a set of experiments in which the set of 

faults being studied is not known, i.e., incompletely controlled experiments. Pan, Koopman 

and Siewiorek [258] applied complete testing on a set of Unix commands (all option 

combinations). Although this is strictly outside the area studied, this work demonstrates 

that for some problems such testing is possible. In addition their approach to the oracle 

problem is of interest. Yilmaz, Cohen and Porter [341] also apply large scale testing to 

program options and compared complete testing and /-way adequate testing on a much 

larger problem. Interestingly they worked backwards to determine the effectiveness of /- 

way test techniques. The final set of papers considered in this sections is a group of studies 

by Wallace and Kuhn [313], Kuhn and Reilly [202], Kuhn, Wallace, and Gallo [203]. This 

series of papers examined faults discovered and then determined the number of variable 

interactions required to expose the faults. The major conclusions of these final studies was 

that only small factors, i.e., / <= 6  are required to expose faults.

23.4.4 Empirical Studies

Given that combinatorial testing using covering arrays has been in use for some time, 

there are surprisingly few controlled experimental studies that have been published. There 

are two possible reasons for this. First that much of the early work was dominated by 

researchers at Bellcore (Bell Laboratories, now Telcordia Technologies). Secondly because
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much of the early work has been focused on developing algorithms for finding /-way 

adequate test sets.

Seven major experimental studies deal directly with the detection of coding errors as 

follows:

• Cohen et a l [69] who performed several coverage experiments;

• Dunietz, Mallows and Iannino [106] who also addressed code coverage;

• Nair, Ehrlich and Zevallos [239], Schroeder, Bolaki and Gopu [277], Grindal et al. [138] 

and Kuhn and Okun [201] which addressed the techniques effectiveness at detecting 

seeded faults;

• Kobayashi, Tsuchiya, Kikuno [197] who examined the techniques ability to distinguish 

logic mutants.

A few other empirical results have also reported. Arguably Mandl’s seminal paper [220] 

that introduced the use of design of experiments techniques to compiler testing with all 2- 

way interactions using Latin and Greco-Latin squares was based on empirical work. 

Unfortunately presents no results or comparisons.

Cohen et al. [70] present a small set of empirical results for block coverage on the UNIX 

sort command taken from [69] and compared their results 86% to 95% block coverage with 

a study by Wong et al. [334] on the same command (73% block coverage with random test 

sets). A subset of the results are reused in Cohen et al. [67].

Finally, two experiments by Hoskins et al. [166], [167] that compared the MCA and D- 

optimal designs to approximate full factorial designs.

2.3.4.5 Assessment

The large bulk of papers produced on /-way adequate testing are on methods for 

generating test sets, with a strong emphasis on making those test sets smaller. However, 

there are two issues with this, first much of the work has been done with low factors, e.g., / 

= 2 or / = 3. Second the work by Kuhn, Wallace, Reilly and Gallo [313], [202], [203] 

strongly suggested that factors of five or six are in general required to assure that all 

interactions are covered. In general, large factors will lead to large sizes for test sets. 

Whether saving a few or even a few dozen tests makes any difference in this situation is 

possibly a non-issue.
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The other feature of research into generating test sets is the number of techniques that 

have been used. However, despite this algorithmic methods based on the AETG algorithm 

remain dominant, possibly because these seem to be able to be readily adapted to new area 

of interest, e.g. work on weighting by Colboum and Bryce [78], [43] and on constraints by 

Cohen etal. [74], [73], [75].

Another unusual feature of work on evaluating the techniques is the early dominance of 

field studies which although certainly increasing interest in using /-way adequate test sets. 

However, it does not actually appear to have advanced the understanding of why the 

techniques are effective or indeed, how effective they are relative to other techniques, the 

amount of comparative information available being low, especially in early work.

The final point to make is the relative lack of controlled experimental work that has been 

performed using /-way adequate test sets and particularly the amount of work that has 

made comparisons with other techniques.

2.3.5 Mathematically Inspired Techniques: Summary

This section has discussed three techniques that have been loosely grouped together 

under the banner of being based directly on some mathematical principle.

In this section, what really stands out is that only one of the techniques has achieved 

wide acceptance in both the academic community and in actual use as a practical 

technique.

The anti-random testing technique proposed by Malaiya [219] appears to have fallen out 

of favour with researchers and to have been shown to be less effective than /-way adequate 

test sets by Kobayashi, Tsuchiya, Kikuno [197]. One possible reason is that the technique 

does not seem to offer any real advances over random testing given results from 

Mayrhauser and Bai [311] and Yin [342]. Little other comparative work seems to have 

been performed.

The boundary following techniques proposed by Hoffman et al. [163], [165], [164] 

covered in section 2.3.3 likewise suffers from a lack of interest in it as a technique for 

automatically generating tests despite it being based on a strong idea, that the boundaries 

are where the bugs tend to congregate (Beizer [31] pg.198). Some work in this area has 

been performed by researchers using adaptive testing techniques, for example by Jones et
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al. [183] who investigated boundary value testing and by Gallagher and Narasimhan [128]. 

The boundary definitions presented in Hoffman et al. [164] however seem to have 

vanished as an area of active research. Why this is so is unclear, however we can surmise 

two possible reasons. First, for any sufficiently complex problem, automatically locating 

and defining boundaries is far from simple and Beizer [31] devotes an entire chapter of his 

book to the topic. Second, the /-way adequate combinatorial techniques discussed in 

section 2.3.4 allow the inclusion of boundary values in a more straightforward manner for 

comer points coming closer to the definitions proposed by Myers [238] and Howden [172].

Of the techniques discussed here, /-way adequate techniques have received by far the 

most attention. Why this is so is not clear -  however its use in actual testing of systems and 

its reported advantages may be one factor in its adoptions. Another reason for the amount 

of work being performed is that it seems to fit in a natural manner with existing, well 

established concepts, namely equivalence partitioning and Ostrand and Balcer’s [256] 

category-partitioning technique.

One final point should be noted, as with random testing, all the techniques presented in 

this potentially suffer from the same problem, the size of the test sets, which could 

potentially number in the thousands. This of course makes having a solution to the oracle 

problem imperative if the techniques are to be used on a large scale. However, apart from 

the use of formal models as suggested by Kuhn et al. [204] no solution to this problem has 

been suggested in the literature.

Figure 7 shows the chronologic sequence of the major items of work discussed in this 

section and shows some of the connections between the major themes explored (dotted 

lines).
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2.4 Adaptive Testing

2.4.1 Adaptive Testing: Introduction

Adaptive testing covers a number of related techniques where information is gathered 

from the execution of a program with a known test vector or vectors. The information 

gathered is then used to derive new test vectors in an iterative process. The information 

gathered during program execution can take on multiple forms depending on the type of 

test activity being performed. For example, it can include information based on statement, 

branch or path coverage (white box testing) or alternatively, it can search for data in an 

attempt to violate some expected property that the code is expected to have (functional or 

black box testing). The process of adaptive testing is thus a directed search (Clarke et al. 

[62]) of the input space for data that meet the testing criteria. The search being directed via 

the evaluation function, which is used to measure numerically the “goodness” for each 

individual vector. The numerical nature of the “goodness” evaluation allows the search to 

be driven as a minimisation or maximisation problem.

The process is started by defining an initial test vector U and using this as the input to 

program P to find a value for the evaluation criteria or “fitness function” F(ti). The 

information contained in U, P, and F(ti) is then used by the adaptive test generator to adapt 

or modify the initial test vector U to produce a new test vector ti+j. This process is iterated 

using the accumulated information until either the value of F(ti+n) is minimised or the 

process is otherwise halted. This can occur either after a fixed number of steps or when 

some other halting criteria is satisfied.

Adaptive test generation has been employed primarily in two different modes in the 

literature. The first mode utilises a fitness function defined externally to the program under 

test and is exemplified by the early work of Cooper [80] on system performance. Other 

examples in this area include attempts to drive systems into error states for robustness 

testing by Schultz et al. [278], [279], Wegener and Biihler [319] and experiments 

performed by Grochtmann et al. [141] to establish worst case timing for real time software.

The second mode in which adaptive techniques have been used is one in which the 

structure of the program itself provides the function to be minimised. Most of this work is 

aimed at meeting white-box testing criteria such as branch and path coverage. For
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example, Miller and Spooner [235] based their minimisation function on the conditions 

required to traverse a particular path. Similar work is undertaken by Korel [199], Jones et 

al. [184], Tracey et al. [301] and Wegener et al. [318].

A variation on this theme is work where rather than monitor control flow other 

properties of the code are targeted. For example, Andrews and Benson [10] investigated 

assertion violations, Jones et al. [183] applied adaptive testing to boundary value testing 

and Tracey et al. [302] used it to try and trigger run time exceptions.

2.4.2 Adaptive Testing: Early Work, Setting the Foundations

The initial work on search based testing using external fitness functions appears to have 

been performed by Cooper [80]. This author developed an adaptive test system designed to 

maximise the stress on a system under test in order to empirically determine whether that 

system met performance goals such as timing and to establish the sensitivity of the system 

under test. A number of search techniques were proposed by Cooper to aid the selection of 

the next test including gradient descent, probabilistic search [180] and a “heuristic” search 

using a database of transformation rules to aid selection of the next test.

Miller and Spooner [235] put forward the idea of dealing with the test generation 

problem as a numerical maximisation problem by treating paths in a program as straight 

line programs and dealing with predicates as numerical constraints. However, their work 

only dealt with variables with a floating point representation, requiring integer constraints 

to be determined manually.

Andrews and Benson [10] implemented a system that searched for test data that violated 

assertions placed in code by using both the complex method [271] for constrained 

optimisation and a systematic grid search of the input space. Results reported from the 

paper suggest that the technique was effective at finding seeded errors and that it detected 

some previously unknown actual errors in the subject code associated with boundary 

conditions. As expected, the optimisation approach required fewer tests than the grid 

search. However, the optimisation based search missed four assertion violations that were 

located using the grid search based on stepping through the input space at regular intervals. 

Reasons for this discrepancy were not given but presumably it was because of the brute
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force nature of the grid search did not become trapped in local minima (or maxima) as 

observed in latter work (e.g. Michael et al. [232]).

The basic approach used by Miller and Spooner [235] seems to have been reinvented by 

Korel [199] who replaced straight line programs by tracing specified paths though the 

control graph representation of the program. In Korel’s work, each branch predicate was a 

goal node and input data sets that take the desired branch were identified by treating the 

predicate as a constrained optimisation problem and were solved using a direct search 

method of alternating variables where the function was minimised with respect to one 

variable at a time. The technique therefore used two distinct types of moves: exploratory 

searches and pattern searches. An exploratory search perturbs the subject variables to 

identify the direction which results in an improvement. A pattern search forces a series of 

moves in the direction selected (Glass and Cooper [130]). The predicates dealt with were 

limited to simple relational operators and the input space to integer variables. However, an 

interesting aspect of this work is the use of backtracking to derive data for structures 

involving pointer references.

Ferguson and Korel [118] extended Korel's [199] work by replacing the concept of 

following a specified path with the concept of aiming to reach specific goal nodes 

irrespective of the path taken. They also introduced the idea of “chaining” subgoals 

dynamically, an approach in which each sub-goal is identified as having to be executed 

before the target goal. This effectively produced a dynamic data dependency graph for the 

program. An advantage of this chaining approach is that it is simpler to backtrack and to 

attempt to find more advantageous paths to the end goal. Importantly, the chaining 

approach mirrors what a human tester would do in circumstances where it was proving 

difficult to achieve coverage of a node. Experimental results from 11 small programs that 

compared random, path oriented, goal oriented (Korel [199]), and chaining approaches 

suggest some advantage for more complex code examples. The chaining approach 

achieved coverage greater than 10% greater than any other technique in 2 of the 11 

subjects and more marginal improvements in two further cases17.

17 Statistical significance was not investigated.
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The construction of a chain is best explained by a simple example (from McMinn and 

Holcombe [227]). A chain is a sequence of events such that e,- = (nit C) where n,- is the node 

and C is the set of variables that form the constraint set of variables that must not be 

modified until the next event in the sequence. Given the simple program in Figure 8 and 

assuming /  as the target node and e as the problem node then there are two sequences 

defined as follows;

(1 )< (a ,{ fla g } ) ,(e ,0 ),( f ,0 )>

(2 )< (d ,{flag}),(e ,0 ),(f,0 ))>

where (1) is the sequence where flag is not redefined at node d and (2) is where it is 

redefined at d.

void loop_assignment (int a [10])
{

int i;
int flag = 1 ;  /* a */
for (i =0; i < 10, i++) /* b */

if (a[i] != 0) /* c */
flag = 0; /* d */

if (flag) /* e */
/* target node */ /* f */

}

Fig. 8. A simple example of how chaining is applied from a target node/with the predicate
at node e.

Watkins [317] provided an early example of the application of genetic algorithms to the 

generation of test data. The fitness function applied was based on path traversal, with the 

most often traversed paths having the lowest fitness.

Roper [272] also investigated the use of genetic algorithms to generate branch adequate 

test data. This work was preliminary and used a simple fitness function based on control 

branches reached. Nevertheless, it suggested two avenues of approach that were taken up 

by other investigators: the use of a separate store for good individuals e.g. Michael et al. 

[232] and the use of human generated data from functional tests as the initial test vectors 

by Wegener et al. [321].

While the majority of the work to date has been used to locate test data to meet code 

coverage criteria, other avenues have also been looked at. For example, Andrews and 

Benson [10] used assertion violations and Tracey et al. [299], [301] also examined this
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avenue with some success and extended the work to search for exception violations [302]. 

Jones et al. [183] applied adaptive testing to boundary value testing.

This then forms the foundations for most latter work where for the most part 

metaheuristic search methods such as genetic algorithms have replaced optimisation 

techniques such as those used by Cooper [80], Miller and Spooner [235] and Korel [199]. 

Latter work is heavily focused on overcoming some of the problems identified in the early 

work (section 2.4.2.1) and on looking for better fitness functions (section 2.4.3.1) and 

search techniques (section 2.4.3.2).

Figure 9 shows the chronology of the major works discussed in the previous section and 

this organised about the major uses to which the technique has been used. For clarity, work 

associated with timing has been shown using a dashed line. Other themes such as the 

fitness functions used for what box testing and search methods used in the work are 

described in Table 4 and Table 5.
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2.4.2.1 Adaptive Testing: Software Path Testing 

Reported results indicates that adaptive techniques can be an effective way of generating 

tests in unit testing as characterised by work by Korel and Ferguson, [199], [118] Jones et 

al. [183], Tracey et al. [301], [303], Michael et al. [233], [231], [232] and Wegener et al. 

[318]. In this work, success is measured in terms of being able to find data that causes 

execution of specific statements.

In particular, adaptive techniques seem to cope relatively well with a number of issues 

that appear problematical for other techniques such as procedure calls, arrays and in 

particular array references in conditions (Korel [200], Michael et al. [232], and Wegner et 

al. [318]). Work by Korel [199] also seems to show that adaptive techniques may be 

effective in dealing with pointers; though this particular application required the 

introduction of a specialised mechanism for backtracking and needs further empirical 

investigation.

However, the adaptive techniques are not without their problems, and one of the more 

notable aspects of research into application of these techniques is the number of issues that 

it has thrown up. The most notable concerns18 Boolean variables and in particular those that 

are set during the execution of code (the “flag” problem). Other problem areas were noted 

by Wegner et al. [318] and Michael et al. [232] who highlighted a number of significant 

issues as a result of using industrial code. The following issues were all found to cause 

difficulties:

• binary values (Boolean flags) generated within the code (Wegner et al. [318], [232]);

• decisions that contain multiple conditions (Michael et al. [232]);

• side effects in conditions that makes insertion of instrumentation problematic (Wegner et 

al. [318]);

• short circuit evaluation in C that results in an artificial narrowing of the search (Wegner 

etal. [318]);

The Boolean flag problem is of particular interest for two reasons. First it has spawned a 

massive amount of follow-on research in the adaptive testing area from Bottaci [39]

18 Certainly in terms of the number of papers generated.
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Harman et al. [155], [157], Baresel et al. [23], [22], McMinn [224], Harman et al. [156], 

Baresel et al. [22], and Liu et al. [216].

Second, it seems to present a fundamental problem for automatic test data generation. 

The problem is basically one of information loss and flattening of the fitness function. The 

problem arises when internal Boolean variables take values derived from the input and the 

state of the Boolean flag is used to control program execution. This results in large areas of 

the fitness function evaluating to the same value. The comment that the Boolean flag 

problem seems to represent a fundamental issue comes from an observation made by 

Vinter et al. [308] from tests of an aircraft gas turbine controllers in simulation against 

single bit memory errors. Indeed the issue was observed in this work during the testing of 

the heapsort function in section 5.4.1.4. Research in this area is on-going.

2.4.2.2 Adaptive Testing: Worst Case Execution Times

The adaptive testing has been put to a number of uses aside from software path testing. 

As stated in the introduction, the technique has been applied to looking for worst case 

execution times, especially in the area of safety related software. Wegener et al. [321] 

suggested its use for best and worst case timing as a complementary technique to 

functional testing. This work was extended by Wegener and Grochtmann [320] by using 

simulated annealing for the more local search phases with no improvement. Grochtmann et 

al. [141] repeated this work with further examples and compared results from tests derived 

by human subjects with ambiguous results.

Alander et al. [6] investigated the use of genetic algorithms to test embedded systems in 

a simulation environment; the authors extended the work in [7] using the same 

environment to test the timing properties of a microprocessor-based relay used in electric 

grid applications.

Work has also been performed by Mueller and Wegener [236], Gross, Jones and Eyres 

[142], Gross and Mayer [143] and Nilsson and Henriksson [243].

2.4.2.3 Adaptive Testing: Applied to Systems

The final application area for adaptive testing is stress and robustness testing. The 

original work was performed by Cooper [80] on system performance. Schultz et al. [278],
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[279], used adaptive testing in the context of functional testing of autonomous air vehicles 

(UAV). Using system simulation they examined the robustness of a control system in the 

presence of fault conditions. Evolutionary testing was used to drive the control system 

towards errors and combinations of errors that would result in the loss of the vehicle during 

landing manoeuvres.

Buehler and Wegner [48] used evolutionary testing and simulation in a hardware in the 

loop (HIL) environment to investigate the ability of adaptive testing to find scenarios 

where the control system for an assisted parking system failed. The work was extended by 

Wegener and Buhler [319] to compare the original fitness function based on distance with 

another based on area.

The same technique was applied to a brake-assist system linked to adaptive cruise 

control by Buehler and Sthamer [47]. The experiments were successful in detecting several 

errors in the systems investigated and interestingly for the brake-assist system the 

technique located an error that was not near operational boundaries. Pohlheim et al. [266] 

also applied the same procedure to hardware in the loop testing of an adaptive cruise 

control system.

One issue with the work reported above is that though errors were discovered there were 

no experimental controls. That is, because we have no idea of the total number of errors 

that were present, the work provides no information on the relative effectiveness of the 

technique. That being said, that is the situation in the real world where there is no a priori 

information about what errors exist.

2.4.3 Adaptive Testing: Fundamental Issues

There are two major issues and several minor areas of interest concerning the use of 

adaptive testing for test generation. The major issues are:

• the generation of effective fitness functions,

• techniques for performing the optimisation.
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2.4.3.1 Fitness Functions 

The construction of good fitness functions appears to be the critical area that determines 

the effectiveness of the search for test data. This fact is amply bom out by considering the 

level of consignation caused by the Boolean flag issue.

Research has followed two major themes. The first is a pure path-based approach in 

which test data is used to execute a particular specified path, or all paths are sought. 

However, the majority of the work has focused on the second theme in which the 

evaluation of branch predicates is considered in addition to considering path-based 

information. There has also been a small amount of work that has examined predicate 

functions that are completely detached from these path based criteria, the most notable of 

these is the use of mutation adequacy by Baudry et al. [30], [29].

In more detail, the majority of the work on fitness functions has followed the approach 

first proposed in Miller and Spooner [235] which converts a predicate of the form

h(xi) op g(xi)

to a fitness (or cost) function of the form

f= F (\h (x i)-g{xi)\)

A number of authors have suggested variations on this theme and a summary of these 

proposals is presented in Table 4 where the notation has been normalised to that used in 

Gallagher and Narasimhan [128].

The first modification to the basic scheme proposed in Miller and Spooner [235] is 

found in both Gallagher and Narasimhan [128] and Jones et al. [183] where the basic 

fitness function is modified to give it a more “shaped” form. For example, Gallagher and 

Narasimhan [128] suggested a fitness function of the form,

G = e w\g(x)\'

where wf- is a weighting factor. This function was selected to explicitly convert problems 

with non-linear path constraints into an equivalent unconstrained linear problem. This is 

necessary here as the optimisation technique selected (quasi-Newtonian) cannot deal with
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the former class of problem. In addition Gallagher and Narasimhan introduce functions to 

deal with logical operators (and, or, not).

Jones et al. [183] suggested a family of fitness functions based on the reciprocal of the 

distance i.e.

f= F (\h (x i) -g (x i)\yn

Experiments were conducted with values of n = {1, 2, 3} but no advantage was found in 

not applying the inverse square law. Note that here the optimisation technique used 

(genetic algorithm) did not place the same constraints on the form that the function can 

take as it did in Gallagher and Narasimhan [128]. These two examples are, however, the 

exception rather than the rule, and the majority of more recent work dispenses with this 

shaping. Whether this is an advantage or not does not appear to have been evaluated to any 

extent.

Tracey et al. [299] introduced a “punishment” factor that ensures that non-optima! 

solutions are clearly recognised as such and discussed the use of an offset K  to enable 

values to be selected near boundary values. However, the impractical application of a 

punishment factor may be limited as it would be necessary for it to be selected on a per- 

predicate basis unless a data dictionary were available then conceivably it might be 

possible to automate this approach. Zhan and Clark [345] make a similar point when 

discussing an arbitrary value of 10 assigned to K. Another feature of adding K  is the fact 

that if a predicate is satisfied, then the value of the fitness function is, of necessity, set to 

zero.

One area of particular interest is the evaluation of the logical conjunction operator (i.e. 

and). Table 4 gives the impression that the use of the addition operator is almost universal. 

This is not quite the case. For example Diaz et al. [103] used a modified version and a

number of authors have used max(G(x), G(y)) e.g. Cheon and Kim [59]. Bottaci [40]

analysed the performance of various options for both conjunction and disjunction: both in 

terms of desirable properties and practical application.

• P I  :cost (a or b) <= cost(a) and cost (a or b) <= cost (b)

• P2 : cost (a and b) >= cost (a) and cost (a and b) >= cost (b)

• P3 : the cost of logically equivalent expressions should be equal.
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Importantly Bottaci [40] emphasized the point that the cost functions are only heuristic 

rules of thumb.

The other major approach taken by researchers is to construct fitness functions based on 

path coverage. Approaches in this category range from the simple approach taken by 

Watkins [317] where commonly executed paths are penalised, through to complex 

evaluation schemes such as that used by Lin and Yeh [214] in which similarities between 

path segments and complete control flow paths are evaluated.

Unfortunately the only back-to-back comparative work in this area by Watkins and 

Hufnagel [316] was not able to define what an optimal path based function would comprise 

of. It did however support the assumption that neither a pure predicate-based nor a pure 

path based fitness function would be optimal; but that rather both types of information 

need to be taken into account as for example by Bueno and Jino [49].
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2A.3.2 Search Techniques

The number of different optimisation techniques applied to adaptive test data generation 

is impressive. Table 5 gives a summary of techniques discussed in the literature, and 

includes a reference to the work, the search methods used and comments on any 

adaptations that may have been introduced and/or other techniques considered.

Details for all of these methods are beyond the scope of this review, but a number are 

covered in detail by Michalewicz and Fogel [234] and a good introduction to the different 

paradigms of evolutionary computing is provided by Eiben and Smith [109].

The majority of work has been performed with what today can be considered fairly 

standard optimisation techniques. However, there is a clear trend towards the use of meta

heuristic techniques, specifically genetic algorithms and simulated annealing. The reasons 

for this are clear. With meta-heuristic techniques it is possible to develop software that is 

highly discontinuous in nature and to target functions derived from predicates in particular 

tend to be either non-differentiable and/or not continuous. In addition meta-heuristic 

techniques-are, in general, better at dealing with this type of optimisation, as they tend to 

avoid local minima [234].

The basic search techniques seem to perform well for straightforward code but it has 

been found necessary to extend the basic optimisation paradigm to deal with specific 

issues. For example, the introduction of backtracking to deal with pointers in the case of 

Korel [199], the addition of chaining by Ferguson and Korel [118] and a similar adaptation 

discussed by Wegener et al. [318] and applied in conjunction with genetic algorithms in 

McMinn and Holcombe [227]. In addition both Korel and Tracey noted that further 

optimisation can be obtained by limiting the variables used in the optimisation by using 

either data flow analysis as in Korel [199] or by limiting optimisation to those variables 

involved in the predicate currently being examined [299]. Results from Diaz, Blanco and 

Tuya [102] with scatter search suggest that artificially limiting variable ranges might also 

be advantageous.
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Study Search Method Comments

Cooper [80] heuristic (rule based) 
search

also considered gradient decent and probabilistic 
search

Miller [235] numerical optimisation limited to real values and excluded integer values
Andrews [10] complex search geometric manipulation o f a surface called a complex

Korel [199] direct search, gradient 
decent

further optimisation via data flow  analysis heuristics

Schultz [278] genetic algorithm applied to system testing
Ferguson [118] direct search, gradient 

decent
backtracking supplied via “chaining” o f intermediate 
goals

Jones [184] genetic algorithm
Gallagher [128] quasi-Newtonian

numerical
explicit conversion o f constrained optimisation 
problem to unconstrained problem

Jones [183] genetic algorithm suggests looking at Tabu search
Tracey [299] simulated annealing suggests restriction o f variables included in 

optimisation
Tracey [300] simulated annealing deferment o f loop predicates
Pargas [260] genetic algorithm selection o f fittest members for next generation
Tracey [302] genetic algorithm

M ichael [232] genetic algorithm auxiliary table to track branch coverage, differential 
genetic algorithm and, gradient decent used as 
reference algorithms

Wegener [318] genetic algorithm partial goals meet recorded
McMinn [226] genetic algorithm and 

ant colony optimisation
Diaz [103] tabu search suggests scatter search, used in [102]
Blanco [37] scatter search compares tabu and scatter search

McMinn [227] genetic algorithm and 
chaining

Table 5. Summary of optimisation techniques used and additional heuristics that
were applied.

Other problems with search techniques seem to be lurking in the wings however. For 

example deeply nested decisions and those containing multiple conditions (Michael et al. 

[232]) appear problematic because of the manner in which the evolutionary systems solve 

one constraint at a time. Baresel et al. [25] investigated pre-evaluation of the predicates 

and McMinn et al. [225] and Harman et al. [155] examined the use of program 

transformations, which in their test subjects increased the speed of convergence. Likewise, 

there may be issues with loops, short circuit evaluation of logical predicates and side 

effects, again stated as a topics for further investigation by Baresel et al. [25].

An interesting approach to using evolutionary programming is suggested in [28] in 

which the crossover operator is dispensed with completely. The authors compared their 

approach with bacterial evolution and showed that it offered some advantages over other
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approaches for the code that they tested. For example, they claimed that population size 

does not need to be constrained, that the problem space changes as mutants are removed 

from consideration and that only two parameters need to be tuned, namely the number of 

individual saved and the minimal size of the bacteria . This mutation-only approach fully 

follows the evolutionary programming methodology and given the possible advantages, it 

deserves further investigation.

Which of the optimisation techniques discussed above is superior cannot readily be 

addressed largely because the only direct comparative work was performed by Blanco 

[37], who compared scatter and tabu search on a very limited number of examples. These 

experiments did find that tabu search techniques were superior, but the results are too 

limited to have any real significance. However, one very interesting point arises from this 

review, namely that nowhere else in the testing literature has there been anywhere near the 

same number of potentially significant issues raised. This observation does not suggest that 

the problems are more difficult, just that they seem numerous, even compared with 

symbolic execution based techniques. This is itself interesting as the search techniques that 

both systems (adaptive & symbolic) employ are very similar. For example, work by Miller 

and Spooner [235] and Coward [84] used very similar numerical optimisation techniques. 

In the area of adaptive testing, the work that most closely approximated symbolic 

execution was Tracey Clark and Mander [299] where the preconditions and negated post

conditions are converted to disjunctive normal form which mimics, at least in part, the 

construction of the predicate condition from symbolic execution.

2.4.4 Adaptive Testing: Summary

The feature of research in adaptive testing that stands out is the variety of different 

things that have been looked at, in terms of problem areas examined and optimisation 

techniques but possibly more importantly in terms of finding suitable fitness functions that 

will actually allow the techniques to perform to their potential. This is potentially a serious 

problem, given that what is being attempted is to embody a set of general path following 

rules in a single numerical expression in a similar manner to software complexity metrics.

It is also remarkable the number of issues that research in this area has thrown up, issues 

which are probably associated with all test data techniques but which have not been
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reported directly elsewhere, the most obvious being the issue with computed Boolean 

variables (flags) report by Wegner et al. [318] and Michael et al. [232].

However, not withstanding the above comment, the technique is very effective at both 

finding test data to meet code coverage requirements and in functional testing, finding 

situations that actually cause failures. However, at the code level, the technique is 

essentially path following and code coverage alone is no guarantee that the software is free 

of errors, or rather that the test set is “good”. As Beizer [31] observes, path coverage is not 

capable of detecting missing paths. This is of course not an issue when the technique is 

applied in functional testing as demonstrated by Schultz et al. [278], [279] and Buehler and 

Wegner [48].

In addition, Michael et al. [232] have observed that the vectors obtained tend to be 

unusual and the implication is that deciding the correctness may be problematic. This is in 

contrast with observation by Jones et al. [183] that the vectors generated tend to be 

“uninteresting” which is equally problematic in that uninteresting tests are unlikely to 

discover errors.

2.5 Symbolic Testing

2.5.1 Symbolic Testing: Introduction

As with adaptive testing, symbolic execution takes as its primary input, the program 

under test. Symbolic execution differs from normal execution in that it involves the 

replacement of each variable with a symbolic value, rather than with a numeric value. 

Where the input parameters are referenced in the software, symbolic values are substituted. 

These values are propagated through to all variables on each execution path selected. The 

process is best described by looking at the example in Table 6 adapted from King [192].
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Statement a b c X y z
1 int sum (int a, b, c) { Vi v2 V3 - -

2 x = a + b; - - - Vl + v2 - -

3 y = b + c; - - - - V2 + v3 -

4 z = x + y - b; - - - - - (Vl +  v 2) +  (v2 +  v 3) - v2
5 return (z); } Vl +  v 2 +  v 3

Table 6. An example of symbolic execution for a simple C program, adapted from King
[192].

The program in Table 6 takes three inputs a, b and c and has the same number of internal 

variables, jc, y  and z. In statement 1, the variables are assigned the symbolic values vl, v2 

and v3 respectively. In statement 2, the internal variable x  are assigned the symbolic value 

of a + b, which symbolically is vl + v2. In the same manner, y is assigned the symbolic 

value of b + c i.e. v2 + v3 in statement 3. Likewise, in statement 4, z is assigned to the 

current symbolic value of x  and y  in terms of the input parameters: that is, vl + v2 and v2 + 

v3 and b in terms of its input value v2.

In statement 5, the value assigned to z in statement 4 has been simplified in relation to 

v2. This demonstrates one of the strengths of symbolic execution - its ability to represent 

the complete function being calculated in a simplified form.

As the example above demonstrates, symbolic execution is conceptually simple for 

straight line code. However, when branches are introduced, there is a requirement that the 

predicates that determine which specific path is taken at each branch are tracked. This is 

accomplished by building a path condition (pc). At the start of the execution the pc is 

initialised to TRUE. Then as each branch point is encountered the predicates for that 

branch are co-joined with the current value of the pc. The difficulty with this approach is 

that the decision about which branch is to be taken cannot be determined during symbolic 

execution, so both branches must be taken as long as the pc for both branches remain 

feasible. That is, the pc for both branches being followed has a valid solution. This is a 

significant issue for loops where the number of iterations may be bounded by values 

dependant on input values. For example, consider the code fragment in Figure 10 where v 

and limit are the input values.
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while (v < limit)
{

if (v > limit / 2 ) v = v - 1; 
else v = v + 3;

}

Fig. 10. An example where it is difficult to statically determine a closed form of the pc.

The resulting pc for this code is a tree where, for each possible branch, after the first 

pass;

(1) pc = true a  (v > limit) or

(2) pc = true a  (v < limit) a  (v > limit/2) or {also implies v <— v - 1}

(3) pc = true a  (v < limit) a  (v < limit/2) {also implies v <— v + 3}

For a second pass, the path conditions (2) and (3) are extended in the same manner, for 

example (2) is extended as follows;

(4) pc = true a  (v < limit) a  (v > limit/2) a  (v - 1 > limit)

(5) p c -  true a  (v < limit) a  (v > limit/2) a  (v - 1 < limit) a  (v - 1 > limit/2)

(6) pc = true a  (v < limit) a  (v > limit/2) a  (v - 1 < limit) a  (v - 1 < limit/2)

In this case the series can be extended ad infinitum. For example, given initial values of 

v = 3 and limit = 5 the loop will terminate. However, given initial values of 5 and 10 the 

loop will cycle indefinitely.

To generate test data for any path through the code, the path conditions need to be 

“solved”. This can involve two steps. First, it can be advantageous to simplify the pc. For 

example, the path constraint given in (4) is inconsistent in that it requires that (v < limit) 

and (v - 1 > limit), which cannot be satisfied and so represents an infeasible path. Early 

detection of infeasible paths is advantageous in that it reduces the amount of work that 

needs to be undertaken and can provide useful information in terms of whether code meets 

its requirements. For example, an infeasible path may indicate a coding error. Second, for 

those constraint systems that are feasible, a solution to the system of equations represented 

by pc needs to be located; this solution provides a set of test data that will cause the paths 

to be executed.

In addition to constructing the path constraint, symbolic execution systems also needs to 

keep track of all the operations that affect the outputs, in terms of inputs along the path 

being traversed. This is referred to as the output conditions.
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2.5.2 Symbolic Testing: Review

A large body of work on symbolic execution of programs was undertaken in the middle 

1970's and early 1980's, early work being undertaken by Boyer et al. [41], King [191], 

[192], Clarke [63], Ramamoorthy, Ho and Chen [268] and Howden [170], [171]. All of 

whom performed significant work on the “reliability” of symbolic execution for detecting 

errors.

King [191] provided a brief description of symbolic execution and the EFFIGY system, 

which was developed as a debugging and test generation aid for a simple PL/I like 

language with limited data types. Symbolic manipulation and simplification were based 

around the King’s earlier work on program verification and path constraints were solved 

using linear programming techniques. Path selection was made manually via a user 

interface though the possibility of performing this function automatically was suggested

Boyer, Elspas and Levitt [41] provided a more substantial coverage of the topic and 

introduced many of the points covered in more detail in latter work. Their system, 

SELECT - was based around a subset of Lisp and that was used to advantage with the path 

and output conditions being stored as Lisp lists. SELECT also allowed the program under 

test to be annotated with assertions. As with King [191], expression simplification was 

performed by adapting a program verification tool which allowed the early detection of 

infeasible paths. The SELECT tool was originally designed to be used interactively. 

However paths can be generated automatically and the common practice of dealing with 

loops by executing them a user selected number of times was introduced. Of particular 

interest are the three approaches taken to generate numerical test data from the pc. These 

are the use of integer programming, the use of mixed integer programming for dealing with 

floating point variables and because these two techniques are limited to dealing with 

constraint systems with linear relationships, the use of hill climbing. In an aside, the 

authors comment that to deal with non-linear constraints such as “X*7 + 1 0 Z -W >  5” (pg 

238) by using integer or mix integer solvers they would have to be “prepared to assign to 

X a trial value, and then attempt a solution” (ibid), very similar to the approach to that 

taken by constraint solving systems.

Clarke [63] described a system for symbolically executing FORTRAN programs. As in 

King [191], path selection was performed manually, but the feasibility of path conditions
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was not decided until after the complete path was constructed. However, the order in which 

conditions were added to the pc was maintained to ease detection of where an infeasible 

clause was added. Solutions to constraint systems were found using linear programming. 

Clarke also briefly discussed issues associated with aliasing of array elements.

King [192] expanded on his previous paper, discussing the issues surrounding syntax 

versus semantics that were introduced in Boyer [41]. King clearly pointed out that 

arithmetic and logic as implemented is not the same as their counterparts from 

mathematics. This paper also discussed issues with array indexing and put forward two 

possible solutions: exhaustive case analysis and leaving the ambiguity unresolved but 

storing the output conditions that set the value of the index variable. Neither of these 

solutions appear to have been implemented and nether appear to be totally satisfactory due 

to the volume of information that would need to be maintained.

Ramamoorthy, Ho and Chen [268] implemented a symbolic execution system that 

constructed paths and output conditions by working backward from the outputs, rather than 

forward as demonstrated in section 2.5.1. The authors also took a novel approach to 

finding numeric data, to satisfy the pc that they described as “systematic trial and error” 

(pg. 296).

Another interesting feature of this system was the explicate use of backtracking, which 

took forward the idea from Boyer [41] of assigning a variable a trial value to a variable in 

the pc and then attempting a solution. To some extent, this technique anticipated the use of 

constraint solving techniques as in Hentenryck et al. [159] and Nikolik and Hamlet [242]. 

Furthermore, a novel solution to arrays was suggested, in which the creation of new 

“nearly identical” instances of the array were created.

Howden is associated with the development of a symbolic execution method [168] and 

the DISSECT [171] tool which is based on it. Although these developments do not add 

substantially to the work cited above and it is unclear whether they are capable of 

generating test data, the use to which they were put is interesting. In these two papers 

[169], [171], the path testing strategy was pitted against programs with known errors. The 

major result was that for one set of programs the technique was reliable for only 65% of 

the errors [169] and that for the other symbolic testing only resulted in a 10-20% increase 

in effectiveness and was reliable for 18 of the 28 known faults [171]. While this may seem
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a disappointing result, branch adequate test sets were reliable for only six of the 28 errors, 

and special value testing was reliable for 17 of 28. Howden’s conclusion was that “no one 

program analysis technique or program testing strategy should he used to the exclusion o f 

all others” [171] (pg. 394).

Darringer and King [96] looked at a number of issues associated with the use of 

symbolic execution in the context of testing. In particular, they noted several reasons why 

it is desirable to generate actual test data, namely that:

• the semantics of the symbolic system and the actual system may differ;

• we may need to obtain performance (timing) information;

• actual outputs may show errors that may otherwise be missed.

Much of the latter, post 1980 work is to a certain extent derivative. For example work, 

on the SADAT tool by Voges et al. [310] contains little detail on test data generation and 

was mainly concerned with the integration of different program analysis functions within a 

single framework. Work by Kemmerer and Eckmann [188] only extended the paradigm to 

the Pascal language. All the early work and closely related static analysis issues have been 

surveyed in detail by Coward [83], [82].

Taken together, the work cited above does illuminate the main issues that symbolic 

execution needs to deal with, namely:

• path selection of branches and in loops;

• the aliasing of variables (arrays, pointers, function/procedure calls);

• solving the path constraints.

In most cases, early symbolic execution systems required the user to select the paths to 

be taken interactively. The exceptions being Boyer [41], who attempted to cover all paths 

and Ramamoorthy et al. [268], who targeted all branches. However all the systems either 

required the user to specify the number of times that loops were iterated, or to supply a 

maximum number of iterations.

In the late 1980s Coward [83], [84], [82] undertook the construction of a symbolic 

execution system for COBOL. This system is interesting for a number of reasons:

• it considered the issue of symbolic execution for non-numeric data e.g. character strings;

• it considered how records should be incorporated;
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• it used a technique of splitting branches three ways to deal with non-equalities of the 

form a =£ b that cannot be solved numerically;

• it introduced the concept of selecting paths based on the amount of a variable’s input 

domain that can be covered.

Lindquist and Jenkins [215] described a static analysis tool that utilises most of the 

features of symbolic execution to perform static analysis of subset Ada. Their paper 

focused on the IOGEN symbolic execution tool but considered the application to test 

generation. However, their description of this lacks detail. The paper brought out some 

interesting points including the observation that the test adequacy criteria of executing all 

paths once cannot be reliable against errors such as divide by zero.

The next significant body of work was undertaken by Offutt in conjunction with 

DeMillo [99], [100], King [193] and Seaman [254]. This research concerned the 

development and integration of the Godzilla test generation tool with the Mothra (King 

[251]) mutation system. In this work, the pc was constructed as shown above to define 

what the authors’ term the reachability condition. The authors co-joined the reachability 

condition to what they termed the necessary condition. This condition constrained the data 

generated for the reachability condition so that it was able to differentiate the original 

source program from a mutated form of the program thus incorporating mutation testing as 

proposed by Hamlet [154] and DeMillo et al. [98], directly into the test data generation 

process. Solutions to the constraint systems thus constructed are made via algebraic 

simplification oL the path condition, domain reduction to reduce the number of feasible 

values, and special purpose heuristics to select trial values from domains (Offutt [249]).

Work along similar lines, by Goldburg et al. [132] and Jasper et al. [181] on symbolic 

execution for test generation which used a theorem proving system as a base, reported 

positive results for the limited amount of production code that they tested to date. The 

system itself deals with a restricted subset of the Ada language. However, the authors 

noted that this was not as limiting as it might seem because the code being tested was 

targeted at embedded systems, and these tend to use a limited subset as a matter of course. 

The observation is of interest because of such subsets are the accepted norm in safety- 

related work. Examples of this are the MISRA C subset of the C language [18] and the 

SPARK subset of Ada [26].
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Girgis [129] detailed a FORTRAN system for performing symbolic execution and 

discussed the path selection problem in terms of loop traversals zero, once and two times. 

More interestingly, given the scarcity of results in this area, this paper reported results on 

testing five small, mutated programs to examine the effectiveness of the technique. For the 

eleven classes of fault reported, it was found that faults were found most effectively either 

during the symbolic execution phase or during test execution by comparing generated and 

expected results. This result indicated that the two phases are complementary to one 

another: symbolic execution appearing superior for errors involving references or 

definitions of variables and test execution better for errors involving operators or constant 

values.

Nikolik and Hamlet [242] examined part of the symbolic execution problem associated 

with ambiguous array references and presented a solution that involved the substitution of 

indexed terms with index-free terms using constraint programming languages (Cohen 

[71]). Note however that this work was performed as a standalone exercise and was not 

integrated into a general purpose test generation tool. It is however significant in that it 

demonstrates that at least part of the aliasing, problem is tractable.

Gotlieb et. al. [136] produced a symbolic execution tool that operated on a subset of the 

C programming language that excluded difficult-to-deal-with features such as g o to  

statements, pointers and dynamically allocated structures. They also pre-processed the 

code to be analysed into a static single assignment form (Cytron et al. [86]) that removed 

much of the possible ambiguity for variable references.

Lapierre et al. [208] described a symbolic execution system and test data generator for a 

subset of the C language. Rather than working directly from the control flow graph, the 

approach these researchers took was to apply the procedure suggested by Bertolino and 

Marre [33] for converting a control flow graph into an execution tree, and to then use the 

unconstrained arcs to determine a minimal set of paths that need to be traversed. Of 684 

edges in their set of test programs, only 124 were unconstrained. This combined with a 

process of generating trees for zero, one and two iterations of loops, was claimed to lead to 

smaller paths. To find numerical data that satisfy the pc, the pc was converted into a 

system of linear constraints and solved using mixed integer linear programming 

techniques. The paper reported results for a non-trivial mix of programs, specifically
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selected to include features such as the use of pointers and pointer arithmetic. Edge 

coverage was obtained for eight of the ten subject programs. This prompted the authors to 

come to the conclusion that “full automation o f test data generation was unattainable” 

[208] (pg. 196) but observe that human intervention can be minimised.

Meudec [230] constructed a tool (ATGEN) using the ideas from constraint satisfaction 

to generate test data for SPARK Ada programs using the ECLiPSe (Wallace, Novello and 

Schimpf [314]) constraint solving library for Prolog. As in Gotlieb et. al. [136] the code 

was pre-processed - in this instance by encapsulating the Ada syntax in a Prolog wrapper; 

to allow the source to be operated on directly. The system itself had a layered approach to 

the constraint solving problem, and while it used the basic Prolog backtracking 

mechanism, there was a high level of reliance on heuristics to intelligently select and label 

(instantiate) variables for the data sets which would be assigned first. The example was 

given of finding solutions to the constraint, x x 2  + y = 10 where it was noted that if the 

assignment to x  is made first then the resulting problem is much easier to solve, than if a 

value was first assigned to y.

Another system based on the ECLiPSe system was presented by Gouraud et al. [137]. 

Again, the source code was pre-processed as a list of atoms with the constraint resolution 

system being similar to the two systems discussed above. The work is novel because of the 

manner in which it generated control paths to be tested. Simplistically it treated the 

problem as being the same as generating all paths of length < n in a regular language and 

drew them randomly with a uniform probability from the complete set to obtain coverage.

The efficiency of constraint satisfaction techniques depends on the heuristics used to 

guide the selection of variables to label. For example, Meudec [230] demonstrates that 

early selection of variables with non-linear terms was advantageous; however, it is to be 

assumed that otherwise standard heuristics were employed. In Gotlieb et. al. [136] the 

heuristics are not explicitly stated but standard constraint solving techniques such as 

smallest domain, most constrained values and bisection of domains were mentioned. In 

Gouraud et al. [137] the exact process is given explicitly. For constraint solving the 

following rules were applied for selecting which variables to be assigned first:

• Variables that do not depend on other variables.

• Variables that occur first in execution order.
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• Variables with the smallest domain (fail first).

• Variables that bring into consideration the largest number of constraints.

The first two were claimed to be novel and the second two, were described as standard 

heuristics. Remaining variables were instantiated randomly which the authors claimed 

increases the ability to detect infeasible paths over multiple attempts.

Another variant on symbolic execution is to hybridise it with actual execution of the 

code as in adaptive testing. Gupta et al. [145], [146], [147] have proposed a technique that 

applies a number of symbolic- and execution-based techniques to find a linear 

approximation to the function being computed on any one path. For programs that have 

linear predicates, the authors suggested the technique should be able to compute vector 

increments in a single pass - with no back tracking. The authors also reported practical 

issues with the use of Gaussian elimination: free variables were assigned ad hoc values, 

which can cause the system to become inconsistent. There were also issues with 

convergence. The authors stated that their method should be expected to behave like 

Newton's method. However, Newton's method is not guaranteed to converge (Michalewicz 

and Fogel [234]). In their latter work [146], [147] Gaussian elimination was replaced by an 

interior point method based on least square errors, which has the advantage that any 

solution is acceptable.

Offutt, Jin and Pan [250] introduced a variant of symbolic execution that incorporated 

some of the ideas from adaptive testing in that the variable domains were trimmed as the 

path was followed, thus ensuring that a feasible solution was maintained. The difference 

between this and earlier work is that in this work symbolic representations of the output 

values are not explicitly required at any point. In many respects, this variant of symbolic 

execution mirrored the process used in the constraint satisfaction techniques with in built 

backtracking and a selection process for the next variable to be instantiated. Thus this 

approach appears equivalent to the “fail-first” strategy of variable ordering [27] and to the 

domain bisection technique in Gotlieb et al. [136].

Dillon and Meudec [104] reported results on a development of the ATGEN tool [230] 

for C language programs. Data for two sets of programs were examined; namely code used
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by Wegener et al. [318] and industrial code supplied by Ellims21. Path coverage results 

obtained from vectors generated by ATGEN were compared with results for a commercial 

tool C++Test [259] and the ATGEN test sets achieved significantly better results in five of 

twelve cases reported with usually fewer test cases. With the test code supplied by 

Wegener, the C++Test tool performed very poorly, but results for the industrial code were 

better. This is not completely surprising as the industrial code was specifically designed 

with unit testing in mind

Lee et al. [209] constructed an integrated symbolic execution system for Java code and 

the paper focuses primarily on design decisions that were made in the construction of the 

system notably in the area of path enumeration, and on a possible approach to the issue of 

aliasing of indexed arrays.

On the first topic, the authors presented an extended discussion of the choices that were 

made when deciding which paths to include in the construction path predicates. In 

summary, their approach was similar to that taken in previous work in which loops (in 

particular) were executed zero to L times where L was a tuneable parameter. In addition, 

the authors stated that the path generator was designed to enumerate all possible 

combinations of paths though control statements. As part of their analysis of how many 

paths could be generated they provided a recursive equation for the number of paths 

though a control node A/. For one of their examples - a program with two nested while 

loops and an if statement at the innermost level - for L = 1 there were 9 paths, for L  = 2 

there were 343 possible paths and for L  = 3 there were 33,825. For L = 4 there were nearly 

two billion paths.

Xie et al. [338] described a system for dealing with object-oriented code that generated 

method sequences targeted at assertion checking (pre and post-conditions) and robustness 

testing. This work is unusual for the number of methods that were used to deal with 

symbolic constraints. Theorem proving systems were used for simplification and for 

testing whether the system is consistent, while a constraint solving system was used to 

generate actual test data.

21 Details of the code can be found in Ellims, Bridges and Ince[l 12].
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The DART system developed by Godefroid et al. [131] provided an example of what 

can be achieved by the hybridisation of two techniques. The system was designed to co

execute the program under test using both symbolic execution and randomly generated 

initial test vectors. The immediate advantage of this was that concrete values were 

available to the symbolic execution at points in the execution where a) the constraint 

solver/theorem-proving system was unable to find solutions or b) symbolic information 

was not available such as with library calls. Co-execution such as this has two advantages, 

information from symbolic execution can be used to guide the selection of new data values 

and the system also has a fallback mode in cases where symbolic execution becomes 

“stuck”, execution in these instances can be restarted with a new random vector.

The DART system was targeted at executing all paths using a depth-first search of the 

tree but the subject of loops was not explicitly dealt with. The authors did, however, 

address the oracle problem, the tool being targeted at locating execution failures 

(exceptions) and assertion violations. Empirical evaluation of the DART system was 

performed on two programs: a small air-conditioning control example (17 lines) and an 

implementation of the Needham-Schroeder public key authentication protocol (400 lines)22. 

In both cases assertion violations were located in reasonable time periods (1 second & 22 

minutes) in neither case did random testing find solutions after several hours of searching. 

A larger investigation was reported on an open-source implementation of the Session 

Initiation Protocol23 (30,000 lines) that located hundreds of references to null pointers and 

one security violation.

2.5.3 Symbolic Testing: Issues

Historically, there are several fundamental issues associated with symbolic execution of 

code that need to be examined in more detail. These are:

• path selection, branches, loops and infeasible paths;

• the issue of aliasing of variables;

• the difference between the syntax and the semantics of the program under test;

22 Ross Anderson of Cambridge University though this highly interesting (personal communication).

23 http://www.gnu.org/software/osip/osip.html
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• solutions to the resulting constraint systems.

2.5.3.1 Symbolic Testing: Paths and Path Selection

One of the problems traditionally associated with symbolic execution is the selection of 

paths to be tested, where a path is generally taken to be a control flow path in the control 

flow graph of the program under test. This problem is typified by early work by Clark [63] 

and Howden [170], [171] and Voges et al. [310] in which the selection of the path is left to 

the user of the system. However, work by Boyer [41] attempted to meet the all-paths 

criteria and the majority of latter work attempts to meet the all-branches criteria (e.g., 

Ramamoorthy et al. [268], DeMillo and Offutt [99] and Gupta et al. [146]). Some latter 

work is directed at more stringent criteria such as decision coverage (Meudec and Dillon 

[104]) and some work uses more “unusual” criteria such as data-flow adequacy (Clarke 

[64]) or basis sets (Gupta et al. [145]). However, this type of research represents a small 

minority of such work on path selection.

How to deal with loops that depend on input data is a general problem for symbolic 

execution. Given that it may not be possible to establish fixed criteria for loop termination 

in general, a pragmatic approach such as ensuring that loops are executed zero, once and 

twice is often adopted (e.g. Ramamoorthy et al. [268], Girgis [129] and Lee et al. [209]).

The flaw in this approach is that it is possible for the loop to fail on the nth iteration for a 

reason such as overflow, underflow or access off the end of some data structure. It is also 

common practice to walk though a set of options using switch or case statements with a 

loop. In cases such as this limiting the loop to zero, one or two iterations may not even 

attain statement coverage.

Other approaches have been taken to the loop traversal problem, most notably by White 

and Wisziewski [327], [328] who used analysis of the control flow graph to extract simple 

loop patterns forming sets of regular expressions that describe paths that could be taken 

though the loop. These were used along with requirements for domain testing [326] to 

determine a “minimal” set of tests. White [328] described a tool for performing such an 

analysis but this does not appear to have been coupled with a tool to automatically generate 

test data.
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Closely allied with the issues associated with loops is the issue of detecting infeasible 

paths. In general determining whether a path can be taken is undecidable because it is 

equivalent to the halting problem. For symbolic execution, the problem arises as we are 

attempting to locate a set of data that will execute a given instruction; the equivalence 

arises because we can replace any arbitrary statement with a HALT statement [153]. The 

infeasible path issue has been investigated in a number of papers. For example Woodward 

et al. [336] found that for some numerical routines in the NAG library [19] the number of 

infeasible paths increases exponentially compared with the number of feasible paths as the 

path length in units of a linear code sequence and jump (LCSAJ) increases. Similarly 

Gupta et al. [147] found a number of infeasible paths in routines taken from Numerical 

Recipes in C [267].

The usual solution to the infeasible path issue is to have the search for test data to halt 

after some fixed time period if no data has been found. Indeed, it is difficult to see how 

else the infeasible path issue can be addressed in a simple manner. One variant worth 

noting, however, was introduced in Gouraud et al. [137] where a time limit was used, but 

combined with multiple attempts. This variant was claimed to effective because of the 

introduction of a random component in the labelling process of a constraint programming 

language (CPL) based system.

Unfortunately the use of time to limit the depth or breadth of a search makes direct 

comparisons of efficiency between different techniques difficult because the amount of 

computation possible in any period changes over time and because different techniques 

require different amounts of work to achieve the same result.

2.5.32 Symbolic Testing: Aliasing

The next issue to be examined is the aliasing of variables, where it is difficult to 

uniquely determine the memory location that is being referred to. The most common 

occurrences of aliasing occur with array references, pointers references and function calls.

A number of solutions of varying worth have been proposed; however none are 

completely satisfactory in that they only solve part of the problem. For example a number 

of authors have side-stepped the issue, by solving for one element such as Coward [84],
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[82] or as in DeMillo and Offutt, two [99], [100] array elements, however this is clearly 

unsatisfactory.

Other approaches have been proposed. Clarke [63] proposed complete enumeration of 

all possible values, but did not implement this. Ramamoorthy et al. [268] proposed a 

system that created new instances of an array whenever an assignment to the array takes 

place is introduced. Resolution of array elements is then delayed until after assignments 

have been made to the indexing variables.

In a similar vein Goldberg et al. [132], [181] arrays are dealt with via a “symbolic 

history list” similar to a stack, representing sequential assignments. These, in turn can be 

treated as logical propositions and passed to the theorem prover for resolution. An 

alternative method is suggested in [181] where the assignment history is recorded as a 

series of disjunctions. However this was considered by the authors impractical because of 

the possibly huge number of terms involved.

A more successful approach in general seems to be the use of constraint programming 

languages, The method proposed by Nikolik and Hamlet [242] where complex array 

indexes are substituted for simple variables appears to be effective if rather involved, but 

the process is completely mechanised. Meudec [230] reported the use of a CPL based 

system and gives a reasonably complex example of performing insertion sort on an array of 

structures; as with [268] the labelling of array variables is delayed until after the labelling 

of the index terms. However Medec reported that run time degrades rapidly as the size of 

the array increases.

Unfortunately arrays are not the only instances where aliasing can occur. Lee et al. [209] 

highlights the issue of aliasing parameters and in practice any large or dynamic structure is 

likely to be problematic.

2.5.33 Symbolic testing: syntax versus semantics

Another of the major issues with any symbolic manipulation of programs is that the 

values being manipulated are not the same as the values that are manipulated in 

mathematical expressions (King [192], Goldberg [133]). For example, relationships such 

as associative laws for addition of floating points do not necessarily hold. Consider the 

following expression;
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a + (b + c) = (a + b) + c

This may not be true if the values of b and c are small relative to a. In this case it is 

possible that a + b = a and that a + c = a but that the sum b + c is large enough to affect the 

value of a. Worse is the expression;

a + (b - c) = (a + b) - c

This inconvenient property affects different symbolic test generation system in different 

ways. For example, King [192] noted that this property precluded the use of many 

powerful simplifications. This point is echoed in work based on theorem-proving systems 

reported in Goldburg et al. [132] where the absence of the associative property for floating 

point variables means that axiomatisation of floating point properties is difficult. 

Furthermore it was also noted that the axiomatisation of integer variables in general 

assumes that they are unbounded (i.e. overflow is ignored). In many situations this is an 

invalid assumption, and in languages with small integer types such as C the wrapping of 

unsigned values from their maximum value to zero is often done deliberately by 

programmers. Accidental overflow is off course always an issue.

Although the issue of semantics is most critical for symbolic testing approaches that use 

theorem proving, it is also an issue in any system where simplification is employed, for 

example, in the optimisation of floating point arithmetic in compilers (Goldberg [133]) as 

well as issues such as removal of “unnecessary” code such as timing loops. However, to a 

large extent the issue is not usually addressed. For example, Clarke [63], Howden [171] 

and Bicevskis et al. [35] all mention simplification but do not consider this issue.

Semantics is also an issue in systems that use techniques other than symbolic execution, 

for example, in systems that use constraint programming languages or that are based on 

Prolog, e.g., the ECLiPSe system [314] used by Meudec [230] and Gouraud et al. [137], 

Meudec noted that floating point variables are approximated by rational numbers as they 

are for example in Spark Ada (Barnes [26]).

2.5.3.4 Symbolic Testing: Constraint Solving

A number of different techniques have been applied to the problem of solving the 

constraint systems that form the path predicates. These can be roughly grouped into three 

broad categories as follows:
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• numeric techniques where standard linear programming optimisation techniques are

employed;

• heuristic based methods, including theorem-proving systems;

• systems that use some form of constraint logic programming.

These three categories are very general and in practice there is considerable overlap, 

especially between the latter two. For example, Ramamoorthy et al. [268] employed a 

technique described as systematic trial and error, which, as noted previously, was 

conceptually similar to the labelling and backtracking mechanism employed in constraint 

logic programming based systems. Both Bicevskis et al. [35] and Offutt et al. [250] have 

employed domain reduction techniques that also have a similar parallel.

Numeric optimisation techniques suffer a number of problems, chief of which is the fact 

that they are usually targeted at finding an optimal solutions to a given problem. Coward 

[84] addressed this problem by selecting a technique that could provide any solution. 

However, the majority of techniques are not able to obtain multiple solutions. Other 

weaknesses associated with numeric optimisation techniques include sensitivity to internal 

parameters and the need to form the problem in a linear form (Gupta, Mathur and Soffa 

[147]).

The use of methods that are constrained to so that they can only be applied to linear 

problems has been justified by reference to work that shows that very few conditional tests 

have a non-linear component. For example, studies by White and Cohen [326] suggested 

that non-linear predicates may be rare. However, this could be an effect related to the 

problem domain of the programs being tested and it is conceivable that in other domains 

this would not hold as strongly. For example in engine control systems where physical 

behaviour is being modelled, non-linear effects feature quite strongly. Although this is a 

specialised application area, one only has to consider that modem vehicles can have tens of 

embedded systems on board and the scale of the potential problem becomes apparent.

The second major grouping listed above is rule-based methods, which include both the 

use of theorem-proving systems and heuristic methods. Work here has been limited to a 

small number of isolated instances, presumably because of the complexity of underlying 

systems. Thus, it is difficult to draw any strong conclusions as to the prospects for systems 

based around these types of tools.
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The final grouping is systems based on constraint logic programming systems. In many 

cases, these systems have been built using special purpose libraries that extend the basic 

Prolog (Clocksin and Mellish [65]) logic programming paradigm to take advantage of the 

inbuilt backtracking mechanisms. Specialised domain reduction systems have also been 

constructed by Bicevskis et al. [35] and Offutt et al. [250]. An overview and summary of 

how this categorisation maps onto the work cited above is given in Figure 11.

Solving Technique

Numerical CLP Based Rule Based

Linear Programming Numerical Optimisation Theorem Provers

Constraint Solution C o nstraint S atisf actio n Domain Reduction

Boyer [41]1975 King [191]

1976 King [192] ClarkepS] R amamoorthy P68]

1979

1988

1991 DeMilo R9] -► King [193]

1992

Goldburg [132] -► Jasper [181]

1995

1997

1998 Gupta [145] Gotlieb [136]

1999 Lapierre [208] Gupta [146] Offutt [250]

2000 Gupta [147]

2001 Gouraud [137]

Xie [3381

Fig. 11. Summary of the main techniques used in research to find test data.
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Note that while the division given above is useful in considering how to organise the 

work and tease out trends and patterns, it is an artificial construct. For example, if we 

consider the subject of constraint programming as a whole then the numeric techniques can 

be considered as special purpose techniques for solving specific constraint problems for 

example, systems of linear equations. Constraint logic programming systems on the other 

hand are more general search systems. Indeed, Apt [20] notes that many constraint solving 

systems can be naturally characterised using a rule-based framework. Therefore, Figure 11 

can be viewed as a ordering from specific to more general techniques.

2.5.4 Symbolic Testing: Summary

Symbol testing continues to make progress as witnessed by the replacement of specific 

techniques for solving numeric problems with techniques that are more general and with 

possibilities of hybridisation as shown by Godefroid et al. [131] with the DART system. 

The complete failure of random testing here shows the technique has promise. However 

problems remain, as noted by Lee et al. [209] and Xie et al. [338], complex data structures 

is one area for future research.

Early work by DeMillo and Offutt [99], [100] with mutated code suggests that it also 

strongly supports the idea that the technique has a high potential for error detection which 

is often missing in studies that concentrate solely on surrogates such as code or path 

coverage. Here of course the symbolic execution system has been given additional 

information, which is a set of target mutations to kill, or to differentiate from the original 

code. The provision of additional information appears to be a strong factor in the success 

of the symbolic execution technique, for example Clark [63] used additional constraints to 

detect certain types of errors. Likewise Godefroid et al. [131] provided additional 

information using co-execution.

This of course has to be tempered by the observations by Howden [169], [171] on the 

reliability of the technique. It should also be noted that symbolic testing is also constrained 

by some of the problems associated with path based testing in general, i.e., that as with 

code based adaptive techniques, Beizer’s [31] comments on missing paths are also 

applicable. Howden [170] reports that the technique is partially unreliable for path-domain 

errors.
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2.6 Opportunities for Further Research

The preceding sections have been a high level survey of the majority of work that has 

been done in the area of automatic test data generation, with the proviso that work based 

on formal methods has been excluded. This exclusion has been made because these 

methods are not widely used in an industrial setting.

In deciding where to perform further research, a number of factors need to be taken into 

account including the following:

• there has to be a clear path towards making a contribution to knowledge, an essential 

requirement for the program of study;

• it has to be practical to perform the work;

• ideally, the work performed has to have potentially immediate, useful and practical 

application.

The first of these requirements implies that it is possible to make a non-trivial 

contribution to the literature in the area where research is undertaken. For example, while 

adaptive testing is an attractive area to do research in, at the current time it is an intensively 

active research area. As part of a larger research group that had performed work in this 

area this would be an attractive proposition aside from the one main issue with the 

technique, that it is purely path following and as pointed out in section 2.4.4 not reliable 

for missing paths.

The second implies that the tools to perform the work need to be available at low cost or 

are able to be built within a reasonable period. This requirement for example makes it less 

desirable to work in an area such as symbolic execution. While it would be possible to 

build the required tool sets using Prolog and the ECLiPSe in a manner similar to Dillon 

and Meudec [104], it is unclear what this would achieve as Dillon and Meudec used 

essentially the same code base24 as the work present in this thesis. While a different 

approach could be used, for example, using mutation adequacy rather than path coverage 

as an acceptance criterion it is not obvious that there would be sufficient novelty to 

differentiate any work carried out from either Meudec’s work or from the earlier work of

24 The author of this work made an early version of the Wallace code available to Dillon and Meudec for their study.
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Offutt et al. [99], [100]. Thus while work on symbolic execution may be possible it 

potentially fails the first of the criteria set.

The third criterion given is purely practical. As a practicing engineer with an interest in 

software safety, I undertook this program of study to find a technique that could be applied 

to the systems that I oversee development of.

The discussion above has ruled out working in two of the major areas of automatic test 

data generation. Of the remaining areas, random testing has little to recommend it as a 

practical technique compared with hand-generated tests based on results from Frankl and 

Weiss [121], Reid [269], [270] Deason [97] and Michael et al. [232]. Likewise, the anti

random testing techniques proposed by Malaiya [219] have little to recommend them and 

the work on boundary following discussed in section 2.3.3 is attractive because it offers 

strong potential for being useful. However, the limited amount of published literature that 

has been located suggests that there may be some hidden pitfalls that are not readily 

apparent.

The area that does however appear to be open for some useful work is combinational t- 

way test sets generation. There are a number of reasons for this:

• work by Kuhn et al. [313]. [202], [203] on the analysis of real faults discovered in code, 

and the observation that for a relatively low factor very good results can be achieved in 

practice with automatically generated test sets;

• the limited amount of empirical studies performed is a clear indication that there are 

opportunities to make a strong contribution to the field;

• The technique itself meets the criterion set out at the start of this chapter (section 2.1) 

that it should be able to be used with information generally available using current 

software development techniques.

The next chapter therefore is a more detailed survey and analysis of the available 

literature on f-way adequate combinatorial techniques.
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3. Combinatorial £-way Techniques

3.1 Introduction

The literature on combinatorial testing can be divided into two major areas: first research 

into techniques for generating t-way adequate test sets and work that evaluates the 

technique. The latter area, in turn, falls into two main categories: reports of the tools in 

field use and a small body of experimental work conducted under laboratory conditions.

A complicating factor with this classification scheme is that some work falls into more 

than one category. For example, Yilmaz, Cohen and Porter [341] could be classified either 

as field evaluation or as experimental work because although the paper describes an 

experiment, the authors lack control over certain aspects of the experimental design, 

specifically what faults are present and the details of the regression test sets used to expose 

those faults. Here I have taken the possibly pedantic view that to be classified as 

experimental work, all relevant aspects of the work have to be under the control of the 

researchers.

This chapter is divided into fourmain sections as follows:

• section 3.2 examines techniques used for generating t-way adequate test sets;

• section 3.3 looks at field evaluation of the techniques;

• section 3.4 examines detailed empirical work;

• section 3.5 considers in detail what weaknesses are present in the work reviewed in 

sections 3.3 and 3.4

As with the previous chapter, in each section there is a detailed review of the work 

conducted, which is followed by an analysis and finally a summary. It should be noted that 

this chapter does not describe t-way adequate test sets and section 2.3.4.1 should be 

consulted.

3.2 f-way Test Set Generation

3.2.11-way Generation: Detailed Review

Given that the focus of this thesis is not the generation of f-way adequate test sets this 

section examines only a subset of the work on test vector generation in detail. Indeed much
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of the work is essentially derivative or has lead nowhere (for example Williams [333] work 

on integer programming). In practice, the dominant techniques for generating r-way 

adequate test sets are based around the principles presented by the AETG algorithm or the 

IPO algorithm. This is evidenced by the fact that tools are available for these systems. The 

AETG tool itself is provided as a web service by AETGSM Web [91] and Testcover from 

George Sherwood [283] provides a similar service. A tool based on IPO (FireEye25) is 

available from the web and latter work included in this thesis was performed using a tool 

called j e n n y  [182], again freely available on the web.

The original methods used for generating t-way adequate test sets used orthogonal 

arrays, the simplest examples of which are Latin and Greco-Latin squares. These arrays 

can be readily sourced from both books, for example Diamond’s book [101] contains 

appendices devoted to their enumeration. In addition, there are databases such as the one 

provided by the National Institute of Standards and Technology (NIST)26 that list 

orthogonal and covering arrays. However, Williams and Probert [331] list some of the 

issues usually associated with employing such arrays for test data generation such as:

• not all factors have the same number of levels;

• not all parameters are independent;

• insufficient Latin squares exist, either because there are too few or no such squares or

because there are more than L+  1 parameters where L is the number of values.

Given the above, Williams [330] detailed a method for building CA’s from smaller sub

arrays including orthogonal arrays and reduced sections of those arrays as and from special 

arrays that they used to “fill” holes that are left over. The technique was implemented in  

the TConfig tool and Williams [330] provided experimental results that compared his 

technique with the IPO algorithm from Lei and Tai [212], [292]. Although the method 

showed an obvious time advantage, there appeared to be no significant gain in terms of the 

size of the covering array generated. A construction for a CA(15, 13, 3) from Williams 

[330] is shown in Table 7 where R(6,3,3,4) is a OA(n2, n= 1, n) , 1(9,1) contains all ones

25 Available From http://ranger.uta.edu/~ylei/fireeye/

26 http://math.nist.gov/coveringarrays/
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and is 9 rows by 1 column in size and N(6,3,l) is an array of the form (n2~n, n, d) 

containing a n by d block of twos concatenated with an n by d block of threes etc.

Table 7. Example of the scheme for constructing a covering array from sub arrays from
Williams [330].

OA(9,4,3) OA(9,4,3) OA(9,4,3) 1(9,1)
R(6,3,3,4) N(6,3,l)

In general, the use of existing covering arrays has received less attention than 

algorithmic methods for generating the required covering arrays. The area that has received 

the most attention to date are algorithms that use greedy heuristics to generate the required 

array. Perhaps the most widely discussed of these algorithm is that used in the AETG tool 

that was described in a number of papers by Cohen et al. [68], [70], [66], [67]. The 

algorithm is a greedy search that attempts to maximise at each step the number of 

combinations covered by selection from a large set of randomly generated vectors. The 

algorithm for 2-way adequate test sets is outlined below.

Assume test vectors vx. .v._1 exist
UC is the set of all pairs of values not yet covered in the set
FOR N iterations DO

a) select the variable and value included in most pairs of UC
b) select remain variables in random order
c) for the sequence in step b, select the value included in 

most pairs of UC
select as v. the vector that covers the most pairs

As stated, the algorithm is quite simple but this belies the complexity of directly 

implementing it. A major issue exists in step c where the set of uncovered pairs (UC) needs 

to be examined to find the most numerous unused value. Simple search strategies are 

unacceptably time consuming and practical solutions encode the pairs and use techniques 

such as perfect hashing. For example, the jenny  tool [182] would appear to be an 

outgrowth of work in this area27. The algorithm as given is also incomplete. For example, 

again in step c, it does not specify how to resolve ties, i.e., where two or more values meet 

the criteria.

Another algorithm (or rather pair of algorithms) for generating covering arrays was 

developed by Lei and Tai [212], [292]. This algorithm which they named In Parameter

27 Information gathered from reading the source code to the jenny program and from other comments on the web site.
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Order (IPO) avoided the random component in the AETG algorithm. The strategy adopted 

was to generate a complete set of 2-way adequate tests for the first two parameters 

presented. This minimal test set was then extended one parameter at a time until all 

parameters and pairs were covered. The process of extending the original test set involved 

“growing” the original vector horizontally by expanding existing tests (horizontal growth) 

and selecting the new element to cover as many remaining pairs as possible. If the process 

of growing existing test vectors failed to cover all pairs then new vectors were selected to 

cover as many remaining pairs as possible (vertical growth). Results in the paper indicated 

that efficiency in terms of test cases generated and time required by the IPO tool was 

comparable with the AETG tool.

Recently, Lei et al. [211], [210] discuss the extension to the IPO 2-way algorithms to 

higher factors i.e. t-way adequate sets of test vectors. These papers were notable for the 

depth of discussion on the problem of being able to efficiently identify and remove from 

further consideration pairs, triples etc. As noted above, this issue appears to be the 

determining factor in the speed at which the algorithm can operate.
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Variables —>
V l 4 - - 1 4 6 - 1 4 6 - 1 4  6 - 1 4  6 -
e l 5 - - 1 5 7 - 1 5 7 - 1 5  7 - ■ 1 5  7 -
c 2 4 - - 2 4 - - 2 4 7 - 2 4 7 - 2 4 7 -
t 2 5 - - 2 5 - - 2 5 - - 2 5 6 - 2 5 6 -
o 3 4 - - 3 4 - - 3 4 - - 3 4 - - 3 4 6 -
r 3 5 - - 3 5 - - 3 5 - - 3 5 - - 3 5 - -
s
4 (a) (b) (c) (d) (e)

1 4 6 - 1 4 6 8 1 4 6 8 1 4  6 8 1 4  6 8
1 5 7 - 1 5 7 9 1 5 7 9 1 5  7 9 1 5  7 9
2 4 7 - .2 4 7 A 2 4 7 A 2 4 7 A 2 4 7 A
2 5 6 - 2 5 6 - 2 5 6 8 2 5 6 8 2 5 6 8
3 4 6 - 3 4 6 - 3 4 6 - 3 4 6 9 3 4 6 9
3 5 7 - 3 5 7 - 3 5 7 - 3 5 7 - 3 5 7 8

(f) (g) (h) (i) (j)
1 4 6 8 1 4 6 8 1 4 6 8
1 5 7 9 1 5 7 9 1 5 7 9
2 4 7 A 2 4 7 A 2 4 7 A
2 5 6 8 2 5 6 8 2 5 6 8
3 4 6 9 3 4 6 9 3 4 6 9
3 5 7 8 3 5 7 8 3 5 7 8
3 5 6 A 3 5 6 A 3 5 6 A

2 - - 9 2 4 7 9
1 - - A 1 4 7 A

(k) (1) (j)

Fig. 12. Example of the IPO generation process for four variables with 3, 2, 2 and 3 values, 
(a) shows the initial state with all pairs for the first two parameters, (b) to (f) fill in values 
for the third parameter and (g) to (1) add values for the final parameter. All operations in 

(b) to (j) involve horizontal growth. In (k) to (1) vertical growth is used to give coverage for 
the remaining uncovered pairs for parameter one and parameter four.

3.2.21-way Generation: Analysis

The upper limit is represented by a test set generated by taking all combinations of n 

variables with v values taken t at a time where t is usually between two and six. There the 

number of pairs, triples etc. at the upper limit can be readily calculated. For example, the 

number of pairs is given by the following equation:

101 - 220



Combinatorial f-way Techniques

i<N- 1 
j<N

E v ,  V j

Where N is the number of variables and and ^  are the number of distinct values that 

have been selected for use by variables i  and j. Thus, if three values - for example, the 

minimum, the middle and the maximum had been selected for the first variable then 

would be three. If the variable was an enumeration with five values, and all values were 

used then v-j would be five. Thus, for these two variables there would be 15 pairs. 

Extensions to higher factors are straightforward but it can be seen that the number of pairs, 

triples etc. that have to be dealt with grows quickly. However, not as quickly as all 

combinations, which requires that every combination of values be selected which is given 

by the following formula (Grindal et a l  [139]);

However, what is not obvious is the number of vectors that are required to cover all pairs 

etc. as each vector will cover multiple pairs. Cohen et a l [67] showed that the bound for 

the number of test cases N  for a covering array of degree t is logarithmic in the number of 

parameters k, and provide a constructive proof for t = 2. Lei and Tai [212] proved that the 

problem of generating a minimum pairwise test set is NP-complete. Using curve fitting Tai 

and Lei [292] estimate that for systems with 10 variables and between 5 and 30 values (v = 

5.. .30) for t = 2 the number of test vectors required to cover all pairs is 0(v2) for their IPO

Colboum, Cohen and Turban [79] presented a detailed analysis of the bound on the size 

N  of the covering arrays provided by Cohen et al. [67] for the number of parameters k. To 

meet the logarithmic bound, they showed that it is necessary only to have a method that 

covers the average number of uncovered pairs. An algorithm was constructed (DDA) to

strategy.
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ensure this behaviour that was based on the “density” of uncovered pairs this being taken 

as a surrogate for expected number of new pairs to be covered.

There are a number of different variations on the basic AETG algorithm (Cohen et al. 

[67]). For example, Tung and Aldwan [305] described work that used similar principles to 

the AETG tool, but that had a lower reliance on random parameter and value selection. 

Specific differences included sorting parameters on the cardinality of the values, taking the 

largest value first rather than using random selection, and always selecting for the least 

used values when a tie in the number of new pairs covered occurred. However, in general 

this approach did not produce test sets with sizes that vary significantly from those 

produced by the AETG algorithm.

Bryce, Colboum and Cohen [46] extended the work in [79] to build a general framework 

that encompassed a whole class of greedy generation algorithms including AETG [67], 

TCG [305] and DDA [79]. The framework was used to generate large numbers of CAs and 

MCAs with varying parameters in order to statistically investigate which features had the 

most effect on the size of the generated test set. The results indicated that it is the lower 

level decisions that had the most effect. In particular the value selection decisions (inner 

loop) and, to a lesser extent, the parameter selection criteria appear to be dominant.

Recent work that investigated extensions to the basic test generation process, notably the 

work led by Colboum and Bryce [79], [43], [44], [45] on test generation prioritisation that 

used weights and the work by Cohen et al. [74], [73], [75] that added constraints to the test 

set generation process is of interest to this discussion. Notably they reused the basic AETG 

generation structure, extending it rather than replacing it. This suggests that, for the 

foreseeable future, AETG-like techniques may remain the dominant generation tools.

3.2.3 t-way Generation: Summary

Original research in this area appears to have been motivated by a desire to improve the 

testing processes. This has resulted in a number of workable, if less than perfect, 

algorithms and systems that create sets of vectors up to small t factors, e.g., AETG from 

Cohen et al. [67] and IPO and its latter derivatives by Lei et al. [211], [210]. Interesting 

work has also been done with other techniques such as metaheuristic search methods and 

the inclusion of several algorithms in one framework by Colboum et al. [79]. However,
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some of the work appears to have been conducted more from academic curiosity than 

practical necessity. For example, work with integer programming by Williams [333] and 

more recent work using SAT solvers by Hnich et al. [160], [161] and Yan and Zhang 

[340].

Research in this area has perhaps also been slightly blindsided in the drive to construct 

smaller sets of test vectors for factors of t = 2 and t =3, and although improvements have 

been made they are often marginal. Given the early indication from Wallace and Kuhn 

[313] that higher factors, e.g., t =5 or t = 6 and hence much larger tests may be required in 

practice, focus should perhaps have been directed sooner towards more “real world” issues 

such as those investigated in the latter work on weighting and constraints.

The work on weighting by Colboum and Bryce [79], [43], [44], is interesting but needs 

further development. For instance, one of the stated primary goals is to generate test 

vectors that cover as many high t-way interactions as early as possible because this, it is 

assumed, will also reveal the most errors as early as possible. Although this reasoning 

appears to be sound and it is known that some errors require high factor tests, the 

assumption that generating these early will also result-in the majority of errors also being 

discovered early is untested as yet and requires empirical evaluation.

The value of the extensions to greedy algorithms introduced by Cohen et al. [74], [73], 

[75] that incorporate hard constraints on what vectors can be legally generated is less 

ambiguous and represents a real contribution to the field.

3.3 Field Studies

3.3.1 Field Studies: Detail

Perkinson [263] studied several different strategies for testing an integrated services 

digital network (ISDN) system and described a number of techniques that were applied for 

generating effective test sets smaller than those required for exhaustive testing (181k test 

cases). Three methods are discussed briefly: defaults with user control where the tester 

selected additional paths and conditions, guided walk where a single parameter is 

automatically altered on each test , which has strong similarities to the base choice
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technique defined by Ammann and Offutt [9], and the proposed use of orthogonal arrays. 

The last method is suggested to deal with a problem encountered with the other two 

techniques, namely that they were “not robust in terms o f parameter coverage

Brownlie, Prowse, and Phadke [42] performed system testing on the AT&T 

PMX/StarMAIL system using the Orthogonal Array Testing System (OATS) which is 

described in Harrel [158] and that built on work from Mandl [220]. They compared 

expended effort with the expected effort required for conventional testing where the test 

plan is constructed by hand. In terms of time, the authors suggested a 3:1 efficiency ratio in 

favour of OATS and in terms of faults detected they estimated that OATS was 2.6 times as 

efficient as conventional testing28.

Unfortunately while interesting and suggestive these two papers (Perkinson [263] and et 

al. [42]) provide too little evidence to be really valuable.

Burroughs et al. [51] described a protocol testing application that used covering arrays 

generated using the Automatic Efficient Test Generator (AETG) tool developed by Cohen 

Dalai and Patton [68]. The paper compared the size of test set generated using the ATEG 

tool with test sets generated using two more traditional strategies and compares the 2-way 

coverage of interactions manually. The authors concluded that the modified AETG tests 

are superior in terns of breadth of coverage, i.e., that no significant holes were left. 

Interestingly, the authors reported that they chose to modify the AETG generated test sets 

to obtain a better balance, which seems to contradict their conclusions.

Cohen et al. [68] presented information on use of the AETG tool on two releases of 

production software where it is reported to have found more faults than standard test 

techniques. However, the researchers did not specify what the standard techniques were 

used so it is difficult to draw any strong conclusions. These results appear to be derived 

from earlier work (Cohen et al. [69]) that is covered in detail in section 3.4.2.

Two papers by Dalai et al. [93], [92], examined the use of the AETG system for high 

level, requirements based testing of production systems at Bellcore. In general the results 

were positive and for some of the failures detected the authors concluded that they would

28 Unfortunately, in common with much on field testing exactly what “conventional” testing comprises is not explicitly 

defined.
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only be revealed with certain combinations of factors. A large proportion of both of these 

papers were devoted to discussion of the issue of data modelling. That is of construction of 

models of the systems to be tested that are needed so the AETG tool can be used to 

generate the test sets. Data modelling appears to be a non-trivial issue with several of the 

models requiring several iterations to obtain a satisfactory result.

A number of advantages and weakness associated with the use of the AETG tool set 

were identified in these two papers. Major advantages were that:

• the models coupled tests to requirements [92];

• the ease with which the data models could be generated and iterated [92];

• the ability to regenerate models in response to change [92].

On the down side Dalai et al. also noted that there were issues with the following:

• that testers needed to have development skills and required domain knowledge to be 

effective [92]29;

• the development of test scaffolding dominated effort in at least some cases [93];

• there was an oracle problem, i.e., it was sometimes difficult to analysis the large amount 

of output generated, and that automated tests were in some case more difficult to 

understand than hand-crafted tests [92].

All of the above suggests that the human aspects of testing are still a significant issue 

and that the tools alone may not be sufficient without intelligence to guide them.

Burr and Young [50] reported the use of the AETG tool for testing an email system 

against requirements derived from a standard. Notably, the standard was expressed in 

terms of Backus-Naur Form (BNF) and the test process involved the translation from BNF 

to AETG constructs. Results were given in terms of percentage code coverage attained30, 

approximately 93% for block (statement) branches. However, what is interesting in this 

work is how the coverage increased from only 50% block/branch coverage over the course 

of the project as the AETG data model was developed. A comparison between AETG

29 However it should be noted that in the authors experience this is usually the case. The distinction here being possibly 

the use of a separate test department.

30 Normalised for blocks that could be covered, much of the code proved unreachable as it was designed to deal with 

failures.
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generated test sets and test sets generated via conventional techniques and default value 

testing (i.e. base choice [9]) is shown, with the latter two techniques attaining only 85% 

block and branch coverage.

Pan, Koopman and Siewiorek [258] described an experiment that applied all possible 

combinations of parameters to automatically test for robustness faults in POSIX API 

function calls on 15 different implementations. Faults were detected when the process 

hung requiring a task to be killed, or aborted which caused an abnormal termination (core 

dump). While the process is not directly applicable to less catastrophic faults, these results 

indicate that in some circumstances massive sets of tests can be applied. However, of 

particular interest to the work in this thesis is the finding that for the events being 

generated, single parameter failures accounted for over 80% of the failures observed. 

Unfortunately percentages for pair, triples etc., were not provided.

Smith et al. [287], [286] discussed the use of two combinatorial techniques for testing 

the Remote Agent experiment (RAX) planning system, which formed part of NASA’s 

Deep Space 1 program. The two techniques used were 2-way adequate test sets and a 

technique they termed all-values, the second of these techniques again appears to be 

identical to the base choice technique from Ammann and Offutt [9]. The effectiveness of 

the two techniques is measured against the total set of faults discovered during 

development and is classified in four areas according to where the fault was located. In this 

work, the base choice technique outperformed 2-way adequate test sets in all areas, and by 

substantial margins. However, the test sets also seem to have been complementary in that 

they revealed different faults. For the convergence and correctness aspects of the RAX 

planner the authors reported that 88% of the total known errors were found using a 

combination of base choice and 2-way tests but that only 50% of the faults for the interface 

and engine control software were revealed by these techniques. The authors do not suggest 

a reason for this discrepancy.

Huller [173] discussed system testing to reduce both the time and cost of delivering 

product and claimed a 70% reduction over conventional quasi-exhaustive test suits 

generated by hand. However, they admitted that verification of this claim would be 

difficult in practice. The technique used was based on manually generating the required 

combinations and was a variant of Lei and Tai’s [212], [292] IPO algorithm that was
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optimised by including the parameters with the highest number of values first to reduce the 

number of vectors generated31.

One set of “field studies” of special interest is a large series of studies all of which 

involve Richard Kuhn, that examined real world system failures and classified the variable 

interactions that caused the activation of the faults that lead to those failures. Wallace and 

Kuhn [313] looked at software failure modes in data collected by the Federal Drug 

Administration (FDA) that involved the recall of medical equipment over a 15 year period. 

They concluded that the majority of failures involved only two variables and that only a 

small number involved three or four and that, therefore 2-way adequate test sets would 

have detected the majority of the failures.

Kuhn and Reilly [202] examined the Mozilla and Apache open source projects using 

their bug tracking databases to determine the number of conditions required to trigger the 

fault. Finally Kuhn, Wallace and Gallo [203] performed the same analysis on a large 

distributed system being developed by NASA. In both these cases, the results mirrors those 

from the earlier FDA study, indicating that in practice, a “small” t factor of between four 

and six would have been required to reveal all the faults reported.

Table 8. Results for Kuhn and Reilly [202] and Kuhn et al. [203] showing the required t- 
way adequacy to locate all known faults. Data from the TCAS experiment, Kuhn and Okun 

[201] is in the last line for comparison (see section 3.4.1).

System Studied t -  1 t = 2 t = 3 t = 4 * = 5 t = 6
Mozilla cumulative faults % 28 76 95 97 99 100
Apache cumulative faults % 41 70 89 96 96 100

NASA GSFC % 68 93 98 100 - -

TCAS Experiment % - 53 74 89 100 -

It should be realised, however, that the term small is relative. A small t factor can easily 

translate into a very large number of vectors. For instance Kuhn and Wallace [203] 

suggested that “then a small multiple o f10,000 tests would be needed to cover all 5-tuples” 

(pg. 420). Dealing with this number of tests is non-trivial. Kuhn, Lei and Kacker [204] 

suggested that the solution to this problem might be to use “formal” models of the system 

under test and a model checking paradigm as automated oracles. However, this leaves open

31 Small scale experiments using IPO showed similar results.

108 - 220
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the question of how to verify that the model is correct compared with the real world rather 

than just internally consistent.

The study presented by Yilmaz, Cohen and Porter [341] is interesting precisely because 

exhaustive testing was performed. The faults examined were associated with build options 

for the ACE+TAO open software toolkit for building distributed applications. The primary 

thrust of the work was to examine the effectiveness of building fault classification trees 

from failure information by comparing the performance of t-way adequate test sets with 

results from exhaustive testing. The researchers found that for the full set of faults 2-way 

sets performed poorly compared with exhaustive tests. However, for a reduced set of faults 

that were considered to correlate strongly with build options, t-way adequate sets 

performed almost as well, with higher factor sets becoming more accurate at classifying 

faults. Impressive time savings were observed, one day for 2-way test sets versus a year for 

running the exhaustive test. A comparison with randomly generated test sets was also 

performed. This found that r-way adequate test sets found slightly more failures than the 

randomly generated test sets, with less variability in the number of failures located and 

produced more reliable models, i.e., without extraneous features. The paper did not define 

what it meant by failure or how failures were recognised. However, earlier work by 

Memon et al. [229] suggests that failures were recognised by running a large set of existing 

regression tests written by hand.

Bell and Vouk [32] reported on the fault detection effectiveness of applying 2-way 

testing to two security products with known errors and found that the number of faults 

detected was strongly related to the amount of expert input used to define interactions 

between the parameters.

3.3.2Field Studies: Analysis

Data from field studies does not present a consistent view of whether the combinatorial 

techniques for generating test sets are useful. Early studies suggested that efficiency gains 

or other advantages can be made with using the technique Perkinson [263], Brownlie et al. 

[42], Burroughs et al. [51] and Huller [173] but provided little in the way of hard evidence. 

Therefore, these studies can only be taken as an indication that further investigation would 

be worthwhile. Likewise, the studies by Cohen et al. [68], [70], [67] suggested that the
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method might be effective but the results are somewhat scattered and the original technical 

report on which the work was based on gives a better view and is dealt with in section 3.4. 

Burr and Young [50] provided more concrete evidence of the utility of combinatorial 

testing versus the other methods examined but results were for coverage alone and not 

conclusive.

Perhaps more interesting are the results from Smith et al. [287], [286] that indicated that 

2-way testing (pairwise) was not always effective. The poor performance of 2-way test 

verses other techniques, i.e., base-choice indicates that further work needs to be done.

In a similar vein to the generally negative assessment above is comments by Dalai et al. 

[93], [92] and Bell and Vouk [32] commented that the production of good data models is 

not a trivial task and that it requires expert input. This is counter to some advice proffered 

in recent books on testing such as Copeland [81] whose advice is to “determine the number 

o f choices for each variable” (pg. 71) and Kaner, Bach and Pettichord [187] who advise 

that values be selected by domain partitioning. A more recent text by Ammann and Offutt 

[8] provides more complete advice and suggests several different ways in which the input 

domain can potentially be modelled.

The most impressive set of studies in this group for consistency of results are those that 

have determined the number of variables required to trigger an actual observed failure in 

the software. The series of studies involving Kuhn, Wallace, Reilly and Gallo [313], [202], 

[203] provide the best evidence available that supports the proposition that combinatorial 

techniques are a useful means of generating effective test data.

This idea is further supported both by the work of Pan, Koopman and Siewiorek [258], 

who observed that the vast majority of failures involved only a small set of values and, 

more strongly by Yilmaz, Cohen and Porter [341] who directly compared the effectiveness 

of both 2-way and 3-way adequate test sets against complete testing.

However, it needs to be noted that there is a major difference between the conclusions 

presented by Kuhn et al. and earlier work. Prior to these studies, all authors have examined 

pairwise (2-way) testing, yet the studies by Kuhn et al. suggest that we need to do more 

work than this in suggesting that examination of factors up to six may be necessary with a 

corresponding increase in the number of vectors generated.
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3.3.3 Field Studies: Summary

The field studies examined (in particular, the early work) have one great weakness, and 

one great strength. The weakness is a lack of comparative data in the studies reported by 

Perkinson [263], Brownlie et al. [42], Burroughs et al. [51], Cohen et al. [68], Dalai et al. 

[93], [92] and Huller [173]. Latter work is far better in this regard. However, the early 

work did serve to raise the profile of combinatorial testing and interest in its application.

The strength of the work presented here is that it draws attention to the difficulty of 

applying combinatorial testing in a completely satisfactory manner, as high-lighted above 

in the comments from Dalai et al. [93], [92] and Bell and Vouk [32].

However, the work that really stands out is the body of work presented by Kuhn, 

Wallace, Reilly and Gallo [313], [202], [203] which puts practical bounds on what can 

potentially be achieved by applying t-way adequate testing independently of actually 

applying the technique.

3.4 Empirical Studies

3.4.1 Empirical Studies: Detail

The technical report by Cohen et al. [69] covered a substantial amount of ground, 

including three sets of experiments; testing data input screens to a database; testing a group 

of ten UNIX commands, and additional testing on database screens to study fault detection.

The first section tested three input screens and for one reported a comparison of 

coverage metrics for several generation techniques including 2-way and 3-way 

combinatorial generation, random generation, and a technique they termed “default 

testing" which appears identical to the base choice technique proposed by Ammann and 

Offutt [9]. Although complete results for only one screen are reported, all the techniques 

were capable of producing around 90% block coverage except for random testing. The 

results for Unix commands are shown in Table 9. As can be seen, these showed a slight 

advantage to 2-way tests over the base choice technique (shaded cells). It was stated in the 

conclusions that 3-way test sets showed no gains over the 2-way (pairwise) test data.
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Table 9. Results for block and decision coverage for the ten UNIX commands 
experimented on in Cohen et al. [69] using 2-way (AETG) adequate tests and base choice

test sets (BC).
Comm and AETG

block
BC block Difference AETG

decision
BC

decision
Difference

sort 95 86 9 86 75 11
basename 100 86 14 100 94 6
cb 96 86 10 89 89 0
comm 98 97 1 90 87 3
crypt 92 92 0 90 90 0
sleep 100 100 0 100 100 0
touch 86 71 15 81 68 13
tty 100 100 0 100 100 0
uniq 100 98 2 98 91 7
wc 100 79 21 91 63 28

Unfortunately, the work in Cohen et al. [69] was aimed at determining whether 2 and 3- 

way tests gave good coverage rather than at comparing techniques. Consequently, although 

reasonably good coverage was demonstrated nothing can be said about how well this 

compares against a conceptually simpler32 technique such as random testing.

Dunietz et al. [106] compared the code coverage of random experimental designs 

without replacement with the coverage obtained from systematic designs with the same 

number of vectors. They concluded that for block coverage, low factor (i.e. 2 or 3) t-way 

designs could be effective if  it was necessary to keep the number of tests to a minimum. 

Higher factor tests produced results which were more reliable but at the expense of 

executing far more tests. Furthermore, results for path coverage, probably a more complete 

indicator of test quality, strongly favoured higher t factors (4 or 5).

Nair et al. [239] investigated random testing without replacement and no partitioning 

versus partition based testing and showed that, in general partition testing should be more 

effective. The particular case of partition testing that they investigated - an application of 

f_way experimental design - showed that the probability of detecting a failure for simple 

random testing was significantly lower than with partition based techniques. It is 

interesting to note that this paper is sourced from the literature on statistics rather than 

from the literature on computer science. The authors pointed out that partition testing can

32 This is not to suggest that actually constructing random test sets is simple from a implementation perspective. Both the 

data space can be difficult to deal with as reported by Bird and Munoz [36] and random number generation is far from 

trivial as reported by Wichmann and Hill [329].

112-220



\^uiuuinciiuiicii i - w a y  xcc-imiqucs

be considered a case of stratified sampling and that they also wrote “it is well-known in the 

statistical literature that stratified sampling enjoys many advantages over simple random 

sampling”33 (pg. 168).

Kobayashi et al. [197] examined the fault detecting ability of specification based 

(Weyuker, Goradia and Singh [322]), random, anti-random (Malaiya [219]) and t-way 

techniques when applied to the testing of logic predicates against mutations of those 

predicates. Specifications for logic predicates taken from Weyuker et al. [322] for the 

TACS II aircraft collision avoidance system contain between 5 and 14 variables. The 

authors concluded that 4-way tests were nearly as effective as specification techniques and 

better than both random and anti-random test sets. The authors also specifically noted that 

2-way tests did not perform as well as expected or as well as reported in previous studies 

such as Dunietz et al. [106].

Grindal et al. [138] [139] examined the fault detecting power of a number of different 

combinatorial strategies including 1-way (each choice), base choice (a single factor 

experiment), pairwise (2-way) using the AETG algorithm and 2-way using orthogonal 

arrays. Their experimental work was performed on code seeded with hand-generated faults 

used in defect detection studies by Kamsties and Lott [186]. The data they obtained for 

branch coverage is consistent with other experimental results. However, after examining 

the data in detail, the authors concluded that code coverage methods might also need to be 

employed. As in [286], the authors found that the base choice technique performed as well 

as orthogonal arrays and 2-way adequate test sets in three out of five problems. However, 

it is interesting that no technique detected fewer than 90% of the detectable faults, which 

suggests that the target code was perhaps not ideal for the experiment.

33 They also commented that “for any given partitioning of the input domain, gains in efficiency can be achieved by 
judiciously choosing the test allocation scheme. The importance of doing this does not seem to be fully appreciated in 
the software testing literature''' (pg. 168).
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Table 10. Summary of the functions used by Grindal et al. [138] in testing combinatorial
testing strategies.

Program Functions Lines of 
Code34

decisions global nesting

count 1 42 8 0 4
token , 5 117 22 4 3
series 1 76 10 5 2
nametbl 15 215 21 5 3
ntree 9 193 34 0 3

Schroeder et al. [277] examined effectiveness in terms of code coverage for t-way versus 

“random selection” (actually a random design) with replacement on code with hand seeded 

faults. Although this experiment produced results that broadly support the results from 

other experimental work, each technique only detected between 45% and 55% of the 

injected faults. Furthermore, it was also found that values for t greater than four were 

required to reveal some faults. The researchers also concluded that t-way test sets were no 

more effective than test sets constructed using random designs for sets of the same size.

Kuhn and Okun [201] examined the almost ubiquitous TCAS program introduced by 

Hutchins et al. [174] and the ability of £-way adequate test sets to detect seeded faults. 

They found that there was an increase in the number of faults detected as t increased until t 

= 5. However, the size of the test sets reported, i.e., that t = 5 has 4200 vectors and t = 6 

has 10902 - suggested that first, determining the correctness of a response could be 

difficult or perhaps impossible without the formal model that they used, and second that 

randomly selected values could have performed as well. However, whether randomly 

generated tests would be effective was not investigated.

Hoskins et al. [166], [167] investigated the ability of MCA covering arrays and D- 

optimal designs to approximate full factorial designs. A full factorial design is one “in 

which every setting o f every factor appears with every setting o f every other”35 [12]. Note 

that here “every setting” refers to every selected level of a factor, not every possible level. 

D-optimal designs are algorithmically derived designs for specific models, that are

34 It is not stated whether this total lines of code, or lines of executable code.

35 Section 5.3.3.3 of the NIST e-Handbook of Statistical Methods [12]. Note that the electronic handbook does not 

contain page numbers.
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commonly used when other experimental designs are not appropriate, and have a well 

established record. The authors concluded that covering arrays are “competitive” with D- 

optimal designs in approximating full factorial designs.

3.4.2Empirical Studies: Analysis

Table 11 summarises the techniques that different empirical studies have applied to code 

when evaluating t-way techniques, a “y” in a cell indicates that that the technique specified 

in the first row was applied. Unfortunately, there is less overlap between the studies than 

first appears. For example, several authors reported the use of “random testing”. However, 

Nair et al. [239] and Kobayashi et al. [197] use random testing without replacement where 

as Schroeder et al. [277] applied random designs from partitioned values without 

replacement and Grindal et al. [138] and Kuhn and Okun [201] ignored random testing 

completely.

Table 11. Summary of techniques that have been investigated to determine their fault
revealing capability.

Study Random Anti-
Random

i-
way

Base
choice

t - 2 t - 3 t = 4 ***. ii to t = 6

Cohen et al. [69] y y ■v y y y
Dunietz et al. 
[106]

y y " y  ' y"
Nair et al. [239] y y
Kobayashi et al. 
[197]

y y y ; ■ : y yt:/
Grindal et al. 
[138]

i  y . - y -  ■ ■y
Schroeder et al. 
[277]

y y y :■ y |
Kuhn and Okun 
[201]

y y ; Jy \ y

The level of factor coverage also varied quite widely between studies and although some 

have used high values (t >= 4), only Dunietz et al. [106] and Kuhn and Okun [201] have 

used values of five or greater. Given that examination of field data in field studies by 

Kuhn, Wallace, Reilly and Gallo [313], [202], [203] suggested that that values of t = 5 or t 

= 6 are necessary for the reliable discovery of all faults present, this is perhaps unfortunate
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albeit completely understandable since the early empirical studies were conducted before 

these field studies were undertaken.

The data shown in Table 12 provides summary data for the subject programs used in the 

empirical work described above. As before, the first column is the reference for the study. 

The second column is a summary of the type of program that the study was undertaken on 

and the third column, “lines” provides an indication of the scale of the study and the 

column “factor” is the maximum level of interactions the test sets were adequate for. The 

column “block coverage” is the percentage block coverage reported. The column “faults” 

is the number of faults injected in the subject code for those studies that examined fault 

detection and the next column “detection” is the percentage of those faults that were 

detected or where reported, a range. The final column indicates the level at which the 

testing was conducted and is an educated guess based on comments as this was not 

explicitly stated in any of the papers.
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Table 12 shows several interesting features that will be discussed further in the 

following sections. First, it shows how the emphasis has changed over time from 

demonstrating coverage to measuring fault detection. Second, there is less variety in the 

programs being tested than is desirable. Finally, although the coverage results are good and 

consistent, the data on fault detection are more ambiguous and in addition, given the third 

point, an additional subsection that considers the nature of the faults being tested and, 

finally, a subsection on program size.

3.4.2.1 Emphasis

The emphasis in empirical testing work has clearly changed over time, from 

demonstrating that the technique can achieve good coverage to showing that it is effective 

at detecting faults.

The principle reason for wanting to demonstrate that good coverage can be achieved is 

the a priori assumption that good coverage is indicative of good fault detecting ability. 

This assumption is supported by empirical work from Piwowarski, Ohba and Caruso [265] 

and from Wong et al. [335]. However, it needs to be kept in mind that although coverage is 

a necessary condition for fault detection, it is not a sufficient condition as observed by 

Weyuker [324].

If the view that coverage begets good fault detection were correct in an absolute sense 

then one could expect that for software tested to the highest coverage criteria levels we 

would see no errors. For example, avionics software which is covered by the DO-178B 

standard [14], requires MCDC coverage (Chilenski and Miller [60]) at the highest levels. 

However, despite claims of its effectiveness, there are more sceptical evaluations such as 

Bhansali [34] and we do in fact see faults in software in flight critical software (i.e. Class 

A) as noted by Shooman [285].

From this perspective, the shift to directly examining fault detection rather than coverage 

is welcome.

3.4.2.2 Variety

Another weakness in the empirical research conducted to date is that there appears to be 

very little variety in the types of programs tested. For example, Cohen et al. [69], Dunietz
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et al. [106] and Nair et al. [239] all examine data input processing “screens”. It seems 

plausible that these may have all been taken from the same or at least similar systems as all 

of these papers have close ties with AT&T and Bell Labs, as does much of the work in this 

field. Unix commands or Unix-like commands are studied in both Cohen et a l [69] and 

Grindal et al. [138], and both Kobayashi et al. [197] and Kuhn and Okun [201] have based 

their work on the TCAS system, although Kobayashi et al. concentrated on the 

specification and Kuhn and Okun on actual code. Schroeder et al. [277] broke this pattern 

and used two “production” programs that they had direct access to. However, they only 

tested a sub-section of each program.

3.4.2.3 Coverage and Detection

Although good coverage results (e.g. greater than 80% blocks) seem to be universally 

reported, there is less consistency in the results for fault detection. Some authors - for 

example, Kuhn and Okun [201], Grindal et al. [138] - have obtained good results on fault 

detection, and Smith et al. [286] reported one set results consistent with these two afore 

mentioned experiments. Other authors have seen less success, i.e., Schroeder et al. [277] 

reported that only 50% to 60% of faults were detected. Results from Kobayashi et al. [197] 

are mixed, ranging from approximately36 44 to 100% fault detection with the mean around 

81%. Smith et al. [286] also reported poor results with one particular class of fault, 

interface faults. Here their results were consistent with those reported in Schroeder et al. 

[277].

3.4.2.4 Faults

There are several confounding aspects to those studies based around fault detection that 

have reported good results. As stated above, Kuhn and Okun [201] offered no comparison 

to the technique that they used (i.e. there was no control) so it is open to speculation 

whether any other technique, e.g., random testing, would perform as well. Similarly, 

Grindal et al. [138] reported that all the techniques reported good results so the detection 

of defects on its own is in itself not good evidence that the technique is effective. It is

36 Figures were estimated from the histograms presented in the paper.
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possible that in this case at least the faults may have been too simple to truly stress the 

techniques applied.

We also have to consider the possibility that the sets of faults examined may not be 

consistent with real faults or that they are distributed in a different manner to real faults. 

The majority of studies inserted faults by hand, i.e., Kuhn and Okun [201], Schroeder et a l 

[277] and Grindal et a l [138] who took the existing set of faults from Kamsties and Lott 

[186] and added additional “mutation like” faults by hand. Only Kobayashi et a l  [197] 

used a systematic technique, namely mutation. Interestingly, these authors observed 

different fault detection rates to the study by Kuhn and Okun [201] for similar “code”.

Whether or not this variation in how faults are inserted introduces a bias in the results 

has been investigated by Andrews, Briand and Labiche [11] who compared the fault 

detecting ability of existing test set suites against both code with hand inserted faults and 

code that had faults inserted by a mutation tool. In general, they found that automatically 

generated code mutants tend to be easier to detect than hand seeded faults. For the one 

program that had a set of known actual faults there was little difference in the difficulty of 

detection between these and faults introduced by mutation.

Closely associated with how faults have been inserted, is the number of faults that have 

been included. For example, Kuhn and Okun [201] used 41 faults (versions) in the TCAS 

program whereas Kobayashi et a l [197] used 327 for one single predicate from the TCAS 

specification. Indeed the contrast between the success rates reported by these two groups 

on similar problems37 raises some doubts on general applicability of the results in Kuhn and 

Okun [201]. Even taking into account that fact that Kuhn and Okun used higher factor tests 

than Kobayashi et a l [197] (6-way versus 4-way) this does not completely account for the 

differences between the two sets of results. The same observation applies to number of 

faults used in Schroeder et a l [277] and Grindal et a l [138] where only a small percentage 

of the number of possible faults were examined.

37 It should be noted that Kuhn and Okun used the TCAS program code whereas Kobayashi et al. used the specification 

from TCAS II which includes extra logic for conflict resolution not present in TCAS I specification. Therefore, it is 

possible that the TCAS II study considered complex predicates not present in the TCAS study.
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3 . 4 .2. 5  P r o g r a m  S i z e

Related to the discussion above is the level at which the techniques were applied. Kuhn 

and Okun [201] performed the testing at the level of the program, i.e., by manipulating the 

external interface in contrast to Kobayashi et al. [197] who must have effectively worked 

at the level of a single function in order to isolate each of the predicates that they were 

investigating, although they did not state this explicitly.

Likewise, Schroeder et al. [277] and Grindal et al. [138] performed their investigations 

also apparently at the program level. This may have been a deliberate attempt to study the 

effectiveness of the technique in a black box environment or might perhaps indicate that 

the information necessary to perform testing at a lower level was not available.

Importantly however, this does not change the fact that testing at the lowest level, often 

referred to as unit testing [13] - allows more control of the environment and greater access 

to the results of the test process. Freedman [127] investigated the problem of how testable 

software was and observed that two factors have a large bearing on this matter. They are:

• observability: the ease of determining whether specified inputs affect the outputs;

• controllability: the ease of producing a specified output from a specified input.

One area that touches these issues is the use of static data such as counters, timers etc. 

especially when this data is hidden from external view. Baresel et al. [24], Lammerman et 

al. [206], Gross et al. [143], [144], as well as McMinn and Holcombe [226], [228], have all 

noted that variables declared as static in the C language presents a problem for 

evolutionary test generation. Primarily because if the static data is embedded with the 

function under test, the variables are not controllable nor in particular observable.

3.4.3 Empirical Studies: Summary

As noted by Tichy et al. [298], there is in general a lack of empirical work in computer 

science and, at this point, Tichy’s [297] plea for more experimental investigation only 

needs to be repeated. There are too few experimental results on too few different test 

subjects with too few sets of comparative data to be able to definitely know whether 

combinatorial techniques will live up to its promise of being effective at detecting software 

errors.
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3.5 Weaknesses

If we examine the field studies described in section 3.3 and the empirical investigations 

detailed in section 3.4, we find that the following points stand out:

• Direct comparisons with other techniques are either absent or are not consistent (for 

example the comparisons with randomly generated tested discussed in sections 2.2.1 and 

3.4.2).

• The comparison with human testing although present is flawed in that too few details are 

presented on how testing was performed, how test sets were selected and what adequacy 

criteria were meet, e.g. statement coverage.

• Also in relation to human generated tests, it has yet to be shown that the technique is 

least as good as good as a human tester, a necessity if it is to be applied in critical 

applications.

• Less attention than desirable has been given to the oracle problem. Although the 

technique may be able to detect errors, but for factors greater than two it also generates a 

large number of tests. Some method of reducing the number of tests that need to be 

examined by people must, therefore, be developed.

• In addition, there have been very few attempts to estimate the significance of the 

research in any formal sense for example by using statistical hypothesis testing.

3.5.1 Comparisons

The evidence on the utility of the technique that is presented in section 3.3 is especially 

weak in the early work on software testing; with the studies with the least comparative 

information being highlighted in section 3.3.3.

The number of formal (i.e. measured) comparisons with other test data generation 

techniques is minimal. As stated in section 3.4.2, some empirical work has made 

comparisons with random testing, i.e., Cohen et al. [69], Nair et al. [239], and Kobayashi 

et al. [197] but particular comparison has not been universally applied. It is especially 

disappointing that the two studies by Grindal et al. [138] and Kuhn and Okun [201] did not 

include it particularly since Ince [175] suggested some twenty years previously that 

random testing be used as base method for comparison with other more complex 

techniques in experimental studies. Indeed, random testing has been used widely as a
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comparator in empirical studies outside this area such as Frankl and Weiss [125], [121] and 

in the large study by Hutchins et al. [174] which continues to form the cornerstone of 

much empirical work in testing research such as that performed by Reid [269], [270].

A number of field studies including Perkinson [263], Burr and Young [50], Smith et al. 

[287], [286] and empirical work by Cohen et al. [69] and Grindal et al. [138] [139] have 

also investigated the use of single factor experiments as a technique. However, this group 

of authors came to different conclusions. Those who conducted field studies generally 

found that the technique was less effective than suggested by the empirical study 

performed by Grindal et al. [139]. It should be noted however, that the results of the field 

studies performed by Smith et al. [287], [286] tended to agree with Grindal et al. [139] 

rather than with the other field studies. It would therefore seem profitable to include the 

base choice generation technique in any comparative work undertaken.

3.5.2Human Test Sets

The purpose of automating the test case generation process is to remove or reduce the 

need for human intervention. However, this is only useful if the tests generated without 

human intervention are at least as effective as test sets for the same code generated by 

human testers. Although the field studies suggest that t-way adequate test sets may fulfil 

this criterion, the evidence is by no means conclusive. Although the studies reported by 

Dalai et al. [93], [92] state that more errors were found using t-way adequate techniques, 

they provide virtually no information on exactly what the effectiveness of the technique is 

being compared with. Later studies such as that by Yilmaz, Cohen and Porter [341] are 

better but they are still lax in detailing exactly what is being compared with what and, just 

as importantly, in detailing how errors are being detected.

To gauge how useful the technique is in practice it needs to be directly compared with 

human generated tests. However, as noted by Ellims, Bridges and Ince [112] very few 

studies have been performed that examine human testing performance. Fewer still directly 

compare performance of humans versus automated techniques directly. Indeed the only 

study known to the author is by Grochtmann et al. [141]. Here test sets generated by 

students were compared directly with path following genetic algorithms to determine the 

maximum execution time of several procedures.
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3.5.3 Test Reduction

The primary motivation for using f-way adequate tests, at least initially, was improved 

testing with smaller test sets. Although the second feature may be true of 2-way adequate 

test sets, as noted in section 3.3.1 the number of tests required for higher factors is very 

large, at least relative to what would or could be generated by hand.

By itself needing such a large number of tests is not a problem except that they may take 

an unreasonable time to execute. However as pointed out by Ould [257] the major problem 

with testing is determining whether a test passed. That is, whether the software under test 

produced a correct result or not. Therefore for the technique to succeed there needs to be 

either an oracle such as the formal models proposed by Kuhn et al. [204] that can 

determine whether a result is correct or there has to be a mechanism for determining the 

quality of a test vector so that a small set of vectors can be selected from the larger set. If 

this can be done then the number of vectors that need to be examined by hand can be 

minimised.

A mechanism that can do this needs to have the property that it can distinguish a good 

test case from an average or perhaps even a bad test case. The usual metrics used to 

measure code coverage such as statement and branch adequacy are in some ways 

inadequate for the purpose. As noted by Weyuker [324], these criteria are necessary but not 

sufficient. Coverage of all lines of code does not imply that code has been fully tested and 

it is trivial to provide examples where this would be true. The most obvious case would be 

straight line code that performed large amounts of possibly complex arithmetic. A single 

test vector would be sufficient to provide coverage but not actually do anything very 

useful, a point addressed by Hamlet on several occasions [149], [151].

3.6 Final Appraisal

It is reasonably clear that little opportunity exists for the development of new tools for 

generating t-way adequate test sets. Although some effort was put into this activity and an 

adequate tool for generating 2-way (pairwise) test sets was created, activity in this area was 

overtaken by events. More efficient tools have since become available including the jenny 
program [182] and tool sets from the research conducted by Lei et al. [211], [210] have 

become more widely available (Kuhn et al. [204]).
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Therefore, the research in this thesis will focus on the effectiveness of t-way 

combinatorial test sets for detecting errors in code and on finding an efficient mechanism 

to make the technique tractable without resorting to formal models as suggested by Kuhn 

et al. [204]. The desire to avoid the use of formal models are derived from the fact that 

these techniques are not currently widely used in industry. There also remains the question 

of testing the model itself, as while it may be possible to “prove” that it is complete against 

some criteria there is no way of proving that it actually does what is intended.

For example, it may be necessary to convert a model or other formal definition of a 

program back into English so that the end customer can understand it38. Likewise, the end 

customer may use other methods to define functionality. The example is given by 

McDermid et al. [221] where the end customer may use their own sets of formal, or as is 

more usual, semi-formal methods that are not compatible, which presents a two way 

translation problem.

38 Personal Communication from Professor Martyn Thomas at 9th Australian Workshop on Safety Critical Systems and 

Software.
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4. Program of Work

4.1 Introduction

The research presented here focuses on determining the effectiveness of combinatorial 

test detecting errors in code and on finding an efficient mechanism to make the technique 

tractable without resorting to formal models as suggested by Kuhn et al. [204]. This second 

aspect of the research is important because in practice, as formal models are not currently 

widely used in industry at present, there remains the question of testing the model as while 

it may be possible to “prove” that it is complete against some criteria, there is no way of 

proving that it actually does what is intended.

For example, it may be necessary to convert a model or other formal definition of a 

program back into English so that it can be understood by the end customer. Likewise, the 

end customer may use other methods to define functionality. An example is given by 

McDermid et al. [221] in which the end customer may use their own sets of formal 

methods or, as is more usual, semi-formal methods that are not compatible, which presents 

a two way translation problem.

The aim of the research to be conducted is twofold. First to determine whether t-way 

adequate test sets are a “reliable” method of automatically generating test sets and second 

to determine whether test set minimisation can be used to reduce the number of tests that 

need to be considered by a human examining the output for correctness to a manageable 

level. Here, the term “reliable” is used in the sense that what is wanted is a method that can 

be expected to have a good chance of detecting errors.

To directly address the weaknesses raised in section 3.5 I want to cover the following 

points:

• I want to provide a good comparison with other automatic generation techniques;

• I want to be able to compare these results with human generated tests;

• I want a method that can determine whether an individual test vector is good and 

therefore worth pursuing to make the oracle problem manageable.

The first point is derived directly from observations made in section 3.4.2 and section

3.5.1 where it was noted that one of the features of empirical work is the lack of 

comparison with other techniques, with the exception of the studies performed by
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Kobayashi et al. [197]. The critical point being that any technique for automatically 

generating test data has to be shown to be more effective than other, possibly less 

expensive, techniques for generating data, e.g., random testing. In the case of t-way 

adequate techniques this has not yet been done.

The second point comes from a desire to be able to use automatically generated tests in 

both safety related and safety critical applications. However, if automatically generated 

tests are to be used in those situations, they have to prove themselves at least as effective as 

the human generated tests that they are intended to replace. The ideal situation would of 

course be that they were shown to be superior. This is a central issue in being able to use 

automatically generated tests, in practice, however there is virtually no literature that 

addresses this point in a completely satisfactory manner39. The field studies examined in 

section 3.3 provide some evidence that r-way adequate tests may be as effective as human 

generated tests but as pointed out in section 3.3.2 many of these are flawed in that they 

provide too little information on techniques that r-way adequate tests are being compared 

with.

The third point raised above is derived directly from the need to be able to deal with 

potentially thousands of test vectors that r-way adequate test sets can contain. Other 

methods may exist, e.g., the use of formal models by Kuhn and Okun [201]. However, this 

begs the question of why, if a formal model exists, why do we not then directly derive the 

code from it? Other possibilities for addressing the oracle problem, for example Kuhn has 

suggested assertions embedded within the code could be used40. However, if we consider 

the current state of practice in industry now, it is probable that for some time “the oracle” 

will be the engineer performing the testing, hence there is need to reduce the number of 

vectors to a manageable minimum number.

The remainder of this chapter is set out as follows:

• Section 4.2 briefly covers the type of work to be performed and looks at the techniques

that are available to perform that work;

39 The only study that the author is aware of that addresses this issue directly is [141] which examined temporal 

correctness, used students not professional programmers but did include random testing and was performed on 

industrial code.

40 Personal communication, December 2008.
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• Section 4.3 looks what I am attempting to achieve in a more formal manner and puts 

forward the hypotheses to be tested in this thesis.

4.2 Foundation work

4.2.1 Problem Overview

If we take the three specific points brought out in the introduction above, then it seems 

clear that to deal with the first point any work that compares different test generation 

techniques to be acceptable, it should be compared directly with other techniques. The 

primary method of interest that all work such as this should be compared with is random 

test generation, in its simplest form, i.e., without replacement. Given the work performed 

in other empirical studies the candidates for this thesis that stand out are random designs as 

used by Schroeder et a l [277] and the base choice technique as proposed by Ammann and 

Offutt [9] and used in the study by Grindal et al. [138].

The second point can, in turn, be addressed in two ways: by either taking a body of 

available code and defining a set of “good” hand-generated vectors for it or by locating 

such a set of code that already has such test vectors. Given the authors position in industry, 

the second option is available and has been used in this study. To the best of the author’s 

knowledge this is a unique situation.

The final point in section 4.1 has two components The first is to define what we mean by 

“good” and the secondly is to extract those “good” tests in such a manner as to avoid 

reducing the overall error detection ability of the test set. Given the potential weakness of 

code coverage as a measure of a test vectors ability to detect errors and the potential 

number of vectors that are candidates for inclusion in the final test set, it was decided that a 

more rigorous measure of a test vectors error detection ability was required. The current 

best candidate for determining the goodness of a test appears to be mutation adequacy and 

evidence for its effectiveness is detailed in section 4.3.2.

The second part of the problem, as stated above, is how to reduce the size of the test sets 

without sacrificing quality; section 4.3.3 is a brief overview of work that has been 

performed in the area of test suite reduction or minimisation.
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4.2.2 Mutation

In section 3.4.2.1 it was noted that there had been a marked shift in empirical studies 

from using coverage criteria as a measure of effectiveness to studies that directly examined 

the error detection potential of the technique. To date all studies that have used error 

detection as a criteria have used hand seeded faults. In the study performed by Grindal et 

al. [138] it was noted that mutation like hand seeded faults were used. The obvious 

extension to this is not to use hand-seeded faults, especially those that mimic code 

mutation, but rather to use code mutation directly.

Code mutation as a technique appears to be a good candidate for investigating the fault 

detection properties of f-way adequate test sets. At the least, it can be used to compare one 

test set against another with perhaps greater fidelity and a higher level of discrimination 

than metrics based purely on the code structure such as statement and branch coverage.

Ould [257] argued that an automatically generated set of test vectors is only effective if 

it generates test cases that are likely to expose errors. Therefore the critical question is, 

does code mutation meet this criteria?

Offutt et al. [246], [247] performed a set of experiments which used test sets that were 

adequate for revealing single mutation faults on programs that contained double mutation 

faults on the same execution path. They concluded that, for the programs studied, that test 

sets that were adequate for revealing simple faults (i.e. single mutations) were also 

adequate for detecting more complex faults, i.e., high order mutants (mutant of mutants).

However, a study by Frankl, Weiss and Hu [121] performed a similar experiment and 

reached a different conclusion. Namely that compound mutations are not a good model for 

faults. However, their results are less clear cut than those of Offutt and 50% of their results 

did demonstrate good coupling. Moreover, their data show that in five out of ten of the 

subject programs, mutation adequate test sets performed better than all-uses adequate test 

sets. In another two cases, they worked as well. These findings suggest that mutation is at 

least no worse than all-uses as an adequacy criteria.

To further look at this question, the seminal work performed by Andrews, Briand and 

Labiche [11] used the large set of programs and associated test vectors from Hutchins et al. 

[174], which have hand-inserted faults and the space program developed by the European 

Space Agency, which contains a known set of real faults. They found that mutants do not
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appear to be either easier or harder to detect than real faults. This is in contrast to hand 

seeded faults41, which were found to be harder to detect than mutants. Andrews, Briand and 

Labiche [11] concluded that “mutants, based on the mutation operators presented here, do 

provide test effectiveness results that are representative o f real faults” (pg. 8).

4.2.3 Optimisation and Minimisation

Optimisation of test sets comprises two related areas: test case prioritisation and test case 

minimisation. Test case prioritisation is used to schedule or order test case execution to 

maximise some property such as the rate of fault detection (Rothermel et al. [274]) and is 

usually discussed in term of minimising the cost of performing regression testing. By 

contrast, minimisation attempts to find the smallest possible set of tests that meet some 

criteria such as maintaining statement or branch coverage.

Prioritisation has seen a reasonable amount of work over time with notable recent 

contributions by Rothermel et al. [274], Rothermel, Untch and Chu [275] and Jones and 

Harrold [185], who also addressed the minimisation problem. However, as the emphasis 

here is on reducing the cost of performing regression testing, prioritisation is of only 

passing interest to the problem at hand.

To deal with the potentially large number of test cases that can be generated and to make 

the oracle problem tractable we want to be able to reduce to a practical minimum the 

number of test cases that have to be examined. Note that the size of the test case set does 

not have to be as small as theoretically possible, just small enough that it becomes 

tractable.

Test set minimisation has received minimal attention in terms of automatic test set 

generation although an initial investigation conducted by Ince and Hekmatpour [177] that 

used randomly generated test sets and statement coverage adequacy demonstrated some 

initial success by reducing the number of test cases that needed to be examined manually.

41 A code faults are of course hand seeded, how ever the difference here is the difference to those faults inserted by 

stupidity versus those inserted by malice (with apologies to Winston Churchill). Andrews concluded that faults inserted 

deliberately by hand were more difficult to detect than those occurring as part of writing the code.
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Much42 of the other work performed in this area has examined how minimisation affects 

the fault detecting ability of the test cases. Wong et al. [335] concluded that “there is little 

or no reduction in its fault detection effectiveness” (pg. 368) for more demanding criteria. 

However, Rothermel et al. [273] reached the opposite conclusion, stating that minimisation 

can compromise the effectiveness of a set of tests where all-edges is used as the adequacy 

criteria. The conclusions from these two studies are not exactly comparable, because 

unfortunately they both used different adequacy criteria. A study by Jones and Harrold 

[185] investigated two algorithms for test set reduction (minimisation) for the MC/DC 

criteria and found that the fault detecting ability of the minimised test set could be reduced 

depending on the program and nature of the faults present. Interestingly, the prioritisation 

algorithm presented in [185] closely mirrored the selection algorithm used by Sherwood 

[281], [282] for generating combinatorial data sets.

There are several problems with using adequacy criteria such as code coverage for 

minimisation. The primary objection being that what constitutes an adequate test set does 

not have a good theoretical underpinning, moreover most simple adequacy criteria, such as 

code coverage, are recognised as being inadequate, they are minimum criteria. While it can 

be shown that some conditions are necessary, for example, statement coverage (Weyuker 

[324]) it has also been shown by Howden [169] that no method can be considered reliable 

in any absolute sense. In more practical terms Hutchins et al. [174] in their investigation of 

the benefits of data and control flow adequacy criteria concluded that “code coverage 

alone is not a reliable indicator o f the effectiveness o f a test set” (pg. 191). Therefore, it is 

unlikely that code coverage adequacy criteria alone are an adequate indicator and thus, by 

implication, are not the best target for minimisation.

The alternative to code coverage metrics is to use a fault-based strategy that allows fault 

detection capability of a vector to be measured directly. Two such strategies have been 

suggested: code mutation as proposed by Hamlet [154] and DeMillo et al. [98] and fault 

injection as proposed by Voas and McGraw [309]. Of these, code mutation has received 

the majority of the attention to date and has been widely used in studies that compare the 

effectiveness of test sets, for example by Daran and Thevenod-Fosse [95], Frankl, Weiss

42 This section does not comprise a complete review of the literature.

131-220



Program of Work

and Hu [121], as well as Zhan and Clark [345]. Code mutation also has the advantage that 

it subsumes some conditional coverage techniques (Offutt and Voas [253]) such as 

statement and branch coverage.

In addition, some work has been done with minimisation of mutation adequate test sets. 

An early suggestion by Offutt [248] was simply to ignore vectors that did not kill any 

mutants. In later work Offutt, Pan and Voas [255] suggested a mechanism for selecting 

minimal sets of vectors that again removes mutants as they are killed but runs the set of 

vectors in different orders.

To the authors knowledge, no work has been conducted on minimising complete t-way 

adequate test sets. In the area of combinatorial test sets, the work that comes closest is 

Dadeau, Ledrun and Du Bousquet [88] in which the researchers minimised the test set via 

selective pruning of the search tree. Their results are not applicable here because the 

combinatorial technique they used was not t-way adequate and was aimed at producing 

sequences of function calls and associated input data.

The work on weighting by Colboum and Bryce [79], [43], [44] is related to the problem 

considered here but was targeted at situations where it may not be possible to run a 

complete set of tests. The situation they had in mind was the testing of different 

configurations. However, as noted in section 3.2.3, no empirical work validating this 

approach has yet been performed.

4.3 Hypothesis

As stated in the introduction to this chapter there are two primary goals of the empirical 

work presented here:

• to determine if t-way adequate test sets are “reliable”;

• to determine if we can reduce the size of the final test set, and hence the size of the

oracle problem.

The first of the objectives can be broken down into two sub-goals. The first sub-goal is 

to determine whether 2-way adequate test sets are a reliable method for generating test 

sets, thus testing assertions by authors such as Burroughs et al. [51], Cohen et al. [68], 

[70], [67] and Huller [173] that this is the case. The second sub-goal is to test the 

conclusions from the field study work by Kuhn et al. [313], [202], [203] and from the
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empirical results from Kuhn and Okun [201] that only small factors, i.e., less than or equal 

to six are required to produce good test sets.

To achieve the aims of this research, it is proposed to evaluate automatically generated t- 

way adequate test sets against a set of code and associated unit (C function) tests from a 

safety-related application that has undergone multiple levels of test and review and that has 

been in field use for nearly ten years with no reported errors43. The set code to be used has 

the required unit tests already in place and it is believed that these are of high quality 

compared with the current industrial state of the art That is, unit tests have been reviewed 

and have had their code coverage measured directly. The development process for the code 

and its associated unit tests is covered more fully in section 5.2.2, 5.2.3 and 5.2.4. the 

remainder of this section coverss the second and third points from section 4.2.

To address the first point from section 4.2 and to provide a comparison with other work 

it is also proposed that the fault detection ability of the test sets will be evaluated against 

the following other test generation methods:

• random testing without replacement;

• random designs with the same input ranges, and;

• a single factor experiment, i.e., base choice.

The comparison against a set of human generated tests that are believed to be of 

reasonably high quality will give an indication of whether the f-way adequate techniques 

can reliably be used as a replacement for that test activity.

Random test sets are of interest because, as suggested by Ince [175], they form a base 

method for comparison with other more complex techniques in experimental studies. Test 

generation methods have to do at least as well as randomly generated test sets to be 

considered effective.

Random designs are of interest because of the work by Dunietz, Mallows and Iannino 

[106] and Schroeder et al. [277] that indicates that the random design generation technique

43 Engine control unit 47, which recently returned from the field as part of an engine update, was still functioning and had 

recorded over 50,000 hours of use. In 2006, it was estimated that the total time in use for the software exceeded two 

million hours.
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may do as well as r-way adequate test generation techniques but with the advantage that 

they are both simpler to understand and simpler to implement.

Likewise, single factor experiments, i.e., base choice proposed by Ammann and Offut 

[9], are of interest because they have been found to be almost as effective as t-way 

adequate tests by at least two research groups, Grindal et al. [138] and Smith et al. [287], 

[286], who found them to be more effective than 2-way adequate test sets.

The final weakness identified in section 4.2 concerns the oracle problem. It is proposed 

that test set minimisation is a suitable method for reducing the number of vectors that need 

to be considered by a human to a manageable level and to remove or mitigate the 

requirement that a formal model or specification of the code that is being tested needs to 

exist.

Formally, the hypotheses to be tested are as follows:

HI : that 2-way adequate test sets are at least as effective at killing mutants as hand

generated tests.

H2 : that t-way adequate test sets for a small factor greater than two, are at least as 

effective at killing mutants as hand-generated tests.

H3 : that it is possible to construct a minimised test set from a r-way adequate test set that 

is small enough to allow the correctness of results to be checked manually.
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5. Experimental Design

5.1 Introduction

This chapter describes the major components of the work undertaken to address the 

questions proposed in the previous chapter. The work described in this chapter was 

performed in four phases. The initial work on sort routines was used to support 

development of the Csaw mutation tool set, sort routines being used as they all have the 

same functional purpose (i.e. specification) but employ different implementations which 

allowed the same test scaffolding to be used.

The work with industrial code and its associated hand-generated unit tests implements 

directly the program of work set out in chapter 4. That is to take a body of code, apply a 

number of different techniques for automatically generating test data, and compare the 

results both between those techniques and with the hand-generated test. The aim being to 

determine empirically which, if any, of those automatic generation techniques are 

competitive with hand-generated test sets. The work on test set optimisation follows 

directly from that work.

This chapter is divided into six main sections as follows:

• section 5.2 is a description of the experimental subjects that were used in this research;

• section 5.3 looks in detail at the two major tools that were developed to support the work 

undertaken and summarises the smaller tools that were developed to support the work 

undertaken;

• section 5.4 contains the description of experiments performed with sort code;

• section 5.5 contains the first set of experiments conducted with the industrial code and 2- 

way (pairwise) testing;

• section 5.7 examines a minimisation procedure for t-way adequate test sets;

• section 5.8 looks at the effect of including small sets of hand-generated tests on the 

behaviour of f-way adequate test sets.
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5.2 Experimental Subjects

5.2.1 Sort Routines

Initial work on the mutation tool on “real” code was undertaken using a number of sort 

routines made available on the web by Lamont [207]. Sort routines were used because they 

provided a varying set of code with different levels of complexity, but with the same 

functional purpose. This meant that it was possible to use the same set of test vectors thus 

minimising the amount of “support” work that needed to be performed to hand-generate 

test vectors and to construct an oracle function. The routines used in this phase of the work 

were C implementations of the bubble sort, insertion sort, heapsort, shellsort and quicksort 

algorithms. The interface to each function follows the following pattern:

void <name>Sort (int numbers[],int array_size)

One immediate issue that had to be dealt with was how to treat the array of elements to 

be sorted. It was arbitrarily decided that a maximum array size of seven would be used and 

that the array size for a test would be set to a value between one and seven. Each element 

of the array would then be treated as a separate variable for automatically generating the t- 

way covering sets. This restriction is not considered significant, as other researchers have 

used limited sized arrays, for example Gotlieb [135] containing “at most 4 integers ranging 

from 0 to 24”. The use of arrays much larger than this would introduce errors for indexing 

at byte, word and long word boundaries but would also require huge sets of test vectors to 

cover. Other options for dealing with arrays exist as discussed below (sections 5.2.4.1 and 

7.3), but they did not seem necessary for the initial investigations undertaken with sort 

routines.

5.2.2Industrial Code

The industrial code examples used in this research were drawn from the first release of 

software for running an industrial engine control unit. This software is considered to be 

safety related and has been developed using quality control process consistent with a 

process that meets the criteria for a System Integrity Level of two (SIL 2) [16] has unit 

testing consistent with a system defined as being SIL 3.
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The software itself comprises of major logic sections that deal with the standard engine 

functionality such as:

• real time processing of engine rotational information;

• running a torque based proportional, integral and differential (PID) control loop 

synchronous with engine position;

• 5 and 25 millisecond periodic processing of analogue and digital inputs;

• 25 millisecond periodic calculation of spark angle;

• 5 millisecond periodic calculation of desired throttle position based on torque demand;

• 25 millisecond periodic combustion model;

• 5 and 25 millisecond periodic control of analogue and digital outputs.

Code examples have been drawn from the following sections; the PID feedback control 

loop (GOV), analogue and digital input processing (AIP, DIP), and the throttle control 

(THC).

5.2.3 Development Process

The manner in which code and the associated unit tests were developed is significant to the 

study. Many studies that have examined human developed tests have used students to 

develop the tests, including Laitenberger [205] with the notable exception of a study by 

Myres [237] who used professional programmers. A possible implication of this is that the 

hand-generated test sets used in these studies may be biased. For example, it is probable 

that the test sets are weak as students generally have little experience of performing 

controlled testing activities unless it forms part of their formal studies. Alternatively, 

student tests may be too strong if too much effort has been used to develop test sets. 

However, a review of the topic by Ellims et al. [112] suggests that this second scenario is 

not likely.

The industrial code in this study was developed using an instance of the generic quality 

management system (QMS) at Pi-Shurlok that is based on a standard “V” model 

(McDermid and Rook [223]). The QMS has been specifically set up so that it is simple to 

modify for specific projects as detailed in Ellims and Jackson [115], and thus gives as 

much flexibility as possible.
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The QMS meets the requirements of ISO 9001 [15] and has achieved ISO 15504 [17] 

Capability Level 3 for all the processes in the defined scope of assessment that cover the 

requirements of the key European car manufacturers. In addition the specific quality plan 

and activities for this project (Wallace) have been externally audited to be consistent with 

the requirements for software to be developed for D0178B [14] Class B applications and 

with only small changes considered necessary to meet Class A requirements.

The left side of the “V” is comprised of the following major steps: requirements analysis 

and definition, functional requirements, architectural design, module design and coding. 

The right side of the “V” contains the corresponding verification and validation activities.

Each of the major components listed above consists of the number of sub-components 

such as review activities and checklists. Of particular interest here is the process for unit 

testing. Figure 13 shows the unit test activity and the simplified process flow within the 

activity. The term simplified is used as not all the features are shown, for example the 

activity Code Correction or Update involves a change request (CR) being raised, approved 

and acted on.

It should be noted that there are two phases to test execution - one on the host and one 

on the target system. Host execution is encouraged since running tests on the host 

environment is far more efficient than running tests on the target environment because of 

better tools (debuggers) and faster turnaround in the host environment. However, the tests 

have not passed until they have been executed successfully on the target hardware because 

issues with processor hardware and compilers are not that uncommon.

An essential point to note is that unit tests were reviewed and weaknesses detected were 

fed back into the test or occasionally test sets were reworked completely. For example, the 

main reviewer for the Wallace project (i.e. the author) has rejected tests that take a 

scattergun approach to the generation of input data. The review process serves two 

purposes. First, it directly improves the quality of the test sets and second, it teaches the 

engineers involved what comprises a good set of tests.
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Repeat if 
necessary

Test Correction or 
Update

Unit Test Design

Unit Test Execution 
(Host)

Unit Test Design 
Review

Unit Test Execution 
(Target)

Code Review

Code Correction or 
Update

Unit Test Coverage 
(Host)

Module Coding

Module Design 
Review

Module Design

Fig. 13. Simplified process for performing unit tests. Shaded boxes show associated 
activities that must be completed before or in conjunction with unit testing.

Another feature of the process is that the coverage metrics for statement, branch and 

LCSAJ developed by Woodward et al. [336] were not collected as part of the test 

development process. Engineers are expected to design adequate tests without requiring 

direct feedback.

5.2.4 Test Subjects

5.2.4.1 Selection Criteria

Of the available functions, eleven were selected for inclusion in this study. Nearly half of 

the subject functions were selected (dip_check_cal, dip_debounce, 
_sdc_j?re_start, _aip_apply_f ilters) because they contain known faults that were 

discovered during the original unit test process. Note that the function dip_check_cal 
was not included in more advanced work because it was so simple.
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The remaining functions were selected because they all had the following properties to 

some degree:

• by the standards of the project, they have a reasonably complex control structure,

• they have a relatively simple interface to the outside world.

By simple, what is meant is that the functions did not rely on large arrays of data that 

had a significant amount of structure. The reason for excluding functions that relied on 

large or complex data structures, most of which are large arrays, is simple. It is not obvious 

how to deal with these within the context of a combinatorial test data generation system.

A number of obvious options were considered for dealing with data of this type:

• Treat each element of the array as a single variable and assign values to each array 

element independently of all other elements. This is the approach taken in the 

preliminary work on sorting algorithms.

• Deal with each array as a single object and select between a predetermined set of objects 

that are manually assigned values.

• Deal with each array as a set of smaller arrays and build the larger structure up by 

combining different sets of sub-arrays.

Each of these suggested approaches has a number of drawbacks. For large structures the 

first approach leads to truly huge numbers of possible combinations and correspondingly 

large sets of test vectors even for quite small arrays. The second option does not really 

solve the problem because the arrays are still generated by hand and are therefore merely 

using the combinatorial techniques to select between them. Although this approach may 

remove some of the bias in the data selection process noted by Teasley et al. [293], it is not 

a complete solution. The third option seems attractive. However, for the type of data 

usually included in the arrays it would inevitably introduce undesirable boundary effects 

where the sub-arrays were stitched together.

For some arrays some other options exist. For example, where the array is used in a table 

lookup operation (i.e. where we are interpolating between data points in an array) and the 

look-up operation is performed by calling a function, we can replace the function call with 

a test stub and directly supply the result of the table lookup to the code under test.
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Also excluded from consideration were functions that were either written in assembly 

language or that contained significant amounts of assembly code embedded within them44.

5.2A.2 The Test Subjects

This section describes the set of subject functions used in this research. Each function is 

described to give an idea of its functional purpose and then information on the structure 

and complexity of each function is presented.

_dip_debounce is used to supply stable values of digital input values to the outside 

world. A value is deemed stable when it has had the same value for a calibrated time 

period (number of samples).

_aip_median_filter is used to select the median of the current input value and the 

previous two input values read. This is probably similar to the mid function used in 

research by Offutt et al. [252], Gotlieb [135] although the parameters here are arrays rather 

than individual items as would more normally be used.

_sdc_fuel_control is used to decide which state the engine is in, given a small number of 

inputs, namely engine RPM, start signal, shutdown status etc. and to prioritise among those 

conditions.

aip_spike_filter is used to remove large values seen in the input data. Its primary use is 

to cope with inlet manifold explosions where there is a rapid increase in the inlet pressure 

in a very short period of time.

_aip_apply_filters is used to control which filters (low pass, median, spike etc.) are 

applied to the raw analogue input values and in which order.

_thc_decide_state is used to decide what mode of operation of the throttle is being 

controlled. Possible states include, self calibration (location of end stops), recovery from 

non-volatile RAM failure, whether other control logic is overriding throttle movement and 

so on.

_thc_autocal is used to control the sequencing of an auto-calibration process for the 

throttle, waste-gate or bypass valves.

44 Assembly code is quite common in embedded real time systems to access special purpose instructions that have no 

direct analogue in high level languages, e.g., for implementing semaphores, accessing special purpose registers etc.
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_gov_rpm_err is used to calculate the difference between the desired and the actual 

RPM and apply both a lead/lag and low pass filter with appropriate clipping to avoid over 

and underflow in the calculations.

_sdc_pre_start is used to control the start or restart of an engine. This includes 

considerations such as the engine must not be rotating before the starting device is 

energised; that the fuel valves have been closed and the outlet manifold is flushed of any 

un-bumt fuel/air mixture.

_gov_gen_ffd_rpm is used to control the pre-loading of the integral term in response to 

outside stimulus such as a digital input that will indicate that in a known time a load will be 

placed on the engine. Further details can be found in Ellims and Zurlo [117].

A selection of properties for each of the functions is shown in Table 13 which contains 

the following information. The first column is the function name and the second column is 

the number of executable statements in the function, excluding blank lines, comments and 

braces. The third column gives the total number of mutants generated for each function. 

The fourth column gives the number of valid mutants45 that would actually compile 

(ignoring warning for divide by zero etc). The fifth and sixth columns are the nesting factor 

and the condition factor as used in Michael et al. [232]46. The seventh column is a simple 

count of the number of i f  statements in the code, each case of a switch statement being 

counted as a single i f  statement. The final column is the number of inputs to the function.

The function _dip_debounce stands out here, but this is because the underlying data 

structure is a set of arrays and the original test set contained data values for the first, 

middle and last elements of those arrays. As we are mirroring the original testing the 

original test structure was kept so as to be able to reuse the manually generated vectors.

45 To deal with the mutants that could not be compiled, code that forced a divide by zero was inserted in place of the 

mutated function body which caused each of these mutants to die.

46 Nesting factor is the maximum depth of nesting and the condition factor is the maximum number of comparisons 

performed in a single i  f  statement.
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Table 13. Summary of some properties of the code under study, with the C functions 
ranked by the total number of mutations that are generated.

Function Name Lines Total
Mutants

Valid
Mutants

Nesting
Factor

Condition
Factor

if
statement

s

Inputs

_dip_debounce 12 127 81 2 2 2 17

_aip_median_filter 25 217 217 1 1 4 3

_sdc_fuel_control 17 267 213 2 2 5 9

aip_spike_filter 22 354 178 3 1 4 7

_thc_decide_state 16 387 386 7 2 7 9

_thc_autocal 33 782 669 5 2 8 6

_aip_apply_filters 30 605 311 2 2 4 8

_gov_rpm_err 22 1054 783 2 1 5 9

_sdc_pre_start 51 1472 1237 3 1 8 3

_gov_gen_ffd_rpm 62 1698 1227 4 2 11 16

5.3 Tools

Two large and several small tools were developed to support the work presented here. The 

first of the large tools was an implementation of the AETG algorithm developed by Cohen 

et al. [67]; the second was a tool to mutate C functions as investigations indicated that no 

such tool was available47.

The small tools consisted of a data transformation program for output from the jenny 
tool and a program to generate different types of random data sets.

5.3.1 r-way Test Generation Tools

5.3.1.1 Description

Initial work on combinatorial adequate test sets reported in Ellims, Ince and Petre [114] 

employed a tool based on the AETG algorithm by Cohen et al. [67] to generate the f-way 

adequate test sets. However, this tool is inherently inefficient because it performs a linear 

search to match t-way tuples generated in candidate vectors with tuples remaining to be 

covered. Although adequate for pairwise (2-way) and 3-way test set generation, this tool 

proved to be infeasibly slow for values of t greater than three.

47 Jeff Offutt who developed the Mothra and Godzilla tool sets [99] was contacted on this matter at the start of this work 

and indicated that no such tools were available.
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Recent work by Lei et al. [211], [210] on the generation of t-way test sets compares the 

performance of their tool FireEye with other available tool sets. One of those tools is 

jenny which is freely available on the web. Table 14 compares test set sizes (top) and 

generation time (bottom) in seconds generated by FireEye, jenny and my 

implementation of the AETG algorithm on the TCAS code input data definition used in 

Hutchins et al. [174].

It can be clearly seen that jenny is far more time efficient than the tool specifically 

developed for this research. This is significant as for the most complex of the subject 

functions and for the larger 5-way adequate test sets, jenny takes several tens of seconds 

to generate test cases, my implementation would potentially have taken days. Using the 

jenny tool, is however, not without its drawbacks. For example, the method used to 

generate the vectors is not explicitly stated and the tool does not deal with single value 

(e.g. initialisation) data items which all had to be handled manually.

In addition, jenny generates completely generic data patterns (e.g. al to z255), which 

have to be converted to actual data values. A small tool was developed that partly 

automates this process. However, this process adds a non-trivial amount of time to data set 

preparation time.

Table 14. Comparative performance of three tools for generating 2 and 3-way adequate
test sets. For each tool, the size of the test set is given and time taken to generate the test

set is given in seconds.

FireEye jenny our AETG
2-way 100 108 105

0.8s 0.001s 422s
3-way 400 413 418

0.36s 0.71s 18,986s

5.3.1.2 Validation

Validation of the tool relied on internal consistency checks and testing the tool on some 

simple examples from published research.

The primary internal consistency checks involves firstly, independently calculating the 

number of pairs, triples etc. that can be expected to be generated and checking that the 

code used to generate the actual sets produces the same number of set elements. In addition
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at the end of the generation process, the set of test vectors that was generated is used to 

removed pairs, triples etc. from a copy of the original set generated and ensure that at the 

end of this process the copy of the of the original set is empty.

External consistency checks involved checking that the numbers of vectors generated 

with the tool was consistent with the numbers reported in example problems presented in 

the literature. These example problems were primarily taken from Cohen et al. [76] and 

then from Lei et al. [211] after the switch from the AETG based algorithm to the j e n n y  

tool was made.

The comparison with results from Cohen et al. is given in Table 15 and for Lei et al. 

above in Table 14 above. In Table 15, column one is the name applied in [76] to the 

problem. Column two is the number of vectors generated by the AETG tool as reported in 

Yu-Wen and Aldiwan [344] and Lei and Tai [212], column three is the number of vectors 

generated by Cohen et a l ’s implementation of AETG and column four is the number of 

vectors generated by the tool developed for this thesis. Column five, is the definition of the 

problem as given in Cohen et al. [76].

Table 15. Performance of AETG based tool for generating 2-way (pairwise) test vectors
against examples from literature.

Label AETG Cohen This
W ork

Definition

CA-1 9 9 9 CA(N; 2,4,3)
MCA-148 15 17 18 CA(N; 2, 3U)
MCA-1 19 20 20 MCA (N; 2 ,51 38 2Z)
MCA-2 45 44 47 MCA (N; 2 ,71 6 51 4" 38 23)
MCA-3 30 28 28 MCA (N; 2, 51 44 3 “ 23)
MCA-4 34 35 36 MCA (N; 2 ,61 51 4b 38 23)

5.3.2Mutation Tool

5.3.2.1 Description

The Csaw tool set comprises a number of programs that mutate a function or small set of 

functions and then run the resulting mutants. The major component is a program l i n e . c 

that processes a specially formatted C program one line at a time, breaking each line down

48 There are two rows labeled MCA-1, the first is taken from Table 7, the second from Table 5.
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into tokens. The program itself has several passes, first to build up a symbol table and then 

to apply mutations one line at a time. The output from l i n e . c is a single file that contains 

all the mutants. Untch et al. [306] suggested that this approach may have a compilation 

bottleneck. However, this has not been found to be the case.

The second program d r i v e r  .c  is used to execute the mutations defined in line. c 
against a set of test vectors defined in a header file. To avoid issues with mutations causing 

infinite loops and with invalid operations such as divide by zero driver.c runs each 

mutant/vector pair as a child process using the fo rk  system call. This allows the parent to 

monitor the execution without itself being involved; this allows it to kill a runaway mutant 

or to record an abnormal execution termination.

The effort involved in constructing each of these components is also instructive. It took a 

little over a month to put the major components of line. c code tool in place. By contrast 

the d r i v e r . c program however was much more problematic and took nearly twice as 

long to get functioning correctly49.

The overall approach taken is not without its problems. One of the more significant 

problems is that, because of the simplistic approach (one line at a time) the C code is not 

parsed apart from building the symbol table50, which requires that the user manipulate the 

source to put it in a form that can be correctly processed. This means that the approach 

relies on pattern matching to recognize certain elements of the program such as variable 

declarations which, in turn, means that recognizable declarations have to be explicitly 

defined. To reduce this burden, static tables have been used; these can be expanded as 

necessary. In practice, that has not so far been a significant issue.

The other major weakness of the one line at a time approach is that multi-line mutations 

are not possible. For example, the SMVB operator51 defined by Agrawal et al. [5] cannot 

be implemented. In addition, multi-line comments cannot be dealt with and the tool 

requires that all comments be removed before processing. One novel aspect of the tool is 

that it will mutate the type specifier associated with a variable declaration. In some

49 The relive sizes of the files used to build each of these two program is 122 Kbytes for line.c and 18 Kbytes for driver.c.

50 To use the Csaw tool the user is required to manipulate the code into a suitable form, e.g., one statement per line.

Details can be found in the Csaw users manual [111].

51 Move a closing brace up or down one line.
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quarters, this may seem unusual. However, in embedded systems where memory is usually 

at a premium it is common practice to use the smallest possible type to store values. Thus, 

both char and unsigned char are commonly used to store integer values. In practice, this 

has caught the author out at least once in production software.

There are, of course, also some advantages to the approach taken. For instance it should 

not be difficult to adapt the tool to other languages such as C++ and Java, which have 

similar structures. Further details of the Csaw tool are in the user’s manual [111] and a 

comparison with mutation operators defined for FORTRAN by Offutt and Voas [253] and 

C by Agrawal et al. [5] is in Appendix A.

53.2.2 Validation

There are two main programs to be validated in the Csaw tool set, the line. c program 

that is used to create the mutants and various associated files and the driver. c program 

that is used to run the oracle and the mutant with each test vector in a set.

A different approach was taken with each of the two programs. Validation of the 

mutation program l i n e  . c was essentially constructive, initially using small test program 

fragments that were specially constructed to test each new feature as the tool was 

developed. Final testing was done using the set of sort functions sourced from the internet 

which overlapped with testing of the driver program.

Testing of the d r i v e r . c  code involved running the completed program. The sort 

routines were used as they provided some variety in the code but all the code had 

essentially the same functional specification and could use the same test sets.

The actual verification involved several problems. In particular, mutant code cannot be 

run as a called function because if it causes a signal (Linux was used as the development 

platform), because of a divide by zero, for example, then the driver program is also 

terminated. This problem necessitated the use of a parent/child model where the parent is 

the driver and the child is the code under test.

Two primary strategies were used, therefore to perform validation:

l.The child process (target code) appended a summary of its execution to a text file, 

likewise the driver code appends information of how the child process terminated.
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Crosschecking these against each other confirmed that the driver is correctly reporting 

results.

2. A small subset of the mutants was selected based on being able to determine a priori 

whether their execution will pass or fail.

The methods used in point 2 eventually lead to the development of a small stand alone 

test suite where code with hand mutated code is mixed with non-mutated code.

5.3.3 Other Tools

Several other small tools were developed to support the work but did not require the same 

amount of effort as the large tools described above. A brief description of these is given in 

Table 16.

Table 16. Small programs necessary to support the work reported here.

Program Function
comb A small program used to generate all t-way combinations of n 

variables. Used to independently check the adequacy of vectors 
sets generated by the AEGT implementation.

mcomp A program that takes in two lists of live mutants and then 
compares them against each other. Output is two unique lists of 
live mutants.

random Used to construct both fully random and test sets based on random 
designs. For random test sets the full range for each variable was 
used, for random design test sets, we randomly selected values 
from a set of n values.

trans A small program that was used to transform the output data 
generated by the jenny program into the format used in the 
t e s t_vect or s . h file included in the mutant driver code.

5.4 Sort Experiments

5.4.1 Aims

The work doing during this phase had two principle aims. The first was to verify that the 

Csaw tool set was able to deal with real code both by systematically corrupting it and by 

being able to execute the resulting mutations. The second aim was to investigate one 

unusual feature of the Csaw tool. Csaw, unlike any other mutation system that the author
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knows about, has the ability to mutate variable type declarations. That is it will replace a 

type specifier such as “int” with alternatives such as “short int”, “long int”, 
“signed int”, “signed char”, and so on.

5.4.2 Procedure

Work with sorting functions was carried out in two distinct stages. In the first stage the sort 

functions were used as input into the mutation tool to check that the tool could deal with 

actual code. The second stage of work was an ad hoc series of tests that were aimed at 

testing the mutation driver code.

The initial work with the mutation driver was performed with three test sets: one 

developed by hand, one generated randomly and a third 2-way adequate test set. Unlike 

latter tests, the test oracle for this work was a voting procedure that compare the output of 

the mutation under test, the un-mutated code and output from a third sort routine. 

Unexpectedly, the small hand-generated test set outperformed both a larger random test set 

and a test set generated using the AETG algorithm that contained four times as many 

vectors.

Examination of the test sets showed two significant points:

• The test sets all contained values that could be contained within a 16 bit signed or 

unsigned integer type.

• A large number of the mutants that survived were type mutations (see below).

As it was probable that the first of these points was the root cause of the low number of 

type mutations killed, investigating this was the first work that was carried out as a 

priority.

The method used was as follows:

• Several test sets were randomly created in which the array size was a value between two 

and seven and elements were randomly selected from values ranging from -2147483647 

to 2147483647 with 10, 20, 40, 60 and 80 vectors.

• Another test set was created using the AETG algorithm by selecting six candidate values 

from points where the number of bits required to store a number changed (i.e. at byte 

and word boundaries).

149 - 220



Experimental Design

• A further hand-generated test set of ten vectors was created using these same values. 

This set was constructed to ensure that it contained sorted, reverse sorted etc. patterns of 

data (as had the original hand-generated vectors).

• The voting oracle was replaced by a simple comparison between the mutated function 

and the un-mutated code. This was done, as usually no such voting procedure is 

available, as only a single implementation of the function would exist.

5.4.3 Experimental Results

The results from test runs that are shown in Table 17 indicate that there was no strong 

difference between the effectiveness of the test sets.

An examination of the code of live mutants showed that, for the simpler functions, the 

majority were type mutations and most of these were from a redefinition of the array size 

variable, which was constrained to hold a value between two and seven. It is therefore not 

surprising that these were not detected.

The remaining type mutations are equivalent, e.g., “signed inf ’ for “inf’, non-equivalent 

mutations being effectively killed where data is takes on values that would allow them to 

be killed.

Table 17. Summary of algorithms, and performance for the seven test sets used. The size 
of the test set is shown and the number of live mutants and the execution time is given for

each algorithm.

AETG HandlO R10 R20 R40 R60 R80
52 10 10 20 40 60 80

Bubble alive 16 16 16 16 16 16 16
clock time (s) 1607 311 321 598 1024 1807 2395

Insert alive 20 20 20 20 20 20 20
clock time (s) 1093 199 251 451 944 1491 2018

Heap alive 44 46 45 45 45 45 45
clock time (s) 3084 727 666 1184 2422 3663 4991

Shell alive 67 67 67 67 67 67 67
clock time (s) 5099 981 1012 1923 3901 5856 7723

Quick alive 69 113 76 68 68 68 68
clock time (s) .3767 739 517 964 1876 3047 3911

One of the most interesting features of Table 17 is the consistency of the results. With one 

exception, quicksort, there appeared to be very little to differentiate between any of the test 

data generation techniques.
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For the more complex of the functions, a significant number of mutations survived. Here 

two cases stood out: first, the heap sort routine contained an integer used as a Boolean flag. 

Many of the operator mutants associated with this variable appeared to remain alive. 

Second, both shellsort and quicksort contained large numbers of mutations that were 

obviously not equivalent but that were nevertheless not detected.

5.4.4Boolean Flags

In an examination of the mutations left alive from the heapsort runs it was noted that 

mutants associated with a Boolean flag used in the while loop comprised a large 

proportion.

The three uses of the variable were “done -  0” and “ ! d o n e ” and “done = 1”. A 

significant number of the mutants were judged to be equivalent, e.g., with memory 

initialized to zero mutants such as “done *= 0” or “done &= 0” had no effect.

To see if breaking the codes reliance on the C language using any non-zero value as 

TRUE had any beneficial effect I assigned the variable done  a specific value to indicate 

TRUE and replaced the clause “ ! d o n e” with a test for equality on that value.

This slightly increased the number of mutants generated but had little effect on those that 

survived all tests. Similar results were obtained using Boolean values in code used in 

Ellims, Ince and Petre [113].

The unfortunate implication of this is that it would appear that some common code 

constructs exist that are going to be intrinsically difficult to deal with. This is of course not 

the first instance where Boolean flags have caused researchers problems, e.g., Michael et 

al. [232]. Dealing with the effects in an effective manner likewise appears non-trivial.

5.4.5 Time Equivalence

The observation that a number of mutations of both shellsort and quicksort functions were 

so obviously not equivalent in the code sense but produced identical results was initially 

perplexing. However, it was obvious that in some manner they must be compensating for 

the incorrect code by some other means. The most reasonable explanation for how this
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compensation might have taken place is that the routines might have performed more 

work.

If this was the case, then it seemed plausible that it might be possible to observed this by 

measuring the execution time and detecting a delta.

The system that was used for this work was a 2GHz Pentium with 512 megabytes of 

RAM running SUSE Linux 9.2. Unfortunately, Linux has very poor timing facilities and 

the kernel build only supports a resolution of a hundredth of a second. Consequently, it 

was impossible to measure the time taken to run a single invocation of a function.

The first attempt to address this in an alternative way involved reworking the driver. c 
program so that:

• oracle data was collected for all vectors prior to running any mutant (to be folded into 

standard version);

• all vectors would be run over a mutant as a single operation.

There were a number of significant issues with this batching approach. First the results 

were very difficult to replicate with 100% consistency. Second, by having long runs it 

allowed the O/S more opportunities to interfere with the times generated.

Table 18. Summary of best results for batch timing.

Delta R10 R20 R40
Bubble +1-5% -1 0 -

+/1 10% 0 -1 +1
Shell +/- 5% - 0 0

+/-10%

As the approach taken above was problematic, a search for a timing method with more 

resolution was investigated, namely a technique for directly accessing the clock cycle 

counter on a Pentium chip (Saikkonen [276]). A small series of experiments were 

conducted using the shell sort algorithm which again lead to no positive results possibly 

because of interference from the O/S itself as there were a number of issues associated 

with disabling interrupts. Other possible problems include cache usage and pipeline 

effects. It would be interesting to repeat this work in a more controlled environment such 

as an embedded system with no operating system.
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Results for timing experiments with the system clock were rather mixed. Table 18 shows 

the best results obtained for the tests run with each of the test sets (random with 10, 20 and 

40 vectors). A zero indicates no new mutants were killed, a negative number that, many 

extra mutants died, and a positive number that more survived, a result which is clearly 

erroneous.

It should be noted that both shellsort and quicksort have final passes that are potentially 

capable of compensating for other errors in the code; shellsort has a final pass that 

compares all adjacent pairs and swaps them and this may be sufficient if the error being 

compensated for is minor and the array is very close to be ordered. The quicksort algorithm 

performs a single pass of straight insertion sort (Knuth [195]).

5.5 Industrial Pair-wise (2-way) Experiments

This part of the study consisted of one major experiment and two subsidiary experiments.

The major experiment involved running the mutations for each function with the hand

generated test vectors, the vectors produced by my implementation of the AETG algorithm 

for generating pair-wise adequate test sets, and randomly generated test data of a similar 

size. Part of this experiment also looked at whether the resulting test vectors were adequate 

for the data.

The second experiment took a subset of the C functions and examined whether a more 

sophisticated approach to using the AETG algorithm could produce an improvement in 

performance.

The third experiment examined whether simply generating more vectors could improve 

the effectiveness of random testing. This experiment was done in order to establish a 

comparator for the pair-wise technique as suggested by Ince [177].

5.5.1 Procedure

The procedure employed in these experiments consisted of the following steps:

• From the project archive, I extracted the hand-generated test vectors, the comparisons 

originally used to determine correctness, and the information used to generate them from 

the detailed designs and data dictionary.
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• The data on comparisons were used to construct an “oracle” that compared result data 

generated by the mutated function with data generated by the original version of the 

function. Any differences between the two sets results were flagged as a failure that kills 

the mutant.

• I then generated a 2-way adequate test set. For numeric variables, I selected the 

minimum, median and maximum values in the range defined in the data dictionary. For 

enumeration variables, I used all valid values and one out of range value to exercise the 

default statement in the code. For Boolean variables TRUE and FALSE were used.

• Finally, I generated a test set of the same size as both the hand and the t-way test sets for 

purely random tests. Numeric values were drawn from the whole range with equal 

probability and replacement. Enumerations and Boolean values were selected as above. 

The generator described in Park and Miller [261] was used for this.

5.5.2 Experimental Results

5.5.2.1 Minimum, Median and Maximum Values

The first experiment directly compared the hand-generated test vectors with test vectors 

generated by the straightforward application of the AETG algorithm using three values 

(minimum, middle and maximum) for scalar types and all values for enumerations. As a 

comparison, I included randomly generated sets of test vectors of comparable size.

Table 19 shows the results of this experiment, showing the function name, the number of 

valid mutants (i.e. those that compile with no errors), the number of vectors in the test set 

for the hand-generated data and the number of vectors generated by my implementation of 

the AETG algorithm. The next two columns show the number of mutants left alive after 

running each set of test vectors on all valid mutants for hand-generated and AETG 

generated tests. The final two columns detail the results for randomly generated test sets 

for the same size as the hand-generated vectors (Random versus Hand) and the same size 

as the AETG generated vectors (Random vs. AETG). Note that where the size of the hand

generated test sets and those generated by the AETG algorithm were similar only one size 

of random test (the larger) was used.

The main results can be summarised as follows:
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• Random testing gives the best kill rate for a single function and AETG for one also, in 

the remaining functions the hand-generated test perform best (6 of 8).

• Random testing outperforms the AETG algorithm for two functions, and there was one 

draw. Of the remaining cases the AETG vectors beat the random test vectors by a 

substantial margin, and the remainder the performance of random testing is close to that 

of the AETG algorithm.

• For the most complex functions (i.e. those in the last two rows), the hand-generated tests 

outperforms both techniques by substantial margins52.

Table 19. Results of the first experiment showing the number of mutants left alive after 

all test vectors have been applied. The test set that left the fewest mutants alive is in bold.

Function Name Valid
Mutants

Hand
Vectors

AETG
Vectors

Alive
Hand

Alive
AETG

Random 
vs. Hand

Random 
vs. AETG

_dip_debounce 81 18 17 12 9 12 —

_dip_check_cal 97 8 8 0 0 0 —

aip_spike_filter 178 40 15 18 42 82 90

_sdc_fuel_control 213 15 15 21 107 101 —

_aip_median_filter 217 27 9 41 47 53 57

_aip_apply_filters 311 68 21 64 58 57 57

_sdc_pre_start 1237 14 16 675 746 — 891

_gov_gen_ffd_rpm 1227 14 18 152 729 — 744

5.5.2.2 Error Detection

The second experiment in this set looks at the functions that have known five known 

coding errors committed by programmers during development of the code and extracted 

from the project change request database. The subject functions are listed in Table 20. As 

before, column one is the function name, column two shows whether the error was “found” 

with the hand-generated test set and column three shows whether the AETG test set found 

the error. Column four shows whether the randomly generated test vectors found the error. 

The column five shows whether the error was a mutant or not.

52 A statistical analysis is performed in section 5.6.3.
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When I applied the three sets of test vectors used against mutants in the first experiment 

I found that all of the test data generation techniques appeared to be effective at revealing 

the actual errors inserted in the code during development. Therefore, this second 

experiment did not allow us to draw any strong conclusions; but suggested that many real- 

world errors could, in practice, be quite “shallow” and possibly amenable to being found 

by any testing technique (automated or non-automated). Duran and Ntafos [107] reached 

similar conclusions. However, it should be noted that the complex functions were not 

included in the set of functions that were tested here.

Table 20. Effectiveness of test sets versus known actual errors in the code.

Function Name H and: error 
found

AETG: error 
found

Random: error 
found

Error is 
mutant

_dip_check_cal Yes Yes Yes Yes

_dip_debounce Yes Yes Yes No

_sdc_pre_start Yes Yes Yes No

_aip_apply_filters Yes Yes Yes Yes

_aip_apply_filters Yes Yes Yes No

5.5.23 Improved Data Point Selection

This third experiment looked at some simple ways of making data generated by the 

AETG algorithm more effective. For example, the following were considered:

• Invert: changing the assignment of values, i.e., converting elements that had the value 

t r u e  to f a l s e  and vice versa.

• Interleave: rather than simply selecting the minimum, middle and largest value, I 

interleaved values that appeared together in conditional statements.

• Invert and interleave: inverts the interleaved values rather than just the minimum, middle 

and maximum.

• Biasing: altering the distribution of the data generated by adding duplicate elements. For 

example, specifying three values for a Boolean value as f a l s e , f a l s e , t r u e  rather 

than just f a l s e  and t r u e .
• Interleave + biasing: a simple combination of the two previous techniques.
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Interleaving is very similar to domain partitioning. However, because the analysis here 

has been less rigorous than might normally be required for domain partitioning, the term 

has not been applied. This less rigorous analysis is intentional in that I was deliberately 

attempting to avoid performing the type of analysis used in the construction of the original 

test sets, while attempting to obtain some of the advantages of such analysis. An example 

of the procedure as applied to the _sdc_f uel_control function is shown below.

The function compares four variables (A to D) against a global value for engine speed 

measured in revolutions per minute (RPM). Values were then allocated as shown in Figure 

14.

RPM Value Selected for Variable

500 1000 2000 4000

400 I 600 I 1100 I ^

I 450 I 650 I 1150

400̂  600̂  1100 I 2500

I 450 J 650 I 1150 I 2550

Fig. 14. Allocation of values for variable A to D and RPM for the_sdc_f uel_control
function when Interleaving (not to scale).

One interesting aspect seen here is that the function _sdc_pre_start was not 

amenable to interleaving, no complex comparisons between variables being present. 

Exactly why this function seems to be so difficult to test is, at this point slightly bemusing.

There are some hints in the nature of the code however. For example, no computed 

values are assigned, all assignments are from constant values and many of these are to 

logical t r u e  which in C is any no-zero value. Explicitly assigning TRUE to a fixed value 

and testing for that may form part of the solution. However, the driver program did test for 

equality of returned values so this may not explain why this function is so hard to test.

Variable
0

RPM |“  

A -  

B — 

C -  

D -
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The results from the third experiment are shown in Table 21. The first column is the 

function name, the second column (Base) is the number of mutants left alive as in 

experiment 1. The column labelled “invert” is an inversion of data fields in the vectors 

used in experiment 1. The column labelled “Interleave” is a new set of test vectors 

generated using the technique outlined above. The column labelled “Interleave + Inverted” 

has the interleaved values used in column three inverted. The column labelled “biased” has 

one or more variables biased with the introduction of duplicate values. The seventh column 

combines the input values for the interleaved and biased test data generation. The last 

column replicates data for hand-generated tests for reference.

Table 21. Results for experiment three, to improve the mutant kill rate by modifying the 
input data points (e.g. interleaving) or the interpretation of those points (inverting). Two 
sets of data are shown for each function, the top row is mutants left alive and the bottom,

the number of vectors

Function Base Invert Interlea
ve

Interleave 
+ Inverted

Biased Interleave
+

Biased

Hand

_sdc_fuel_control 107 97 96 25 31 26 21
15 15 23 23 15 23 15

_sdc_pre_start 746 746 n/a n/a 956 n/a 675
16 16 20 --- . 14

_gov_gen_ffd_rpm 729 614 584 577 637 562 152

18 18 26 26 19 27 14

Of the three complex functions retested in this third experiment, one, _sdc_fuel_control 

showed a significant improvement in the number of mutants killed in both the Interleave + 

Inverted and Biased test sets, coming close to the number of mutants left alive with hand

generated tests. Some improvement was also evident for the _gov_gen_ffd_rpm function 

with the Interleave and Interleave + Inverted test sets. However, the level of improvement 

is nowhere near as high in percentage terms and pairwise testing is still not competitive 

with the hand-generated tests. As can be seen from the table, there was no improvement in 

the number of mutants killed for the _sdc_pre_start function.

5.5.3 Summary

This set of experiments gives a clear indication that test sets constructed to be 2-way 

adequate (pairwise) are not competitive with a carefully constructed set of hand-generated
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vectors in this experiment. The third experiment in series also suggests that while better 

data models, as suggested by Dalai et al. [93], [92] and Bell and Vouk [32] may improve 

the ability of automatically generated 2-way adequate test sets they are not a complete 

solution. To investigate this further an extended set of experiments using higher factors 

was performed as detailed in the next section.

5.6 Industrial/-way Experiments

5.6.1 Aims

The aims of this experiment were two fold. First, to evaluate the effectiveness of /-way 

adequate test sets relative to a set of high quality hand-generated tests. Second, to compare 

these tests with other techniques with similar problem analysis complexity.

5.6.2 Procedure

The procedure employed in this experiment consisted of the following steps for each 

functions:

• Generate /-way adequate test set sets for / = 2 to / = 5. Numeric variables, enumeration 

and Boolean values were treated as in section 5.5.1.

• Generate a test set of the same size as the /-way test sets using random selection from the 

same set of values with replacement. That is, select one valid value for each variable 

from the set of values used in generating the /-way tests.

• Generate a test set of the same size as the /-way test sets for purely random test. Numeric 

values were drawn from the whole range with equal probability and replacement. 

Enumerations and Boolean values were selected as above. The generator described in 

Wichmann and Hill [329] was used to ensure long sequences.

• For each function generate one or more sets of “base choice” test vectors as defined in 

Ammann and Offutt [9]. In base choice, a base vector is selected, perhaps based on 

expected or normal use and additional vectors are generated from this base by changing 

a single value of one variable in each new vector until all values have been used for all 

variables.
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• For each function, execute each of the valid mutants on each test vector and for each test 

set recorded the number of mutants that were killed.

5.6.3 Experimental Results

Results are shown in Table 22. The first column gives the function name and the second 

states the information given in the next four rows as follows. For each function the first 

row (vectors) is the number of test vectors in the set determined by the size of /-way test 

vectors. The second row (/-way) is the number of mutants killed by /-way vectors for / = 2 

to 5. The third row (rand sel) is the number of mutants left alive a using a test set created 

by random selection and the fourth row (random) is the number alive after applying the 

randomly generated test sets. The seventh column (Base) gives the number of vectors in 

the base choice test set and the number of mutants left alive below it (row labelled /-way). 

The final column (Hand) gives the number of vectors in the hand-generated test sets and 

the number of mutants left alive below it. For each function, the smallest test set that had 

the best performance is in bold.

Table 25 gives indicative information on the amount of time in seconds that it took to 

run each set of /-way adequate test sets data for each function.
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Table 22. Number of mutants killed for each of the sets of test vectors applied.

Function Name Process 2-way 3-way 4-way 5-way Base Hand
_dip_debounce vectors 19 60 205 634 25 18

r-way 9 9 9 9 28 12
rand sel 14 9 9 9
random 11 10 10 9

_aip_median_filter vectors 12 28 54 7 27
r-way 49 40 40 56 41

rand sel 46 43 40
random 40 40 40

_sdc_fuel_control vectors 17 57 174 504 17 15
r-way 101 49 25 22 36 21

rand sel 126 31 24 22
random 84 58 25 18

aip_spike_filter vectors 16 49 146 400 14 40
r-way 42 23 23 23 80 18

rand sel 66 37 32 23
random 82 82 66 16

_thc_decide_state vectors 73 271 972 2883 28 17
r-way 228 206 100 57 313 60

rand sel 182 146 63 57
random 348 346 307 232

_thc_autocal vectors 20 70 181 377 14 6
t- way 333 188 187 187 270 197

rand sel 407 299 264 189
random 410 335 299 221

_aip_apply_filters vectors 34 142 562 1949 23 68
r-way 47 46 46 46 64 64

rand sel 46 46 46 46
random 46 46 46 46

_gov_rpm_err vectors 17 62 208 662 17 17
r-way 443 443 443 443 444 446

rand sel 443 443 443 443
random 465 462 462 460

_sdc_pre_start vectors 22 79 228 573 13 14
r-way 736 673 673 673 965 675

rand sel 700 673 673 673
random ' 742 742 742 742

_gov_gen_ffd_rpm vectors 21 81 299 1040 29 14
r-way 701 190 158 140 785 152

rand sel 663 270 148 140
random 502 265 152 152

The primary concern of this section of the experimental work was to find which of the 

techniques was best at killing mutants in the selected functions. One way of considering
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this is to look at which technique kills the most mutants for each function. The results are 

summarised as follows:

• r-way test vectors won or drew in six of the ten cases.

• Test vectors generated via random selection (random design) won or drew in half the 

cases.

• Random data generation won or drew in four of the ten cases but notably only has a 

single win in the second half of the table.

The selection of “a winner” from these results in this way is arbitrary in that it is the test 

set that killed the most mutants won regardless of the number of vectors required. Indeed 

for some code only small numbers of vectors were required. Another way to approach the 

concept of a winner is to examine the number of cases where a method failed to achieve a 

result comparable with the hand-generated tests. Here, there is one failure for r-way and 

random selection plus a near miss (_sdc_fuel_control by one) and four failures for random 

testing.

I also calculated the mean number of vectors required to kill each mutant. Here the 

number of vectors required to achieve the best result is used and I found that r-way requires 

2.62 vectors per mutant, random selection required 2.71 vectors per mutant and random 

required 3.70.

Base choice was never the best performing technique and its performance was 

comparable with the hand-generated tests in only two cases. These results were surprising 

given that previous work by Smith et al. [286] and Grindal et al. [138] found that the 

technique to perform rather better.

The question is: are the main results for t-way and random testing statistically 

significant, given that the sample is small and the distribution of the data is not known? 

The Wilcoxon matched pairs signed ranks test53 was applied to the results for r-way and 

random test sets versus those for the hand-generated vectors. Given the differences in the 

numbers of mutants generated for each function, the data was normalised to an interval 

scale by converting the raw score to a percentage value (mutants left alive as a percentage

53 Calculations were made using the wilcox.exact function in the exactRankTests package of R versions 2.9.1 running 

under WindowsXP. Note that the wilcox.test functions should not be used if there are ties.
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of total mutants). Table 23 shows the statistical values generated for the r-way test sets 

versus the hand generated test sets, the first row being the level of significance for a two- 

tailed test, and the second and third rows the sum of the positive and negative ranks.

The original hypotheses were:

HI: that 2-way adequate test sets are at least as effective at killing mutants as hand

generated tests.

H2: that r-way adequate test sets for a small factor greater than two, are at least as effective 

at killing mutants as hand-generated tests.

For the purpose of statistical analysis, the first hypothesis can be restated as the null 

hypothesis Hlo: The difference between the members of each pair (x, y) has median value 

zero and there is no difference between the treatments. The alternative H1a: is that the 

median value is not zero, i.e., that there is a difference.

Table 23. Two-tailed P values and Wilcoxon values of positive and negative sums for 
percentage of mutants left alive for r-way adequate and hand-generated test sets.

t =2 t =3

Till t = 5
p 0.01953 0.3223 0.4492 0.5566
w+ 50 38 35.5 21
w 5 17 19.5 34

For HI, the null hypothesis Hlo is rejected if the P value is less than a  = 0.05 (5% level 

of significance). For HI this is clearly the case, and thus we can state that there is a 

significant difference between the median number of mutants left alive between the two 

samples (T = 5, n = 10, P <  0.05, Wilcoxon signed ranked test for matched pairs, two- 

tailed). In addition, if we examine the W+ and W" rank sum values we see that the r-way 

adequate test has a larger number of mutants left alive.

For H2 the null hypothesis H2o is the same: the difference between the members of each 

pair (x, y) has median value zero, and there is no difference between the treatments. 

However, in this case the P values for t = 3, 4 and r = 5 exceed 0.05 (P > 0.05 in all cases), 

thus we cannot reject the null hypothesis H2o and conclude that there is no statistically 

significant difference between the two sets of test vectors. Further, if we examined the W+ 

and W  rank sum values it can be observed that as we progress from r = 3 to t = 5, the rank 

sums progressively change to favour the r-way test sets and the rank sums for t =5 suggest
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that it may be more effective. However, a post-hoc single-tailed test does not reach a 

significance of P < 0.2. However, the hypothesis should not be rejected out of hand, 

because the number of samples is low (n = 10); instead, more investigation is warranted. 

The result also suggests that testing for t -  6 would be worth while (although 

computationally expensive) in order to throw further light on the topic.

Table 24. Two-tailed P values and Wilcoxon values of positive and negative sums for 
percentage mutants left alive for random test sets with the same number of vectors as the 

assocated r-way adiquate test sets and hand-generated test sets.

t =2 equivalent t =3 equivalent t = 4 equivalent t = 5 equivalent
p 0.01953 0.01953 0.05469 0.3008
w+ 50 50 39 32
w 5 5 6 13

If we apply the same tests to the results for random tests show in Table 24, we see a 

similar pattern, however here we reject the null hypothesis for random test sets the same 

size as the matched 2-way and 3-way adequate test sets. For the random test set of the 

same size as the 4-way adequate test set we should accept the null hypothesis as P > 0.05. 

However there is quite a possibility of committing a Type I error54 given the closeness of 

computed P value to the selected limit (P = 0.05469). This is supported by observing that 

the Wilcoxon'rank sums (W+ = 39, W  = 6) and n = 9 (one tie). For the random test set of 

the same size as the 5-way test sets we cannot reject the null hypothesis and state that at the 

5% level of significance random test sets perform as well as the hand generated test sets (T 

= 13, n = 9, P < 0.05, Wilcoxon signed ranked test for matched pairs, two-tailed). It should 

be noted however that Wilcoxon rank sums (W+ = 32, W  = 13) still appear to favour the 

hand-generated test vectors so the evidence here is perhaps not as strong as in the case of 

the 5-way adequate test sets, and warrants further investigation.

Given these results, the obvious question to ask is, is the ability to kill mutants of the 5- 

way adequate test sets and the randomly generated test sets of the same size, the same? 

Applying the Wilcoxon matched pairs signed ranks test we have a null hypothesis Ho that 

the performance of the two test sets is the same. Directly comparing the performance of the 

two test sets gives P = 0.2188 and means we cannot reject the null hypothesis (T = 6, n = 7,

54 We reject the null hypothesis when it is actually true.
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P > 0.05, Wilcoxon signed ranked test for matched pairs, two tailed). However, 

examination of the Wilcoxon rank sums (W+ = 6, W- = 22) suggest that the 5-way 

adequate test sets are perhaps more effective, more evidence is however required.

Table 25. Execution times for the t-way adequate test sets.

Function Name Valid
Mutants

2-way 3-way 4-way 5-way Max
(hours)

_dip_debounce 81 76 210 743 1649 0.46
_aip_median_filter 217 64 127 248 0.07
_sdc_fuel_control 213 132 362 808 3667 1.02
aip_spike_filter 178 109 433 858 1665 0.46
_thc_decide_state 311 707 2723 8156 43451 12.07
_thc_autocal 386 139 582 2313 4253 1.18
_aip_apply_filters 669 198 420 675 2788 0.77
_gov_rpm_err 783 212 851 3239 8563 2.34
_sdc_pre_start 1237 906 1506 5083 16,231 4.51
_gov_gen_ffd_rpm 1227 972 2612 17,758 33,653 9.35

Another factor that needs to be considered is whether the two sets of vectors kill the 

same mutants, or whether the set of mutants killed by each are disjoint with only a small 

intersection. Data presented in Table 26 shows the number of mutants left alive for each 

the hand-generated tests and the difference between the two (delta). In addition, it also 

gives the number of unique mutants that were left alive by one set of test vectors but not 

the other. The data indicates that there was actually a significant overlap. This result is 

significant because it implies that it is reasonable to assume that each of the two sets of test 

vectors have a similar ability to detect actual faults. Although the relationship between the 

ability to kill mutants and detect faults has not been investigated in this work studies such 

as Andrews et al. [11] have indicated that if a test set is good at one task, then it is also 

good at the other.
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Table 26. The number of mutants not killed by the largest r-way adequate test seta and 
hand-generated tests. The final two columns are the number of killed mutants unique to

each set.

Function Name r-way
Alive

Hand
Alive

Delta r-way
Unique

Hand
Unique

_dip_debounce 9 12 3 1 4
_aip_median_filter 40 41 1 0 1
_sdc_fuel_control 22 21 -1 8 7
aip_spike_filter 23 18 -5 9 4
_thc_decide_state 57 60 3 4 7
_thc_autocal 187 197 10 0 10
_aip_apply_filters 46 64 18 0 18
_gov_rpm_err 443 446 3 3 6
_sdc_pre_start 673 675 2 0 2
_gov_gen_ffd_rpm 140 152 12 1 13

5.6.4 Investigations

There are several interesting features present in Table 22 that deserve comment:

• Why is it so difficult to obtain a good kill rate for the _sdc_pre_start function?

• Is the fault detecting ability of random testing really static for _sdc_pre_start?

• Can the results for _gov_gen_ffd_rpm be improved if we use more random tests?

An examination of live mutant’s _sdc_pre_start code reveals that the majority of live 

mutants were connected with manipulating variables that have Boolean values. As has 

been noted in other work Ellims, Ince and Petre [114] and in a large amount of research on 

searched-based test data generation, e.g., Michael et al. [232] and Bottaci [39], Boolean 

data appears to be intrinsically difficult to deal with.

The _sdc_pre_start code was executed with a number of different randomly generated 

test sets using different seeds for 288, 573, 1200 and 2400 values. Although some of the 

vector sets showed some improvement, the best result returned was only 717 live mutants 

and all data sets showed the same flat pattern as shown in Table 22.

Code for _gov_gen_ffd_rpm was run with a test set of 2000 and 5000 vectors taking 12 

and 32.4 hours to execute. The test set of size 2000 showed no improvement while the test 

set of 5000 vectors killed only two additional mutants.
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5.7 r-way Optimization

5.7.1 Aims

There are two obvious issues with the data presented above. First, that the execution times 

with t-way test generation were long for some functions when compared with the time 

taken to generate the tests by hand. Timesheet data gave an average of 5.6 hours for AIP 

functions, 5.7 hours for DIP and 1.9 hours for SDC functions. Second, the number of 

vectors that would have to be examined to determine whether a test passed or failed is 

infeasibility large. In practice, a large part of the problem with generating tests by hand is 

determining whether the output is correct. Given the volume of tests generated 

automatically, determining whether the code passes or fails places an unacceptable burden 

on the tester and significantly reduces the utility of any automatic generation technique.

Therefore, this experiment has two aims. First, to investigate the potential of reducing 

the amount of time required to run all the mutants. Second, to determine if a minimal test 

set can be extracted from the process to reduce the oracle problem to a manageable level.

5.7.2 Procedure

For this experiment, the test driver was modified to record which vectors killed which 

mutants for each set of test vectors. After all vectors from a t-way test set had been run 

over all remaining mutants the minimisation routine determined which vector killed the 

most mutants and this vector is selected to be retained. The mutants that this vector killed 

were removed from further consideration. This process was repeated for each vector in the 

test set until there were no vectors remaining that killed more than one mutant.

The run with the next set of vectors excluded from consideration those mutants that were 

previously killed by all preceding test sets but otherwise the minimisation process was 

identical. This continued until the final set of vectors was run, when the restriction on not 

selecting vectors that only kill a single vector was removed.

Other procedures to reduce the number of vectors that need to be considered have been 

investigated previously. A simple suggestion by Offutt [248] was to ignore the vectors that 

do not kill any mutants. However, these experiments suggested that savings might not be 

great, as a large number of vectors kill at least one mutant, which is why I delay selecting

167 - 220



Experimental Design

any vectors that kill only a single mutant until the final pass. Offutt et al. [255] suggested a 

mechanism for selecting minimal sets of vectors that again removes mutants as they are 

killed but runs the set of vectors in different orders.

5.7.3 Experimental Results

The results from experiment 2 are shown in Table 27. This table reports the time to run 

the largest r-way test set (max), the time using the minimisation procedure outlined above 

(min) and the percentage time saving for the minimisation (gain) for each function tested. 

Information on vectors given in the table is the number of hand-generated vectors (hand), 

the size of the largest single r-way adequate test set (max) and the size of the optimised test 

set (min). For reference the t value of the test set that first resulted in the maximum number 

of mutants killed is shown in the second column, which is labelled r.

Table 27 shows that, in terms of time saved, the minimisation procedure delivered 

significant saving for most of the functions, with an average saving of close to 53%. 

However, it is also clear that for functions that showed no increase in mutants killed at 

higher values of r (e.g. _dip_debounce) the process can be counter-productive. However, 

that it is not always the case, for example _aip_apply_filters. The benefits where high r 

values did show improvement are more supportive of the idea that the minimisation 

scheme trialled here is worth while.

Table 27. Summary data for r-way minimisation runs.

Function Name t Time (seconds) Vectors
max min gain hand max min

_dip_debounce 2 1649 2029 123% 18 634 6
_aip_median_filter 3 248 67 27% 27 54 9
_sdc_fuel_control 5 3667 1144 31 % 15 504 12
aip_spike_filter 2 1665 628 37% 40 400 9
_thc_decide_state 5 43451 6942 16% 17 2883 13
_thc_autocal 4 4253 1276 30% 6 377 13
_aip_apply_filters 2 2788 2029 73 % 68 1949 7
_gov_rpm_err 2 8563 6118 71 % 17 662 4
_sdc_pre_start 2 16231 18212 112% 14 573 12
_gov_gen_ffd_rpm 5 33653 5767 17% 14 1040 22
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Results for the size of the test sets from the minimisation routine were less ambiguous 

than those for time minimisation. In eight of the ten cases, the test sets were smaller than 

the hand-generated test sets. In the remaining two cases, they are not substantially larger in 

terms of total tests required. Spearmans’rank order correlation was applied to the size of 

the of the hand-generated and t-way adequate test sets the calculated value of rs is -0.665 

with eight degrees of freedom which suggests a modest55 negative correlation. Testing the 

significance of this, the null hypothesis Ho is that there is no correlation. At the 5% 

confidence interval P is 0.648 which is less than the calculated value so we cannot reject 

Ho at the 5% level of confidence.

There is however one down side, as reported in Smith et al. [286] to this minimisation 

process. Namely, vectors that were selected by the minimisation procedure were not very 

user friendly. That is, it would take a significant effort to understand what is being tested. 

Here, none of the test cases contained tests that would be obvious to an engineer producing 

the test cases by hand (the author was the engineer in charge of the Wallace56 project). 

Indeed many of the test cases, especially those for the function _aip_apply_filters 

contained data that, in practice, would not be used and would be disallowed by the tool that 

vets the engine control unit calibration data. The importance of this is not completely clear; 

the vectors in the t-way adequate test set are clearly capable of killing almost the same set 

of mutants as the hand-generated test sets (see Table 26) which suggests that they are as 

adequate for killing mutants. The questions then becomes are mutant adequate test sets 

good at detecting real faults? That question is however outside the scope of this work.

One possible method of addressing this issue is to use as a first pass to the minimisation 

process a small set of hand-generated vectors. The feasibility of doing this is considered in 

the next section.

55 Fowler and Cohen [120] pg. 132.

56 There was also a project Gromet.
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5.8 Minimisation with Hand Vectors

5.8.1 Aims

Given the results from the minimisation experiments in the previous section, an obvious 

question to ask is whether there is any benefit to be gained by including a small number of 

user generated tests in the process.

Because there is a set of user derived tests available, the aim of this experiment was to 

simulate the situation where the user creates a small number of tests to target the main 

paths though the code. This approach potentially has a number of advantages compared 

with taking the purists view that the creation of tests sets is an either/or situation with 

regards to the use of automatically generated data.

It should be noted that this procedure is most probably not equivalent to the “seeding” 

suggested by Cohen et al. [67] and Czerwonka [87]. The reason for this is that the process 

does not take into consideration the tuples that are potentially covered by the hand

generated test. Indeed this is not actually possible given the disjoint nature of the set of 

values from which that the two sets of vectors were drawn.

5.8.2 Procedure

The driver program was further modified so that it would take as parameters the number of 

values to be selected at random without replacement from the test set and the seed to use 

for the random number generator. An example of this procedure is shown in Figure 15 

where the compiled code containing the hand-generated test is passed the parameter r8  

which specifies that 8 vectors are to be selected and the parameter i  l  specifies that seed 1 

is to be used57.

dec_hand.out r8 il g p >res_r8_l_dec_hand.txt
dec_2way.out n g p >res_r8_l_dec_2way.txt
dec_3way.out n g p >res_r8_l_dec_3way.txt
dec_4way.out n g p >res_r8_l_dec_4way.txt
dec_5way.out n >res_r8_l_dec_5way.txt

Fig. 15. Example application of the optimization process.

57 Seeds are all large seven-digit prime numbers taken from a table of first 10,000 prime values.
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The other parameters shown in Figure 15 are defined in Table 28.

Table 28. Parameters that can be passed to the mutation driver program.

Param eter Usage
d write child debug file, used to enable the output of debugging 

information from the child process spawned for each mutant.
g generate a no-run list, creates a list of mutants that can be 

excluded for the next iteration as vectors have been found 
that kill them.

i initialise/select random seed to be used
m use a no-run list, read in the set of mutants that are not to be 

run during this execution.
P perform partial minimisation, select only vectors that kill 

more than one vector
r enable random selection of test vectors with subset sized N
s skip mutation execution, also used for debugging. Allows the 

driver to be run without spawning any child processes.

Each of the larger functions in the industrial code based was then run though the 

minimisation process five times with different seeds using values for the r  parameter of 2, 

4, 6 and 8 (i.e. for a total of 20 runs). Data was collected on the number of mutants not 

killed, the total execution time, and size of the resulting optimised vector set. The mean 

values for each set of runs with equal r  values were then calculated.

5.8.3 Experimental Results

Experimental results are summarised in Table 29. As previously the first column is the 

name of the function being tested. The second column lists the measures used to compare 

the results from this experiment with the results from the optimisation runs presented in 

Table 27 (vectors and time in seconds) and the live mutants from Table 22 (alive). Data 

from these tables are replicated in the final column, which is labelled “best to date”. The 

remaining columns show the number of vectors drawn from the hand-generated test sets. 

The data given being the mean of the five runs.

Table 29 shows that adding small numbers of hand-generated vectors has a small effect 

on the size of the resulting test data sets (number of vectors) and a slightly better effect on 

the execution times.
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The effects however are not always consistent, for example for _gov_rpm_err the 

number of vectors in the resulting test set was larger than for the best case without the 

hand-generated vectors. However, the improvement in time was a little more consistent; 

with four of the six functions showing a clear improvement which is probably because the 

hand-generated phase of the optimisation process is very short and results in all subsequent 

phases being more efficient. There was also a small reduction in the number of mutants left 

alive in some cases, but this effect was relatively small.

The statistic significance of these results was investigated using Wilcoxon matched pairs 

signed ranks test for N = 8 and the data for the best performance from the optimisation 

process (best to date). The null hypothesis is the same as previously, i.e., Ho: the difference 

between the members of each pair (x, y) has median value zero and there is no difference 

between the treatments. For execution times at the 5% confidence level we cannot reject 

the null hypothesis (T = 1, n = 6, P = 0.0625, Wilcoxon signed ranked test for matched 

pairs, two-tailed) and conclude that there is no difference between the two samples. For the 

size of the final set of test vectors at the 5% level of confidence (T = 4, n = 5, P = 0.5, 

Wilcoxon signed ranked test for matched pairs, two-tailed) we cannot reject the null 

hypothesis and conclude there is no difference.

These results suggest that there was no negative effect of adding a small number of 

hand-generated tests to the r-way adequate test sets and that this procedure may be 

advantageous in that the execution time has the potential be considerably reduced. We 

should also consider the amount of effort required to check the reduced test sets manually 

for correctness. If we assume that manually generated tests will be simpler to verify than 

automatically generated tests then the total effort of checking the vectors has potentially 

been reduced.
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Table 29. Summary of results for adding N  (2, 4, 6, 8) hand-generated tests randomly 
drawn without replacement from the set of hand-generated tests associated with each of the

subject functions.

Function Name Measure Hand generated vectors ac ded Best to 
dateN = 2 N = 4 N= 6

00II55
_dip_debounce not run not run not run not run
_aip_median_filter not run not run not run not run
_sdc_fuel_control not run not run not run not run
aip_spike_filter not run not run not run not run
_thc_decide_state alive 56 56 55 55 57

time (s) 4803 4660 3489 2826 6942
vectors 9 9 10 11 13

_thc_autocal alive 187 187 187 187 187
time (s) 2356 2076 1578 1420 1276
vectors 15 16 15 15 13

_aip_apply_filters alive 46 46 46 46 46
time (s) 1613 2130 2157 1706 2029
vectors 6 7 7 7 7

_gov_rpm_err alive 443 442 438 440 443
time (s) 3685 5504 3280 4217 6188
vectors 5 5 6 6 4

_sdc_pre_start alive 673 673 673 673 673
time (s) 7211 7492 8201 7484 18212
vectors 12 12 9 9 12

_gov_gen_ffd_rpm alive 143 140 140 140 140
time (s) 3439 2258 3796 2534 5767
vectors 17 17 17 15 22
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6. Conclusions

6.1 Introduction

This chapter is divided into sections as follows:

• Section 6.2 gives a brief summary of the main experimental results.

• Section 6.3 reviews the original hypothesis that was investigated and the conclusions 

that can be reached given the experimental results.

• Section 6.4 discusses results from random testing.

• Section 6.5 briefly discusses the effect of combining human generated and automatically 

generated test vectors.

• Section 6.6 looks at the threats to the validity of the experiments that were conducted.

• Section 6.7 looks at specific weaknesses in the work that was undertaken and suggest 

ways of avoiding those in future.

6.2 Summary

The original research question being investigated was to determine whether automatic test

data generation as currently documented in the literature is competitive in terms of error

detection capabilities with test sets developed by traditional human methods when applied

to unit testing. Specifically, the tests were designed to test the following hypotheses:

• that 2-way adequate test sets are at least as effective at killing mutants as hand-generated 

tests;

• that r-way adequate test sets for small factors (t = 3, 4, 5) are at least as effective at 

killing mutants as hand-generated tests;

• that it is possible to construct a minimised test set from a t-way adequate test set that is 

small enough to allow the correctness of results to be checked manually.

The main sets of experiments that were conducted are as follows:

• experiments that tested a set of sort functions using 2-way, random and hand-generated 

tests.

• experiments that tested small set of functions drawn from the code for an engine control 

system using 2-way, random and hand-generated tests (Table 19 and Table 22).
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• extending the second set of experiments to higher factors to determine if that resulted in 

an improvement in coverage (Table 22);

• experiments that used data on which test vectors kill which mutants to minimise the size 

of the test sets to allowing them to be reviewed manually (Table 25);

• experiments that added small numbers of hand-generated tests as the first stage in the 

optimisation process (Table 27).

Allied with these experiments were a number of additional investigations such as the 

timing experiments described in section 5.4.1.5, the examination of the techniques ability 

to detect real faults that is described in section 5.5.2.2 and work with more complete data 

models in section 5.5.2.3.

Overall, the main planned set of experiments were aimed at the obvious interpretation of 

the primary research question. That is, whether automatically generated test sets can 

discover as many faults as hand-generated test sets. The ad-hoc investigations had the same 

purpose.

6.3 Conclusions

The results of these experiments have been surprising. At the start of this study, it was 

suspected that 2-way techniques would offer an effective way of testing critical software 

given the volume of studies that supported this view. However, the results show that 

although 2-way adequate test sets may be effective in some situations, for example the 

field studies reported in chapter 3, they have generally fallen short of expectations. 

Nevertheless, the research conducted here supports the view that test sets that are adequate 

to higher factors show significant promise. Likewise, the process of optimising versus 

mutation adequacy appears to be very effective at reducing the number of vectors that need 

to be examined by hand. The next three sections address these points more formally.

6.3.1 Hypothesis One

Hypothesis one was “that 2-way adequate test sets are at least as effective at killing 

mutants as hand-generated tests”.

The results given in Table 19 and Table 22 indicate that 2-way (pairwise) combinatorial 

techniques that use simple selection criteria for selection of data points are not adequate
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with respect to hand-generated tests for the more complex functions where complexity is 

indicated by the number of mutants generated, the nesting level of the code, or number of 

condition statements. This is supported by the statistical analysis given in section 5.6.3 on 

the data in Table 22.

This is counter to the conventional view put forward in a number of field studies such as 

Dalai et al. [93], [92], Burroughs et al. [51], Huller [173], in various results reported by 

Cohen et al. [68], [70], [67] and work by Burr and Young [50]. However, the results 

presented in this thesis give some support to the observations of Smith et al. [287], [286] 

who found that 2-way test vectors were less effective than base choice [9] for certain 

classes of faults.

Of the empirical studies, only the work by Grindal et al. [138] [139] strongly supported 

the effectiveness of 2-way adequate test tests. In common with Smith et al. [287], [286], 

Grindal et al. found that base choice techniques were effective, another result that is not 

supported by the work presented here, which found base choice to be possibly the worst of 

the techniques examined.

The reason for the disparity between the results reported in this thesis on 2-way testing 

and earlier work is not clear although it is possible that the earlier work was biased because 

it included comparisons with testing that was originally poorly performed. For example, 

comparisons with the field studies by Dalai et al. [93], [92]. Latter field studies by Smith et 

al. [287], [286] could also have had a bias in that real faults were being examined and this 

may have skewed the distribution of faults that could be detected.

The empirical study by Grindal et al. [138] [139], however, is difficult to explain on the 

same grounds. One possibility is that the code was not complex enough for the purpose 

having been created originally to test manual fault detection techniques by Kamsties and 

Lott [186]. A similar effect was observed with studies performed here that used different 

sort functions. In this case it was found that the it was virtually impossible to differentiate 

between the different test data generation techniques. Quite what this says about a large 

number of empirical test studies that have made use of sort functions is uncertain. 

However, it suggests that simple functions of this type are not good subjects for testing 

research.
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6.3.2Hypothesis Two

Hypothesis two was “that t-way adequate test sets for a small factor greater than two, are 

at least as effective at killing mutants as hand-generated tests”.

The results presented in Table 22 show that test sets that involve higher values of t-way 

adequate tests are as effective as hand-generated tests at killing mutants. Again, this is 

supported by the statistical analysis. However, this statement holds only in terms of being 

able to distinguish mutated from original code. This work has not assessed the ability of 

distinguish “real” faults from code mutants to any great extent. However, as noted 

previously, results from both Offutt [247] and Andrews, Briand and Labiche [11] strongly 

suggest that a test set adequate for killing mutants for one will be effective at finding real 

faults.

The results here strongly support the body of work by Dunietz et al. [106]; Kobayashi et 

al. [197]; Kuhn, Wallace, Reilly and Gallo [313], [202], [203] and [201] and contradicts 

the results given in study by Schroeder, Bolaki and Gopu [277].

Why this contradiction should have arisen is not known. However, one possible reason 

is that Schroeder et al. [277] performed the testing from the external interface to the 

program, which might have made it more difficult to target effective combinations at the 

points where they would be most effective.

Other possible explanations include:

• that the data structures or the structure of the data in Schroeder et al. is more complex

than in the code examined in this study (see section 6.8 for a discussion of arrays);

• at t = 4 the factor applied was not sufficient to trigger the faults.

6.3.3 Hypothesis Three

Hypothesis three was “that it is possible to construct a minimised test set from a t-way 

adequate test set that is small enough to allow the correctness of results to be checked 

manually”.

Results from the minimisation experiments given in Table 27 are highly encouraging to 

say the least. For the code examined, all but two of the resulting sets of test vectors are 

actually smaller than the vector sets for that hand-generated code. For the remaining two 

sets the vectors are not overly large being just over half the size again in one test set and
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just of twice the size in the other set. However, vector sets of 22 and 13 vectors are not 

excessive even compared with some of the existing hand-generated vector sets in the 

project. In addition, each of these larger vector sets outperforms the hand-generated tests 

slightly.

Unfortunately, there is little work that can be directly compared with the study here. 

Only one paper Offutt, Pan and Voas [255] directly addresses the issue of minimising 

mutation adequate test sets. Moreover, the reductions in test set size observed by these 

researchers was only on the order of 33% though it is assumed from a much smaller base 

figure. A reduction of this order would be almost useless when we consider factors larger 

than three as it would still leave us with several hundred or thousand test cases that need to 

be considered. From this perspective, the effectiveness of the rather simplistic 

minimisation procedure developed here is at first sight astonishing.

In addition, the batched procedure used here has at its disposal a much larger amount of 

information than the procedure suggested by Offutt, Pan and Voas [255], which removes 

mutants as they are killed and is therefore much less likely to be able to identify and select 

the best test cases than the batched procedure. That being said, the minimisation procedure 

suggested here is only locally optimal.

6.4 Threats to Validity

One threat to the external validity of the results reported here is that code being tested 

may not be representative of other code although other researchers Gotlieb [135], Offut et 

al. [252] have used a variant of aip_median_filter and Dillon and Meudec [104] used the 

function itself. This is a general problem in testing research and code from different 

application domains is likely to have different properties. The code used here is thought to 

be representative of fixed point integer code widely used in the real-time embedded 

applications domain.

A novel threat is that because the complete software development process was strongly 

controlled as detailed in Ellims, Bridges and Ince [112], the code used in this thesis may 

actually be easier to detect faults in than more typical code. Thus the results presented here 

are possibly optimistic. The only way to test this possibility would be to repeat the
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experiments with other code sets. However, often these rarely have the necessary hand

generated test vectors available for comparison. Another threat is that code mutation may 

not be representative of real faults. Results in both Offutt [247] and Andrews, Briand and 

Labiche [11] strongly suggest that test sets that are adequate for mutation will also be 

effective for real faults.

The final threat to validity that needs to be considered is that of equivalent mutants. In 

the work presented here, these have mainly been ignored. The effect on the results, 

however, is expected to be minimal because equivalent mutants affect all of the techniques 

being used to the same degree. Thus, although the results are internally consistent and 

direct comparison between test sets is possible, making comparisons with other work is 

more difficult.

The major threat to internal validity comes from the way in which the data points that 

were used in the t-way and random selection data sets were limited to minimum, median 

and maximum values. This is a simplistic approach. However, it should tend to bias the 

results against success, resulting in a false negative. Moreover, the data selection process 

does follow examples in books such as Copeland [81], which will possibly provide the 

primary source of information on combinatorial techniques for practitioners.

The tool used to insert faults into the code may also present a risk to internal validity 

because although it avoids the bias associated with hand-seeded faults, it is a relatively 

simple tool and is not capable of introducing mutants over multiple lines. Analysis of the 

results however suggests that the majority of effective operators have been implemented; 

this analysis is provided in Appendix A.

6.5 Observations

6.5.1 Random Testing

Random testing as a data generation technique can be surprisingly effective. However, it 

does not appear to be reliable in the sense that, although it may often provide good results, 

it cannot be counted on to provide good results always. Of the ten functions tested to high 

factors, random testing performed best in three of the first five least complex functions, but
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only performed best in two of the second five functions and in both cases was tied with 

another technique that performed equally as well.

In addition, for two of the most complex functions _sdc_pre_start and 

_gov_gen_ffd_rpm - the use of very large numbers of random tests did not show any real 

improvement in the performance. This result matches observations on random testing made 

by a number of other authors such as Michael et al. [232], Frankl et al. [121] and Reid 

[269], [270] that indicate that when random testing works, it works well, but when it does 

not work, the results can be spectacularly bad.

6.5.2Combined Human/Machine Vectors

Some initial work has been done (section 5.8) using small numbers of hand-generated 

vectors as the first step in the optimisation process. Initial results suggest that although the 

number of mutants killed is only minimally affected, additional savings could be made in 

execution time. As processor time is cheap when compared with human effort, this 

additional step may not ultimately prove to be effective.

However, the above conclusion does not take into account the fact that a small number 

of human derived tests may be simpler to validate than the automated tests. For example, a 

carefully selected set of tests that have easy to determine correct results may be of more 

use and perhaps more effective than automatically generated tests that required significant 

human input to determine their correctness. The limited work done here does not discount 

this possibility, which is worth further investigation.

6.6 Discussion of Tools

6.6.1 Hand Generated Tests

The original hand-generated tests were embedded in spreadsheets. The main reason for this 

was that it was found that a major issue with developing unit tests by hand was that it took 

so much effort to compute the expected results.

To speed up the process spreadsheets were used to allow the user to calculate expected 

results that could then be extracted as a comma separated file and pasted into a C program 

to run the tests on the function. As much of the code for this is very similar, this approach
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eventually resulted in the development of the Test Harness Generator (THG) as reported 

by Ellims and Parkins [116]. THG automates much of the process of taking a set of input 

data and expected results and producing a complete test harness for a function in C that can 

be compiled. Use of a spreadsheet even allows some opportunities for automatically 

generating input data.

For the research conducted here, this has several downsides. First, the sheets used for 

THG are quite complex containing information on the function called, the functions to be 

called (if any), values for #de f i n e  names used in the sheet, and so on. Second, the sheets 

contain large numbers of values defined in terms of previous values.

The net effect of this is that extracting the values is not straightforward and is time 

consuming when done by hand. In hindsight, the THG Visual Basic program should have 

been modified to extract the data. Furthermore, to produce a practical test method, some 

integration within the tool chain is required.

6.6.2 r-way Generation Tools

During the course of the work undertaken here two different tools have been used to 

generate t-way adequate test sets - an implementation of the AETG algorithm as presented 

in Cohen et al. [67] and the other, je n n y  [182], a tool taken from the internet. Each of 

these tools has its own advantages and disadvantages.

As stated in section 5.3.1, the implementation of the AETG algorithm was far too slow 

to be of practical use for more than three factors. This was this tools major drawback. 

However, as implemented the tool has two advantages over the j enny tool.

The first advantage is in data input, the AETG implementation takes a list of variables 

and the values that they can take on as shown in Figure 16. Here, the first line specifies the 

seed for the random number generator as defined by Wichmann and Hill [329], the second 

tells the tool how many parameters to expect (18) and how many values to use for each of 

the variables. The following lines specify the values to be used for those variables. Some 

data lines specify Boolean values (e.g. line 3 with 666, 667) which are replaced manually 

using a text editor, and some specify actual values (e.g. line 7 with 0 5139062 and 

10278125), which can be used directly.
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In contrast, the je n n y  tool takes the generation specification as a set of program 

parameters on the command line. This corresponds directly with the second line in Figure 

16. As je n n y  has no information on the values each variable should take on it assigns 

alphanumeric strings to each output in the form al, a2, ... an for the first input; b l, b2 ... 

bn for the second and so on. This means that a translation step between the representation 

used in j en n y  and the values required by the test harness is required.

The second advantage for the AETG implementation is that the output is in the correct 

format to be directly included into the mutant driver program. Output from the je n n y  tool 

however has to be post processed; however using an adapted input stage from the AETG 

implementation to convert its output into the same format as the output from my AETG 

implementation reduces the size of the problem.

1
18 2 2 2 3 3 3 4 3 2  3 3 2  2 3 3 3 3 3
6 6 6  6 6 7
6 6 6  6 6 7
7 6 6  767
0 1 2 8 0  2 5 6 0
0 5 1 3 9 0 6 2  1 0 2 7 8 1 2 5
8 2 0 0 0 0  4 1 1 1 2 5 0  8 2 2 2 5 0 0
8 8 1  88 2  88 3  88 4
0 4 4 0 0  8 8 0 0
5 5 5  5 5 5
0 1 0 2 0  2 0 4 0
0 1 0 2 0  2 4 0 0
5 5 5  5 5 5
6 6 6  6 6 7
62  3 1 1  62 2
0 1 2 8 0  2 5 6 0
0 1 2 7  2 5 5
0 1 2 0 0  2 4 0 0
0 1 2 8 0  2 5 6 0

Fig. 16. Input format for the AETG based tool for the _ g o v _ f  f  d_rpm function.

The AETG implementation also has one further advantage. The hand-generated test 

vectors included data for values that were defined as inputs but that were not directly used 

by the code under test. For example, where code access a specific array element, the hand

generated test initializes the target element and those either side to known values. This 

allows off by one errors to be more easily detected. The AETG implementation can take 

this into account but the j e n n y  tool cannot. With je n n y , initialization data such as this 

has to be inserted by hand.
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The jenny tool is however not without its own advantages. The clearest of these is the 

speed with which it can generate the vectors sets. Also there is a slight advantage in the 

number of vectors generated though this is not large.

There may also be an advantage in the way in which the jenny tool allocates values to 

variables that have already been completely removed from the set of t-way tuples yet to be 

covered. The AETG implementation uses the first value defined for each variable in this 

case whereas the jenny tool uses a series of values which seems to give a slightly better 

mutant kill rate. The fact that the AETG algorithm as presented in Cohen et al. [67] does 

not define what should happen has been previously noted by Cohen et al. [76] but has not 

been investigated further as part of the work presented here.

6.6.3 Csaw

The Csaw manual [111] gives an outline of the process for using the tool as follows:

• Put the function or functions of interest into the required format.

• Add the names of global variables etc. using the special operators provided.

• Compile the code.

• Remove those mutants that do not compile.

While this appears reasonably straight forward, in practice it can be quite time 

consuming. For example, the process of preparing the functions while conceptually simple 

is subject to human error, which can affect the quality of the mutants. Also if a statement 

that is spread over two lines is not modified so that it is on a single line, the statement 

deletion operator will not function correctly. Although a minor point, this does affect both 

the integrity of the mutation process and which mutations compile.

Removal of the mutations that do not compile is also very time consuming. In the initial 

work these had to be removed by hand and a dummy function left in their place, but for the 

larger functions this was impractical and the mutation tool l i n e . c was modified to take a 

list of mutations to be removed automatically. However, selecting the mutations to be 

removed remains a manual operation that requires a scan of the error file that is produced 

by the g cc  compiler. Ideally, extraction of failed function identifiers should be automated 

but the multi-line nature of the error messages in the output file makes this awkward.
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6.6.4 Process Integration

Given the points above it will be obvious that integration within and between the tools is 

fairly minimal. Although this did not directly affect the quality of results for individual 

functions it did affect the number of functions that could be examined.

In conclusion, therefore, to make the technique explored in this work a practical 

proposition for a production environment requires two main improvements. First, the test 

data generation tool chain needs to be improved so that no or only minimal work is 

required to convert the data specification into a usable set of test vectors. Second, that the 

mutation process needs to be more fully automated to remove at least some of the work 

that currently has to be performed by hand.

6.7 Summary

In summary what has been shown here is as follows:

• That 2-way test sets for unit testing do not appear to be competitive with high quality 

hand-generated test sets in terms of effectiveness.

• That t-way adequate test sets of factor 5 (or above) appear to be as effective as hand

generated test sets.

• That it is possible to minimise the test sets created using t-way adequate techniques such 

that, there is no loss of detection ability and the minimised test set is small enough to be 

validated by'hand.

Several other interesting points have been raised by the experiments reported in this 

thesis. These include:

• That the base choice method formalised by Ammann and Offutt [9] is not competitive 

with either t-way adequate test sets, hand-generated test set or even with random testing.

• That random testing can be very effective on functions that have low “complexity”, for 

example, it performed well on sorting functions and in the first half of the functions 

drawn from an industrial project.

This last point is potentially significant for a large amount of empirical work on the 

effectiveness of software testing techniques. As noted in section 2.2.5 high complexity 

does not seem to be a feature of many functions used in testing research.
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7. Future Work

7.1 Introduction

The experimental work described in this thesis was focused on determining two things. 

First, it asked whether t-way adequate test sets are “reliable” in the sense that they do at 

least as well as hand-generated test sets. Second, it set out to show that there is a workable 

procedure for reducing the number of test vectors that need to be considered by hand. That 

is, to make the “oracle problem” tractable.

To address the first point, several experiments were performed on industrial code that 

compared the ability of t-way adequate test sets up to factor five to kill code mutants with 

the ability of hand-generated test sets and of a small number of automatically generated 

test sets to do the same thing. These experiments showed that t-way adequate test sets were 

comparable in performance with the hand-generated test sets and appeared to show an 

advantage over the other techniques with which it was compared.

To address the second point, a “brute force” optimisation process used in batches (t = 2, 

3, 4 and 5) was applied that recorded which vectors killed which mutants and successively 

selected the best. This approach conclusively showed that a small set of test vectors can be 

extracted from a much larger set of vectors with no loss in the ability to distinguish 

mutants from the original code.

The work is, however, incomplete in a number of ways and the purpose of this chapter is 

to explore possible routes by which the work could be expanded and extended in order to 

increase both confidence in the reliability of the results and to increase the utility of the 

results.

7.2 Code Variety

The code selection criteria are given in section 5.2.4.1 and this can lead to several 

possible sources of bias, some of which are given in section 6.6. Although it is believed 

that the code used is representative of high quality, real-time embedded code, there are a 

small number of issues associated with the sample as follows:
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• Only a small percentage of the actual code that makes up the project has been examined. 

Moreover, no single module has been examined in detail and there is a bias towards 

selecting functions with more complex logic.

• The code used was taken from a single project.

• The code was selected to avoid dealing with complex data structures.

• The test has been applied to single functions, i.e., unit testing.

To address the first and last points, one possibility is to test a complete code module, 

starting with unit tests of the same form that have been used in the empirical work reported 

here before moving on to testing combinations of functions and then attempting to build up 

to a complete module test. This last point may seem unnecessary, however as pointed out 

in section 3.4.2.5 this is the procedure used by the majority of empirical work done in 

combinatorial testing to date. Given the difference in results reported by Kuhn and Okun 

[201] and Schroeder, Bolaki and Gopu [277], this may throw some light on what the 

possible issues that arise when the technique is applied to complete programs, or large 

sections of programs. What effect this has on the ability of a vector set to kill mutants is 

poorly understood but would be of considerable interest to practitioners to be able to 

reliably test larger conglomerations or units58.

To address the second point, there is only one possible solution, which is to use code 

from another project. However, this is not a trivial matter because to be able to make 

comparisons with the work performed here; unit test sets constructed by hand are required. 

To be able to satisfy this requirement the unit tests for the Boar project reported in Ellims, 

Bridges and Ince [112] have been extracted from the project archive and these may provide 

an interesting comparison. Unit tests for the Boar project were outsourced and it is known 

that there is a significant difference between Wallace and Boar in what activity in the unit 

test process (test design versus test run) errors were revealed.

In addition to this, a copy of the TCAS program investigated in Kuhn and Okun [201] 

and used by Andrews, Briand and Labiche [11] has recently been obtained which this

58 The author was involved in extended discussions on this topic when defining “software unit” for the draft of the ISO 

26262 standard.
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should allow a direct connection between the work reported here and the work performed 

by those authors to be established.

7.3 Structured Data

The Wallace system has functions within it with higher complexity than those that were 

used in this study. However, the inputs to these functions are large arrays of one or more 

dimensions and it is not obvious how best to deal effectively with these data structures. For 

example, does one treat the array (or other structure) as a collection of individual variables 

or as a complete unit where one selects between various predetermined options?

The approach taken in this work to data is the former. As typified by the work done with 

the sort functions in section 5.4.1, each array element has been dealt with as if it were an 

isolated variable

However, this approach would probably not work in situations in which the elements of 

an array have internal structure. For example, an array with two or three axes may 

represent an n-dimensional surface that needs to be smooth. Thus setting each element 

without regard to its neighbours and in turn to their nearest neighbours may not produce 

realistic, or more importantly, useful results.

The other situation present in the Wallace code base is where arrays are used to schedule 

events based on either a time frame or on an engine position as measured by the engine- 

timing wheel. In this case, the points where actions take place are directly dependent on the 

previous elements. As before, this situations could be problematic if the elements of the 

array are treated as separate items. In this case, however, there is a possible solution. 

Because the arrays are filled dynamically at run time, it is possible the problem could be 

abstracted one level. That is, instead of setting the array elements directly, the code used to 

set the elements could be called (after verification) and t-way adequate test set used to 

drive the generation process.

The discussion above is, of course purely speculation. Whether or not using unstructured 

data is actually an issue for single executions of a function as used in unit testing remains 

to be investigated.
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7.4 Data models

As noted in section 5.5.2.3, the data selection model, i.e., minimum, middle and 

maximum value, that is used is in the main body of this work is possibly too simplistic. 

The data given in Table 21 indicates that there can be an advantage in using more complete 

data models. The data for the three functions in Table 20 (taken the initial experiments 

with 2-way adequate test sets with the AETG based tool) are shown with the data from 

Table 22, which used the je n n y  tool to generate the t-way adequate test sets in Table 30.

In Table 30, the first column contains the function names, the second column contains 

the data for hand-generated tests and the third contains the results for 2-way adequate tests 

generated by the AETG based tool. The fourth column shows the best results from Table 

21 for the improved data selection process. The last four columns contain the data for the t- 

way testing using the je n n y  tool.

Table 30. Combined data from Table 20 and Table 22, the first row for each function is the 
number of surviving mutants and the second is the number of vectors.

Data from Tab le 20 t-way Data From Table 22
Hand AETG Best 2-way 3-way 4-way 5-way

_sdc_fuel_control 21 107 26 101 49 25 22
15 15 23 17 57 174 504

_sdc_pre_start 675 746 736 673
14 16 22 79

_gov_gen_ffd_rpm 152 729 562 701 190 158 140
14 18 27 21 81 299 1040

The application of a more sophisticated data selection process to the _sdc_fuel_control 

and _gov_gen_ffd_rpm functions showed a large improvement over both 2-way adequate 

test sets. For the function _sdc_fuel_control, the improvement was not matched by the 

simplistic data selection scheme until the 4-way test set was applied. Note that no 

improvement was observed for the function _sdc_pre_start. However, in isolation this does 

not invalidate the results because, as noted previously this function seems to be 

extraordinarily difficult to test.

This strongly suggests that the full set of experiments in section 5.6 should be repeated 

using more complete data models as outlined in section 5.5.2.3 because it is possible that 

the kill rates could be markedly improved. This ties in with the observations that the
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production of good data models is not a trivial task and that it requires expert input as

made by Dalai et al. [93], [92] and Bell and Vouk [32].

One final observation needs to be made here. It would also be an advantage to the tester 

if the Csaw tool were modified so that it could automatically collect data on which mutants 

could not be killed. This information would provide more concrete feedback to the tool set 

user on how value selections could be improved and might remove the need for some trial 

and error.

7.5 Oracles

The ability of the minimisation technique trailed in this thesis to select good test sets is 

dependent on the ability of the oracle code to detect differences in the output of the 

mutated and un-mutated programs. In the experiments conducted as part of this research, it 

seems to be a reasonable assumption that the oracles for the majority of the functions are at 

least adequate, given the reduction achieved in the size of the final test sets.

It is, however, a reasonable question to ask, at what point does the oracle become 

ineffective? To recap, the oracles consist of two parts: the un-mutated function and its 

associated outputs, and a function used to compare those outputs with the outputs of the 

mutated code. In many instances, these comparison functions compare not only the 

expected outputs but also the inputs to check they have not been inadvertently modified. In 

some cases (for example where the output is an array), they also compare values to each 

side of the element that is supposed to be modified.

One way to address this question might be to systematically degrade the existing 

comparison functions so that the comparisons that are not strictly necessary, such as

checking the inputs remain unmodified, are removed. This approach should provide

information on the true robustness of the optimisation techniques explored in this thesis.

It should also be possible to determine how robust the technique is in relation to errors in 

the un-mutated function. In the work undertaken to date, I have assumed that the actual 

target function is correct. This is not unreasonable given that the target functions are taken 

from a production system that has been in use for nearly a decade with no errors reported 

from the field. In addition, the target functions were developed within a quality control 

system that is capable of dealing with SDL 3 level software. This, however, might not be
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the norm. If the purpose of testing is to discover errors in the software then at some point 

un-mutated code will be used that contains errors. Thus, to test the reliability of the 

techniques explored here, the obvious experiment would be to use mutated code as the 

oracle function, re-generate the mutants, and re-run the optimisation procedure. The 

expected result is that the final set of vectors selected should be similar to, if not the same 

as the optimised test sets that were obtained from the original experiments.

There is also the issue of how to improve the comparison between the un-mutated code 

and the mutated code. For example, in section 5.4.1 it was found that both the shellsort and 

quicksort functions produced identical results for the un-mutated and mutated code, even 

when the mutated code appears to be functionally incorrect. An initial attempt to 

differentiate the assumed correct code from the mutated code was made using execution 

time, but this was ineffective.

The obvious alternative to measuring execution time would be to internally record the 

number of times that the loops are iterated and compare those values for the mutated and 

un-mutated code. It should be a reasonably simple matter to add the necessary code by 

hand or to havu the Csaw tool add the necessary code. However, this is perhaps a partial 

solution, a more complete solution is to record the complete execution of the function 

being tested be employing the techniques that are used with watchdog processors for 

control flow checking. For example, it should be possible to add assigned node signatures 

and compare the final signatures for both the mutated and un-mutated functions, Mahmood 

and McCluskey [218] give a brief survey of relevant techniques.

7.6 Optimisation

The optimisation technique trailed here is a general purpose technique and as applied 

only has only a minor dependency on the f-way adequate test sets in that it is applied 

sequentially to each larger factor.

Thus, the optimisation process could also be applied to the data sets generated using 

random selection. It would be interesting to compare the size of the optimised test sets 

obtained by random selection with the optimised test sets derived for t-way adequate tests. 

In general, this comparison can be used as a comparative measure of the effectiveness of
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the two techniques. I would expect stronger techniques to produce smaller optimised sets 

of vectors than a weaker technique.

Given that the technique can be applied to random testing, there is no reason why the 

technique cannot also be applied to techniques such as Malaiya’s [219] anti-random testing 

or to boundary following techniques as suggested by Hoffman et al. [164].
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Appendix A

9. Appendix A -  The Csaw Mutation Tool

9.1 Introduction

This appendix provides additional detail on the mutation tool, Csaw, that was written to 

support the work reported in this thesis. Section 8.2 describes the mutations that are 

provided by the tool. Section 8.3 compares the mutation operators provided by the Csaw 

tool with those commonly used for FORTRAN and with an idealised set of mutation 

operators for the C programming language.

9.2 Tool Capabilities

The capabilities of the Csaw tool are described in the following sections.

9.2.1 Operator Mutations

The tool can swap one operator for another e.g. '+' for and so on. It supports this for 

arithmetic and logical operators, variable types etc. The substitutions that can be applied 

are defined in tables and hence can be easily altered. Some operators are not substituted 

e.g. and are not currently defined in the tables because mutants involving these 

operators often result in code that cannot be compiled. Thus, the mutants are by definition 

dead.

9.2.2 Variable Substitution

The tool will swap one variable name for another variable name e.g. if the variables i ,  j 

and k are defined in a function then all instances of i  will be swapped with j  and k, all 

instances of j  with i  and k, and so on. Variable substitution is done on scalar and array 

types independently but other uses for names such as names of structures and members 

within a structure are not distinguished.
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9.2.3 Constant Substitution

All textual constants (e.g. from #define) are swapped for all other such defined constants 

that the tool finds in the text of the function being mutated. The tool considers a constant 

any text string that is not recognised as either a keyword or a variable.

9.2.4Decimal Constants

The tool will offset decimal constant values by plus or minus one. For example, a constant 

of “10” will be converted to “both “9” and “11”. Floating point, double precision and 

hexadecimal constant mutations have not currently been implemented. However, “holes” 

have been left in the tool for them.

9.2.5 Array Index Mutation

Array indexes that use variables are mutated by appending either “+1” or “-1”, so 

array [ i ] is converted to array ! i—13 and array [ i+1 ] to produce off by one errors. 

Note that variable substitution also affects array indexing.

9.2.6 Statement Removal

Each statement that ends in a 1 is deleted. However for this to work correctly a statement 

must be on a single line because the Csaw tool operates on one line at a time.

9.2.7 Type Mutations

Unlike any other system the author knows of, this tool will mutate the type specifier of a 

variable. That is, it will swap “unsigned int” for “int”, or “double” for “float” etc. 

This capability has been introduced because the primary target for the tool in this work is 

integer based real-time embedded code. Because of the limited amount of memory that this 

type of system often has, it is common to use integers of the smallest possible size e.g. 

using a char or unsigned char as an integer variable that only takes on a small number 

of values. Like operator mutations, type mutations are defined in an extendable table. As 

far as the author is aware, no other mutation tool has this capability.
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9.3 Comparisons

9.3.1 FORTRAN Operators

The original set of FORTRAN mutation operators was developed by King and Offutt 

[193] for the Mothra mutation system for FORTRAN. The set of mutation operators for 

this system is given in Table 31. Operators fall into three classes as follows; Replacement 

of Operand (RO) modifiers, Expression Modifiers (EM), and Statement Modifiers.

As one of the first mutation systems introduced, the operators have been extensively 

studied and their properties better documented than other systems. For example, empirical 

work has been performed to determine which operators are most effective in the sense that 

test cases that kill mutants based on a given operator are also observed to kill mutants 

based on other operators. The largest such study by Offutt et al. [252] identified five 

operators that were deemed “necessary” as follows: absolute value insertion (ABS); 

arithmetic operator replacement (AOR); logical connector replacement (LCR); relational 

operator replacement (ROR); and unary operator insertion (UOI). Of these AOR, LCR and 

ROR are implemented for operators and UOI is partly implemented.

Work has also been done on the theoretical properties of mutation operators compared 

with other common criteria for measuring the effectiveness of a test set such as statement 

and decision coverage [238]. Offutt et al. [253] have examined the operators that are 

necessary to achieve various levels of coverage and found that they matched the necessary 

operators as shown in Table 31.
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Table 31. Summary of mutation operators for the FORTRAN programming language.

Operator Class Needed Csaw Subsumes (2)
AAR array reference for array 

reference replacement
RO yes

ABS absolute value insertion EM yes no
ACR array reference for constant 

replacement
RO no

AOR arithmetic operator 
replacement

EM yes yes

ASR array reference for scalar 
variable replacement

RO no

CAR constant for array reference 
replacement

RO no

CNR comparable array name 
replacement

RO yes

CRP constant replacement RO yes
CSR constant for scalar variable 

replacement
RO no

DER DO statement end 
replacement

SM no

DSA DATA statement 
alterations

SM n/a

GLR GOTO label replacement SM no
LCR logical connector 

replacement
EM yes yes decision

coverage
decision/condit
ion

ROR relational operator 
replacement

EM yes yes condition
coverage
decision/condit
ion

RSR RETURN statement 
replacement

SM no

SAN statement analysis 
(replacement by TRAP)

SM no statement
coverage

SAR scalar variable for array 
reference replacement

RO no

SCR scalar for constant 
replacement

RO no

SDL statement deletion SM yes all defs
SRC source constant 

replacement
RO yes

SVR scalar variable replacement OR yes
UOI unary operator insertion EM yes no

(1) Replaces each condition in each cecision with TRUE or FALSE
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(2) Subsumes is on weak mutation not strong mutation

In addition to the coverage criteria defined by Myers, Offutt et al. [253] also examined 

the all-defs requirement as defined by Frankl and Weyuker [126] and concluded that this 

was achieved by the SDL operator. However, it is interesting to note that the all-uses and 

all def-uses cases were not similarly examined, which leaves one to assume that these are 

not subsumed by the mutation.

A comparison of the operators provided by Csaw with the FORTRAN necessary 

operators shows a few weaknesses. The absolute value insertion (ABS) operator, for 

example, is not implemented at all in Csaw. Given the way in which Csaw operates this is 

not a trivial exercise because Csaw does not parse the code, it cannot distinguish an lvalue 

from an rvalue.

The arithmetic operator replacement (AOR), however, is probably implemented 

completely in that Csaw does attempt to replace each operator with the set of all other 

operators that are valid at the same point. Similarly, the logical connector replacement 

(LCR) replaces the operators with a full set of other valid operators. However, the 

correspondence with the Mothra operators is not exact. Offutt et al. [253] state that “the 

logical connector mutation operator (LCR), among other modifications, replaces each 

decision in a program by TRUE and FALSE”. Again, Csaw does not do this as it does not 

know what constitutes a decision.

The relational operator replacement (ROR) is also fully implemented, given the caveat 

that it may not completely duplicate the FORTRAN operators as wholesale replacement of 

clauses, as in the case of the LCR operator, is again not possible.

The statement analysis (SAN) operator has not been implemented but this could be 

implemented using the same mechanism as the statement deletion operator (SDL), which is 

fully implemented within the bounds of what Csaw can do.

The unary operator insertion (UOI) is likewise not implemented although experiments 

have shown that doing so may be feasible a part of the variable name replacement code. 

Other missing operators are discussed more completely below.
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9.3.2Ideal C Mutation Operators

Agrawal et al. [5] produced a technical report on mutant operators for the C language. A 

summary of those operators and how they compare with the operators that Csaw uses is 

given in Table 32.

Table 32. Summary of C mutation operators and comparison with Csaw mutation tool. 
Notes on equivalent Mothra mutation operates are included in the usage column.

Area Operat
or

Usage Csaw

Statement STRP trap on statement execution, replaces each 
statement with code to cause a termination

no

STRI trap on if condition, replaces branch 
predicate with code to cause termination

no

SSDL statement deletion implemented
SRSR return statement replacement no
SGLR goto label replacement no
SCRB continue replacement by break no
SBRC break replacement by continue no
SBRn break to nth enclosing level no
SCRn continue to nth enclosing level no
SWDD while replaced by do-while no
SDWD do-while replaced by while no
SMTT multiple trip trap, used to ensure that a loop 

is executed more than once.
no

SMTC multiple trip continue, ensure that if a loop 
executes n iteration on the n+1 it will not 
execute the body.

no

SSOM sequence operator mutation, used to modify 
effect of the comma operator

no

SMVB move closing brace up or down one line no
SSWM switch statement mutation, cause execution 

to halt if a case is selected
no

Operators Obom binary operator mutation 
(OAAN, Mothra AOR) 
(OBBN, Mothra LCR) 
(ORRN, Mothra ROR)

implemented

OUOR unary operator mutation implemented
OLNG
(UOI)

logical negation indirectly

OCNG logical context negation partly
OBNG bitwise negation indirectly
OIPM indirect operator precedence mutation no
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Area O perat
or

Usage Csaw

OCOR cast operator replacement indirectly
Variables Varr mutate array references in expressions implemented

Vprr mutate pointer references in expressions partial
Vsrr scalar variable reference replacement implemented
Vtrr mutate structure references partial
VASM mutate subscripts in array references (multi 

dimensional arrays)
no

VSCR mutate components of structure indirectly
VDTR variable domain traps, TRAP on negative, 

zero and positive 
(Mothra ABS)

no

VTWD twiddle mutations, mirror off by one errors 
e.g. +/-1 
(Mothra UOI)

partial

Constants CRCR required constant replacement no
CCCR constant for constant replacement partial
CCSR constant for scalar replacement no

The utility of some of the suggested operators is lower than for others. For example, the 

SRSR operator (return statement replacement) is most effective if there are multiple return 

statements as variable replacement operators will generally modify a statement of the form 

return (xyz). Likewise, the goto replacement label operator SGLR is only useful if 

the g o to  is actually used. In the code used for this study, neither of these conditions were 

met. That is, the functions used had a single return and the goto operator was not used.

Some operators are impossible for the Csaw tool set to implement. For example, the 

SMVB operator normally operates over multiple lines so Csaw, which operates one line at 

a time, cannot deal with this operator.

As shown in Table 32, some rules are “indirectly” implanted. This means that although 

the exact mutation mechanism as suggested in [5] is not used, Csaw achieves a similar 

effect via brute force. However, it should be noted that Csaw’s version might not have 

exactly the same properties. For example, the Varr operator is type aware, i.e., it does not 

substitute integer arrays for pointer arrays but Csaw will happily make this type of 

substitution but because the compiler will catch many of these instances the net effect will 

be almost the same. Another example is structure component replacement; Csaw achieves
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nearly the same end as the ideal operator by using every possible variable it knows about. 

The vast majority will not compile but this will still effectively sift them out and allows the 

legal ones to pass though.

9.3.3 The Adequacy of Csaw

Given that the Csaw implementation of ideal mutation operators is incomplete, what effect 

will this have on the results of the work presented?

Some operators will have no or minimal effect because the constructs that they mutate 

are not presenting in the subject code. The best two examples of this are the mutation 

operators for return statements and the goto operator. All the code examined in the work 

here has a single return at the end of a function. Likewise none of the code examined uses 

the goto operator so the absence of the operator will have no effect.

The absence of the FORTRAN statement analysis operator (SAN and STRP C operator) 

is unfortunate but again should have minimal effects because the subject industrial code is 

known to have test sets that achieve full statement and branch coverage. Therefore, the 

effect of this operators absence should not unduly affect the results because we are 

performing a direct comparison between the effectiveness of two different test sets. If one 

set is known a priori to meet a criterion then a test set that is less effective should show 

obvious differences in the mutation kill rate.

The same argument applies to the other operators that have been omitted or only partly 

implemented. Thus, although Csaw may be considered to be flawed because it does not 

implement all operators and does not ensure that coverage criteria such as statement and 

branch coverage are meet, it is adequate for the purposes of this study.

In addition, having an incomplete mutation system does not seem to preclude it being 

useful in practice. The Jumble mutation system for Java (Irvine et al. [178]) for example 

excludes a large number of the possible operations from within some of the operator 

classes59 to achieve a significant speed increase over what would otherwise be possible. 

This was been done so that regular builds of complete systems and the associated unit 

testing of mutants can be performed.

59 This point was made during presentations at the Mutation 2007 workshop.
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