
O M ReS*TR\ C~\~̂ J£>

The Effectiveness of £-way Test Data Generation

Michael Ellims, BSc, MSc

Submitted for the degree of Doctor of Philosophy in Computer Science

Submitted: March 2009

Revised: October 2009

bfcre oP novssioo - °
o£ ftiofKR-b .• sep \ rlo o ° \

1-220

ProQuest Number: 13837679

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13837679

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

I - 6 JULH'6
£ The Library

d o n a t i o n

OO^Jtf 200 ̂
G3'TS«_\JW-t7bn Cdp'

2 -220

Acknowledgements

I would like to give special thanks to my wife Theresa for first, allowing me to start on

this project and to provide support and encouragement along the journey. Also to my son

Maxwell, for being such a joy despite being such a distraction.

I would also like to thank my supervisors Darrel Ince and Marian Petre for putting up

with my sometime spectacular lack of progress and for providing help and guidance when

it was most needed. Thanks are also due to P.A.V. Hall and A.S.Meehan for independently

tracking my progress and providing some interesting conversations on my work as it

progressed. Finally to Prof. P.H.Garthwaite for advice on statistical analysis.

I would also like to thank the following persons who either made difficult to obtain work

available or answered the authors’ questions and otherwise provided information. Jamie

Andrews, Kathy Bassin, T.Y. Chen, Ranee Cleaveland, Myra Cohen, Eugenia Diaz

Fernandez, Walter Gutjahr, Richard (Dick) Hamlet, W.B. Langdon, Chris Meudec, Jeff

Offutt, Stuart Reid, Marc Roper, George B. Sherwood, J. Startdom, Harry Sneed, Brett

Stevens and Alison Watkins.

3 -220

Related Publications

The following publications are derived directly from the work undertaken as part of the

PhD study program.

Ellims, M., Ince, D., and Petre, M. 2008. The Effectiveness of T-Way Test Data

Generation. In Proceedings of the 27th international Conference on Computer Safety,

Reliability, and Security (Newcastle upon Tyne, UK, September 22 - 25, 2008). M. D.

Harrison and M. Sujan, Eds. Springer-Verlag, Berlin, Heidelberg, 16-29

Ellims, M., Ince, D., and Petre, M. 2007. The Csaw C Mutation Tool: Initial Results. In

Proceedings of the Testing: Academic and industrial Conference Practice and Research

Techniques - MUTATION (September 10 - 14, 2007). IEEE Computer Society,

Washington, DC, 185-192.

Ellims, M. “The Csaw Mutation Tool Users Manual”. Open University Technical Report.

2007/09.

Ellim s, M. D. Ince, D.C. and M. Petre, M., “AETG vs. Man: an Assessment of the

Effectiveness of Combinatorial Test Data Generation”, Open University Technical Report.

2007/08.

The following two publications were developed in conjunctions with work undertaken as

part of the PhD study program but are not directly related to the thesis presented.

Ellims, M., Bridges, J., and Ince, D. C. 2006. The Economics of Unit Testing. Empirical

Softw. Eng. 11, 1 (Mar. 2006), 5-31

Ellims, M., Bridges, J., and Ince, D. C. 2004. Unit Testing in Practice. In Proceedings of

the 15th international Symposium on Software Reliability Engineering (November 02 - 05,

2004). IEEE Computer Society, Washington, DC, 3-13

4 -2 2 0

Other Publications

The following publications were published during the period in which the PhD. study

was undertaken but are not directly connected with the work undertaken as part of that

program of study.

Ellims, M. “Thoughts on the relative importance of experience and techniques”. Safety-

critical Systems Symposium, 2008. (Invited Paper).

Ellims, M. “Is Security Necessary for Safety?”, Embedded Security in Cars (ESCAR’07)

Berlin, 2006. (Invited Paper).

Bridges, J. Wartnaby, C.E. Stannard, D. Styles, J. Ellims, M. “Frameworks for Power and

Systems Management in Hybrid Vehicles: Challenges and Prospects”, SAE Technical

Paper Series 2006-21-0005.

Ellims, M. 2004. On wheels, nuts and software. In Proceedings of the 9th Australian

Workshop on Safety Critical Systems and Software - Volume 47, Brisbane, Australia. T.

Cant, Ed. Australian Computer Society, Darlinghurst, Australia, 67-76. (Keynote Speaker

Address).

Ellims, M., Parker, S., and Zurlo, J. 2002. Design and Analysis of a Robust Real-Time

Engine Control Network. IEEE Micro 22, 4 (Jul. 2002), 20-27.

5 -220

Abstract

Modem society is increasingly dependent on the correct functioning of software and

increasingly so in areas that are considered safety related or safety critical. Therefore, there

is an increasing need to be able to verify and validate that the software is in fact correct and

will perform its intended function. Many approaches to this problem have been proposed;

however, none seems likely to supplant the role of testing in the near future.

If we accept that there is, and will be, a continuing need to be able to test software then

the question becomes one of how can this be done effectively, both in terms of ability to

detect errors and in terms of cost. One avenue of research that offers prospects of

improving both of these aspects is the automatic generation of test data.

There has recently been a large amount of work conducted in this area. One particularly

promising direction has been the application of ideas from the field of experimental design

and in particular, the field of f-way adequate factorial designs.

The area however, is not without issues; there is evidence that the technique is capable

of detecting errors but that evidence is not unequivocal. Moreover, as with almost all work

in the area of automatic test generation, there has been very little comparative work

comparing the technique with other test data generation techniques. Worse, there has been

effectively no work done that compares any automatic test data generation technique with

the effectiveness of tests generated by humans. Another major issue with the technique is

the number of tests that applying the technique can result in. This implies that there is a

need for an automated oracle if the technique is to be successfully applied. The flaw with

this is of course that in most situations the oracle is the human that is conducting the tests,

a point often ignored in testing research.

The work presented here addresses both of these points. To do this I have used a code

base taken from an industrial engine control system that has an existing set of high quality

unit tests developed by hand. To complement this, several other techniques for

automatically generating test data have been applied, namely random testing, random

experimental designs and a technique for generating single factor experiments. To address

the issue of being able to compare the error detection ability of all of the sets of test

vectors, rather than the usual effectiveness surrogates of code coverage I have used

6-220

mutation analysis on the code base to directly measure the ability of each set of test vectors

to discover common coding errors. The results presented here show that test data

generation techniques based on t-way factorial designs are at least as effective as hand

generated tests and superior to random testing and the factor experimental technique.

The oracle problem associated with the factorial design techniques was addressed using

a test set minimisation approach. The mutation tool monitored which vectors could “kill”

which code mutants. After a subset of the test vectors had been run, the most effective

vectors were retained and the rest discarded. Likewise, mutants that were killed were

removed from further consideration and the process repeated. Experimental results show

that this minimisation procedure is effective at reducing computational overhead and is

capable of producing final sets of test vectors that are comparable in size with the sets of

hand-generated tests and so amenable to final hand checking.

7 -220

Table of Contents

1. Introduction.. 18

1.1 Background... 18

1.2 Approaches to Verification and Validation ...19

1.2.1 Formal Methods... 19

1.2.2 Dynamic Testing... 20

1.2.2.1 Good Tests...21

1.2.2.2 Limits of Testing.. 22

1.2.2.3 Testing in the Real W orld... 23

1.3 Automated Testing........................... 23

1.4 Key Contributions.. 24

1.5 Structure of the Thesis.. 25

2. Automatic Test Data Generation: an Overview................. 26

2.1 Introduction...26

2.2 Random Testing..26

2.2.1 Random Testing: Introduction..26

2.2.2 Random Testing: the Technique...27

2.2.3 Random Testing: Simulation Studies.. 28

2.2.4 Random Testing: Analytical Studies... 30

2.2.5 Random Testing: Empirical Results............................... 31

2.2.6 Random Testing: Summary.. 37

2.3 Mathematically Inspired Techniques.. 39

2.3.1 Mathematically Inspired Techniques: Introduction.....................................39

2.3.2 Mathematically Inspired Techniques: Geometric Methods....................... 40

2.3.3 Mathematically Inspired Techniques: Boundary Following......................42

2.3.4 Mathematically Inspired Techniques: Combinatorial.................................46

2.3.4.1 Combinatorial Techniques...46

2.3.4.2 t-way Test Set Generation.............................. 50

2.3.4.3 Field studies...54

2.3.4.4 Empirical Studies... 55

8-220

2.3.4.5 Assessment... 56

2.3.5 Mathematically Inspired Techniques: Summary... 57

2.4 Adaptive Testing ..60

2.4.1 Adaptive Testing: Introduction... 60

2.4.2 Adaptive Testing: Early Work, Setting the Foundations.............................. 61

2.4.2.1 Adaptive Testing: Software Path Testing... 66

2.4.2.2 Adaptive Testing: Worst Case Execution Times 67

2.4.2.3 Adaptive Testing: Applied to Systems... 67

2.4.3 Adaptive Testing: Fundamental Issues...68

2.4.3.1 Fitness Functions..69

2.4.3.2 Search Techniques..73

2.4.4 Adaptive Testing: Summary ... 75

2.5 Symbolic Testing...76

2.5.1 Symbolic Testing: Introduction... . 76

2.5.2 Symbolic Testing: Review............................ 79

2.5.3 Symbolic Testing: Issues..87

2.5.3.1 Symbolic Testing: Paths and Path Selection..88

2.5.3.2 Symbolic Testing: Aliasing... 89

2.5.3.3 Symbolic testing: syntax versus semantics... 90

2.5.3.4 Symbolic Testing: Constraint Solving...92

2.5.4 Symbolic Testing: Summary... 95

2.6 Opportunities for Further Research..95

3. Combinatorial t-way Techniques.. 98

3.1 Introduction................................. 98

3.2 r-way Test Set Generation.. 98

3.2.1 t-way Generation: Detailed Review..98

3.2.2 r-way Generation: Analysis..102

3.2.3 r-way Generation: Summary... 104

3.3 Field Studies... 105

3.3.1 Field Studies: Detail...105

3.3.2 Field Studies: Analysis...110

9-220

3.3.3 Field Studies: Summary... 112

3.4 Empirical Studies...112

3.4.1 Empirical Studies: Detail.. 112

3.4.2 Empirical Studies: Analysis... 116

3.4.2.1 Emphasis...119

3.4.2.2 Variety... 119

3.4.2.3 Coverage and Detection...120

3.4.2.4 Faults...................... 120

3.4.2.5 Program Size .. 122

3.4.3 Empirical Studies: Summary.. 122

3.5 Weaknesses... 123

3.5.1 Comparisons ... 123

3.5.2 Human Test Sets.. 124

3.5.3 Test Reduction.. 125

3.6 Final Appraisal..125

4. Program of Work..127

4.1 Introduction... 127

4.2 Foundation work..129

4.2.1 Problem Overview ...129

4.2.2 Mutation... 130

4.2.3 Optimisation and Minimisation... 131

4.3 Hypothesis..133

5. Experimental Design... 136

5.1 Introduction 136

5.2 Experimental Subjects...137

5.2.1 Sort Routines ... 137

5.2.2 Industrial Code .. 137

5.2.3 Development Process... 138

5.2.4 Test Subjects.. 140

5.2.4.1 Selection Criteria... 140

5.2.4.2 The Test Subjects...:........................ 142

10 - 220

5.3 Tools.. 144

5.3.1 t-way Test Generation Tools... 144

5.3.1.1 Description.. 144

5.3.1.2 Validation... 145

5.3.2 Mutation Tool.. 146

5.3.2.1 Description.. 146

5.3.2.2 Validation..148

5.3.3 Other Tools...149

5.4 Sort Experiments...149

5.4.1 Aim s.. 149

5.4.2 Procedure... 150

5.4.3 Experimental Results...151

5.4.4 Boolean H ags.. 152

5.4.5 Time Equivalence... 152

5.5 Industrial Pair-wise (2-way) Experiments...154

5.5.1 Procedure 154

5.5.2 Experimental Results...155

5.5.2.1 Minimum, Median and Maximum Values...155

5.5.2.2 Error Detection..156

5.5.2.3 Improved Data Point Selection.................................. 157

5.5.3 Summary..159

5.6 Industrial t-way Experiments...160

5.6.1 A im s...160

5.6.2 Procedure.. 160

5.6.3 Experimental Results...161

5.6.4 Investigations... 167

5.7 t-way Optimization..168

5.7.1 Aim s............... 168

5.7.2 Procedure.................... 168

5.7.3 Experimental Results...169

5.8 Minimisation with Hand Vectors.. 171

11-220

5.8.1 A im s... 171

5.8.2 Procedure... 171

5.8.3 Experimental Results...172

6. Conclusions... 175

6.1 Introduction...175

6.2 Summary..175

6.3 Conclusions... 176

6.3.1 Hypothesis O ne... 176

6.3.2 Hypothesis Two 178

6.3.3 Hypothesis Three... 178

6.4 Threats to Validity...179

6.5 Observations........................ 180

6.5.1 Random Testing................................... 180

6.5.2 Combined Human/Machine Vectors..181

6.6 Discussion of Tools...181

6.6.1 Hand Generated Tests 181

6.6.2 t-way Generation Tools... 182

6.6.3 Csaw............................ 184

6.6.4 Process Integration.. 185

6.7 Summary...................... 185

7. Future W ork...186

7.1 Introduction..186

7.2 Code Variety...186

7.3 Structured Data...188

7.4 Data models..189

7.5 Oracles .. 190

7.6 Optimisation...191

8. References...193

9. Appendix A - The Csaw Mutation Tool ..214

9.1 Introduction 214

9.2 Tool Capabilities... 214

12 - 220

9.2.1 Operator Mutations...214

9.2.2 Variable Substitution..214

9.2.3 Constant Substitution...215

9.2.4 Decimal Constants..215

9.2.5 Array Index Mutation..215

9.2.6 Statement Removal..215

9.2.7 Type Mutations.. 215

9.3 Comparisons...216

9.3.1 FORTRAN Operators......................... 216

9.3.2 Ideal C Mutation Operators 219

9.3.3 The Adequacy of Csaw.. 221

13 - 220

List of Figures

Fig. 1. Chronological order of major work examined under random testing, organized

by area of activity...38

Fig. 2. Boundary values as defined by Hoffman et al. [164] in diagrams (a) to (c).............44

Fig. 3. Perimeter sets as defined by Hoffman et al. [164] for the domains defined

above... 45

Fig. 4. An example of a Latin square.. 47

Fig. 5. Combining Latin squares to cover a fourth variable...48

Fig. 6. An example seven vector, 2-way adequate test set for 3 variables............................49

Fig. 7. Chronological order of major work examined under combinatorial testing,

organized by area of activity and date of publication.. 59

Fig. 8. A simple example of how chaining is applied from a target node f with the

predicate at node e.. 63

Fig. 9. Chronology of the foundation work undertaken in adaptive testing showing the

initial major contributions .. 65

Fig. 10. An example where it is difficult to statically determine a closed form of the

pc ..78

Fig. 11. Summary of the main techniques used in research to find test data........94

Fig. 12. Example of the IPO generation process for four variables with 3, 2, 2 and 3

values, (a) shows the initial state with all pairs for the first two parameters,

(b) to (f) fill in values for the third parameter and (g) to (1) add values for the

final parameter. All operations in (b) to (j) involve horizontal growth. In (k)

to (1) vertical growth is used to give coverage for the remaining uncovered

pairs for parameter one and parameter four.. 102

Fig. 13. Simplified process for performing unit tests. Shaded boxes show associated

activities that must be completed before or in conjunction with unit testing 140

Fig. 14. Allocation of values for variable A to D and RPM for

th e_ sd c _ f u e l _ c o n t r o l function when Interleaving (not to scale)...............158

Fig. 15. Example application of the optimization process..171

Fig. 16. Input format for the AETG based tool for the _ g o v _ f f d_rpm function 183

14 - 220

List of Tables

Table 1. Summary of the percentage condition/decision coverage achieved for

synthetic programs generated as part of a study by Michael et al. [232]........... 33

Table 2. Assignment of checkpoint codes to values of a variable.. 41

Table 3. An example of boundary sets over the domains D(x) = [0, 5] and D(y) =

[0,6]... 44

Table 4. Summary of cost functions applied for selected authors, n/s is where

information was not explicitly stated. In both Tracey, Clark, McDermid and

Mander [303] and Zhan and Clark [345] K is a “failure constant” to further

“punish” data that fails. In addition Tracey, Clark and Mander [299] convert

to disjunctive normal form implying that a finer grained search results: the

complete list is taken from Tracey et al. [302].. 72

Table 5. Summary of optimisation techniques used and additional heuristics that were

applied...74

Table 6. An example of symbolic execution for a simple C program, adapted from

King [192].. 77

Table 7. Example of the scheme for constructing a covering array from sub arrays

from Williams [330]...100

Table 8. Results for Kuhn and Reilly [202] and Kuhn et al. [203] showing the

required t-way adequacy to locate all known faults. Data from the TCAS

experiment, Kuhn and Okun [201] is in the last line for comparison (see

section 3.4.1)...109

Table 9. Results for block and decision coverage for the ten UNIX commands

experimented on in Cohen et al. [69] using 2-way (AETG) adequate tests

and base choice test sets (BC)..113

Table 10. Summary of the functions used by Grindal et al. [138] in testing

combinatorial testing strategies... 115

Table 11. Summary of techniques that have been investigated to determine their fault

revealing capability...116

15 - 220

Table 12. Summary of test subject features, for the main experiments reviewed in

section 3.4..118

Table 13. Summary of some properties of the code under study, with the C functions

ranked by the total number of mutations that are generated................................144

Table 14. Comparative performance of three tools for generating 2 and 3-way

adequate test sets. For each tool, the size of the test set is given and time

taken to generate the test set is given in seconds... 145

Table 15. Performance of AETG based tool for generating 2-way (pairwise) test

vectors against examples from literature..................... 146

Table 16. Small programs necessary to support the work reported here............................ 149

Table 17. Summary of algorithms, and performance for the seven test sets used. The

size of the test set is shown and the number of live mutants and the

execution time is given for each algorithm.. 151

Table 18. Summary of best results for batch timing...153

Table 19. Results of the first experiment showing the number of mutants left alive

after all test vectors have been applied. The test set that left the fewest

mutants alive is in bold .. 156

Table 20. Effectiveness of test sets versus known actual errors in the code.......................157

Table 21. Results for experiment three, to improve the mutant kill rate by modifying

the input data points (e.g. interleaving) or the interpretation of those points

(inverting). Two sets of data are shown for each function, the top row is

mutants left alive and the bottom, the number of vectors................................... 159

Table 22. Number of mutants killed for each of the sets of test vectors applied............... 162

Table 23. Two-tailed P values and Wilcoxon values of positive and negative sums for

percentage of mutants left alive for f-way adequate and hand-generated test

sets... 164

Table 24. Two-tailed P values and Wilcoxon values of positive and negative sums for

percentage mutants left alive for random test sets with the same number of

vectors as the assocated t-way adiquate test sets and hand-generated test

sets... 165

Table 25. Execution times for the f-way adequate test sets... 166

16 - 220

Table 26. The number of mutants not killed by the largest t-way adequate test seta and

hand-generated tests. The final two columns are the number of killed

mutants unique to each set... 167

Table 27. Summary data for r-way minimisation runs... 169

Table 28. Parameters that can be passed to the mutation driver program...........................172

Table 29. Summary of results for adding N (2, 4, 6, 8) hand-generated tests randomly

drawn without replacement from the set of hand-generated tests associated

with each of the subject functions... 174

Table 30. Combined data from Table 20 and Table 22, the first row for each function

is the number of surviving mutants and the second is the number of vectors. ..189

Table 31. Summary of mutation operators for the FORTRAN programming language...217

Table 32. Summary of C mutation operators and comparison with Csaw mutation tool.

Notes on equivalent Mothra mutation operates are included in the usage

column........................... 219

17 - 220

Introduction

1. Introduction

1.1 Background

Software in modem industrial society is ubiquitous. We use it in our everyday lives to

wash our clothes, transport us to and from our place of work, keep our homes comfortable

and even monitor our health. Given the volume of software that we depend on and given

that a significant proportion can be considered safety related if not safety critical then there

is a large and growing need to be able to verify and validate the correctness of that

software.

To consider how many software controlled devices we rely on we need only consider the

modem automobile, which can have in excess of 60 individual programmable electronic

control units [190]. These entertain us, make us comfortable and translate the driver’s

commands to accelerate and decelerate the vehicle into control actions on the engine and

coordinate these with torque demands from other systems such as anti-lock braking

systems (ABS) and the transmission.

Kopetz [198] considers many of these systems to be safety critical. For example, if an

adaptive cruise control (ACC) system (Valentine [307]) allows a vehicle under its control

to approach too closely to another vehicle then there may be insufficient room to slow the

vehicle safely. With some systems being considered today the situation is even more

extreme. Consider steering systems; these can range from what Ackermann [3] describes

as “disturbance attenuation” (pg.23) systems acting through electric power assisted

steering through to full steer-by-wire systems that remove the mechanical connection

between the driver and the vehicle which require both fault tolerant hardware and software

(Isermann, et al. [179]). With such systems there may be no possibility of human

intervention if a failure occurs1.

Failures in systems containing software are attributable not only to faults within the

software but also incorrect specifications, faults in the compiler and even the micro

processor that the software executes on. That there are multiple insertion points for errors,

from conception through implementation and into deployment is well documented by

1 For example at highway speeds in a tunnel the collision time is less than the typical human reaction time.

18-220

Introduction

Abdellatif-Kaddour, Thvenod-Fosse and Waeselynck [1], Fetzer [119], and Ellims [110].

That these all can, and do have visible effects on deployed systems is witnessed by the

numerous cases documented by Neumann [241], Leveson [213] and Peterson [264]. Thus

there is still a need for improved methods of verifying and validating software based

systems.

1.2 Approaches to Verification and Validation

Multiple approaches have been used for verifying and validating software, ranging from

informal techniques such as code walkthroughs through testing and on to formal

verification. However, no technique of itself appears to be completely satisfactory.

1.2.1 Formal Methods

For example if we consider formal methods which at least on the surface appear to offer

a solution, we find that even systems that have been formally proved to be correct still

suffer from some hard problems.

Fetzer [119], Ellims [110] have pointed out virtually all elements in the execution chain

such as unverified compilers, microprocessor hardware may contain faults which can affect

the reliability and safety of the final system. In addition the environment itself can effect

the final system behaviour and it is usually necessary to included in any analysis sensors

and actuators of varying quality.

Within the formal method community Kneuper [194] highlights some of the same issues

as [119], [110] and goes on to highlight that formal methods only account for part of the

problem and are perhaps not ideally suited to some of the “softer” elements of software

design such as usability of human machine interfaces.

Then there is the problem of whether or not the requirements from which the formal

specifications are derived are either correct or even complete. Kneuper [194] notes that it is

possible to “create an incorrect specification which, even when implemented correctly, still

results in a faulty program” (pg. 392).

The classic example here is of course Naur’s text formatting program [240] which while

not formally proved correct, was intended to demonstrate how such a process can be

applied. Goodenough and Gerhart [134] report that there are at least seven errors in the

19 - 220

Introduction

algorithm as published. Moreover they also point out that London [217] corrects four of

the seven errors in the original code and goes on to “prove” the resultant program correct.

Goodenough and Gerhart also note that had the program been run with the example text

around half of the errors would have been located.

A less well known example is the application of simulated annealing to generate test

scenarios by Abdellatif-Kaddour et al. [1] to the control of a steam boiler. The system is of

particular interest here as it has been extensively studied as an application of formal

methods to a realistic system by Abrial et al. [2] amongst others. Abdellatif-Kaddour et al.

claim to have found a number of new scenarios that can lead to a boiler explosion that are

not explicitly exposed by any of the formal systems analysis documented in [2]. However

they note the problem in general is with the requirements not with the analysis; a point also

noted by Cuellar and Wildgruber [85].

These two examples suggest that formal methods are probably not a complete solution,

if for no other reason than human fallibility. This suggests that testing still has a role to

play when developing software and perhaps especially when developing complex, safety

critical systems.

1.2.2 Dynamic Testing

The term testing is usually understood to mean dynamic testing which the Oxford

Dictionary o f Computing defines as “any activity that checks by means o f actual execution

whether a system or component behaves in the desired manner”. This brings out the first of

the issues that need to be considered: how is desired behaviour defined and can we

effectively distinguish desired from undesired behaviour? The definition continues to state

that “the system (under test) is supplied with input data, known under these circumstances

as test data”. Given the first point above, one would ideally wish to select test data that

will reveal undesirable behaviour.

That test data generation is an issue has been stated many times; for example Ould [257]

states that this is the most significant issue associated with testing. While it is certainly a

significant issue, it possibly overstates the case. As noted in the initial paragraph of this

section and by DeMillo and Offutt [100] the major issue is possibly “the oracle problem”:

knowing when a “failure” has occurred, i.e., effectively distinguishing desired from

20 - 220

Introduction

undesired behaviour which is generally known as the oracle problem. As highlighted by

Weyuker [323] this can sometimes be an acute problem, for example when the correct

results are not known or possibly even knowable before the program has been run. This

remains primarily a human centred activity requiring the tester to calculate expected results

by some other means or to be able to test results in a manner that do not require knowledge

of the expected results, for example using metamorphic testing as explored2 by Chen,

Cheung and Yiu [54].

There are other problems associated with the test process, for example in investigating

how testing is performed Teasley, Leventhal and Rohlman [293] discovered what they

termed a positive test basis, that is input test data is skewed to demonstrating that software

works rather than that it does not. Stacy [289] attempted to set this within a wider context

of general cognitive bias and Watkins [315] offered this as a justification for automating

the process of test data generation. Ellims, Bridges and Ince [112] offer an alternative

reason for automating the process, at least for unit testing, in that it can be disliked

intensely by those applying it.

1.2.2.1 Good Tests

Given that it is desirable for a number of reasons to automate or at least partly automate

the test data generation the issue then becomes one of how to generate “good” tests, that is

those that will differentiate desirable from undesirable behaviour. However, one of the

longstanding major issues in test data generation is providing an exact or at least workable

definition of what the term “good” actually means.

For example, Myers [238] states that the purpose of testing is to find bugs. While this

may be a valid statement about a single aim of the testing process, it is of no practical use

in defining a procedure for finding either bugs or for generating tests that will reveal their

presence, especially if no “bugs” exist to be detected.

Myers [238] does however suggest an alternative: a graded set of code coverage criteria

which require an increasingly rigorous set of requirements for testing the logic, or more

correctly, the control flow of a program.

2 Developed from suggestions in Weyuker’s paper on testing un-testable programs [323].

21 - 220

Introduction

The set of criteria given is as follows;

• statement coverage: every statement is executed at least once.

• decision (branch) coverage: each decision is evaluated to true and to false.

• condition coverage: executing each condition in a decision takes on all outcomes at least

once.

• decision/condition coverage: each condition takes on all possible outcomes at least once

and each decision takes on all outcomes at least once.

• multiple condition coverage: all possible combinations of condition outcomes are tested.

A more precise statement of the problem is given by Edvardsson [108] in terms of

program paths i.e. that “given a program P and a (unspecific) path u, generate input x 8 S,

so that x traverses u” (pg. 3), where S is the set of all possible inputs.

Historically this approach has resulted in the generation of a number of path-based test

adequacy measures such as statement, branch, path coverage and so on. This in turn has led

to a large amount of work on generating test data that meet or model those adequacy

criteria.

There is however a fundamental flaw in this approach in that it is clearly possible to

execute all paths in a program without finding flaws that are present simply because they

are not associated with which path is taken (i.e. domain faults) but rather with what

computations are performed on a path. Hamlet has noted this issue on a number of

occasions [149], [150].

Another approach is to view the problem as a data selection task. That is, rather than

attempting to select data that executes specific paths, we select data based on properties

that are intrinsic to the data and the problem. There are a number of such techniques

including random testing, boundary value testing and combinatorial techniques. However,

again it is a trivial exercise to show that on its own data selection is not a completely

adequate approach, because it is possible that a branch or path will not be taken.

1.2.2.2 Limits o f Testing

An obvious question to ask is: what types of errors will a test generation method

discover? In their seminal investigation of what constitutes a “good” test, Goodenough and

Gerhart [134] have observed, that to be useful, a test generation technique has to be

22 - 220

Introduction

reliable. Defined informally, a reliable test is one that is “designed not so much to exercise

program paths as to exercise paths under circumstances such that an error is detectable if

one exists” (pg. 164).

Howden [169] defines the reliability requirement more formally as follows, if P is a

program to implement function F on domain D, then a test set T c D is reliable if:

. V f e T, Pit) = Fit) => V t £ D, Pit) = F(t)

However in the same paper he proves that there is no computable procedure that can be

used to generate a nonempty finite set that can show that P(t) = F(t) and draws the

implication that “the best that can be hoped for are test strategies which work for

particular classes o f programs” (pg. 208).

1.2.2.3 Testing in the Real World

Howden’s result above could be depressing if it were not that in practice testing does

seem to be effective at producing reliable code, at least in some safety related applications.

This has even been commented on by Hoare [162].

Kopetz [198] estimates that, in automotive applications, from the data available from the

AD AC3 [4] that the number of safety related failures in cars is in the order of 10'9 per hour

of operation. McDermid and Kelly [222] have used data compiled by Ellims [110] from

vehicle recall data and accident statistics to calculate potential failure rates for safety

critical automotive systems, both giving a figure of 10“ per hour per system.

Shooman [285] performed a similar study using Federal Aviation Authority (FAA)

Airworthiness Directives and information on aircraft utilisation, arriving at a similar value

of around 10 "7 failures per hour.

1.3 Automated Testing

In this chapter, it has been argued that there is a significant need to be able to verify and

validate safety related and safety critical software and that not even formal methods are a

complete solution to the problem.

3 The German equivalent of the Automobile Association (AA).

23 - 220

Introduction

The focus is then moved to what is probably the method most used in practice for

verification and validation: dynamic software testing. Several issues associated with testing

are examined. These include the need to be able to build “good” test sets, and what exactly

good could mean in practice and the problem of determining whether a test passes or fails.

The final parts of the discussion examine two aspects of testing, first: what degree of

reliability we can place on it from a theoretical view and, second, how well it seems to

actually perform in practice.

The last section of this discussion suggests that even though our definitions of what a

good test is or might be are weak and theoretically most techniques cannot be considered

to be reliable, in practice testing, used along with other verification techniques does seem

to be reasonably effective.

The incentives to automate testing as much as possible are strong: it is reasonably

effective and unlikely to be displaced by formal methods completely and will therefore

continue to be performed, given the fact that human generated tests are subject to cognitive

bias and that in general testing is disliked provides a strong incentive to automate it as

much as possible.

Thus the focus of the research carried out here to find an effective technique for

automatically generating tests with the information that is readily available on most

development programs. To do this two further criteria can be given. First, the technique

has to perform at least as well as human testers. Second, the oracle problem must remain

tractable for humans to deal with.

1.4 Key Contributions

This thesis makes the following contributions to research in this area.

First, it provides a direct comparison with a number of methods for automatically

generating test sets including random, base choice and high factor f-way adequate test sets,

and uniquely against human generated test sets developed as part of normal software

production process. Importantly mutation analysis has been used to increase the

discrimination ability of the tests which allows differences between the performance of

techniques to be more easily shown. The research presented here shows that:

24 - 220

Introduction

• while randomly generated test sets can be effective they are not reliable;

• that contrary to results previously published, the base choice technique performs very

poorly;

• that high factor t-way adequate test sets are in general competitive with hand-generated

test sets.

Second, it provides a practical method for incorporating high factor f-way testing and

mutation analysis into a development process, which can avoid much of the computational

overhead that may otherwise be encountered.

Third, it advances the art of mutation by showing that not only are variable declarations

a legitimate target for mutation but that such mutations are detectable.

1.5 Structure of the Thesis

The thesis is divided into seven major chapters and an appendix as follows;

• Chapter 2 provides an overview of techniques that have been used to automatically

generate tests data.

• Chapter 3 is a detailed review of work published in the area of using combinatorial

techniques to automatically generate test data.

• Chapter 4 takes the results of the analysis of the technique performed in chapter three

and highlights the weakness with the current state of the art and puts forward a program

of work to be undertaken to address those weaknesses.

• Chapter 5 provides the detail of a number of experiments undertaken to investigate the

hypothesis’s developed in Chapter 4.

• Chapter 6 presents the discussions and final conclusions.

• Chapter 7 provides an analysis of how the research present here can be carried forward.

• Appendix A, examines in detail the Csaw mutation tool and compare its capabilities with

other existing work.

25 - 220

Automatic Test Data Generation: an Overview

2. Automatic Test Data Generation: an Overview

2.1 Introduction

A large number of techniques have been investigated to automatically generate test data

for software. This section examines those techniques that are directly applicable to the

types of information that are currently available, i.e., the code itself, and information about

the data that is being operated on and is produced. Information available from requirements

can of course be implicitly included in this but techniques such as formal methods have

been excluded. Although such methods are used in a limited number of high integrity

situations, their use in industry currently is not that wide spread.

The techniques discussed in this chapter have been classified very broadly into four

main areas:

• Section 2.2 on random testing;

• section 2.3 on mathematically inspired techniques;

• section 2.4 on adaptive testing;

• section 2.5 on symbolic execution.

Each of these sections in turn includes a brief introduction to the technique being

examined, a review of the work conducted, an analysis of the literature and a summary.

2.2 Random Testing

2.2.1 Random Testing: Introduction

The traditional view of random testing is summed up by Myers [238] who stated that

“probably the poorest methodology o f all is random testing” (pg. 36). Arguments against

random testing are based for the most part on the concept that test data selected randomly

will have a low probability of detecting an error. Myers used this argument as did Beizer

[31] who stated that, relative to the boundary value analysis criteria of verifying boundaries

and testing at points where it is known that bugs reside; "what is the probability that a set

of randomly chosen test points will meet the above criteria? End o f argument against

random testing" (pg 200).

26 - 220

Automatic Test Data Generation: an Overview

However, this view was questioned by Duran and Ntafos [107]. Their study consisted of

two main parts: firstly, a simulation of the expected effectiveness of random versus

partition testing and, secondly, an examination of the fault detecting ability of random

testing on a small set of programs.

Work on random testing falls broadly into three main categories: simulation studies such

as those performed by Duran and Ntafos [107]; analytical studies such as those performed

by Weyuker and Jeng [325]; and a large body of work that, as suggested by Ince [175],

uses random testing as base method for comparison with other more complex techniques in

experimental studies.

2.2.2 Random Testing: the Technique

Ince [176] has defined random testing as a process that involves the random selection of

data values from the input domain of the software unit under test. It is usually assumed that

the input domain is the set of integers from m to n and in such a domain the mechanical

process of generating the data is well understood. However, it should be noted that

different programs require different types of random data to be generated. For example, in

the experiments conducted by Frankl and Weiss [125] [121], the authors noted that each

program used in their experiment required its own method of selecting “random” test sets.

The observation that random test data generation is conceptually simple only when

numbers are considered is noted by Hamlet [150] who used the example of test data

generation for a compiler to illustrate this issue. Random test generation has been used for

compiler testing by Bird and Munoz [36] but because of their need for programs that both

compiled and ran, the construction scheme adopted by them appears relatively complex.

Therefore, it would appear that there is a continuum of programs that range from those in

which it is trivial to generate random test data, to those for which it is probably impossible

and/or meaningless, for example, software that simulate physical systems such as the state

of the atmosphere or structures such as oilrigs.

There is also the issue of how random data should be extracted from the input domain.

For example, it is usually assumed that random data is generated from a uniform

distribution with replacement, i.e., that all inputs have equal probability of being selected.

However, it may be advantageous to select from a different distribution. In particular, if

27 - 220

Automatic Test Data Generation: an Overview

statistical inferences are to be derived from random testing, then the distribution of test

cases should perhaps mimic the operational profile of the program in use. Hamlet [150]

noted, however, this approach is not without its own problems. For example, the

operational profile may be unknown or uninteresting.

2.2.3 Random Testing: Simulation Studies

The work reported in Duran and Ntafos [107] is based on the idea of partitioning a

domain D into k subdomains, of size d\..d^ where each subdomain has associated

with it a failure rate of &y. Thus for a single test vector selected randomly from D, there is a

probability py that it will execute in subdomain A- It is assumed that the number of test

vectors n is equal to k for both random and partition testing and that for partition testing

one test vector is selected from each subdomain4.

Duran and Ntafos performed a number of simulations with varying values for k, fy and p\

and reached the conclusion that random testing is an effective test technique if it is

assumed that it is less expensive5 to generate random test vectors than to use another

technique, for example hand-generated partition testing.

Hamlet and Taylor [152] performed a similar set of experiments, as it was felt that the

results presented by Duran and Ntafos [107] were “counterintuitive”. The experiments

reported used the same model as Duran and Ntafos [107] and arrived at essentially the

same conclusion: that is, a small increase in the number of randomly generated test vectors

would be sufficient to overcome any advantage that partition testing may have. An

investigation into the effects of homogeneity6 also produced similar results. However, it is

significant that for small failure-prone partitions, they found that partition testing

performed better than random testing.

4 Weyuker [325] gives a clear and detailed exposition of the background theory and assumption used in Duran and Ntafos

[107] and Hamlet and Taylor [152].

5 An exact definition is not supplied by the authors who use the term “cost effective”, it is assumed that they are

considering total monetary cost.

6 A homogeneous subdomain is one where any input will reveal a failure if one is present, i.e., probability of failure in the

subdomain is 1 or 0.

28 - 220

Automatic Test Data Generation: an Overview

The simulations performed by Tsoukalas et al. [304] also showed similar results thereby

adding more weight to the argument that random testing was more “cost effective” than

partition testing. Moreover, under the assumptions built into their model they gave an

experimentally verifiable prediction that 2 n test vectors generated at random were required

to achieve the same or better fault detection probability as n test vectors generated using

partition testing techniques.

The simulations conducted by Ntafos [244] seem to demonstrate that for lower numbers

of tests, partition testing outperforms random testing when tests are allocated

proportionally to the size of the partition as proposed in by Chen and Yu [56]. However as

in previous simulation studies, there is a region where proportional partition testing

performs better than random testing overall. Overall, the conclusion that Ntafos comes to is

that if the cost of performing random testing is lower than the cost of performing partition

testing then random testing still has the advantage.

This body of work seems to show that partition testing may be of little value if the cost

of testing using randomly generated test vectors is lower than of partition testing.

Nevertheless, whether this is in fact the case this remains an open question and is

dependent on a number of factors.

How representative of real programs are the simulations? For instance, we must consider

that some partitions may be much more difficult to hit than other partitions. Experimental

work in section 2.2.5 seems to indicate that is indeed the case as demonstrated empirically

by Michael et al. [232]. Random testing may not do as well here as partition testing.

How well do partitions model actual partition sizes? It could be that real programs

contain many more small partitions than larger ones, for example, it is not unknown for

code to fail on single values.

What is the true cost of performing random testing? The assumption that is generally

made that it is lower. However it is not clear that this is the case in practice, for example

the generator described in Bird and Munoz [36] is highly complex and Frankl and Weiss

[125] commented on the need to build problem specific generator functions as does Hamlet

[150]. Claessen and Hughes [61] also noted that fine-grained control of the generation

process is necessary for testing to be effective.

29 - 220

Automatic Test Data Generation: an Overview

Finally, there is the need for an effective oracle. The cost of testing has two major

components: one of which is the generation of test data; the other is being able to recognise

that a test has failed. It may be that this second component is more expensive for random

generators than partition testing simply because that the data generated follows no pattern.

2.2.4 Random Testing: Analytical Studies

Weyuker and Jeng [325] performed an analysis of random versus partition testing using

the models proposed by Duran and Ntafos [107] and Hamlet and Taylor [152] as the

starting point. They concluded that, as suggested by Hamlet and Taylor, the effectiveness

of partition testing depends on how inputs that result in failures are concentrated within

partitions. Therefore, partition testing can be better, the same as, or worse than random

testing. Optimally, partitions should be selected to concentrate faults within particular

partitions. However in general there is often no such effective partitioning strategy.

Work by Chen and Yu [56], [57] showed that under certain assumptions partition testing

will perform better than random testing, namely when the number of test cases is equal,

when test cases are selected from a uniform distribution with replacement, when almost all

subdomains are homogenous and that for some domains the number of failures is small. In

[58] Chen and Yu proposed a technique for allocating tests across partitions. However, the

practical utility of their approach may be low because while the first two conditions are

trivial to meet, in practice the second two may not hold. In particular, the assumption on

subdomans being homogeneous may be incorrect given that boundary testing appears to be

such an effective technique (see section 2.2.5).

Nair et al. [239] examined the issue of partition versus random testing from the view that

partition testing could be considered to be stratified random sampling. The authors stated

that “it is well-known in the statistical literature that stratified sampling enjoys many

advantages over simple random sampling” (pg. 168). Taking this approach they reached a

rather more unequivocal view on the effectiveness of the two techniques than the majority

of other work. Namely that in general partition testing is superior if the partitions are not

selected at random and the test cases are selected independently. It is interesting that this

result was obtained by mathematicians and appeared in that literature rather than the

traditional computer science literature.

30 - 220

Automatic Test Data Generation: an Overview

The approach taken in the analytical work by Frank! et al. [123] examined delivered

reliability. That is the probability that the software will fail when operating under its

operational profile, rather than the probability of finding a defect as used in the Duran and

Ntafos [107] study and this is an interesting variation on the usual effectiveness measures.

However, again the results are not unambiguous. Once more we have an analysis that

indicated that the relative advantage the two techniques have over each other is dependent

on the nature of the problem.

Gutjahr [148] examined the same problem, but extended the deterministic model used

with a probabilistic one. The main conclusion of this work was that in certain

circumstances partition testing could be up to k times more effective (upper bound) than

random testing, where k is the number of partitions. This situation arises, the authors show,

when there are many small sub-domains and a few large sub-domains and when the sub-

domains are homogeneous.

The results given in Boland, Singh and Cukic [38] are significant as they confirm the

results presented in Weyuker and Jeng [325] and Gutjahr [148] using vector ordering

techniques. Like Nair et al. [239], Boland, Singh and Cukic [38] stated under what

conditions partition testing can be expected to perform better than random testing.

However, unlike Nair et al. [239], these conditions are based on the relative values of the

failure rates and as such are of only limited utility in practice.

As with the models used in the simulation experiments, the analytical studies are

simplifications of an actual partition testing situation and, as before, the validity of the

simplifying assumptions actually are not clear.

2.2.5 Random Testing: Empirical Results

Given the results above, we need to examine the literature to see what supporting

evidence, if any, is available to support the view of the simulation studies that random

testing is more effective than partition testing. There are several specific questions that

need to be addressed:

• What effect does the size of the partitions have?

• How representative of real programs are the simulations?

31-220

Automatic Test Data Generation: an Overview

• Do experimental results support the idea that random testing requires only a limited

number of more test cases?

The most studied program in testing literature is the triangle program introduced by

Myers [238]. Gutjahr [148] examined a version of the triangle program and found that the

size of the partitions for equilateral, isosceles and scalene triangles were O(n), O(n2) and

0(«3) respectively7 where n is the size set of integers. Thus the partition containing

equilateral triangles is extremely small8 compared with the other two partitions and thus we

should expect the program to be difficult to test using randomly generated data.

This is, in fact what was observed, by both Deason et al. [97] and Michael et al. [232]

when performing random tests on versions of the triangle program. In [97] it was found

that there was no improvement in the number of condition outcomes covered when the

number of test vectors was increased from 45 to 504. In Michael et al. [232] 10,000 test

vectors were tried but random testing never exceeded 49% condition/decision coverage.

Additional evidence comes from Jones et al. [183] who compared randomly generated

test sets against data generated by adaptive methods (see section 5.2) for four small

programs. In all cases, the number of random test cases required to achieve branch

coverage agreed closely with what would be expected from the partition sizes.

It should be expected that this type of situation would meet the requirements that several

authors deem necessary for partition testing to be more effective than random testing. This

type of small partition does seem to occur in practice. For example, in an experiment that

tested N-version programming, Vouk, McAllister and Tai [312] discovered a set of faults

with probabilities of detection by random testing of 1 0 ‘6, 1 0 ~12, 1 0 " 24 and 1 0 ‘36.

Similarly, Michael et al. [232] performed a number of tests on synthetically generated

programs with varying levels of nesting and condition complexity. Their results for the

percentage coverage of condition/decisions are summarised in Table 1, where the nesting

levels used were 0, 3 and 5 as shown in the top row of the table, and the condition

complexity levels used were 1 , 2 and 2 as shown in the first column.

7 The values given in the paper are incorrect due to a printing error, personal communication 2002.

8 The ratio is for n/n2 is 1.5 x 10'5 and n /n3 is 2.3 x 10'10 for 16 bit integers.

32 - 220

Automatic Test Data Generation: an Overview

Table 1. Summary of the percentage condition/decision coverage achieved for synthetic
programs generated as part of a study by Michael et al. [232].

0 3 5

1 95 78 73

2 61 48

3 47 27

These results indicate that there is an effect related to nesting and conditional

complexity that has not been taken into account with the model of partitions used in

simulation and analytical studies.

In light of the above discussion it is instructive to look at the small programs examined

in a number of studies - namely Duran and Ntafos [107], Frankl and Weiss [125], [121]

and Michael, McGraw and Schatz [232], on which random testing was successfully

performed.

When this is done, one feature is readily apparent. The majority of the programs have a

single input presented either in the form of an array or a matrix. Therefore, the data space

may not form partitions of the type exhibited by the triangle program or programs such as

those simulated in Michael et al. [232]. Even the programs that take two inputs place few

constraints on what can be valid combinations. For example, any two numbers have a

greatest common denominator (GCD) that can be found using Euclid’s algorithm. Thus,

they do not provide strong supporting evidence for the effectiveness of random testing.

The results given by Frankl, Weiss and Hu [121] for the expected number of tests cases

that are required to make random testing as effective as the data flow and mutation

techniques are interesting. Of the 18 variations of the nine programs examined, for six the

random test set was projected to require the same number of test vectors. For three

programs the expected test sizes were two or three times the “optimal” size; one program

each at factors of four, six, seven, ten and twelve times the “optimal” size. Finally, for four

of the subjects the authors projected that an infinite number of random tests would be

required.

Empirical work performed by Thevenod-Fosse et al. [294], [296] provide comparative

results relative to mutation adequacy for three techniques; random testing with uniform

distributions; statistical random testing; and structural test sets constructed to meet

coverage adequacy requirements on the four programs. Their major results were that;

33 - 220

Automatic Test Data Generation: an Overview

• Uniform random testing performed poorly: killing only 76% of mutants, leaving 685

alive. Structural testing killed 85-99% leaving between 312 and 405 alive9. Statistical

testing killed 99% leaving only 6 alive.

• Random testing performed well on two programs but very poorly on the other two.

• There was no relationship seen between the stringency of the structural criteria and its

performance.

Furthermore, significant numbers of random test cases were required, with 850 being

used for one program, which would be a significant overhead if results needed to be

examined manually. However, this work does provide some empirical support for Chen’s

[56] assertion that it is more effective to allocate tests proportionally.

This work by Thevenod-Fosse et al. [296] also supports the observations by Frankl,

Weiss and Hu [121] that in some cases random testing performs very badly. Here, random

testing performed well for only 2 of 4 test programs and for one performed very badly

killing fewer than 60% of the mutants. Results from latter work by Thevenod-Fosse and

Waeselynck [295] were no more encouraging with only five of twelve faults detected.

Other experiments have provided mixed results. Hutchins et al. [174] examined a set of

seven programs of 141 to 512 lines of code to investigate the effectiveness of dataflow and

control flow adequacy criteria for discovering seeded faults. Of the 106 faults investigated

in detail, dataflow adequate test sets out performed edge adequate and random test sets in

31 cases; and edge adequate sets out performed dataflow and random in 25 cases. For a

further 32 cases there was no difference in the performance of dataflow and edge adequate

sets but both out performed random test sets. In nine cases, the random test sets

outperformed dataflow and edge adequate test sets. Finally, nine could not be classified. In

addition, it was found that only test sets in the 99-100% dataflow and edge coverage area

were really effective and that a predicted 160% increase in the size of the random test sets

would give the same test effectiveness.

Reid [269], [270] conducted a set of experiments on 20,000 lines of production avionics

software written in Ada. In [269] Reid examined the effectiveness of equivalence

partitioning, boundary value analysis and random testing; this work was extended in [270]

9 This varied according to which test adequacy criteria test sets were designed to meet.

34 - 220

Automatic Test Data Generation: an Overview

to encompass modified condition/decision coverage (MCDC) and branch condition

combinations testing. Reid concluded that random testing seemed to have the advantage

over equivalence partitioning that required similar numbers of test cases. It was noted that

equivalence partitioning was better at revealing sub-domains but that these occurred in

only three of the 17 modules studied. Significantly, random testing was nowhere near as

effective as boundary value analysis - approximately 35,000-50,000 test cases were

required for random testing to show the same fault detection rate.

Frankl and Iakounenko [124] investigated the fault detection ability of branch adequate,

all-uses adequate and random testing for fixed test set sizes drawn from a universe of

10,000 random test cases generated using a generator developed by Pasquini et al. [262]

for an antenna configuration program developed for the European Space Agency. The

major findings of this study were that for 7 of the 8 faults present there was large increase

in effectiveness as coverage increased and both techniques were more effective than

random tests set of the same size.

Frankl and Deng [122] used the same experimental technique to investigate the results

from [124] using a larger sample (100,000 cases) of randomly generated vectors to create

fixed size test sets to meet branch and dataflow adequate coverage criteria. They then

compared the effectiveness of those sets to results obtained from operational testing. The

results from this empirical study were similar to [124] in that test sets with high coverage

had higher values of reliability improvement than random test sets of the same size (50

vectors). Furthermore, as the coverage increased probability of achieving higher reliability

also increased. However, the authors noted the extra cost associated with applying these

techniques.

The experiments detailed above probably comprise the best empirical evidence available

that compare partitioning and random testing. In summary:

• All the studies found that for the majority of cases partition testing performed better than

random testing for the same number of test cases.

• When random testing appeared as effective as partition testing, the number of extra test

cases were close to the number predicted by simulation studies most notably the factor

of two predicted in Tsoukalas et al. [304].

35 - 220

Automatic Test Data Generation: an Overview

• When random testing did not do as well as a coverage based adequacy criteria it fails

spectacularly, most notably in examples provided by Frankl and Weiss [121], Reid

[269], [270] Deason [97] and Michael et al. [232] where the number of additional test

cases required for random testing to be as effective was orders of magnitude larger.

One further experiment is of interest, Godefroid et al. [131] used symbolic execution

targeted at finding data to locate execution failures (exceptions) and assertion violations.

Empirical evaluation was performed on a small air-conditioning control example and on an

implementation of the Needham-Schroeder public key authentication protocol. In both

cases, assertion violations were located in reasonable time periods (1 second and 2 2

minutes); in neither case did random testing find solutions after several hours of searching.

The conclusion that can be drawn from this is that although randomly generated tests can

theoretically be expected to perform well in some, or possibly even most cases, in general

the technique does not appear to be reliable in extremis.

In light of the above, it still seems necessary to try to establish a better understanding of

what the limitations of random testing are using an empirical approach. This may be

possible using a simulation method similar to that used by Michael et al. [232] and by

examining a larger set of programs drawn from industrial applications. It is worrying that

essentially the same observation on needing a better understanding of random testing was

made by Ince [175] over two decades ago and that the question appears to be no closer to

being finally resolved.

An interesting question that arises out of the work surveyed is whether we are examining

the correct question. The majority of the investigations have compared random testing with

partition testing where a very generous definition of what constitutes a partition has been

allowed, most notably based on code coverage or data flow criteria. Chen et al. [55] have

noted that both simulation studies and analytical work make the assumption that any data

point in a partition is as good as any other. However there are indications that stronger

partitioning criteria such as those imposed by boundary value analysis are much more

effective than randomly generated tests (for example, Reid [269], [270]). Nair et al. [239]

make this point particularly strongly by stating that “/o r any given partitioning o f the input

domain, gains in efficiency can be achieved by judiciously choosing the test allocation

36 - 220

Automatic Test Data Generation: an Overview

scheme. The importance o f doing this does not seem to be fully appreciated in the software

testing literature” (pg. 168).

2.2.6 Random Testing: Summary

The critical paper in the literature on random testing is the seminal work by Duran and

Ntafos [107], which challenged the traditional view that the technique is not being very

useful as expressed by authors such as Myers [238] and Beizer [31]. This critical paper in

turn has lead to an avalanche of work that has both simulated the situation such as Hamlet

and Taylor [152], Tsoukalas et al. [304] and Ntafos [244] in an attempt to clarify the

situation. Likewise a large amount of rather inconclusive analytical work first by Weyuker

and Jeng [325] and latter led by Chen [56], [57], [58]10 has been performed in an attempt to

refute the view. The only clear argument against the effectiveness of random testing comes

from Nair et al. [239].

Finally, the strongest argument against the usefulness of random testing comes from

examining the empirical work performed by researchers such as Frankl and Weiss [121],

Reid [269], [270] Deason [97] and Michael et al. [232]. This work demonstrates that the

number of additional test cases required for random testing compared with partition testing

can be orders of magnitude larger than those required for techniques based on partition

testing.

Figure 1 shows the chronological progression on work cited in this section as divided

into the three major themes examined, that is simulation studies, analytical studies and

empirical work. In addition, papers that have directly used the triangle program have been

highlighted.

10 More papers than this have been produced but have not been cited in the interests of brevity.

Automatic Test Data Generation: an Overview

1979

1983

+
1934

+
1986

*
1990

+
1991

i
1993

+
1994

1995

i
1996

+
1997

1998

+
1999

If
2000

+
2001

t
2003

2005

Random Testing

^ i \
Simulation Analytical Empirical

\ +
Triangle

i
Myers [2381]

t
Duran [107]

t
Hamlet [152;

Ts oik alas [304

W eyiker [325]

Chen&Yu [56]

Chen&Yu p7]

Nair [239] - f ► Frarkl [123]

X t
Gutjahr [148]

Ntafos [244]

\
Bird [36]

Vouk [312]

\ r
Deason [97] -► Thevenod-Fosse [294][296]

t
Frarkl [125]

*
Hutchins [174]

Frarkl [121] -► Reid [269][270]

Frarkl[124]

Frarkl[122] -► C laessen p i]

Boland [38]

% P
Michael [232]

Godefroid [131]

Fig. 1. Chronological order of major work examined under random testing, organized by
area of activity.

38 - 220

Automatic Test Data Generation: an Overview

2.3 Mathematically Inspired Techniques

2.3.1 Mathematically Inspired Techniques: Introduction

This section covers a number of techniques for generating test data based on

mathematical relationships between data items. The concept of using data coverage as a

testing criterion was first proposed by Sneed [288]. However, while Sneed’s work bears

some similarity with the techniques discussed here in that it uses defined domains, it

differs in that it does not propose a technique for generating the required data, but rather

concentrates on the dynamic measurement of data coverage.

Grindal, Offutt and Andler [140] have classified the majority of the methods discussed in

this section as combinatorial techniques. These authors provide taxonomy for

combinatorial techniques based on the construction methods and degree of randomness

involved in their construction. However, this classification sometimes separates techniques

that result in test sets with similar properties and sometimes groups together techniques

that produce test sets with differing properties. Consequently, an alternative classification

is used here that closely matches the major points of the subsumes relation developed by

Grindal et al. [140], but distinguishes between the techniques based on the authors

intentions.

The three classifications used here are as follows:

• Geometric techniques.

• Boundary following techniques.

• Combinatorial techniques.

Although all these techniques can be considered to involve systematically finding

combinations of data values (as opposed to a possibly non-systematic data set constructed

by hand), there are several features that differentiate between the techniques. For example,

the original motivation of the techniques originators appears to be different. Thus, the

primary aim of Malaiya [219] was to remove a perceived weakness in random testing by

ensuring points are maximally separate and even suggests that his technique could be

combined with combinatorial techniques. In Cohen et al. [67] the aim was to cover all

pairwise interactions between variables.

39 - 220

Automatic Test Data Generation: an Overview

Similarly, the selection of data points is different in each technique. For example, anti

random testing [219] attempts to gain maximal coverage of the input data space. Hoffman

et al. [164] applied domain boundary value testing, whereas combinatorial work is focused

on input space partitioning (Ammann and Offutt [8]) using techniques such as equivalence

partitioning and Ostrand and Balcer’s [256] category-partitioning technique.

The original authors of the techniques presented here do not cite each other’s work, i.e.,

Mandle [220] is not cited by Malaiya [219] whereas Cohen et al. [67] does cite this work

but does not cite Malaiya [219].

There are a number of techniques examined that do not fit into the combinatorial

framework but nevertheless are based on mathematical concepts.

Support for the view that these techniques are best treated separately comes indirectly

from the subsumes relationship given in Grindal et al. [140] for t-way coverage for

combinatorial techniques and explicitly excludes the anti-random [219] and boundary

following techniques developed in Hoffamn et al. [164].

Despite the differences highlighted above it is believed that it would be more appropriate

to keep the topics grouped together to emphasize the connections between them rather than

separate them out into distinct parts. As a result, this section is somewhat longer than other

sections.

2.3.2Mathematically Inspired Techniques: Geometric Methods

Malaiya [219] proposed a scheme where distance is defined either in terms of Cartesian

coordinates (Euclidian distance) or Hamming distance. Perhaps, somewhat surprisingly,

the technique was not applied directly but was utilised via checkpoint encoding in which

selected points were encoded as binary fields within a single bit string. One advantage of

this scheme is, of course, that each vector in a test set can be represented as a single bit

string, which reduces the computational overheads of applying the technique. Table 2

shows a simple case of a checkpoint encoding of a single integer variable.

Another of the claimed advantages of this encoding scheme is that it allows objects such

as data structures to be assigned distances. The exact encoding of the variables is

dependent on an analysis that uses techniques such as domain, partition and boundary

analysis, all of which could be partly automated.

40 - 220

Automatic Test Data Generation: an Overview

Table 2. Assignment of checkpoint codes to values of a variable.

min - 1 min internal internal max max + 1

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1

Malaiya [219] also suggested that this technique could be combined with the

combinatorial strategies discussed in section 2.3.4 and chapter 3 but did not elaborate on

this concept.

Yin et al. [343] expanded on the work developed by Malaiya [219] by presenting an

extended example of testing the triangle program. The main focus of their work was to

obtain effective code coverage. To achieve this, several attempts at generating adequate

specifications for the data relationships were required. In addition, the data specification

was quite complex, which reduced the practical utility of the technique.

Wu et al. [337] and Yin [342] explored the applicability and effectiveness of anti

random versus random testing for hardware fault coverage for simple types of fault, i.e.,

stuck-at and bridging faults. Although [337] reported that for small numbers of vectors

(50-60), anti-random data performed significantly better than randomly generated vectors,

the results in Yin [342] did not replicate this. Interestingly Wu et al. [337] investigated the

effectiveness of selecting inputs to ensure an anti-random pattern for output data. Their

analysis showed no clear advantage (nor disadvantage) over anti-random testing applied to

input data and the authors speculate this is because the anti-random properties of the output

data were not preserved internally.

A variation of the distance function was proposed by Mayrhauser and Bai [311] to

improve the computational efficiency of the geometric technique. In particular the original

method required enumeration of the input space and distance computations for all vectors

and the vector representations had to be binary, hence the introduction of checkpoint

encoding. It was proposed by these authors that this approach might lead to the types of

issues with fault detection effectiveness that were suggested by work reported in Hamlet

and Taylor [152], which dealt with partition versus random testing.

The last of these points is interesting in the light of results by Nair [239] and Guntjahar

[148] on random versus partition testing. Those results suggest that the overlaying of

partitions via check-point encoding could potentially be the more effective approach.

41 - 220

Automatic Test Data Generation: an Overview

The solution proposed by Mayrhauser et al. [311] to the issue of checkpoint encoding is

threefold:

• average all existing test vectors into a single vector, the centroid;

• locate the set of vectors that are orthogonal to the centroid;

• determine which of the orthogonal vectors is maximally distant.

Mayrhauser et al. expressed their solution in terms of binary vectors where each bit

represented a dimension of the problem space. However, in principle it could be extended

to deal with integer and floating point values.

Kobayashi et al. [197] conducted experiments with anti-random testing and found that

results were better than random testing. This work is examined further in chapter 3.

Finally, in Chan et al. [53] it was observed that failure causing regions fall into one of

three types: point failures, “strips” though a domain and “blocks” within the domain. To

improve the probability of hitting one of these failure-causing regions - in particular the

strip and block type regions they proposed a technique closely allied to anti-random testing

- Adaptive Random Testing (ART). This technique uses essentially the same measure of

distance as Malaiya [219] but without the checkpoint encoding and also uses a randomly

generated candidate test set in a similar manner to Cohen et al. [67] to select the member

furthest away for all data points currently selected.

Chan has continued to build on this work in a regular series of papers that investigate

variations on the ART technique. While all of these are interesting, none demonstrated a

significant improvement on the basic scheme. Furthermore, while the concept of anti

random testing is of itself interesting, new work in the field seems to have declined

drastically. This has possibly come about because of a number of factors, including:

• issues highlighted by Yin et al. [343] that concern the difficulty in selecting effective

encoding of the data;

• results from Mayrhauser and Bai [311] and Yin [342]„that suggest that the technique

may not always be competitive with random testing for small test sets.

2.3.3 Mathematically Inspired Techniques: Boundary Following

Boundary value testing as defined by Myers [238] is an extension of equivalence

partitioning. The primary assumption with equivalence partitioning is that any value within

42 - 220

Automatic Test Data Generation: an Overview

a partition can be used for a test and that any value is good as any other. Boundary value

testing however requires that values be selected at the edges or boundaries of a partition

rather than anywhere within the partition.

Both Myers [238] and Howden [172] provide a similar set of “rules” for selecting values

including:

• variables that have a range of values, select the values for the end of the ranges, invalid

cases and the interior of the range,

• variables that have a number of values (e.g. arrays), test the values at the ends and one in

from the end.

In addition, both authors recommend that the rules be applied to out-of-range values in

the same way. Howden extends this to include testing of all values for variables with

discrete values (e.g. enumerations in C) and to include the value zero for ranges which

include it.

Hoffman has been involved in a series of papers that used these principles for automated

test case generation. The basic framework was laid out by Hoffman and Breakley [163] in

a paper that introduced some of the key concepts. In particular the technique of

representing the test cases as a set of n-tuples is presented as a core idea along with the

concept of a generator (iterator) for constructing valid ^-tuples.

Hoffman and Strooper [165] extended this work by Hoffman and Breakley [163] and

investigated in more depth how automatic generation of data can be reconciled with the

oracle problem by giving examples of functional testing, trace invariants and large scale

random testing.

Hoffman, Strooper and White [164] have attempted to codify these rules as explicit

definitions and have provide formal definitions of what constitutes a boundary. These

definitions comprise two major variants as follows: k-bdy(D), the kth boundary of domain
tf iD and &-per(D) which is the k perimeter of the domain D. In addition, two variants of

these are defined, &*-bdy(D) and k*-per(D) which informally11 comprise the union of the

boundaries or perimeters for i= l..k.

11 In the interests of brevity complete details are omitted, see [164] for the mathematical definitions.

43 - 220

Automatic Test Data Generation: an Overview

For example given two variables x and y with domains defined as D(pc) = [0, 5] and D(y)

= [0,6] then for the single domains the boundary sets are shown in Table 3.

k k-bdy(x) k-bdy(y) k*-bdy(x) k*-bdy(y)

1 {0,5} {0,6} {0,5} {0, 6}

2 {1,4} {1,5} {0,1,4,5} {0, 1,5,6}

3 {2,3} {2,4} {0,1,2, 3,4,5} {0,1, 2,4, 5, 6}

4 {2,3} {3} {0,1,2, 3,4,5} {0,1,2, 3,4, 5, 6}

Table 3. An example of boundary sets over the domains D(x) = [0, 5] and D(y) = [0,6].

These concepts can be extended to a boundary set for multiple domains as stated above

by taking the Cartesian product of k-bdy(D) for all domains and for £*-bdy(D) by forming

the union of the sets.

Boundary types can be represented in a matrix (after Hoffman et al. [164]) as shown in

Figure 2. Figure 2(a) shows the points selected for l-bdy(x, y) and Figure 2(b) shows the

arrangement for 2-bdy(x, y). In Figure 2(c) the union of these sets, 2*-bdy(x, y) is given.

(a) (b) (c)
Fig. 2. Boundary values as defined by Hoffman et al. [164] in diagrams (a) to (c).

The perimeter relation k-per(D) can be displayed in the same manner and l-per(x,y) and

2-per(x,y) are shown in Figure 3(a) and Figure 3(b) respectively.

44 - 220

Automatic Test Data Generation: an Overview

1 1 1 1 1
1 . . . 1

1 1 1 1 1
(a)

2 2 2
2 . 2
2 . 2
2 . 2
2 2 2

(b)
Fig. 3. Perimeter sets as defined by Hoffman et al. [164] for the domains defined above.

It can be seen that the lower order (k < 2) definitions for boundaries do not match the

traditional definitions of boundary value testing, whereas the definition of the perimeter

exceeds the normal requirements by including all values on the edges.

An indication of what effect this had on coverage can be obtained from examining the

major empirical results presented in Hoffman, Strooper and White [164] for a sort

function. These results indicate that 1-bdy and l*-bdy do not provide adequate statement

coverage whereas 2*-bdy and the lower order k-per versions did. In both of these cases,

however, there was a better approximation to the traditional definitions of boundary value

testing. The better match provided by both the perimeter variants also appeared to translate

into a better fault detection ability, with the majority of the lower-order perimeter variants

detecting all the seeded faults.

Daley, Hoffman and Strooper [94] extended the work presented in Hoffman, Strooper

and White [164] in a number of ways. First they applied it to testing Java classes. Second,

they extended the test generation framework to allow more automation. Third and most

significantly, they investigated the concept of chaining domain dependencies. Dependent

domains are quite common in practice. For example given an array, the valid values of the

index are dependant of the size of the array. The example used in [94] is a windowing

manager for a spreadsheet-like application. The dependent data here was the window

position on the screen, the position being dependent on the shape of the table and the

cursor position. Unfortunately, the process of defining and generating data based on

dependent domains is not fully automated and requires code to be generated manually.

Given the results from Reid [269], [270] and the conventional wisdom as stated by

Beizer [31] that errors “hide in the corners” (pg.198), the domain following technique

seems quite promising. However more empirical work is required to confirm this and this

does not seem to be forthcoming. There is however one weakness in the technique: an

45 - 220

Automatic Test Data Generation: an Overview

effective oracle is required to allow running the number of test cases a technique such as

2 *-per would create.

2.3.4 Mathematically Inspired Techniques: Combinatorial

This section is a summary; chapter 3 contains a detailed review of the same subject

matter.

2.3.4.1 Combinatorial Techniques

In at least one sense most techniques that are used to generate test data can be considered

combinatorial techniques because combinatorics involves selecting or arranging a set of

“objects” from some finite set of objects such as the set of valid integers and Cameron [52]

defines it as “the art o f arranging objects according to specified rules’’ (pg. 2).

The two most widely known combinatorial structures are combinations and

permutations. That is, an unordered set of r objects from a set of n objects and the number

of ways of ordering n different objects.

Two examples illustrate the limits of what constitute combinatorial. The simplest case of

a combinatorial technique is one where, given a set of inputs a single value is selected for

each input. This produces exactly one test case and, is in general, of little utility although

for straight-line code it would be statement and branch adequate. The most complex

example of a combinatorial technique is one in which all values for all variables are used.

While the first case is of little practical value because of its potential weakness in

detecting faults or obtaining coverage, the second suffers from the fact that there are too

many test cases and the amount of time required to both run and examine the results is

excessive, if even possible.

In between these two extremes, there are several techniques for generating sets of test

vectors that are potentially more useful. These techniques provide a means of selecting

data from a set that maximises the probability that interactions between variables will be

tested and that results in a set of vectors, that although large, is capable of being executed

in a reasonable time period. A large amount of this work examines the construction of test

sets in which all pairs, triples, etc. of values for all variables taken n at a time are

generated, as well as the effectiveness of those test sets.

46 - 220

Automatic Test Data Generation: an Overview

The motivation for using test sets constructed in using these techniques is derived from

the way that statistical experiments in various fields are conducted to maximise the amount

of information obtained for the minimum amount of effort. The general topic is called

design of experiments and the specific example used in research is termed factorial

experiments and is covered widely in areas such as industrial quality control and

engineering (Diamond [101]), psychology (Keppel and Saufley [189]) and biology

(Fowler and Cohen [120]) even at an undergraduate level.

The combinatorial structure that forms the usual starting point for discussion in factorial

experiments is the Latin square. This is an A by A matrix that has the property that the

values from 1 .. N inclusive appear in each row or column exactly once. An example is

shown in Figure 4, which represents the interaction of three variables each taking four

values. The values of the first variable being the row indices, the values of the second

variable the column indices and the values of the third variable are the values in the set {A,

B, C, D}.

variable 2

A B C D

B C D A

C D A B

D A B C

Fig. 4. An example of a Latin square.

Thus, we have a set of sixteen test vectors v i .. v\e that can be read from the matrix: as

follows:

v1 = { l,l,A } v2 = {1, 2, B} v 3 = {1,3,C} ... vi6={4,4,C}

Note that in the mathematical literature, the variables under consideration are normally

referred to as factors and the different values that each factor can take on are referred to as

levels rather than values. However, in this work, the more usual terms used in

programming, i.e., variables and values will be retained.

47 - 220

Automatic Test Data Generation: an Overview

To deal with more values we need to create a larger Latin square. However, it should be

noted that there is no Latin square for N = 6 12 and it is not uncommon for a Latin square

for a particular value not to exist. To deal with more variables we need to form a Greco-

Latin square13 using two orthogonal Latin Squares14 as shown in Figure 5.

4 3 2 1

3 2 1 4

2 1 4 3

1 4 3 2

A 4 B, 3 C, 2 D, 1

B, 3 C, 2 D, 1 A , 4

C, 2 D, 1 A , 4 B, 3

D, 1 A ,4 B, 3 C, 2

A B C D

B C D A

C D A B

D A B C

Square 1 Square 2 Resultant

Fig. 5. Combining Latin squares to cover a fourth variable.

Clearly, this process can become more difficult as the number of variables or the values

increases. For example, consider the situation where the variables have an uneven number

of values. If one variable has nine values we deem “of interest,” then even if all the other

variables have only three or four values of interest we are forced to use a large array to deal

with just one variable.

A solution to this sort of problem is to remove the requirement for using a balanced

design. A Latin square is balanced as all the values are used the same number of times.

This leads to the concept of a covering array (CA). Informally, a covering array is a set of

vectors where the set as a whole is guaranteed to meet some covering property, often that

all pair-wise (2 -way) interactions between values of all variables are present.

A pair-wise (2-way) adequate test set is one where all 2-way interactions between n

input variables Vi to vn will be covered. In the test set there will be a vector such that for

every value that the variable Vi is allowed to take it will be paired with each value the

variable Vj is allowed to take for all i and j, where i =£ j.

12 The problem for N= 6 is originally proposed by Euler.

13 Cameron [52] explains the terminology derives from using Latin characters for the first square and Greek for the

second orthogonal square.

14 Two Latin squares A = (a)̂ and B = (b y) are orthogonal if there exists unique values i and j such that â =£ b y - Vi,j. For

further details see Cameron [52].

48 - 220

Automatic Test Data Generation: an Overview

An important consideration is which values each variable will be allowed to take on. In

general the tester will select data points for each input variable that are of “interest” based

on criteria such as data input ranges, domain partitioning and other heuristic rules.

Selection of all values is impossible except where only a small number of values are

allowed such as for enumerations.

To make this more concrete consider a function with three input variables, vi, V2 and V3

that take on the values «i, <2 2 , <23 and b\, &2 and c\, C2 respectively. Then a 2-way adequate

test set that ensures that a vector exits that contains all values of vi paired with all values of

V2 and all values of V3 and all pairs of V2 and V3 . A set of seven test vectors for this example

is shown in Figure 6 .

1 ai b2 Cl
2 a2 bi c 2
3 a3 bi Cl
4 a2 b2 Cl
5 ai b2 c2
6 a3 b2 c2
7 ai bi Cl

Fig. 6 . An example seven vector, 2-way adequate test set for 3 variables.

Larger values of t can be used, for example t = 3 would involve matching all sets of

three variables and t = 4, four variables in the same way.

It should also be noted that this terminology in this area is not yet fixed. Some work such

as Cohen et al. [67] refers to covering arrays that meet the pairwise criteria using that term,

the term 2-way is also used for example by Lei et al. [211], [210] and as the number of

factors increase above t = 2 (pairwise) that terminology is becoming more common. Thus a

pairwise covering array can also be said to be a 2-way covering array. For higher order

covering arrays the terms or n-way or t-way or 2-wise can be used as can the term 2-

covering, as in 3-way or 3-covering. In addition, some authors also refer to the strength of

a covering array. For example a CA of strength t = 3 is a 3-way or a 3-wise CA.

The term “design” is also used when talking about covering arrays. For example, an

orthogonal array (e.g. a Latin square) can be described as a balanced experimental design

and an unbalanced design is also referred to as an incomplete design.

49 - 220

Automatic Test Data Generation: an Overview

Formally, (after Cohen and Colboum [76]) an orthogonal array OAx(N\ t, k, v) is a N x k
array on v symbols such that every sub-array contains ordered subsets of size t from v

symbols exactly X times. Here, N is the number of rows, t is the “strength” of the array

(e.g. t = 2 is pairwise), k is the number of parameters and v is the number of values of each

parameter. Normally, X is taken to be one and the subscript is dropped. When N = v the

OA is optimal.

A covering array CA(N; t, k, v) is a N x k array on v symbols such that every N x t sub

array contains all ordered subsets from v symbols of at least size t.
The other object that needs to be defined here is the mixed level covering array because

in the context of testing this is the most interesting case. A mixed level array has a variable

number of values for each parameter and is denoted as MCA{N\ t, k, (vi, V2 . . .Vk)) where v =

Vi which can also be written as MCA(N\ t, (wirl, W2r2... wsrs)). For example MCA(N; 2,

(51, 38, 22)) or more usually as MCA(N\ 2, 51, 38, 22), has a strength of 2 (2-way) and has

one parameter (rl) with five values, eight parameters (r2) with three values and two

parameters (r3) with two values.

2.3.4.2 t-way Test Set Generation

The original work with 2-way adequate test sets by Mandl [220] was derived directly

from the design of experiments field (e.g. Diamond [101]) and used the same techniques to

construct the test sets based on Latin and Greco-Latin squares. Williams and Probert [331]

used Galois Fields'to construct larger arrays that potentially address some shortcomings of

Greco-Latin squares. Stevens and Mendelsohn [291] investigated the use of an existing set

of covering arrays as a basis for constructing larger arrays in which gaps were filled using

simulated annealing; a similar approach was taken by Williams [330] for MCA’s of

strength-2. Daich [89], [90] implemented a tool based on similar ideas that used a

spreadsheet that also removes redundant tests where possible. Cohen et al. [76] performed

the most recent work. In this work, researchers stitched together smaller sub-arrays created

by other techniques such as simulated annealing and/or constructive algorithms such as the

greedy heuristic methods from Cohen et al. [67] with good results.

50 - 220

Automatic Test Data Generation: an Overview

However, although the use of orthogonal arrays is an active research area in mathematics

it has received less attention than other techniques for generating tests. The majority of the

effort has been focused on using greedy heuristics or techniques based on large search

spaces.

The original work with greedy algorithms was undertaken by Sherwood and documented

in two ATT Technical reports by Sherwood [281], [282]15 and in a later publication [280].

This work was developed further in the Automatic Efficient Test Generator (AETG) by

Cohen et al. [6 8], [70], [6 6], [67]. The AETG tool extended the capabilities of the higher

factor r-way adequate tests. A similar test generator for 2-way tests was proposed by Tung

and Aldiwan [305] and used in Smith et al. [287], [286] in testing spacecraft navigation

software. Later Colboum, Cohen and Turban [79] presented a deterministic algorithm for

generating 2-way adequate tests using similar principles to AETG and work by Bryce,

Colboum and Cohen [46] provides a framework for encapsulating all of these techniques

within a single structure.

A different approach for generating 2-way adequate test sets was taken by Lei and Tai

[212], [292] who generated an initial set of vectors adequate for the first two variables and

extended this initial set for each subsequent variable. This work was extended to r-way

adequate test sets as reported in Lei et al. [211], [210] and applications of using the

approach reported in Kuhn and Okun [201] and Kuhn et al. [204].

The simplest variation of a /-way adequate generation scheme - the “base choice”

method was formally identified by Ammann and Offutt [9] although it has probably been

used if not defined previously. This method has also been used by Cohen et al. [69] and re

invented by Xu et al. [339]. The “base-choice” method is a single factor experiment i.e. t =

1 where variables are changed one at a time for each of their selected values.

Metaheuristic search techniques have also been applied to the problem of generating

covering arrays and t-way adequate test sets. As noted above, Stevens and Mendelsohn

[291] used simulated annealing in conjunction with existing orthogonal or covering arrays.

Investigations of metaheuristic techniques for generating covering arrays by

15 These can be found at http://testcover.com/pub/background/catsl.htm and

http://testcover.com/pub/background/cats2.htm as of 22 April 2005.

51-220

http://testcover.com/pub/background/catsl.htm
http://testcover.com/pub/background/cats2.htm

Automatic Test Data Generation: an Overview

mathematicians have found simulated annealing to be an effective technique, work having

been done by both Nurmela and Ostergard [245] and Stardom [290]. Stardom also

investigated Tabu search and genetic algorithms. A large amount of work on generating

covering arrays for testing has been performed by Cohen et al. [76], [77], [72] who also

investigated the generation of variable strength covering arrays, i.e., those which are /-way

adequate for some subset of the variables and (f-rcj-way adequate for all variables

Several researchers have investigated the use of genetic algorithms for producing

covering arrays. Early work by Ashlock [21] reported disappointing results on larger

systems. Similarly, Stardom [290] also reported that genetic algorithms performed worse

than either simulated annealing or Tabu search. Shiba, Tsuchiya and Kikuno [284]

investigated the application of genetic algorithms and ant colony optimization (Dorigo and

Gambardella [105]) to the problem and found that the size of test sets generated by these

methods were comparable with test sets generated using simulated annealing by Cohen et

al. [76], with IPO by Lei and Tai [212] and with AETG from Cohen et al. [67].

Other techniques have been applied to the problem of /-way test set generation. For

example Williams and Probert [332] developed a formal framework for thinking about

various types of interaction coverage included /-wise coverage criteria. Building on this

framework, Williams [333] reformulated the task as a {0, 1} integer programming

problem. However, the reported results were disappointing even for small systems and the

method was deemed to be impractical because of the time required to solve the problems

and because of resource consumption. Kobayashi et al. [196] proposed yet another method

for generating 2 -way adequate test sets.

Hnich, Prestwich and Selensky [160] used a SAT16 formulation of the problem and

constraint programming to find provably minimal covering sets for a small number of

problems with Boolean values and improved on their results in [161]. However, these

researchers also concluded that their technique may only be useful for problems up to a

certain size. Building on the work by Hnich et al., Yan and Zhang [340] applied special

purpose SAT solvers utilizing exhaustive backtracking search. As with Hnich et al., they

concluded that the time complexity might limit the use of their technique. It will be

16 SAT is shorthand for the satisfaction problem, the first problem to be formally proved as NP-complete.

52 - 220

Automatic Test Data Generation: an Overview

interesting to see if any more attempts are made to purse this avenue of research as a direct

means of generating covering arrays.

The final technique that needs to be mentioned here are random designs. While these

strictly speaking are not necessarily /-way adequate (depending on their construction

method), they have been used with some success by Dunietz et al. [106] and Schroeder et

al. [277], who concluded that for the same size test sets random designs were as effective

as /-way adequate designs of the same size. The one main advantage of random designs is

that their construction complexity is much lower.

The work cited above concentrates on finding methods to generate the smallest possible

covering array and largely ignores some of the problems that can possibly occur with real

systems such as constraints on allowed variable values in a vector. A list of issues that can

occur is given in Czerwonka [87] where a /-way test generation tool developed at

Microsoft is described. These issues include:

• seeding - where the vector set is initially seeded with a set of vectors defined elsewhere;

• mixed strength covering arrays - mentioned by Cohen et al. [67] where seeding is a

suggested implementation mechanism and by Cohen et al. [77] who build mixed levels

into the generation process;

• constraints or exclusions - that is pairs, triples etc. of parameter values that are not valid

within a single vector. Sherwood [280] suggested using disjoint subsets of the input

model to deal with this issue.

• negative or error values - again mentioned by several authors, including Cohen et al.

[67] but not covered directly by any generation tool;

• adding weighs to parameter values - a method that may allow the generated covering

array to be biased to better coverage of selected values.

The addition of weights to variables has been investigated in several studies led by

Colboum and Bryce. In [78] a theoretical study was undertaken to demonstrate how the

use of assigned weights can be used to force evaluation of pairs of dynamically selected

web services and to prioritise testing based on how “trusted” a web site was and to delay

testing of less probable pairings. In [43] and [44] weights were used to prioritise the

generation of vectors that covered as many new /-way tuples as possible. The reasoning

53 - 220

Automatic Test Data Generation: an Overview

behind this approach being that for covering arrays with high factors (t > 3) it may not be

possible to execute all tests and, given work by Kuhn et al. [313]. [202], [203] that shows

factors greater than three are often required, it is assumed that preference should be given

to the vectors that cover the most interactions. In [44] it is also shown that weights can be

used to limit, but not eliminate, the number of invalid value combinations that can occur in

a vectors. That is, adding weights can implement a weak form constraint.

This work was continued in Bryce et al. [45] where a hybridised vector generation

technique is investigated. The technique used a greedy algorithm such as AETG to find an

initial vector and then applied a search technique such as simulated annealing or Tabu

search to improve the vector.

The issue of dealing with constraints fully was tackled in a series of papers by Cohen et

al. [74], [73], [75] using a hybrid approach where a greedy algorithm (AETG) is used to

produce candidate vectors. This is supplemented by a SAT based constraint solving system

that checks that the value to be added to a vector is valid and violates no constraints. This

seems to be a remarkably elegant and efficient solution to the problem. The use of the SAT

solver allows the constraints to be specified as Boolean expressions in conjunctive normal

form and, despite the extra work required to check for validity, the approach results in both

a saving in time and in slightly smaller sets of test vectors.

Equally importantly, this series of papers justified the need to be able to be able to

accommodate constraints in real work test situations by examining the options available for

several large, configurable sets of software. These included the SPIN model checker, the

GCC optimiser, the Apache HTTP server and Bugzilla. The papers showed that on average

the AETG algorithm with constraint handling produces system test vectors where only 3%

of the vectors contained no constraint violations.

23.4.3 Field studies

Field studies fall into a number of classes. For instance, there are observational studies

such as those conducted by Dalai et al. [93], [92] and Bell and Vouk [32] that provide

some evidence for the effectiveness of the technique and that are useful because they make

interesting observations on issues involved in using the techniques in practice. There are

other similar reports on the use of the techniques which provide some details on what was

54 - 220

Automatic Test Data Generation: an Overview

done but that do not supply the details that are needed to allow a direct comparison with

other techniques, for example Perkinson [263], or only estimates the improved

effectiveness of the technique as in Burroughs et al. [51] and Huller [173].

There is also a body of work that provides better evidence for the techniques

effectiveness in practice, including various papers by Cohen et al. [6 8], [70], [67] that

contain partial results from various studies and that seem to be strongly related to work

reported in Cohen et al. [69].

Work with more detail, i.e., work that provides measured data not just estimates is

supplied by Burr and Young [50] for code coverage and by Smith et al. [287], [286] in

relation to faults discovered by applying different test generation strategies. Whereas the

first of these studies demonstrates reasonable code coverage, the second indicated that 2 -

way testing at least is not always effective.

The final set of papers discussed in this section is a set of experiments in which the set of

faults being studied is not known, i.e., incompletely controlled experiments. Pan, Koopman

and Siewiorek [258] applied complete testing on a set of Unix commands (all option

combinations). Although this is strictly outside the area studied, this work demonstrates

that for some problems such testing is possible. In addition their approach to the oracle

problem is of interest. Yilmaz, Cohen and Porter [341] also apply large scale testing to

program options and compared complete testing and /-way adequate testing on a much

larger problem. Interestingly they worked backwards to determine the effectiveness of /-

way test techniques. The final set of papers considered in this sections is a group of studies

by Wallace and Kuhn [313], Kuhn and Reilly [202], Kuhn, Wallace, and Gallo [203]. This

series of papers examined faults discovered and then determined the number of variable

interactions required to expose the faults. The major conclusions of these final studies was

that only small factors, i.e., / <= 6 are required to expose faults.

23.4.4 Empirical Studies

Given that combinatorial testing using covering arrays has been in use for some time,

there are surprisingly few controlled experimental studies that have been published. There

are two possible reasons for this. First that much of the early work was dominated by

researchers at Bellcore (Bell Laboratories, now Telcordia Technologies). Secondly because

55 - 220

Automatic Test Data Generation: an Overview

much of the early work has been focused on developing algorithms for finding /-way

adequate test sets.

Seven major experimental studies deal directly with the detection of coding errors as

follows:

• Cohen et a l [69] who performed several coverage experiments;

• Dunietz, Mallows and Iannino [106] who also addressed code coverage;

• Nair, Ehrlich and Zevallos [239], Schroeder, Bolaki and Gopu [277], Grindal et al. [138]

and Kuhn and Okun [201] which addressed the techniques effectiveness at detecting

seeded faults;

• Kobayashi, Tsuchiya, Kikuno [197] who examined the techniques ability to distinguish

logic mutants.

A few other empirical results have also reported. Arguably Mandl’s seminal paper [220]

that introduced the use of design of experiments techniques to compiler testing with all 2-

way interactions using Latin and Greco-Latin squares was based on empirical work.

Unfortunately presents no results or comparisons.

Cohen et al. [70] present a small set of empirical results for block coverage on the UNIX

sort command taken from [69] and compared their results 86% to 95% block coverage with

a study by Wong et al. [334] on the same command (73% block coverage with random test

sets). A subset of the results are reused in Cohen et al. [67].

Finally, two experiments by Hoskins et al. [166], [167] that compared the MCA and D-

optimal designs to approximate full factorial designs.

2.3.4.5 Assessment

The large bulk of papers produced on /-way adequate testing are on methods for

generating test sets, with a strong emphasis on making those test sets smaller. However,

there are two issues with this, first much of the work has been done with low factors, e.g., /

= 2 or / = 3. Second the work by Kuhn, Wallace, Reilly and Gallo [313], [202], [203]

strongly suggested that factors of five or six are in general required to assure that all

interactions are covered. In general, large factors will lead to large sizes for test sets.

Whether saving a few or even a few dozen tests makes any difference in this situation is

possibly a non-issue.

56 - 220

Automatic Test Data Generation: an Overview

The other feature of research into generating test sets is the number of techniques that

have been used. However, despite this algorithmic methods based on the AETG algorithm

remain dominant, possibly because these seem to be able to be readily adapted to new area

of interest, e.g. work on weighting by Colboum and Bryce [78], [43] and on constraints by

Cohen etal. [74], [73], [75].

Another unusual feature of work on evaluating the techniques is the early dominance of

field studies which although certainly increasing interest in using /-way adequate test sets.

However, it does not actually appear to have advanced the understanding of why the

techniques are effective or indeed, how effective they are relative to other techniques, the

amount of comparative information available being low, especially in early work.

The final point to make is the relative lack of controlled experimental work that has been

performed using /-way adequate test sets and particularly the amount of work that has

made comparisons with other techniques.

2.3.5 Mathematically Inspired Techniques: Summary

This section has discussed three techniques that have been loosely grouped together

under the banner of being based directly on some mathematical principle.

In this section, what really stands out is that only one of the techniques has achieved

wide acceptance in both the academic community and in actual use as a practical

technique.

The anti-random testing technique proposed by Malaiya [219] appears to have fallen out

of favour with researchers and to have been shown to be less effective than /-way adequate

test sets by Kobayashi, Tsuchiya, Kikuno [197]. One possible reason is that the technique

does not seem to offer any real advances over random testing given results from

Mayrhauser and Bai [311] and Yin [342]. Little other comparative work seems to have

been performed.

The boundary following techniques proposed by Hoffman et al. [163], [165], [164]

covered in section 2.3.3 likewise suffers from a lack of interest in it as a technique for

automatically generating tests despite it being based on a strong idea, that the boundaries

are where the bugs tend to congregate (Beizer [31] pg.198). Some work in this area has

been performed by researchers using adaptive testing techniques, for example by Jones et

57 - 220

Automatic Test Data Generation: an Overview

al. [183] who investigated boundary value testing and by Gallagher and Narasimhan [128].

The boundary definitions presented in Hoffman et al. [164] however seem to have

vanished as an area of active research. Why this is so is unclear, however we can surmise

two possible reasons. First, for any sufficiently complex problem, automatically locating

and defining boundaries is far from simple and Beizer [31] devotes an entire chapter of his

book to the topic. Second, the /-way adequate combinatorial techniques discussed in

section 2.3.4 allow the inclusion of boundary values in a more straightforward manner for

comer points coming closer to the definitions proposed by Myers [238] and Howden [172].

Of the techniques discussed here, /-way adequate techniques have received by far the

most attention. Why this is so is not clear - however its use in actual testing of systems and

its reported advantages may be one factor in its adoptions. Another reason for the amount

of work being performed is that it seems to fit in a natural manner with existing, well

established concepts, namely equivalence partitioning and Ostrand and Balcer’s [256]

category-partitioning technique.

One final point should be noted, as with random testing, all the techniques presented in

this potentially suffer from the same problem, the size of the test sets, which could

potentially number in the thousands. This of course makes having a solution to the oracle

problem imperative if the techniques are to be used on a large scale. However, apart from

the use of formal models as suggested by Kuhn et al. [204] no solution to this problem has

been suggested in the literature.

Figure 7 shows the chronologic sequence of the major items of work discussed in this

section and shows some of the connections between the major themes explored (dotted

lines).

58 - 220

Automatic Test Data Generation: an Overview

Cctn bhatoital

I
TestSetG eiestbi

OrtlogoialAirays f Raidom Desfcji Seacl Based

Emplfcal

198=

*
199C

I
1992

4
199=

1991

*
199=

I \
1996 Lilian? P31]

I
1991

1996 S t Vi iS p 9 f

I
199S

I
2006 Wiliams p30]

i
2 0 0 '

I
200:

I
200 =

*
2004

i
200=

2006

I
2001

Colei p9]

r
Cole i [75]

Nimeb piS]

AslbcL pi]

Du let [106]

31a flora p90]

Dalol p9]

Koba/asll[197]

Crlidal[138] Colei [76]

/ /
3clcederp77] c o le i p7] -*■ S lba psi]

Ffeflstodles

\
\

AT Greed/ HirEtfc

I
Glewood p81]

Colei p8]

Colei FO]

I
Colei p7]

V
Pert;lioi p63]

Eirroigls [51] Amman p]

L eipiq Dalai p3] BirrpG]

Sin tl p87]

Ti ig pos]

(
I Cm m PS7] Waltce p i3]

i
Tal p92] K llip o q

Cofooin [79]
I
f

l'ik i [20=] Eeip2] Yllnar p tl]

Kill poi]

Hi fcl [160] Br/ce [46]

* /
Hifcl [161] *-** Yai p tq /

Lei[210]

Fig. 7. Chronological order of major work examined under combinatorial testing,
organized by area of activity and date of publication.

59 - 220

Automatic Test Data Generation: an Overview

2.4 Adaptive Testing

2.4.1 Adaptive Testing: Introduction

Adaptive testing covers a number of related techniques where information is gathered

from the execution of a program with a known test vector or vectors. The information

gathered is then used to derive new test vectors in an iterative process. The information

gathered during program execution can take on multiple forms depending on the type of

test activity being performed. For example, it can include information based on statement,

branch or path coverage (white box testing) or alternatively, it can search for data in an

attempt to violate some expected property that the code is expected to have (functional or

black box testing). The process of adaptive testing is thus a directed search (Clarke et al.

[62]) of the input space for data that meet the testing criteria. The search being directed via

the evaluation function, which is used to measure numerically the “goodness” for each

individual vector. The numerical nature of the “goodness” evaluation allows the search to

be driven as a minimisation or maximisation problem.

The process is started by defining an initial test vector U and using this as the input to

program P to find a value for the evaluation criteria or “fitness function” F(ti). The

information contained in U, P, and F(ti) is then used by the adaptive test generator to adapt

or modify the initial test vector U to produce a new test vector ti+j. This process is iterated

using the accumulated information until either the value of F(ti+n) is minimised or the

process is otherwise halted. This can occur either after a fixed number of steps or when

some other halting criteria is satisfied.

Adaptive test generation has been employed primarily in two different modes in the

literature. The first mode utilises a fitness function defined externally to the program under

test and is exemplified by the early work of Cooper [80] on system performance. Other

examples in this area include attempts to drive systems into error states for robustness

testing by Schultz et al. [278], [279], Wegener and Biihler [319] and experiments

performed by Grochtmann et al. [141] to establish worst case timing for real time software.

The second mode in which adaptive techniques have been used is one in which the

structure of the program itself provides the function to be minimised. Most of this work is

aimed at meeting white-box testing criteria such as branch and path coverage. For

60 - 220

Automatic Test Data Generation: an Overview

example, Miller and Spooner [235] based their minimisation function on the conditions

required to traverse a particular path. Similar work is undertaken by Korel [199], Jones et

al. [184], Tracey et al. [301] and Wegener et al. [318].

A variation on this theme is work where rather than monitor control flow other

properties of the code are targeted. For example, Andrews and Benson [10] investigated

assertion violations, Jones et al. [183] applied adaptive testing to boundary value testing

and Tracey et al. [302] used it to try and trigger run time exceptions.

2.4.2 Adaptive Testing: Early Work, Setting the Foundations

The initial work on search based testing using external fitness functions appears to have

been performed by Cooper [80]. This author developed an adaptive test system designed to

maximise the stress on a system under test in order to empirically determine whether that

system met performance goals such as timing and to establish the sensitivity of the system

under test. A number of search techniques were proposed by Cooper to aid the selection of

the next test including gradient descent, probabilistic search [180] and a “heuristic” search

using a database of transformation rules to aid selection of the next test.

Miller and Spooner [235] put forward the idea of dealing with the test generation

problem as a numerical maximisation problem by treating paths in a program as straight

line programs and dealing with predicates as numerical constraints. However, their work

only dealt with variables with a floating point representation, requiring integer constraints

to be determined manually.

Andrews and Benson [10] implemented a system that searched for test data that violated

assertions placed in code by using both the complex method [271] for constrained

optimisation and a systematic grid search of the input space. Results reported from the

paper suggest that the technique was effective at finding seeded errors and that it detected

some previously unknown actual errors in the subject code associated with boundary

conditions. As expected, the optimisation approach required fewer tests than the grid

search. However, the optimisation based search missed four assertion violations that were

located using the grid search based on stepping through the input space at regular intervals.

Reasons for this discrepancy were not given but presumably it was because of the brute

61 - 220

Automatic Test Data Generation: an Overview

force nature of the grid search did not become trapped in local minima (or maxima) as

observed in latter work (e.g. Michael et al. [232]).

The basic approach used by Miller and Spooner [235] seems to have been reinvented by

Korel [199] who replaced straight line programs by tracing specified paths though the

control graph representation of the program. In Korel’s work, each branch predicate was a

goal node and input data sets that take the desired branch were identified by treating the

predicate as a constrained optimisation problem and were solved using a direct search

method of alternating variables where the function was minimised with respect to one

variable at a time. The technique therefore used two distinct types of moves: exploratory

searches and pattern searches. An exploratory search perturbs the subject variables to

identify the direction which results in an improvement. A pattern search forces a series of

moves in the direction selected (Glass and Cooper [130]). The predicates dealt with were

limited to simple relational operators and the input space to integer variables. However, an

interesting aspect of this work is the use of backtracking to derive data for structures

involving pointer references.

Ferguson and Korel [118] extended Korel's [199] work by replacing the concept of

following a specified path with the concept of aiming to reach specific goal nodes

irrespective of the path taken. They also introduced the idea of “chaining” subgoals

dynamically, an approach in which each sub-goal is identified as having to be executed

before the target goal. This effectively produced a dynamic data dependency graph for the

program. An advantage of this chaining approach is that it is simpler to backtrack and to

attempt to find more advantageous paths to the end goal. Importantly, the chaining

approach mirrors what a human tester would do in circumstances where it was proving

difficult to achieve coverage of a node. Experimental results from 11 small programs that

compared random, path oriented, goal oriented (Korel [199]), and chaining approaches

suggest some advantage for more complex code examples. The chaining approach

achieved coverage greater than 10% greater than any other technique in 2 of the 11

subjects and more marginal improvements in two further cases17.

17 Statistical significance was not investigated.

62 - 220

Automatic Test Data Generation:, an Overview

The construction of a chain is best explained by a simple example (from McMinn and

Holcombe [227]). A chain is a sequence of events such that e,- = (nit C) where n,- is the node

and C is the set of variables that form the constraint set of variables that must not be

modified until the next event in the sequence. Given the simple program in Figure 8 and

assuming / as the target node and e as the problem node then there are two sequences

defined as follows;

(1)< (a ,{ fla g }) ,(e ,0),(f ,0)>

(2)< (d ,{flag}),(e ,0),(f,0))>

where (1) is the sequence where flag is not redefined at node d and (2) is where it is

redefined at d.

void loop_assignment (int a [10])
{

int i;
int flag = 1 ; /* a */
for (i =0; i < 10, i++) /* b */

if (a[i] != 0) /* c */
flag = 0; /* d */

if (flag) /* e */
/* target node */ /* f */

}

Fig. 8. A simple example of how chaining is applied from a target node/with the predicate
at node e.

Watkins [317] provided an early example of the application of genetic algorithms to the

generation of test data. The fitness function applied was based on path traversal, with the

most often traversed paths having the lowest fitness.

Roper [272] also investigated the use of genetic algorithms to generate branch adequate

test data. This work was preliminary and used a simple fitness function based on control

branches reached. Nevertheless, it suggested two avenues of approach that were taken up

by other investigators: the use of a separate store for good individuals e.g. Michael et al.

[232] and the use of human generated data from functional tests as the initial test vectors

by Wegener et al. [321].

While the majority of the work to date has been used to locate test data to meet code

coverage criteria, other avenues have also been looked at. For example, Andrews and

Benson [10] used assertion violations and Tracey et al. [299], [301] also examined this

63 - 220

Automatic Test Data Generation: an Overview

avenue with some success and extended the work to search for exception violations [302].

Jones et al. [183] applied adaptive testing to boundary value testing.

This then forms the foundations for most latter work where for the most part

metaheuristic search methods such as genetic algorithms have replaced optimisation

techniques such as those used by Cooper [80], Miller and Spooner [235] and Korel [199].

Latter work is heavily focused on overcoming some of the problems identified in the early

work (section 2.4.2.1) and on looking for better fitness functions (section 2.4.3.1) and

search techniques (section 2.4.3.2).

Figure 9 shows the chronology of the major works discussed in the previous section and

this organised about the major uses to which the technique has been used. For clarity, work

associated with timing has been shown using a dashed line. Other themes such as the

fitness functions used for what box testing and search methods used in the work are

described in Table 4 and Table 5.

64 - 220

Automatic Test Data Generation: an Overview

1976

+
1981

+
1990

i
1993

I
1995

i
1996

+
1997

*
1998

I
T

1999

+
2001

+
2004

t
2005

today

Adaptive Testing

/ x
Black Box White Box

System

+ A
Cooper [80]

v ^
Timing Assertions Coverage

+
Miller[235]

Andrews [10]

Schultz [273]

+
Schultz [279]

W e g e n e r[321] -► Alander|

Grochtmann [141]

T
Gross [142;

?
Gross [143;

Korel [199]

Watkins [317]

k
Ferguson [118]

+
Roper [272]

Tracey [299] [301]

Michael [232; W egener [318]

W egener [319]

T
Nilsson [243;

many papers

Fig. 9. Chronology of the foundation work undertaken in adaptive testing showing the
initial major contributions.

65 - 220

Automatic Test Data Generation: an Overview

2.4.2.1 Adaptive Testing: Software Path Testing

Reported results indicates that adaptive techniques can be an effective way of generating

tests in unit testing as characterised by work by Korel and Ferguson, [199], [118] Jones et

al. [183], Tracey et al. [301], [303], Michael et al. [233], [231], [232] and Wegener et al.

[318]. In this work, success is measured in terms of being able to find data that causes

execution of specific statements.

In particular, adaptive techniques seem to cope relatively well with a number of issues

that appear problematical for other techniques such as procedure calls, arrays and in

particular array references in conditions (Korel [200], Michael et al. [232], and Wegner et

al. [318]). Work by Korel [199] also seems to show that adaptive techniques may be

effective in dealing with pointers; though this particular application required the

introduction of a specialised mechanism for backtracking and needs further empirical

investigation.

However, the adaptive techniques are not without their problems, and one of the more

notable aspects of research into application of these techniques is the number of issues that

it has thrown up. The most notable concerns18 Boolean variables and in particular those that

are set during the execution of code (the “flag” problem). Other problem areas were noted

by Wegner et al. [318] and Michael et al. [232] who highlighted a number of significant

issues as a result of using industrial code. The following issues were all found to cause

difficulties:

• binary values (Boolean flags) generated within the code (Wegner et al. [318], [232]);

• decisions that contain multiple conditions (Michael et al. [232]);

• side effects in conditions that makes insertion of instrumentation problematic (Wegner et

al. [318]);

• short circuit evaluation in C that results in an artificial narrowing of the search (Wegner

etal. [318]);

The Boolean flag problem is of particular interest for two reasons. First it has spawned a

massive amount of follow-on research in the adaptive testing area from Bottaci [39]

18 Certainly in terms of the number of papers generated.

66 - 220

Automatic Test Data Generation: an Overview

Harman et al. [155], [157], Baresel et al. [23], [22], McMinn [224], Harman et al. [156],

Baresel et al. [22], and Liu et al. [216].

Second, it seems to present a fundamental problem for automatic test data generation.

The problem is basically one of information loss and flattening of the fitness function. The

problem arises when internal Boolean variables take values derived from the input and the

state of the Boolean flag is used to control program execution. This results in large areas of

the fitness function evaluating to the same value. The comment that the Boolean flag

problem seems to represent a fundamental issue comes from an observation made by

Vinter et al. [308] from tests of an aircraft gas turbine controllers in simulation against

single bit memory errors. Indeed the issue was observed in this work during the testing of

the heapsort function in section 5.4.1.4. Research in this area is on-going.

2.4.2.2 Adaptive Testing: Worst Case Execution Times

The adaptive testing has been put to a number of uses aside from software path testing.

As stated in the introduction, the technique has been applied to looking for worst case

execution times, especially in the area of safety related software. Wegener et al. [321]

suggested its use for best and worst case timing as a complementary technique to

functional testing. This work was extended by Wegener and Grochtmann [320] by using

simulated annealing for the more local search phases with no improvement. Grochtmann et

al. [141] repeated this work with further examples and compared results from tests derived

by human subjects with ambiguous results.

Alander et al. [6] investigated the use of genetic algorithms to test embedded systems in

a simulation environment; the authors extended the work in [7] using the same

environment to test the timing properties of a microprocessor-based relay used in electric

grid applications.

Work has also been performed by Mueller and Wegener [236], Gross, Jones and Eyres

[142], Gross and Mayer [143] and Nilsson and Henriksson [243].

2.4.2.3 Adaptive Testing: Applied to Systems

The final application area for adaptive testing is stress and robustness testing. The

original work was performed by Cooper [80] on system performance. Schultz et al. [278],

67 - 220

Automatic Test Data Generation: an Overview

[279], used adaptive testing in the context of functional testing of autonomous air vehicles

(UAV). Using system simulation they examined the robustness of a control system in the

presence of fault conditions. Evolutionary testing was used to drive the control system

towards errors and combinations of errors that would result in the loss of the vehicle during

landing manoeuvres.

Buehler and Wegner [48] used evolutionary testing and simulation in a hardware in the

loop (HIL) environment to investigate the ability of adaptive testing to find scenarios

where the control system for an assisted parking system failed. The work was extended by

Wegener and Buhler [319] to compare the original fitness function based on distance with

another based on area.

The same technique was applied to a brake-assist system linked to adaptive cruise

control by Buehler and Sthamer [47]. The experiments were successful in detecting several

errors in the systems investigated and interestingly for the brake-assist system the

technique located an error that was not near operational boundaries. Pohlheim et al. [266]

also applied the same procedure to hardware in the loop testing of an adaptive cruise

control system.

One issue with the work reported above is that though errors were discovered there were

no experimental controls. That is, because we have no idea of the total number of errors

that were present, the work provides no information on the relative effectiveness of the

technique. That being said, that is the situation in the real world where there is no a priori

information about what errors exist.

2.4.3 Adaptive Testing: Fundamental Issues

There are two major issues and several minor areas of interest concerning the use of

adaptive testing for test generation. The major issues are:

• the generation of effective fitness functions,

• techniques for performing the optimisation.

68 - 220

Automatic Test Data Generation: an Overview

2.4.3.1 Fitness Functions

The construction of good fitness functions appears to be the critical area that determines

the effectiveness of the search for test data. This fact is amply bom out by considering the

level of consignation caused by the Boolean flag issue.

Research has followed two major themes. The first is a pure path-based approach in

which test data is used to execute a particular specified path, or all paths are sought.

However, the majority of the work has focused on the second theme in which the

evaluation of branch predicates is considered in addition to considering path-based

information. There has also been a small amount of work that has examined predicate

functions that are completely detached from these path based criteria, the most notable of

these is the use of mutation adequacy by Baudry et al. [30], [29].

In more detail, the majority of the work on fitness functions has followed the approach

first proposed in Miller and Spooner [235] which converts a predicate of the form

h(xi) op g(xi)

to a fitness (or cost) function of the form

f= F (\h (x i)-g{xi)\)

A number of authors have suggested variations on this theme and a summary of these

proposals is presented in Table 4 where the notation has been normalised to that used in

Gallagher and Narasimhan [128].

The first modification to the basic scheme proposed in Miller and Spooner [235] is

found in both Gallagher and Narasimhan [128] and Jones et al. [183] where the basic

fitness function is modified to give it a more “shaped” form. For example, Gallagher and

Narasimhan [128] suggested a fitness function of the form,

G = e w\g(x)\'

where wf- is a weighting factor. This function was selected to explicitly convert problems

with non-linear path constraints into an equivalent unconstrained linear problem. This is

necessary here as the optimisation technique selected (quasi-Newtonian) cannot deal with

69 - 220

Automatic Test Data Generation: an Overview

the former class of problem. In addition Gallagher and Narasimhan introduce functions to

deal with logical operators (and, or, not).

Jones et al. [183] suggested a family of fitness functions based on the reciprocal of the

distance i.e.

f= F (\h (x i) -g (x i)\yn

Experiments were conducted with values of n = {1, 2, 3} but no advantage was found in

not applying the inverse square law. Note that here the optimisation technique used

(genetic algorithm) did not place the same constraints on the form that the function can

take as it did in Gallagher and Narasimhan [128]. These two examples are, however, the

exception rather than the rule, and the majority of more recent work dispenses with this

shaping. Whether this is an advantage or not does not appear to have been evaluated to any

extent.

Tracey et al. [299] introduced a “punishment” factor that ensures that non-optima!

solutions are clearly recognised as such and discussed the use of an offset K to enable

values to be selected near boundary values. However, the impractical application of a

punishment factor may be limited as it would be necessary for it to be selected on a per-

predicate basis unless a data dictionary were available then conceivably it might be

possible to automate this approach. Zhan and Clark [345] make a similar point when

discussing an arbitrary value of 10 assigned to K. Another feature of adding K is the fact

that if a predicate is satisfied, then the value of the fitness function is, of necessity, set to

zero.

One area of particular interest is the evaluation of the logical conjunction operator (i.e.

and). Table 4 gives the impression that the use of the addition operator is almost universal.

This is not quite the case. For example Diaz et al. [103] used a modified version and a

number of authors have used max(G(x), G(y)) e.g. Cheon and Kim [59]. Bottaci [40]

analysed the performance of various options for both conjunction and disjunction: both in

terms of desirable properties and practical application.

• P I :cost (a or b) <= cost(a) and cost (a or b) <= cost (b)

• P2 : cost (a and b) >= cost (a) and cost (a and b) >= cost (b)

• P3 : the cost of logically equivalent expressions should be equal.

70 - 220

Automatic Test Data Generation: an Overview

Importantly Bottaci [40] emphasized the point that the cost functions are only heuristic

rules of thumb.

The other major approach taken by researchers is to construct fitness functions based on

path coverage. Approaches in this category range from the simple approach taken by

Watkins [317] where commonly executed paths are penalised, through to complex

evaluation schemes such as that used by Lin and Yeh [214] in which similarities between

path segments and complete control flow paths are evaluated.

Unfortunately the only back-to-back comparative work in this area by Watkins and

Hufnagel [316] was not able to define what an optimal path based function would comprise

of. It did however support the assumption that neither a pure predicate-based nor a pure

path based fitness function would be optimal; but that rather both types of information

need to be taken into account as for example by Bueno and Jino [49].

71-220

A
ut

om
at

ic

Te
st

Da
ta

G
en

er
at

io
n:

 a
n

O
ve

rv
ie

w

O n
O nCNi—

Po
CO

O n
O n
(NU J

P
OcO

O

o w
c 4-0 T

’S >N
o I
II X

^ II
1 O

X p

<L>

>N
Ix
II

O

O n
O nC4
> nPocO

I
X
II
O

O
g ^

rC , II
* »

— (U
>N J2
I °
X

o O
II %
XL
1 8 I "Eo
x-
t •«>

X ?
r s

S otoo w ®obo w

ON
O n£4
PocO
)-lHVh

.O

X
I

>N
II
O

ll ^
O +
c ^
£ 1
o ^
V II
>>o
I p
x & p

x
A

T

'5o

O n
O nC4
>Npo

V-i,o

X
I

>N
II

O

O +/^Nc ^
£ l
V II
>nO
I p
x X

D

X
II
A

O n
ON
(N

<D
O
CO

I
X
II

O

o
ll

0 X
S3 X P ,

o &
V II
x O
1 CD

ON
ONC4

pocO

>->
I
X
II

O

7 W
0 +
c 'x'
£ l
O £>
v ii
x o
1 p>N ̂ 2^ p

o O
II II _
>v— N̂fcO
1 '5o AsX & X _ep
/N 'P ■f- &1 II \ P
30 x' 11
t̂oO m O

O °
+..§
'x u

o £
II o

O

O
x -v
XVwX
a
E
ii

o

o
ow
£uW
ll

p O
w

13

>>
O
+
3a

ii

o

x—N

3
X O o
1 + 3

gII o cO II ■g
o II

O

&
o
+
3a

ii

o

< c
x ~S

+
x“ v

O

3
o
*

3
o

ii

o

o
pN1/3

o P
o

o
3a
_(3

11
o

o

3
o
'5’

O

3
g
E

ii

o

£ £
.S oT3 T3 p o

CO tool
CO
03 o

T3<D
>O
6pt-iS3_o
totooP«

u b ^
cou *n -vJ >̂ <d
>N O P $■> C3

g I
£ig S
-d ..22
W W +->00
^ ‘e 3 «

-i—> (D
o -4- 1 3̂ cs cx,
S ^ 3

O
CO
oCO

&
ao o

- o-<-» r-!
f l . a • •

scO 33 ̂
S-°-2

£O <D

e« t5
ScH

,o o
*a *j , o
.a ̂ i>^ +-> c

e - a5-1 Ctf CO o 5-1
J3 S W)
^ a 5-i o o •
S£ °

O l f l O
- S 3 « a

rs -y
e« 2 5

\£3 c3 txo
a 00 .a>N

D r—i C
O ^ . S

cdtfi *34-1 —i
- d U
i«H rt §Dh c3 C

£2 CD
* a >52 ̂ *J3
| N g
,4J'd 3

a a .52
ow §

o4-1
° w „
^ N Q a h ca oCO ,__|
g-^ON
g Td ̂5 c r̂ , s g 1—1

^ S c
< ! B S

i o ^c_i Ot3
H S g

o
C4
(N

i
(N
r-

19
Th

er
e

ap
pe

ar
s

to
be

an
am

bi
gu

ity

in
the

tab

le
for

 x
*

y.

20
Th

er
e

is
an

er
ro

r
in

the

tab
le

as
pr

in
te

d,
 p

er
so

na
l

co
m

m
un

ica
tio

n
wi

th
au

th
or

.

2A.3.2 Search Techniques

The number of different optimisation techniques applied to adaptive test data generation

is impressive. Table 5 gives a summary of techniques discussed in the literature, and

includes a reference to the work, the search methods used and comments on any

adaptations that may have been introduced and/or other techniques considered.

Details for all of these methods are beyond the scope of this review, but a number are

covered in detail by Michalewicz and Fogel [234] and a good introduction to the different

paradigms of evolutionary computing is provided by Eiben and Smith [109].

The majority of work has been performed with what today can be considered fairly

standard optimisation techniques. However, there is a clear trend towards the use of meta

heuristic techniques, specifically genetic algorithms and simulated annealing. The reasons

for this are clear. With meta-heuristic techniques it is possible to develop software that is

highly discontinuous in nature and to target functions derived from predicates in particular

tend to be either non-differentiable and/or not continuous. In addition meta-heuristic

techniques-are, in general, better at dealing with this type of optimisation, as they tend to

avoid local minima [234].

The basic search techniques seem to perform well for straightforward code but it has

been found necessary to extend the basic optimisation paradigm to deal with specific

issues. For example, the introduction of backtracking to deal with pointers in the case of

Korel [199], the addition of chaining by Ferguson and Korel [118] and a similar adaptation

discussed by Wegener et al. [318] and applied in conjunction with genetic algorithms in

McMinn and Holcombe [227]. In addition both Korel and Tracey noted that further

optimisation can be obtained by limiting the variables used in the optimisation by using

either data flow analysis as in Korel [199] or by limiting optimisation to those variables

involved in the predicate currently being examined [299]. Results from Diaz, Blanco and

Tuya [102] with scatter search suggest that artificially limiting variable ranges might also

be advantageous.

Automatic Test Data Generation: an Overview

Study Search Method Comments

Cooper [80] heuristic (rule based)
search

also considered gradient decent and probabilistic
search

Miller [235] numerical optimisation limited to real values and excluded integer values
Andrews [10] complex search geometric manipulation o f a surface called a complex

Korel [199] direct search, gradient
decent

further optimisation via data flow analysis heuristics

Schultz [278] genetic algorithm applied to system testing
Ferguson [118] direct search, gradient

decent
backtracking supplied via “chaining” o f intermediate
goals

Jones [184] genetic algorithm
Gallagher [128] quasi-Newtonian

numerical
explicit conversion o f constrained optimisation
problem to unconstrained problem

Jones [183] genetic algorithm suggests looking at Tabu search
Tracey [299] simulated annealing suggests restriction o f variables included in

optimisation
Tracey [300] simulated annealing deferment o f loop predicates
Pargas [260] genetic algorithm selection o f fittest members for next generation
Tracey [302] genetic algorithm

M ichael [232] genetic algorithm auxiliary table to track branch coverage, differential
genetic algorithm and, gradient decent used as
reference algorithms

Wegener [318] genetic algorithm partial goals meet recorded
McMinn [226] genetic algorithm and

ant colony optimisation
Diaz [103] tabu search suggests scatter search, used in [102]
Blanco [37] scatter search compares tabu and scatter search

McMinn [227] genetic algorithm and
chaining

Table 5. Summary of optimisation techniques used and additional heuristics that
were applied.

Other problems with search techniques seem to be lurking in the wings however. For

example deeply nested decisions and those containing multiple conditions (Michael et al.

[232]) appear problematic because of the manner in which the evolutionary systems solve

one constraint at a time. Baresel et al. [25] investigated pre-evaluation of the predicates

and McMinn et al. [225] and Harman et al. [155] examined the use of program

transformations, which in their test subjects increased the speed of convergence. Likewise,

there may be issues with loops, short circuit evaluation of logical predicates and side

effects, again stated as a topics for further investigation by Baresel et al. [25].

An interesting approach to using evolutionary programming is suggested in [28] in

which the crossover operator is dispensed with completely. The authors compared their

approach with bacterial evolution and showed that it offered some advantages over other

74 - 220

/\uLuiiiaLiu i c s i u<xia v jciicm uun; an w vciv icw

approaches for the code that they tested. For example, they claimed that population size

does not need to be constrained, that the problem space changes as mutants are removed

from consideration and that only two parameters need to be tuned, namely the number of

individual saved and the minimal size of the bacteria . This mutation-only approach fully

follows the evolutionary programming methodology and given the possible advantages, it

deserves further investigation.

Which of the optimisation techniques discussed above is superior cannot readily be

addressed largely because the only direct comparative work was performed by Blanco

[37], who compared scatter and tabu search on a very limited number of examples. These

experiments did find that tabu search techniques were superior, but the results are too

limited to have any real significance. However, one very interesting point arises from this

review, namely that nowhere else in the testing literature has there been anywhere near the

same number of potentially significant issues raised. This observation does not suggest that

the problems are more difficult, just that they seem numerous, even compared with

symbolic execution based techniques. This is itself interesting as the search techniques that

both systems (adaptive & symbolic) employ are very similar. For example, work by Miller

and Spooner [235] and Coward [84] used very similar numerical optimisation techniques.

In the area of adaptive testing, the work that most closely approximated symbolic

execution was Tracey Clark and Mander [299] where the preconditions and negated post

conditions are converted to disjunctive normal form which mimics, at least in part, the

construction of the predicate condition from symbolic execution.

2.4.4 Adaptive Testing: Summary

The feature of research in adaptive testing that stands out is the variety of different

things that have been looked at, in terms of problem areas examined and optimisation

techniques but possibly more importantly in terms of finding suitable fitness functions that

will actually allow the techniques to perform to their potential. This is potentially a serious

problem, given that what is being attempted is to embody a set of general path following

rules in a single numerical expression in a similar manner to software complexity metrics.

It is also remarkable the number of issues that research in this area has thrown up, issues

which are probably associated with all test data techniques but which have not been

75 - 220

Automatic Test Data Generation: an Overview

reported directly elsewhere, the most obvious being the issue with computed Boolean

variables (flags) report by Wegner et al. [318] and Michael et al. [232].

However, not withstanding the above comment, the technique is very effective at both

finding test data to meet code coverage requirements and in functional testing, finding

situations that actually cause failures. However, at the code level, the technique is

essentially path following and code coverage alone is no guarantee that the software is free

of errors, or rather that the test set is “good”. As Beizer [31] observes, path coverage is not

capable of detecting missing paths. This is of course not an issue when the technique is

applied in functional testing as demonstrated by Schultz et al. [278], [279] and Buehler and

Wegner [48].

In addition, Michael et al. [232] have observed that the vectors obtained tend to be

unusual and the implication is that deciding the correctness may be problematic. This is in

contrast with observation by Jones et al. [183] that the vectors generated tend to be

“uninteresting” which is equally problematic in that uninteresting tests are unlikely to

discover errors.

2.5 Symbolic Testing

2.5.1 Symbolic Testing: Introduction

As with adaptive testing, symbolic execution takes as its primary input, the program

under test. Symbolic execution differs from normal execution in that it involves the

replacement of each variable with a symbolic value, rather than with a numeric value.

Where the input parameters are referenced in the software, symbolic values are substituted.

These values are propagated through to all variables on each execution path selected. The

process is best described by looking at the example in Table 6 adapted from King [192].

76 - 220

/\uium aue ic s i wdvd. kjenerauon: an overview

Statement a b c X y z
1 int sum (int a, b, c) { Vi v2 V3 - -

2 x = a + b; - - - Vl + v2 - -

3 y = b + c; - - - - V2 + v3 -

4 z = x + y - b; - - - - - (Vl + v 2) + (v2 + v 3) - v2
5 return (z); } Vl + v 2 + v 3

Table 6. An example of symbolic execution for a simple C program, adapted from King
[192].

The program in Table 6 takes three inputs a, b and c and has the same number of internal

variables, jc, y and z. In statement 1, the variables are assigned the symbolic values vl, v2

and v3 respectively. In statement 2, the internal variable x are assigned the symbolic value

of a + b, which symbolically is vl + v2. In the same manner, y is assigned the symbolic

value of b + c i.e. v2 + v3 in statement 3. Likewise, in statement 4, z is assigned to the

current symbolic value of x and y in terms of the input parameters: that is, vl + v2 and v2 +

v3 and b in terms of its input value v2.

In statement 5, the value assigned to z in statement 4 has been simplified in relation to

v2. This demonstrates one of the strengths of symbolic execution - its ability to represent

the complete function being calculated in a simplified form.

As the example above demonstrates, symbolic execution is conceptually simple for

straight line code. However, when branches are introduced, there is a requirement that the

predicates that determine which specific path is taken at each branch are tracked. This is

accomplished by building a path condition (pc). At the start of the execution the pc is

initialised to TRUE. Then as each branch point is encountered the predicates for that

branch are co-joined with the current value of the pc. The difficulty with this approach is

that the decision about which branch is to be taken cannot be determined during symbolic

execution, so both branches must be taken as long as the pc for both branches remain

feasible. That is, the pc for both branches being followed has a valid solution. This is a

significant issue for loops where the number of iterations may be bounded by values

dependant on input values. For example, consider the code fragment in Figure 10 where v

and limit are the input values.

77 - 220

Automatic Test Data Generation: an Overview

while (v < limit)
{

if (v > limit / 2) v = v - 1;
else v = v + 3;

}

Fig. 10. An example where it is difficult to statically determine a closed form of the pc.

The resulting pc for this code is a tree where, for each possible branch, after the first

pass;

(1) pc = true a (v > limit) or

(2) pc = true a (v < limit) a (v > limit/2) or {also implies v <— v - 1}

(3) pc = true a (v < limit) a (v < limit/2) {also implies v <— v + 3}

For a second pass, the path conditions (2) and (3) are extended in the same manner, for

example (2) is extended as follows;

(4) pc = true a (v < limit) a (v > limit/2) a (v - 1 > limit)

(5) p c - true a (v < limit) a (v > limit/2) a (v - 1 < limit) a (v - 1 > limit/2)

(6) pc = true a (v < limit) a (v > limit/2) a (v - 1 < limit) a (v - 1 < limit/2)

In this case the series can be extended ad infinitum. For example, given initial values of

v = 3 and limit = 5 the loop will terminate. However, given initial values of 5 and 10 the

loop will cycle indefinitely.

To generate test data for any path through the code, the path conditions need to be

“solved”. This can involve two steps. First, it can be advantageous to simplify the pc. For

example, the path constraint given in (4) is inconsistent in that it requires that (v < limit)

and (v - 1 > limit), which cannot be satisfied and so represents an infeasible path. Early

detection of infeasible paths is advantageous in that it reduces the amount of work that

needs to be undertaken and can provide useful information in terms of whether code meets

its requirements. For example, an infeasible path may indicate a coding error. Second, for

those constraint systems that are feasible, a solution to the system of equations represented

by pc needs to be located; this solution provides a set of test data that will cause the paths

to be executed.

In addition to constructing the path constraint, symbolic execution systems also needs to

keep track of all the operations that affect the outputs, in terms of inputs along the path

being traversed. This is referred to as the output conditions.

78-220

•rvu iu iiiaL iu x ta u iv a ia v jc x ic x a u iu u . a u u v t i v i t w

2.5.2 Symbolic Testing: Review

A large body of work on symbolic execution of programs was undertaken in the middle

1970's and early 1980's, early work being undertaken by Boyer et al. [41], King [191],

[192], Clarke [63], Ramamoorthy, Ho and Chen [268] and Howden [170], [171]. All of

whom performed significant work on the “reliability” of symbolic execution for detecting

errors.

King [191] provided a brief description of symbolic execution and the EFFIGY system,

which was developed as a debugging and test generation aid for a simple PL/I like

language with limited data types. Symbolic manipulation and simplification were based

around the King’s earlier work on program verification and path constraints were solved

using linear programming techniques. Path selection was made manually via a user

interface though the possibility of performing this function automatically was suggested

Boyer, Elspas and Levitt [41] provided a more substantial coverage of the topic and

introduced many of the points covered in more detail in latter work. Their system,

SELECT - was based around a subset of Lisp and that was used to advantage with the path

and output conditions being stored as Lisp lists. SELECT also allowed the program under

test to be annotated with assertions. As with King [191], expression simplification was

performed by adapting a program verification tool which allowed the early detection of

infeasible paths. The SELECT tool was originally designed to be used interactively.

However paths can be generated automatically and the common practice of dealing with

loops by executing them a user selected number of times was introduced. Of particular

interest are the three approaches taken to generate numerical test data from the pc. These

are the use of integer programming, the use of mixed integer programming for dealing with

floating point variables and because these two techniques are limited to dealing with

constraint systems with linear relationships, the use of hill climbing. In an aside, the

authors comment that to deal with non-linear constraints such as “X*7 + 1 0 Z -W > 5” (pg

238) by using integer or mix integer solvers they would have to be “prepared to assign to

X a trial value, and then attempt a solution” (ibid), very similar to the approach to that

taken by constraint solving systems.

Clarke [63] described a system for symbolically executing FORTRAN programs. As in

King [191], path selection was performed manually, but the feasibility of path conditions

79 - 220

Automatic Test Data Generation: an Overview

was not decided until after the complete path was constructed. However, the order in which

conditions were added to the pc was maintained to ease detection of where an infeasible

clause was added. Solutions to constraint systems were found using linear programming.

Clarke also briefly discussed issues associated with aliasing of array elements.

King [192] expanded on his previous paper, discussing the issues surrounding syntax

versus semantics that were introduced in Boyer [41]. King clearly pointed out that

arithmetic and logic as implemented is not the same as their counterparts from

mathematics. This paper also discussed issues with array indexing and put forward two

possible solutions: exhaustive case analysis and leaving the ambiguity unresolved but

storing the output conditions that set the value of the index variable. Neither of these

solutions appear to have been implemented and nether appear to be totally satisfactory due

to the volume of information that would need to be maintained.

Ramamoorthy, Ho and Chen [268] implemented a symbolic execution system that

constructed paths and output conditions by working backward from the outputs, rather than

forward as demonstrated in section 2.5.1. The authors also took a novel approach to

finding numeric data, to satisfy the pc that they described as “systematic trial and error”

(pg. 296).

Another interesting feature of this system was the explicate use of backtracking, which

took forward the idea from Boyer [41] of assigning a variable a trial value to a variable in

the pc and then attempting a solution. To some extent, this technique anticipated the use of

constraint solving techniques as in Hentenryck et al. [159] and Nikolik and Hamlet [242].

Furthermore, a novel solution to arrays was suggested, in which the creation of new

“nearly identical” instances of the array were created.

Howden is associated with the development of a symbolic execution method [168] and

the DISSECT [171] tool which is based on it. Although these developments do not add

substantially to the work cited above and it is unclear whether they are capable of

generating test data, the use to which they were put is interesting. In these two papers

[169], [171], the path testing strategy was pitted against programs with known errors. The

major result was that for one set of programs the technique was reliable for only 65% of

the errors [169] and that for the other symbolic testing only resulted in a 10-20% increase

in effectiveness and was reliable for 18 of the 28 known faults [171]. While this may seem

80 - 220

/\uiuiiiauc le s i ljcllh vjeiieraiiun: an overview

a disappointing result, branch adequate test sets were reliable for only six of the 28 errors,

and special value testing was reliable for 17 of 28. Howden’s conclusion was that “no one

program analysis technique or program testing strategy should he used to the exclusion o f

all others” [171] (pg. 394).

Darringer and King [96] looked at a number of issues associated with the use of

symbolic execution in the context of testing. In particular, they noted several reasons why

it is desirable to generate actual test data, namely that:

• the semantics of the symbolic system and the actual system may differ;

• we may need to obtain performance (timing) information;

• actual outputs may show errors that may otherwise be missed.

Much of the latter, post 1980 work is to a certain extent derivative. For example work,

on the SADAT tool by Voges et al. [310] contains little detail on test data generation and

was mainly concerned with the integration of different program analysis functions within a

single framework. Work by Kemmerer and Eckmann [188] only extended the paradigm to

the Pascal language. All the early work and closely related static analysis issues have been

surveyed in detail by Coward [83], [82].

Taken together, the work cited above does illuminate the main issues that symbolic

execution needs to deal with, namely:

• path selection of branches and in loops;

• the aliasing of variables (arrays, pointers, function/procedure calls);

• solving the path constraints.

In most cases, early symbolic execution systems required the user to select the paths to

be taken interactively. The exceptions being Boyer [41], who attempted to cover all paths

and Ramamoorthy et al. [268], who targeted all branches. However all the systems either

required the user to specify the number of times that loops were iterated, or to supply a

maximum number of iterations.

In the late 1980s Coward [83], [84], [82] undertook the construction of a symbolic

execution system for COBOL. This system is interesting for a number of reasons:

• it considered the issue of symbolic execution for non-numeric data e.g. character strings;

• it considered how records should be incorporated;

81-220

Automatic Test Data Generation: an Overview

• it used a technique of splitting branches three ways to deal with non-equalities of the

form a =£ b that cannot be solved numerically;

• it introduced the concept of selecting paths based on the amount of a variable’s input

domain that can be covered.

Lindquist and Jenkins [215] described a static analysis tool that utilises most of the

features of symbolic execution to perform static analysis of subset Ada. Their paper

focused on the IOGEN symbolic execution tool but considered the application to test

generation. However, their description of this lacks detail. The paper brought out some

interesting points including the observation that the test adequacy criteria of executing all

paths once cannot be reliable against errors such as divide by zero.

The next significant body of work was undertaken by Offutt in conjunction with

DeMillo [99], [100], King [193] and Seaman [254]. This research concerned the

development and integration of the Godzilla test generation tool with the Mothra (King

[251]) mutation system. In this work, the pc was constructed as shown above to define

what the authors’ term the reachability condition. The authors co-joined the reachability

condition to what they termed the necessary condition. This condition constrained the data

generated for the reachability condition so that it was able to differentiate the original

source program from a mutated form of the program thus incorporating mutation testing as

proposed by Hamlet [154] and DeMillo et al. [98], directly into the test data generation

process. Solutions to the constraint systems thus constructed are made via algebraic

simplification oL the path condition, domain reduction to reduce the number of feasible

values, and special purpose heuristics to select trial values from domains (Offutt [249]).

Work along similar lines, by Goldburg et al. [132] and Jasper et al. [181] on symbolic

execution for test generation which used a theorem proving system as a base, reported

positive results for the limited amount of production code that they tested to date. The

system itself deals with a restricted subset of the Ada language. However, the authors

noted that this was not as limiting as it might seem because the code being tested was

targeted at embedded systems, and these tend to use a limited subset as a matter of course.

The observation is of interest because of such subsets are the accepted norm in safety-

related work. Examples of this are the MISRA C subset of the C language [18] and the

SPARK subset of Ada [26].

82 - 220

/\uium auc iesL u itid oeiieraiiun: ail wverview

Girgis [129] detailed a FORTRAN system for performing symbolic execution and

discussed the path selection problem in terms of loop traversals zero, once and two times.

More interestingly, given the scarcity of results in this area, this paper reported results on

testing five small, mutated programs to examine the effectiveness of the technique. For the

eleven classes of fault reported, it was found that faults were found most effectively either

during the symbolic execution phase or during test execution by comparing generated and

expected results. This result indicated that the two phases are complementary to one

another: symbolic execution appearing superior for errors involving references or

definitions of variables and test execution better for errors involving operators or constant

values.

Nikolik and Hamlet [242] examined part of the symbolic execution problem associated

with ambiguous array references and presented a solution that involved the substitution of

indexed terms with index-free terms using constraint programming languages (Cohen

[71]). Note however that this work was performed as a standalone exercise and was not

integrated into a general purpose test generation tool. It is however significant in that it

demonstrates that at least part of the aliasing, problem is tractable.

Gotlieb et. al. [136] produced a symbolic execution tool that operated on a subset of the

C programming language that excluded difficult-to-deal-with features such as g o to

statements, pointers and dynamically allocated structures. They also pre-processed the

code to be analysed into a static single assignment form (Cytron et al. [86]) that removed

much of the possible ambiguity for variable references.

Lapierre et al. [208] described a symbolic execution system and test data generator for a

subset of the C language. Rather than working directly from the control flow graph, the

approach these researchers took was to apply the procedure suggested by Bertolino and

Marre [33] for converting a control flow graph into an execution tree, and to then use the

unconstrained arcs to determine a minimal set of paths that need to be traversed. Of 684

edges in their set of test programs, only 124 were unconstrained. This combined with a

process of generating trees for zero, one and two iterations of loops, was claimed to lead to

smaller paths. To find numerical data that satisfy the pc, the pc was converted into a

system of linear constraints and solved using mixed integer linear programming

techniques. The paper reported results for a non-trivial mix of programs, specifically

83 - 220

Automatic Test Data Generation: an Overview

selected to include features such as the use of pointers and pointer arithmetic. Edge

coverage was obtained for eight of the ten subject programs. This prompted the authors to

come to the conclusion that “full automation o f test data generation was unattainable”

[208] (pg. 196) but observe that human intervention can be minimised.

Meudec [230] constructed a tool (ATGEN) using the ideas from constraint satisfaction

to generate test data for SPARK Ada programs using the ECLiPSe (Wallace, Novello and

Schimpf [314]) constraint solving library for Prolog. As in Gotlieb et. al. [136] the code

was pre-processed - in this instance by encapsulating the Ada syntax in a Prolog wrapper;

to allow the source to be operated on directly. The system itself had a layered approach to

the constraint solving problem, and while it used the basic Prolog backtracking

mechanism, there was a high level of reliance on heuristics to intelligently select and label

(instantiate) variables for the data sets which would be assigned first. The example was

given of finding solutions to the constraint, x x 2 + y = 10 where it was noted that if the

assignment to x is made first then the resulting problem is much easier to solve, than if a

value was first assigned to y.

Another system based on the ECLiPSe system was presented by Gouraud et al. [137].

Again, the source code was pre-processed as a list of atoms with the constraint resolution

system being similar to the two systems discussed above. The work is novel because of the

manner in which it generated control paths to be tested. Simplistically it treated the

problem as being the same as generating all paths of length < n in a regular language and

drew them randomly with a uniform probability from the complete set to obtain coverage.

The efficiency of constraint satisfaction techniques depends on the heuristics used to

guide the selection of variables to label. For example, Meudec [230] demonstrates that

early selection of variables with non-linear terms was advantageous; however, it is to be

assumed that otherwise standard heuristics were employed. In Gotlieb et. al. [136] the

heuristics are not explicitly stated but standard constraint solving techniques such as

smallest domain, most constrained values and bisection of domains were mentioned. In

Gouraud et al. [137] the exact process is given explicitly. For constraint solving the

following rules were applied for selecting which variables to be assigned first:

• Variables that do not depend on other variables.

• Variables that occur first in execution order.

84-220

■muiuiiicujll; i c s i LJdia v jc u c jL a u u u . m i w v c i v i c w

• Variables with the smallest domain (fail first).

• Variables that bring into consideration the largest number of constraints.

The first two were claimed to be novel and the second two, were described as standard

heuristics. Remaining variables were instantiated randomly which the authors claimed

increases the ability to detect infeasible paths over multiple attempts.

Another variant on symbolic execution is to hybridise it with actual execution of the

code as in adaptive testing. Gupta et al. [145], [146], [147] have proposed a technique that

applies a number of symbolic- and execution-based techniques to find a linear

approximation to the function being computed on any one path. For programs that have

linear predicates, the authors suggested the technique should be able to compute vector

increments in a single pass - with no back tracking. The authors also reported practical

issues with the use of Gaussian elimination: free variables were assigned ad hoc values,

which can cause the system to become inconsistent. There were also issues with

convergence. The authors stated that their method should be expected to behave like

Newton's method. However, Newton's method is not guaranteed to converge (Michalewicz

and Fogel [234]). In their latter work [146], [147] Gaussian elimination was replaced by an

interior point method based on least square errors, which has the advantage that any

solution is acceptable.

Offutt, Jin and Pan [250] introduced a variant of symbolic execution that incorporated

some of the ideas from adaptive testing in that the variable domains were trimmed as the

path was followed, thus ensuring that a feasible solution was maintained. The difference

between this and earlier work is that in this work symbolic representations of the output

values are not explicitly required at any point. In many respects, this variant of symbolic

execution mirrored the process used in the constraint satisfaction techniques with in built

backtracking and a selection process for the next variable to be instantiated. Thus this

approach appears equivalent to the “fail-first” strategy of variable ordering [27] and to the

domain bisection technique in Gotlieb et al. [136].

Dillon and Meudec [104] reported results on a development of the ATGEN tool [230]

for C language programs. Data for two sets of programs were examined; namely code used

85 - 220

Automatic Test Data Generation: an Overview

by Wegener et al. [318] and industrial code supplied by Ellims21. Path coverage results

obtained from vectors generated by ATGEN were compared with results for a commercial

tool C++Test [259] and the ATGEN test sets achieved significantly better results in five of

twelve cases reported with usually fewer test cases. With the test code supplied by

Wegener, the C++Test tool performed very poorly, but results for the industrial code were

better. This is not completely surprising as the industrial code was specifically designed

with unit testing in mind

Lee et al. [209] constructed an integrated symbolic execution system for Java code and

the paper focuses primarily on design decisions that were made in the construction of the

system notably in the area of path enumeration, and on a possible approach to the issue of

aliasing of indexed arrays.

On the first topic, the authors presented an extended discussion of the choices that were

made when deciding which paths to include in the construction path predicates. In

summary, their approach was similar to that taken in previous work in which loops (in

particular) were executed zero to L times where L was a tuneable parameter. In addition,

the authors stated that the path generator was designed to enumerate all possible

combinations of paths though control statements. As part of their analysis of how many

paths could be generated they provided a recursive equation for the number of paths

though a control node A/. For one of their examples - a program with two nested while

loops and an if statement at the innermost level - for L = 1 there were 9 paths, for L = 2

there were 343 possible paths and for L = 3 there were 33,825. For L = 4 there were nearly

two billion paths.

Xie et al. [338] described a system for dealing with object-oriented code that generated

method sequences targeted at assertion checking (pre and post-conditions) and robustness

testing. This work is unusual for the number of methods that were used to deal with

symbolic constraints. Theorem proving systems were used for simplification and for

testing whether the system is consistent, while a constraint solving system was used to

generate actual test data.

21 Details of the code can be found in Ellims, Bridges and Ince[l 12].

86 - 220

X JLUkVlXJLUWlW' X VkJk X̂ IXWU V11VX UUVUl IX1X T

The DART system developed by Godefroid et al. [131] provided an example of what

can be achieved by the hybridisation of two techniques. The system was designed to co

execute the program under test using both symbolic execution and randomly generated

initial test vectors. The immediate advantage of this was that concrete values were

available to the symbolic execution at points in the execution where a) the constraint

solver/theorem-proving system was unable to find solutions or b) symbolic information

was not available such as with library calls. Co-execution such as this has two advantages,

information from symbolic execution can be used to guide the selection of new data values

and the system also has a fallback mode in cases where symbolic execution becomes

“stuck”, execution in these instances can be restarted with a new random vector.

The DART system was targeted at executing all paths using a depth-first search of the

tree but the subject of loops was not explicitly dealt with. The authors did, however,

address the oracle problem, the tool being targeted at locating execution failures

(exceptions) and assertion violations. Empirical evaluation of the DART system was

performed on two programs: a small air-conditioning control example (17 lines) and an

implementation of the Needham-Schroeder public key authentication protocol (400 lines)22.

In both cases assertion violations were located in reasonable time periods (1 second & 22

minutes) in neither case did random testing find solutions after several hours of searching.

A larger investigation was reported on an open-source implementation of the Session

Initiation Protocol23 (30,000 lines) that located hundreds of references to null pointers and

one security violation.

2.5.3 Symbolic Testing: Issues

Historically, there are several fundamental issues associated with symbolic execution of

code that need to be examined in more detail. These are:

• path selection, branches, loops and infeasible paths;

• the issue of aliasing of variables;

• the difference between the syntax and the semantics of the program under test;

22 Ross Anderson of Cambridge University though this highly interesting (personal communication).

23 http://www.gnu.org/software/osip/osip.html

87 - 220

http://www.gnu.org/software/osip/osip.html

Automatic Test Data Generation: an Overview

• solutions to the resulting constraint systems.

2.5.3.1 Symbolic Testing: Paths and Path Selection

One of the problems traditionally associated with symbolic execution is the selection of

paths to be tested, where a path is generally taken to be a control flow path in the control

flow graph of the program under test. This problem is typified by early work by Clark [63]

and Howden [170], [171] and Voges et al. [310] in which the selection of the path is left to

the user of the system. However, work by Boyer [41] attempted to meet the all-paths

criteria and the majority of latter work attempts to meet the all-branches criteria (e.g.,

Ramamoorthy et al. [268], DeMillo and Offutt [99] and Gupta et al. [146]). Some latter

work is directed at more stringent criteria such as decision coverage (Meudec and Dillon

[104]) and some work uses more “unusual” criteria such as data-flow adequacy (Clarke

[64]) or basis sets (Gupta et al. [145]). However, this type of research represents a small

minority of such work on path selection.

How to deal with loops that depend on input data is a general problem for symbolic

execution. Given that it may not be possible to establish fixed criteria for loop termination

in general, a pragmatic approach such as ensuring that loops are executed zero, once and

twice is often adopted (e.g. Ramamoorthy et al. [268], Girgis [129] and Lee et al. [209]).

The flaw in this approach is that it is possible for the loop to fail on the nth iteration for a

reason such as overflow, underflow or access off the end of some data structure. It is also

common practice to walk though a set of options using switch or case statements with a

loop. In cases such as this limiting the loop to zero, one or two iterations may not even

attain statement coverage.

Other approaches have been taken to the loop traversal problem, most notably by White

and Wisziewski [327], [328] who used analysis of the control flow graph to extract simple

loop patterns forming sets of regular expressions that describe paths that could be taken

though the loop. These were used along with requirements for domain testing [326] to

determine a “minimal” set of tests. White [328] described a tool for performing such an

analysis but this does not appear to have been coupled with a tool to automatically generate

test data.

88 - 220

r i L U i u i i i a u ^ x Ui3 L i ^ a t a a.11 w u i v iv v v

Closely allied with the issues associated with loops is the issue of detecting infeasible

paths. In general determining whether a path can be taken is undecidable because it is

equivalent to the halting problem. For symbolic execution, the problem arises as we are

attempting to locate a set of data that will execute a given instruction; the equivalence

arises because we can replace any arbitrary statement with a HALT statement [153]. The

infeasible path issue has been investigated in a number of papers. For example Woodward

et al. [336] found that for some numerical routines in the NAG library [19] the number of

infeasible paths increases exponentially compared with the number of feasible paths as the

path length in units of a linear code sequence and jump (LCSAJ) increases. Similarly

Gupta et al. [147] found a number of infeasible paths in routines taken from Numerical

Recipes in C [267].

The usual solution to the infeasible path issue is to have the search for test data to halt

after some fixed time period if no data has been found. Indeed, it is difficult to see how

else the infeasible path issue can be addressed in a simple manner. One variant worth

noting, however, was introduced in Gouraud et al. [137] where a time limit was used, but

combined with multiple attempts. This variant was claimed to effective because of the

introduction of a random component in the labelling process of a constraint programming

language (CPL) based system.

Unfortunately the use of time to limit the depth or breadth of a search makes direct

comparisons of efficiency between different techniques difficult because the amount of

computation possible in any period changes over time and because different techniques

require different amounts of work to achieve the same result.

2.5.32 Symbolic Testing: Aliasing

The next issue to be examined is the aliasing of variables, where it is difficult to

uniquely determine the memory location that is being referred to. The most common

occurrences of aliasing occur with array references, pointers references and function calls.

A number of solutions of varying worth have been proposed; however none are

completely satisfactory in that they only solve part of the problem. For example a number

of authors have side-stepped the issue, by solving for one element such as Coward [84],

89 - 220

Automatic Test Data Generation: an Overview

[82] or as in DeMillo and Offutt, two [99], [100] array elements, however this is clearly

unsatisfactory.

Other approaches have been proposed. Clarke [63] proposed complete enumeration of

all possible values, but did not implement this. Ramamoorthy et al. [268] proposed a

system that created new instances of an array whenever an assignment to the array takes

place is introduced. Resolution of array elements is then delayed until after assignments

have been made to the indexing variables.

In a similar vein Goldberg et al. [132], [181] arrays are dealt with via a “symbolic

history list” similar to a stack, representing sequential assignments. These, in turn can be

treated as logical propositions and passed to the theorem prover for resolution. An

alternative method is suggested in [181] where the assignment history is recorded as a

series of disjunctions. However this was considered by the authors impractical because of

the possibly huge number of terms involved.

A more successful approach in general seems to be the use of constraint programming

languages, The method proposed by Nikolik and Hamlet [242] where complex array

indexes are substituted for simple variables appears to be effective if rather involved, but

the process is completely mechanised. Meudec [230] reported the use of a CPL based

system and gives a reasonably complex example of performing insertion sort on an array of

structures; as with [268] the labelling of array variables is delayed until after the labelling

of the index terms. However Medec reported that run time degrades rapidly as the size of

the array increases.

Unfortunately arrays are not the only instances where aliasing can occur. Lee et al. [209]

highlights the issue of aliasing parameters and in practice any large or dynamic structure is

likely to be problematic.

2.5.33 Symbolic testing: syntax versus semantics

Another of the major issues with any symbolic manipulation of programs is that the

values being manipulated are not the same as the values that are manipulated in

mathematical expressions (King [192], Goldberg [133]). For example, relationships such

as associative laws for addition of floating points do not necessarily hold. Consider the

following expression;

90 - 220

z~vlilwiiiciliu x u o i x v a ia v j a u u i i . a n u v u v i u w

a + (b + c) = (a + b) + c

This may not be true if the values of b and c are small relative to a. In this case it is

possible that a + b = a and that a + c = a but that the sum b + c is large enough to affect the

value of a. Worse is the expression;

a + (b - c) = (a + b) - c

This inconvenient property affects different symbolic test generation system in different

ways. For example, King [192] noted that this property precluded the use of many

powerful simplifications. This point is echoed in work based on theorem-proving systems

reported in Goldburg et al. [132] where the absence of the associative property for floating

point variables means that axiomatisation of floating point properties is difficult.

Furthermore it was also noted that the axiomatisation of integer variables in general

assumes that they are unbounded (i.e. overflow is ignored). In many situations this is an

invalid assumption, and in languages with small integer types such as C the wrapping of

unsigned values from their maximum value to zero is often done deliberately by

programmers. Accidental overflow is off course always an issue.

Although the issue of semantics is most critical for symbolic testing approaches that use

theorem proving, it is also an issue in any system where simplification is employed, for

example, in the optimisation of floating point arithmetic in compilers (Goldberg [133]) as

well as issues such as removal of “unnecessary” code such as timing loops. However, to a

large extent the issue is not usually addressed. For example, Clarke [63], Howden [171]

and Bicevskis et al. [35] all mention simplification but do not consider this issue.

Semantics is also an issue in systems that use techniques other than symbolic execution,

for example, in systems that use constraint programming languages or that are based on

Prolog, e.g., the ECLiPSe system [314] used by Meudec [230] and Gouraud et al. [137],

Meudec noted that floating point variables are approximated by rational numbers as they

are for example in Spark Ada (Barnes [26]).

2.5.3.4 Symbolic Testing: Constraint Solving

A number of different techniques have been applied to the problem of solving the

constraint systems that form the path predicates. These can be roughly grouped into three

broad categories as follows:

91 - 220

Automatic Test Data Generation: an Overview

• numeric techniques where standard linear programming optimisation techniques are

employed;

• heuristic based methods, including theorem-proving systems;

• systems that use some form of constraint logic programming.

These three categories are very general and in practice there is considerable overlap,

especially between the latter two. For example, Ramamoorthy et al. [268] employed a

technique described as systematic trial and error, which, as noted previously, was

conceptually similar to the labelling and backtracking mechanism employed in constraint

logic programming based systems. Both Bicevskis et al. [35] and Offutt et al. [250] have

employed domain reduction techniques that also have a similar parallel.

Numeric optimisation techniques suffer a number of problems, chief of which is the fact

that they are usually targeted at finding an optimal solutions to a given problem. Coward

[84] addressed this problem by selecting a technique that could provide any solution.

However, the majority of techniques are not able to obtain multiple solutions. Other

weaknesses associated with numeric optimisation techniques include sensitivity to internal

parameters and the need to form the problem in a linear form (Gupta, Mathur and Soffa

[147]).

The use of methods that are constrained to so that they can only be applied to linear

problems has been justified by reference to work that shows that very few conditional tests

have a non-linear component. For example, studies by White and Cohen [326] suggested

that non-linear predicates may be rare. However, this could be an effect related to the

problem domain of the programs being tested and it is conceivable that in other domains

this would not hold as strongly. For example in engine control systems where physical

behaviour is being modelled, non-linear effects feature quite strongly. Although this is a

specialised application area, one only has to consider that modem vehicles can have tens of

embedded systems on board and the scale of the potential problem becomes apparent.

The second major grouping listed above is rule-based methods, which include both the

use of theorem-proving systems and heuristic methods. Work here has been limited to a

small number of isolated instances, presumably because of the complexity of underlying

systems. Thus, it is difficult to draw any strong conclusions as to the prospects for systems

based around these types of tools.

92 - 220

r i u t u i i i a u v / x i / o i jl/ cixci v j u i i L / i a u u i i . a n w w v i l / w

The final grouping is systems based on constraint logic programming systems. In many

cases, these systems have been built using special purpose libraries that extend the basic

Prolog (Clocksin and Mellish [65]) logic programming paradigm to take advantage of the

inbuilt backtracking mechanisms. Specialised domain reduction systems have also been

constructed by Bicevskis et al. [35] and Offutt et al. [250]. An overview and summary of

how this categorisation maps onto the work cited above is given in Figure 11.

Solving Technique

Numerical CLP Based Rule Based

Linear Programming Numerical Optimisation Theorem Provers

Constraint Solution C o nstraint S atisf actio n Domain Reduction

Boyer [41]1975 King [191]

1976 King [192] ClarkepS] R amamoorthy P68]

1979

1988

1991 DeMilo R9] -► King [193]

1992

Goldburg [132] -► Jasper [181]

1995

1997

1998 Gupta [145] Gotlieb [136]

1999 Lapierre [208] Gupta [146] Offutt [250]

2000 Gupta [147]

2001 Gouraud [137]

Xie [3381

Fig. 11. Summary of the main techniques used in research to find test data.

93 - 220

Automatic Test Data Generation: an Overview

Note that while the division given above is useful in considering how to organise the

work and tease out trends and patterns, it is an artificial construct. For example, if we

consider the subject of constraint programming as a whole then the numeric techniques can

be considered as special purpose techniques for solving specific constraint problems for

example, systems of linear equations. Constraint logic programming systems on the other

hand are more general search systems. Indeed, Apt [20] notes that many constraint solving

systems can be naturally characterised using a rule-based framework. Therefore, Figure 11

can be viewed as a ordering from specific to more general techniques.

2.5.4 Symbolic Testing: Summary

Symbol testing continues to make progress as witnessed by the replacement of specific

techniques for solving numeric problems with techniques that are more general and with

possibilities of hybridisation as shown by Godefroid et al. [131] with the DART system.

The complete failure of random testing here shows the technique has promise. However

problems remain, as noted by Lee et al. [209] and Xie et al. [338], complex data structures

is one area for future research.

Early work by DeMillo and Offutt [99], [100] with mutated code suggests that it also

strongly supports the idea that the technique has a high potential for error detection which

is often missing in studies that concentrate solely on surrogates such as code or path

coverage. Here of course the symbolic execution system has been given additional

information, which is a set of target mutations to kill, or to differentiate from the original

code. The provision of additional information appears to be a strong factor in the success

of the symbolic execution technique, for example Clark [63] used additional constraints to

detect certain types of errors. Likewise Godefroid et al. [131] provided additional

information using co-execution.

This of course has to be tempered by the observations by Howden [169], [171] on the

reliability of the technique. It should also be noted that symbolic testing is also constrained

by some of the problems associated with path based testing in general, i.e., that as with

code based adaptive techniques, Beizer’s [31] comments on missing paths are also

applicable. Howden [170] reports that the technique is partially unreliable for path-domain

errors.

94 - 220

■r\.u iu iucuiu x c sl u a i a u c u c i a u u i i . a u v j v c iv ic w

2.6 Opportunities for Further Research

The preceding sections have been a high level survey of the majority of work that has

been done in the area of automatic test data generation, with the proviso that work based

on formal methods has been excluded. This exclusion has been made because these

methods are not widely used in an industrial setting.

In deciding where to perform further research, a number of factors need to be taken into

account including the following:

• there has to be a clear path towards making a contribution to knowledge, an essential

requirement for the program of study;

• it has to be practical to perform the work;

• ideally, the work performed has to have potentially immediate, useful and practical

application.

The first of these requirements implies that it is possible to make a non-trivial

contribution to the literature in the area where research is undertaken. For example, while

adaptive testing is an attractive area to do research in, at the current time it is an intensively

active research area. As part of a larger research group that had performed work in this

area this would be an attractive proposition aside from the one main issue with the

technique, that it is purely path following and as pointed out in section 2.4.4 not reliable

for missing paths.

The second implies that the tools to perform the work need to be available at low cost or

are able to be built within a reasonable period. This requirement for example makes it less

desirable to work in an area such as symbolic execution. While it would be possible to

build the required tool sets using Prolog and the ECLiPSe in a manner similar to Dillon

and Meudec [104], it is unclear what this would achieve as Dillon and Meudec used

essentially the same code base24 as the work present in this thesis. While a different

approach could be used, for example, using mutation adequacy rather than path coverage

as an acceptance criterion it is not obvious that there would be sufficient novelty to

differentiate any work carried out from either Meudec’s work or from the earlier work of

24 The author of this work made an early version of the Wallace code available to Dillon and Meudec for their study.

95 - 220

Automatic Test Data Generation: an Overview

Offutt et al. [99], [100]. Thus while work on symbolic execution may be possible it

potentially fails the first of the criteria set.

The third criterion given is purely practical. As a practicing engineer with an interest in

software safety, I undertook this program of study to find a technique that could be applied

to the systems that I oversee development of.

The discussion above has ruled out working in two of the major areas of automatic test

data generation. Of the remaining areas, random testing has little to recommend it as a

practical technique compared with hand-generated tests based on results from Frankl and

Weiss [121], Reid [269], [270] Deason [97] and Michael et al. [232]. Likewise, the anti

random testing techniques proposed by Malaiya [219] have little to recommend them and

the work on boundary following discussed in section 2.3.3 is attractive because it offers

strong potential for being useful. However, the limited amount of published literature that

has been located suggests that there may be some hidden pitfalls that are not readily

apparent.

The area that does however appear to be open for some useful work is combinational t-

way test sets generation. There are a number of reasons for this:

• work by Kuhn et al. [313]. [202], [203] on the analysis of real faults discovered in code,

and the observation that for a relatively low factor very good results can be achieved in

practice with automatically generated test sets;

• the limited amount of empirical studies performed is a clear indication that there are

opportunities to make a strong contribution to the field;

• The technique itself meets the criterion set out at the start of this chapter (section 2.1)

that it should be able to be used with information generally available using current

software development techniques.

The next chapter therefore is a more detailed survey and analysis of the available

literature on f-way adequate combinatorial techniques.

96 - 220

V / U i i i u i i i a i u i i a i i ” w a j x

3. Combinatorial £-way Techniques

3.1 Introduction

The literature on combinatorial testing can be divided into two major areas: first research

into techniques for generating t-way adequate test sets and work that evaluates the

technique. The latter area, in turn, falls into two main categories: reports of the tools in

field use and a small body of experimental work conducted under laboratory conditions.

A complicating factor with this classification scheme is that some work falls into more

than one category. For example, Yilmaz, Cohen and Porter [341] could be classified either

as field evaluation or as experimental work because although the paper describes an

experiment, the authors lack control over certain aspects of the experimental design,

specifically what faults are present and the details of the regression test sets used to expose

those faults. Here I have taken the possibly pedantic view that to be classified as

experimental work, all relevant aspects of the work have to be under the control of the

researchers.

This chapter is divided into fourmain sections as follows:

• section 3.2 examines techniques used for generating t-way adequate test sets;

• section 3.3 looks at field evaluation of the techniques;

• section 3.4 examines detailed empirical work;

• section 3.5 considers in detail what weaknesses are present in the work reviewed in

sections 3.3 and 3.4

As with the previous chapter, in each section there is a detailed review of the work

conducted, which is followed by an analysis and finally a summary. It should be noted that

this chapter does not describe t-way adequate test sets and section 2.3.4.1 should be

consulted.

3.2 f-way Test Set Generation

3.2.11-way Generation: Detailed Review

Given that the focus of this thesis is not the generation of f-way adequate test sets this

section examines only a subset of the work on test vector generation in detail. Indeed much

97 - 220

Combinatorial t -way Techniques

of the work is essentially derivative or has lead nowhere (for example Williams [333] work

on integer programming). In practice, the dominant techniques for generating r-way

adequate test sets are based around the principles presented by the AETG algorithm or the

IPO algorithm. This is evidenced by the fact that tools are available for these systems. The

AETG tool itself is provided as a web service by AETGSM Web [91] and Testcover from

George Sherwood [283] provides a similar service. A tool based on IPO (FireEye25) is

available from the web and latter work included in this thesis was performed using a tool

called j e n n y [182], again freely available on the web.

The original methods used for generating t-way adequate test sets used orthogonal

arrays, the simplest examples of which are Latin and Greco-Latin squares. These arrays

can be readily sourced from both books, for example Diamond’s book [101] contains

appendices devoted to their enumeration. In addition, there are databases such as the one

provided by the National Institute of Standards and Technology (NIST)26 that list

orthogonal and covering arrays. However, Williams and Probert [331] list some of the

issues usually associated with employing such arrays for test data generation such as:

• not all factors have the same number of levels;

• not all parameters are independent;

• insufficient Latin squares exist, either because there are too few or no such squares or

because there are more than L+ 1 parameters where L is the number of values.

Given the above, Williams [330] detailed a method for building CA’s from smaller sub

arrays including orthogonal arrays and reduced sections of those arrays as and from special

arrays that they used to “fill” holes that are left over. The technique was implemented in

the TConfig tool and Williams [330] provided experimental results that compared his

technique with the IPO algorithm from Lei and Tai [212], [292]. Although the method

showed an obvious time advantage, there appeared to be no significant gain in terms of the

size of the covering array generated. A construction for a CA(15, 13, 3) from Williams

[330] is shown in Table 7 where R(6,3,3,4) is a OA(n2, n= 1, n) , 1(9,1) contains all ones

25 Available From http://ranger.uta.edu/~ylei/fireeye/

26 http://math.nist.gov/coveringarrays/

98 - 220

http://ranger.uta.edu/~ylei/fireeye/
http://math.nist.gov/coveringarrays/

a j x

and is 9 rows by 1 column in size and N(6,3,l) is an array of the form (n2~n, n, d)

containing a n by d block of twos concatenated with an n by d block of threes etc.

Table 7. Example of the scheme for constructing a covering array from sub arrays from
Williams [330].

OA(9,4,3) OA(9,4,3) OA(9,4,3) 1(9,1)
R(6,3,3,4) N(6,3,l)

In general, the use of existing covering arrays has received less attention than

algorithmic methods for generating the required covering arrays. The area that has received

the most attention to date are algorithms that use greedy heuristics to generate the required

array. Perhaps the most widely discussed of these algorithm is that used in the AETG tool

that was described in a number of papers by Cohen et al. [68], [70], [66], [67]. The

algorithm is a greedy search that attempts to maximise at each step the number of

combinations covered by selection from a large set of randomly generated vectors. The

algorithm for 2-way adequate test sets is outlined below.

Assume test vectors vx. .v._1 exist
UC is the set of all pairs of values not yet covered in the set
FOR N iterations DO

a) select the variable and value included in most pairs of UC
b) select remain variables in random order
c) for the sequence in step b, select the value included in

most pairs of UC
select as v. the vector that covers the most pairs

As stated, the algorithm is quite simple but this belies the complexity of directly

implementing it. A major issue exists in step c where the set of uncovered pairs (UC) needs

to be examined to find the most numerous unused value. Simple search strategies are

unacceptably time consuming and practical solutions encode the pairs and use techniques

such as perfect hashing. For example, the jenny tool [182] would appear to be an

outgrowth of work in this area27. The algorithm as given is also incomplete. For example,

again in step c, it does not specify how to resolve ties, i.e., where two or more values meet

the criteria.

Another algorithm (or rather pair of algorithms) for generating covering arrays was

developed by Lei and Tai [212], [292]. This algorithm which they named In Parameter

27 Information gathered from reading the source code to the jenny program and from other comments on the web site.

99 - 220

Combinatorial t -way Techniques

Order (IPO) avoided the random component in the AETG algorithm. The strategy adopted

was to generate a complete set of 2-way adequate tests for the first two parameters

presented. This minimal test set was then extended one parameter at a time until all

parameters and pairs were covered. The process of extending the original test set involved

“growing” the original vector horizontally by expanding existing tests (horizontal growth)

and selecting the new element to cover as many remaining pairs as possible. If the process

of growing existing test vectors failed to cover all pairs then new vectors were selected to

cover as many remaining pairs as possible (vertical growth). Results in the paper indicated

that efficiency in terms of test cases generated and time required by the IPO tool was

comparable with the AETG tool.

Recently, Lei et al. [211], [210] discuss the extension to the IPO 2-way algorithms to

higher factors i.e. t-way adequate sets of test vectors. These papers were notable for the

depth of discussion on the problem of being able to efficiently identify and remove from

further consideration pairs, triples etc. As noted above, this issue appears to be the

determining factor in the speed at which the algorithm can operate.

100 - 220

v ^ u iiiU iiia L u iia i i-way x cuim iLjut/O

Variables —>
V l 4 - - 1 4 6 - 1 4 6 - 1 4 6 - 1 4 6 -
e l 5 - - 1 5 7 - 1 5 7 - 1 5 7 - ■ 1 5 7 -
c 2 4 - - 2 4 - - 2 4 7 - 2 4 7 - 2 4 7 -
t 2 5 - - 2 5 - - 2 5 - - 2 5 6 - 2 5 6 -
o 3 4 - - 3 4 - - 3 4 - - 3 4 - - 3 4 6 -
r 3 5 - - 3 5 - - 3 5 - - 3 5 - - 3 5 - -
s
4 (a) (b) (c) (d) (e)

1 4 6 - 1 4 6 8 1 4 6 8 1 4 6 8 1 4 6 8
1 5 7 - 1 5 7 9 1 5 7 9 1 5 7 9 1 5 7 9
2 4 7 - .2 4 7 A 2 4 7 A 2 4 7 A 2 4 7 A
2 5 6 - 2 5 6 - 2 5 6 8 2 5 6 8 2 5 6 8
3 4 6 - 3 4 6 - 3 4 6 - 3 4 6 9 3 4 6 9
3 5 7 - 3 5 7 - 3 5 7 - 3 5 7 - 3 5 7 8

(f) (g) (h) (i) (j)
1 4 6 8 1 4 6 8 1 4 6 8
1 5 7 9 1 5 7 9 1 5 7 9
2 4 7 A 2 4 7 A 2 4 7 A
2 5 6 8 2 5 6 8 2 5 6 8
3 4 6 9 3 4 6 9 3 4 6 9
3 5 7 8 3 5 7 8 3 5 7 8
3 5 6 A 3 5 6 A 3 5 6 A

2 - - 9 2 4 7 9
1 - - A 1 4 7 A

(k) (1) (j)

Fig. 12. Example of the IPO generation process for four variables with 3, 2, 2 and 3 values,
(a) shows the initial state with all pairs for the first two parameters, (b) to (f) fill in values
for the third parameter and (g) to (1) add values for the final parameter. All operations in

(b) to (j) involve horizontal growth. In (k) to (1) vertical growth is used to give coverage for
the remaining uncovered pairs for parameter one and parameter four.

3.2.21-way Generation: Analysis

The upper limit is represented by a test set generated by taking all combinations of n

variables with v values taken t at a time where t is usually between two and six. There the

number of pairs, triples etc. at the upper limit can be readily calculated. For example, the

number of pairs is given by the following equation:

101 - 220

Combinatorial f-way Techniques

i<N- 1
j<N

E v , V j

Where N is the number of variables and and ^ are the number of distinct values that

have been selected for use by variables i and j. Thus, if three values - for example, the

minimum, the middle and the maximum had been selected for the first variable then

would be three. If the variable was an enumeration with five values, and all values were

used then v-j would be five. Thus, for these two variables there would be 15 pairs.

Extensions to higher factors are straightforward but it can be seen that the number of pairs,

triples etc. that have to be dealt with grows quickly. However, not as quickly as all

combinations, which requires that every combination of values be selected which is given

by the following formula (Grindal et a l [139]);

However, what is not obvious is the number of vectors that are required to cover all pairs

etc. as each vector will cover multiple pairs. Cohen et a l [67] showed that the bound for

the number of test cases N for a covering array of degree t is logarithmic in the number of

parameters k, and provide a constructive proof for t = 2. Lei and Tai [212] proved that the

problem of generating a minimum pairwise test set is NP-complete. Using curve fitting Tai

and Lei [292] estimate that for systems with 10 variables and between 5 and 30 values (v =

5.. .30) for t = 2 the number of test vectors required to cover all pairs is 0(v2) for their IPO

Colboum, Cohen and Turban [79] presented a detailed analysis of the bound on the size

N of the covering arrays provided by Cohen et al. [67] for the number of parameters k. To

meet the logarithmic bound, they showed that it is necessary only to have a method that

covers the average number of uncovered pairs. An algorithm was constructed (DDA) to

strategy.

102 - 220

ensure this behaviour that was based on the “density” of uncovered pairs this being taken

as a surrogate for expected number of new pairs to be covered.

There are a number of different variations on the basic AETG algorithm (Cohen et al.

[67]). For example, Tung and Aldwan [305] described work that used similar principles to

the AETG tool, but that had a lower reliance on random parameter and value selection.

Specific differences included sorting parameters on the cardinality of the values, taking the

largest value first rather than using random selection, and always selecting for the least

used values when a tie in the number of new pairs covered occurred. However, in general

this approach did not produce test sets with sizes that vary significantly from those

produced by the AETG algorithm.

Bryce, Colboum and Cohen [46] extended the work in [79] to build a general framework

that encompassed a whole class of greedy generation algorithms including AETG [67],

TCG [305] and DDA [79]. The framework was used to generate large numbers of CAs and

MCAs with varying parameters in order to statistically investigate which features had the

most effect on the size of the generated test set. The results indicated that it is the lower

level decisions that had the most effect. In particular the value selection decisions (inner

loop) and, to a lesser extent, the parameter selection criteria appear to be dominant.

Recent work that investigated extensions to the basic test generation process, notably the

work led by Colboum and Bryce [79], [43], [44], [45] on test generation prioritisation that

used weights and the work by Cohen et al. [74], [73], [75] that added constraints to the test

set generation process is of interest to this discussion. Notably they reused the basic AETG

generation structure, extending it rather than replacing it. This suggests that, for the

foreseeable future, AETG-like techniques may remain the dominant generation tools.

3.2.3 t-way Generation: Summary

Original research in this area appears to have been motivated by a desire to improve the

testing processes. This has resulted in a number of workable, if less than perfect,

algorithms and systems that create sets of vectors up to small t factors, e.g., AETG from

Cohen et al. [67] and IPO and its latter derivatives by Lei et al. [211], [210]. Interesting

work has also been done with other techniques such as metaheuristic search methods and

the inclusion of several algorithms in one framework by Colboum et al. [79]. However,

103 - 220

Combinatorial t -way Techniques

some of the work appears to have been conducted more from academic curiosity than

practical necessity. For example, work with integer programming by Williams [333] and

more recent work using SAT solvers by Hnich et al. [160], [161] and Yan and Zhang

[340].

Research in this area has perhaps also been slightly blindsided in the drive to construct

smaller sets of test vectors for factors of t = 2 and t =3, and although improvements have

been made they are often marginal. Given the early indication from Wallace and Kuhn

[313] that higher factors, e.g., t =5 or t = 6 and hence much larger tests may be required in

practice, focus should perhaps have been directed sooner towards more “real world” issues

such as those investigated in the latter work on weighting and constraints.

The work on weighting by Colboum and Bryce [79], [43], [44], is interesting but needs

further development. For instance, one of the stated primary goals is to generate test

vectors that cover as many high t-way interactions as early as possible because this, it is

assumed, will also reveal the most errors as early as possible. Although this reasoning

appears to be sound and it is known that some errors require high factor tests, the

assumption that generating these early will also result-in the majority of errors also being

discovered early is untested as yet and requires empirical evaluation.

The value of the extensions to greedy algorithms introduced by Cohen et al. [74], [73],

[75] that incorporate hard constraints on what vectors can be legally generated is less

ambiguous and represents a real contribution to the field.

3.3 Field Studies

3.3.1 Field Studies: Detail

Perkinson [263] studied several different strategies for testing an integrated services

digital network (ISDN) system and described a number of techniques that were applied for

generating effective test sets smaller than those required for exhaustive testing (181k test

cases). Three methods are discussed briefly: defaults with user control where the tester

selected additional paths and conditions, guided walk where a single parameter is

automatically altered on each test , which has strong similarities to the base choice

104 - 220

v^uiiiuJLiiaiuiiajL i - w a y x c^inxn^u& a

technique defined by Ammann and Offutt [9], and the proposed use of orthogonal arrays.

The last method is suggested to deal with a problem encountered with the other two

techniques, namely that they were “not robust in terms o f parameter coverage

Brownlie, Prowse, and Phadke [42] performed system testing on the AT&T

PMX/StarMAIL system using the Orthogonal Array Testing System (OATS) which is

described in Harrel [158] and that built on work from Mandl [220]. They compared

expended effort with the expected effort required for conventional testing where the test

plan is constructed by hand. In terms of time, the authors suggested a 3:1 efficiency ratio in

favour of OATS and in terms of faults detected they estimated that OATS was 2.6 times as

efficient as conventional testing28.

Unfortunately while interesting and suggestive these two papers (Perkinson [263] and et

al. [42]) provide too little evidence to be really valuable.

Burroughs et al. [51] described a protocol testing application that used covering arrays

generated using the Automatic Efficient Test Generator (AETG) tool developed by Cohen

Dalai and Patton [68]. The paper compared the size of test set generated using the ATEG

tool with test sets generated using two more traditional strategies and compares the 2-way

coverage of interactions manually. The authors concluded that the modified AETG tests

are superior in terns of breadth of coverage, i.e., that no significant holes were left.

Interestingly, the authors reported that they chose to modify the AETG generated test sets

to obtain a better balance, which seems to contradict their conclusions.

Cohen et al. [68] presented information on use of the AETG tool on two releases of

production software where it is reported to have found more faults than standard test

techniques. However, the researchers did not specify what the standard techniques were

used so it is difficult to draw any strong conclusions. These results appear to be derived

from earlier work (Cohen et al. [69]) that is covered in detail in section 3.4.2.

Two papers by Dalai et al. [93], [92], examined the use of the AETG system for high

level, requirements based testing of production systems at Bellcore. In general the results

were positive and for some of the failures detected the authors concluded that they would

28 Unfortunately, in common with much on field testing exactly what “conventional” testing comprises is not explicitly

defined.

105-220

Combinatorial t -way Techniques

only be revealed with certain combinations of factors. A large proportion of both of these

papers were devoted to discussion of the issue of data modelling. That is of construction of

models of the systems to be tested that are needed so the AETG tool can be used to

generate the test sets. Data modelling appears to be a non-trivial issue with several of the

models requiring several iterations to obtain a satisfactory result.

A number of advantages and weakness associated with the use of the AETG tool set

were identified in these two papers. Major advantages were that:

• the models coupled tests to requirements [92];

• the ease with which the data models could be generated and iterated [92];

• the ability to regenerate models in response to change [92].

On the down side Dalai et al. also noted that there were issues with the following:

• that testers needed to have development skills and required domain knowledge to be

effective [92]29;

• the development of test scaffolding dominated effort in at least some cases [93];

• there was an oracle problem, i.e., it was sometimes difficult to analysis the large amount

of output generated, and that automated tests were in some case more difficult to

understand than hand-crafted tests [92].

All of the above suggests that the human aspects of testing are still a significant issue

and that the tools alone may not be sufficient without intelligence to guide them.

Burr and Young [50] reported the use of the AETG tool for testing an email system

against requirements derived from a standard. Notably, the standard was expressed in

terms of Backus-Naur Form (BNF) and the test process involved the translation from BNF

to AETG constructs. Results were given in terms of percentage code coverage attained30,

approximately 93% for block (statement) branches. However, what is interesting in this

work is how the coverage increased from only 50% block/branch coverage over the course

of the project as the AETG data model was developed. A comparison between AETG

29 However it should be noted that in the authors experience this is usually the case. The distinction here being possibly

the use of a separate test department.

30 Normalised for blocks that could be covered, much of the code proved unreachable as it was designed to deal with

failures.

106 - 220

\—uxxxuxxxaiuxxax x - w a y x t^xxuxL ju^d

generated test sets and test sets generated via conventional techniques and default value

testing (i.e. base choice [9]) is shown, with the latter two techniques attaining only 85%

block and branch coverage.

Pan, Koopman and Siewiorek [258] described an experiment that applied all possible

combinations of parameters to automatically test for robustness faults in POSIX API

function calls on 15 different implementations. Faults were detected when the process

hung requiring a task to be killed, or aborted which caused an abnormal termination (core

dump). While the process is not directly applicable to less catastrophic faults, these results

indicate that in some circumstances massive sets of tests can be applied. However, of

particular interest to the work in this thesis is the finding that for the events being

generated, single parameter failures accounted for over 80% of the failures observed.

Unfortunately percentages for pair, triples etc., were not provided.

Smith et al. [287], [286] discussed the use of two combinatorial techniques for testing

the Remote Agent experiment (RAX) planning system, which formed part of NASA’s

Deep Space 1 program. The two techniques used were 2-way adequate test sets and a

technique they termed all-values, the second of these techniques again appears to be

identical to the base choice technique from Ammann and Offutt [9]. The effectiveness of

the two techniques is measured against the total set of faults discovered during

development and is classified in four areas according to where the fault was located. In this

work, the base choice technique outperformed 2-way adequate test sets in all areas, and by

substantial margins. However, the test sets also seem to have been complementary in that

they revealed different faults. For the convergence and correctness aspects of the RAX

planner the authors reported that 88% of the total known errors were found using a

combination of base choice and 2-way tests but that only 50% of the faults for the interface

and engine control software were revealed by these techniques. The authors do not suggest

a reason for this discrepancy.

Huller [173] discussed system testing to reduce both the time and cost of delivering

product and claimed a 70% reduction over conventional quasi-exhaustive test suits

generated by hand. However, they admitted that verification of this claim would be

difficult in practice. The technique used was based on manually generating the required

combinations and was a variant of Lei and Tai’s [212], [292] IPO algorithm that was

107 - 220

Combinatorial t -way Techniques

optimised by including the parameters with the highest number of values first to reduce the

number of vectors generated31.

One set of “field studies” of special interest is a large series of studies all of which

involve Richard Kuhn, that examined real world system failures and classified the variable

interactions that caused the activation of the faults that lead to those failures. Wallace and

Kuhn [313] looked at software failure modes in data collected by the Federal Drug

Administration (FDA) that involved the recall of medical equipment over a 15 year period.

They concluded that the majority of failures involved only two variables and that only a

small number involved three or four and that, therefore 2-way adequate test sets would

have detected the majority of the failures.

Kuhn and Reilly [202] examined the Mozilla and Apache open source projects using

their bug tracking databases to determine the number of conditions required to trigger the

fault. Finally Kuhn, Wallace and Gallo [203] performed the same analysis on a large

distributed system being developed by NASA. In both these cases, the results mirrors those

from the earlier FDA study, indicating that in practice, a “small” t factor of between four

and six would have been required to reveal all the faults reported.

Table 8. Results for Kuhn and Reilly [202] and Kuhn et al. [203] showing the required t-
way adequacy to locate all known faults. Data from the TCAS experiment, Kuhn and Okun

[201] is in the last line for comparison (see section 3.4.1).

System Studied t - 1 t = 2 t = 3 t = 4 * = 5 t = 6
Mozilla cumulative faults % 28 76 95 97 99 100
Apache cumulative faults % 41 70 89 96 96 100

NASA GSFC % 68 93 98 100 - -

TCAS Experiment % - 53 74 89 100 -

It should be realised, however, that the term small is relative. A small t factor can easily

translate into a very large number of vectors. For instance Kuhn and Wallace [203]

suggested that “then a small multiple o f10,000 tests would be needed to cover all 5-tuples”

(pg. 420). Dealing with this number of tests is non-trivial. Kuhn, Lei and Kacker [204]

suggested that the solution to this problem might be to use “formal” models of the system

under test and a model checking paradigm as automated oracles. However, this leaves open

31 Small scale experiments using IPO showed similar results.

108 - 220

ûxxxuxxxcuuxxax i - w a y xcuxxxxx4 ucs

the question of how to verify that the model is correct compared with the real world rather

than just internally consistent.

The study presented by Yilmaz, Cohen and Porter [341] is interesting precisely because

exhaustive testing was performed. The faults examined were associated with build options

for the ACE+TAO open software toolkit for building distributed applications. The primary

thrust of the work was to examine the effectiveness of building fault classification trees

from failure information by comparing the performance of t-way adequate test sets with

results from exhaustive testing. The researchers found that for the full set of faults 2-way

sets performed poorly compared with exhaustive tests. However, for a reduced set of faults

that were considered to correlate strongly with build options, t-way adequate sets

performed almost as well, with higher factor sets becoming more accurate at classifying

faults. Impressive time savings were observed, one day for 2-way test sets versus a year for

running the exhaustive test. A comparison with randomly generated test sets was also

performed. This found that r-way adequate test sets found slightly more failures than the

randomly generated test sets, with less variability in the number of failures located and

produced more reliable models, i.e., without extraneous features. The paper did not define

what it meant by failure or how failures were recognised. However, earlier work by

Memon et al. [229] suggests that failures were recognised by running a large set of existing

regression tests written by hand.

Bell and Vouk [32] reported on the fault detection effectiveness of applying 2-way

testing to two security products with known errors and found that the number of faults

detected was strongly related to the amount of expert input used to define interactions

between the parameters.

3.3.2Field Studies: Analysis

Data from field studies does not present a consistent view of whether the combinatorial

techniques for generating test sets are useful. Early studies suggested that efficiency gains

or other advantages can be made with using the technique Perkinson [263], Brownlie et al.

[42], Burroughs et al. [51] and Huller [173] but provided little in the way of hard evidence.

Therefore, these studies can only be taken as an indication that further investigation would

be worthwhile. Likewise, the studies by Cohen et al. [68], [70], [67] suggested that the

109-220

Combinatorial t - way Techniques

method might be effective but the results are somewhat scattered and the original technical

report on which the work was based on gives a better view and is dealt with in section 3.4.

Burr and Young [50] provided more concrete evidence of the utility of combinatorial

testing versus the other methods examined but results were for coverage alone and not

conclusive.

Perhaps more interesting are the results from Smith et al. [287], [286] that indicated that

2-way testing (pairwise) was not always effective. The poor performance of 2-way test

verses other techniques, i.e., base-choice indicates that further work needs to be done.

In a similar vein to the generally negative assessment above is comments by Dalai et al.

[93], [92] and Bell and Vouk [32] commented that the production of good data models is

not a trivial task and that it requires expert input. This is counter to some advice proffered

in recent books on testing such as Copeland [81] whose advice is to “determine the number

o f choices for each variable” (pg. 71) and Kaner, Bach and Pettichord [187] who advise

that values be selected by domain partitioning. A more recent text by Ammann and Offutt

[8] provides more complete advice and suggests several different ways in which the input

domain can potentially be modelled.

The most impressive set of studies in this group for consistency of results are those that

have determined the number of variables required to trigger an actual observed failure in

the software. The series of studies involving Kuhn, Wallace, Reilly and Gallo [313], [202],

[203] provide the best evidence available that supports the proposition that combinatorial

techniques are a useful means of generating effective test data.

This idea is further supported both by the work of Pan, Koopman and Siewiorek [258],

who observed that the vast majority of failures involved only a small set of values and,

more strongly by Yilmaz, Cohen and Porter [341] who directly compared the effectiveness

of both 2-way and 3-way adequate test sets against complete testing.

However, it needs to be noted that there is a major difference between the conclusions

presented by Kuhn et al. and earlier work. Prior to these studies, all authors have examined

pairwise (2-way) testing, yet the studies by Kuhn et al. suggest that we need to do more

work than this in suggesting that examination of factors up to six may be necessary with a

corresponding increase in the number of vectors generated.

110-220

^ u i i i u i i i a L u x x c u i - w a y jl t u x i i i n ^ u v ^ a

3.3.3 Field Studies: Summary

The field studies examined (in particular, the early work) have one great weakness, and

one great strength. The weakness is a lack of comparative data in the studies reported by

Perkinson [263], Brownlie et al. [42], Burroughs et al. [51], Cohen et al. [68], Dalai et al.

[93], [92] and Huller [173]. Latter work is far better in this regard. However, the early

work did serve to raise the profile of combinatorial testing and interest in its application.

The strength of the work presented here is that it draws attention to the difficulty of

applying combinatorial testing in a completely satisfactory manner, as high-lighted above

in the comments from Dalai et al. [93], [92] and Bell and Vouk [32].

However, the work that really stands out is the body of work presented by Kuhn,

Wallace, Reilly and Gallo [313], [202], [203] which puts practical bounds on what can

potentially be achieved by applying t-way adequate testing independently of actually

applying the technique.

3.4 Empirical Studies

3.4.1 Empirical Studies: Detail

The technical report by Cohen et al. [69] covered a substantial amount of ground,

including three sets of experiments; testing data input screens to a database; testing a group

of ten UNIX commands, and additional testing on database screens to study fault detection.

The first section tested three input screens and for one reported a comparison of

coverage metrics for several generation techniques including 2-way and 3-way

combinatorial generation, random generation, and a technique they termed “default

testing" which appears identical to the base choice technique proposed by Ammann and

Offutt [9]. Although complete results for only one screen are reported, all the techniques

were capable of producing around 90% block coverage except for random testing. The

results for Unix commands are shown in Table 9. As can be seen, these showed a slight

advantage to 2-way tests over the base choice technique (shaded cells). It was stated in the

conclusions that 3-way test sets showed no gains over the 2-way (pairwise) test data.

111-220

Combinatorial r-way Techniques

Table 9. Results for block and decision coverage for the ten UNIX commands
experimented on in Cohen et al. [69] using 2-way (AETG) adequate tests and base choice

test sets (BC).
Comm and AETG

block
BC block Difference AETG

decision
BC

decision
Difference

sort 95 86 9 86 75 11
basename 100 86 14 100 94 6
cb 96 86 10 89 89 0
comm 98 97 1 90 87 3
crypt 92 92 0 90 90 0
sleep 100 100 0 100 100 0
touch 86 71 15 81 68 13
tty 100 100 0 100 100 0
uniq 100 98 2 98 91 7
wc 100 79 21 91 63 28

Unfortunately, the work in Cohen et al. [69] was aimed at determining whether 2 and 3-

way tests gave good coverage rather than at comparing techniques. Consequently, although

reasonably good coverage was demonstrated nothing can be said about how well this

compares against a conceptually simpler32 technique such as random testing.

Dunietz et al. [106] compared the code coverage of random experimental designs

without replacement with the coverage obtained from systematic designs with the same

number of vectors. They concluded that for block coverage, low factor (i.e. 2 or 3) t-way

designs could be effective if it was necessary to keep the number of tests to a minimum.

Higher factor tests produced results which were more reliable but at the expense of

executing far more tests. Furthermore, results for path coverage, probably a more complete

indicator of test quality, strongly favoured higher t factors (4 or 5).

Nair et al. [239] investigated random testing without replacement and no partitioning

versus partition based testing and showed that, in general partition testing should be more

effective. The particular case of partition testing that they investigated - an application of

f_way experimental design - showed that the probability of detecting a failure for simple

random testing was significantly lower than with partition based techniques. It is

interesting to note that this paper is sourced from the literature on statistics rather than

from the literature on computer science. The authors pointed out that partition testing can

32 This is not to suggest that actually constructing random test sets is simple from a implementation perspective. Both the

data space can be difficult to deal with as reported by Bird and Munoz [36] and random number generation is far from

trivial as reported by Wichmann and Hill [329].

112-220

\^uiuuinciiuiicii i - w a y xcc-imiqucs

be considered a case of stratified sampling and that they also wrote “it is well-known in the

statistical literature that stratified sampling enjoys many advantages over simple random

sampling”33 (pg. 168).

Kobayashi et al. [197] examined the fault detecting ability of specification based

(Weyuker, Goradia and Singh [322]), random, anti-random (Malaiya [219]) and t-way

techniques when applied to the testing of logic predicates against mutations of those

predicates. Specifications for logic predicates taken from Weyuker et al. [322] for the

TACS II aircraft collision avoidance system contain between 5 and 14 variables. The

authors concluded that 4-way tests were nearly as effective as specification techniques and

better than both random and anti-random test sets. The authors also specifically noted that

2-way tests did not perform as well as expected or as well as reported in previous studies

such as Dunietz et al. [106].

Grindal et al. [138] [139] examined the fault detecting power of a number of different

combinatorial strategies including 1-way (each choice), base choice (a single factor

experiment), pairwise (2-way) using the AETG algorithm and 2-way using orthogonal

arrays. Their experimental work was performed on code seeded with hand-generated faults

used in defect detection studies by Kamsties and Lott [186]. The data they obtained for

branch coverage is consistent with other experimental results. However, after examining

the data in detail, the authors concluded that code coverage methods might also need to be

employed. As in [286], the authors found that the base choice technique performed as well

as orthogonal arrays and 2-way adequate test sets in three out of five problems. However,

it is interesting that no technique detected fewer than 90% of the detectable faults, which

suggests that the target code was perhaps not ideal for the experiment.

33 They also commented that “for any given partitioning of the input domain, gains in efficiency can be achieved by
judiciously choosing the test allocation scheme. The importance of doing this does not seem to be fully appreciated in
the software testing literature''' (pg. 168).

113-220

Combinatorial t - way Techniques

Table 10. Summary of the functions used by Grindal et al. [138] in testing combinatorial
testing strategies.

Program Functions Lines of
Code34

decisions global nesting

count 1 42 8 0 4
token , 5 117 22 4 3
series 1 76 10 5 2
nametbl 15 215 21 5 3
ntree 9 193 34 0 3

Schroeder et al. [277] examined effectiveness in terms of code coverage for t-way versus

“random selection” (actually a random design) with replacement on code with hand seeded

faults. Although this experiment produced results that broadly support the results from

other experimental work, each technique only detected between 45% and 55% of the

injected faults. Furthermore, it was also found that values for t greater than four were

required to reveal some faults. The researchers also concluded that t-way test sets were no

more effective than test sets constructed using random designs for sets of the same size.

Kuhn and Okun [201] examined the almost ubiquitous TCAS program introduced by

Hutchins et al. [174] and the ability of £-way adequate test sets to detect seeded faults.

They found that there was an increase in the number of faults detected as t increased until t

= 5. However, the size of the test sets reported, i.e., that t = 5 has 4200 vectors and t = 6

has 10902 - suggested that first, determining the correctness of a response could be

difficult or perhaps impossible without the formal model that they used, and second that

randomly selected values could have performed as well. However, whether randomly

generated tests would be effective was not investigated.

Hoskins et al. [166], [167] investigated the ability of MCA covering arrays and D-

optimal designs to approximate full factorial designs. A full factorial design is one “in

which every setting o f every factor appears with every setting o f every other”35 [12]. Note

that here “every setting” refers to every selected level of a factor, not every possible level.

D-optimal designs are algorithmically derived designs for specific models, that are

34 It is not stated whether this total lines of code, or lines of executable code.

35 Section 5.3.3.3 of the NIST e-Handbook of Statistical Methods [12]. Note that the electronic handbook does not

contain page numbers.

114-220

v u m u m a i u j L i a i r v Y a j x v /V /ix iiiiju c /o

commonly used when other experimental designs are not appropriate, and have a well

established record. The authors concluded that covering arrays are “competitive” with D-

optimal designs in approximating full factorial designs.

3.4.2Empirical Studies: Analysis

Table 11 summarises the techniques that different empirical studies have applied to code

when evaluating t-way techniques, a “y” in a cell indicates that that the technique specified

in the first row was applied. Unfortunately, there is less overlap between the studies than

first appears. For example, several authors reported the use of “random testing”. However,

Nair et al. [239] and Kobayashi et al. [197] use random testing without replacement where

as Schroeder et al. [277] applied random designs from partitioned values without

replacement and Grindal et al. [138] and Kuhn and Okun [201] ignored random testing

completely.

Table 11. Summary of techniques that have been investigated to determine their fault
revealing capability.

Study Random Anti-
Random

i-
way

Base
choice

t - 2 t - 3 t = 4 ***. ii to t = 6

Cohen et al. [69] y y ■v y y y
Dunietz et al.
[106]

y y " y ' y"
Nair et al. [239] y y
Kobayashi et al.
[197]

y y y ; ■ : y yt:/
Grindal et al.
[138]

i y . - y - ■ ■y
Schroeder et al.
[277]

y y y :■ y |
Kuhn and Okun
[201]

y y ; Jy \ y

The level of factor coverage also varied quite widely between studies and although some

have used high values (t >= 4), only Dunietz et al. [106] and Kuhn and Okun [201] have

used values of five or greater. Given that examination of field data in field studies by

Kuhn, Wallace, Reilly and Gallo [313], [202], [203] suggested that that values of t = 5 or t

= 6 are necessary for the reliable discovery of all faults present, this is perhaps unfortunate

115-220

Combinatorial t -way Techniques

albeit completely understandable since the early empirical studies were conducted before

these field studies were undertaken.

The data shown in Table 12 provides summary data for the subject programs used in the

empirical work described above. As before, the first column is the reference for the study.

The second column is a summary of the type of program that the study was undertaken on

and the third column, “lines” provides an indication of the scale of the study and the

column “factor” is the maximum level of interactions the test sets were adequate for. The

column “block coverage” is the percentage block coverage reported. The column “faults”

is the number of faults injected in the subject code for those studies that examined fault

detection and the next column “detection” is the percentage of those faults that were

detected or where reported, a range. The final column indicates the level at which the

testing was conducted and is an educated guess based on comments as this was not

explicitly stated in any of the papers.

116-220

Ta
bl

e
12

.
Su

m
m

ar
y

of
tes

t
su

bj
ec

t
fe

at
ur

es
,

for
 t

he
ma

in
ex

pe
rim

en
ts

re
vi

ew
ed

in

se
cti

on

3.
4.

S2
JO
♦ J _
03 a>.a >£3 V fade

a>G

£ #
8 - 8 . c —1 eg I ' t M
^t- g ON

a.

3egfa

a»
fclN

g &
5 © u

I*o4->CJa>

S -o■*->
CJegfa

eg£
I

C N

a
"w
CD

T 3

S
O

T 33
eg

eg£i
<N

fas
eg
X
fa

Vi
Vi
<Dcfl O

C o
U c
m «5

jd
eg
a
•o
(D
S-Hfa

Ocs

c , *o
eg X C&*s g
faw |m o

S ° 2 o
W> t i 2 «
a , . f a

ca

>>
T 33
CO

" a

3
CD

4 3
o ON

U
NO

NO
O

£g O n

S3 2: 2L

o
(N

3
o

T 3

§
in
oo

23
Gog
ffi
T 3accS

C /3
<d
£3o•“5

T3
<D
Go(fa
(D
J-c
CDbfleg»-i
CD>oo
co
O
CD

T 3
CD43

CD
-4—>o
£

oo

3i
<d

CDO
5-c

43ooo
V - i

2
X3
CD
t5O
(f a
CD
V-c
C /3
CD

•S
«4-lo

J-l
(D

' I33£3
(D43H

T 3
(D•4—>
c3

CD

00cn

2
£3
•c
a

j-h

2
CDW)
eg
i-4
CD
>Oo
44oo3

ccJu
OX)o
s-l(fa

00
<
uH

CD

egC/3
(D

43•4—>

T3
CD
C /33
O

43
£

eu
Vi
£
CDVhT3
£3<

Table 12 shows several interesting features that will be discussed further in the

following sections. First, it shows how the emphasis has changed over time from

demonstrating coverage to measuring fault detection. Second, there is less variety in the

programs being tested than is desirable. Finally, although the coverage results are good and

consistent, the data on fault detection are more ambiguous and in addition, given the third

point, an additional subsection that considers the nature of the faults being tested and,

finally, a subsection on program size.

3.4.2.1 Emphasis

The emphasis in empirical testing work has clearly changed over time, from

demonstrating that the technique can achieve good coverage to showing that it is effective

at detecting faults.

The principle reason for wanting to demonstrate that good coverage can be achieved is

the a priori assumption that good coverage is indicative of good fault detecting ability.

This assumption is supported by empirical work from Piwowarski, Ohba and Caruso [265]

and from Wong et al. [335]. However, it needs to be kept in mind that although coverage is

a necessary condition for fault detection, it is not a sufficient condition as observed by

Weyuker [324].

If the view that coverage begets good fault detection were correct in an absolute sense

then one could expect that for software tested to the highest coverage criteria levels we

would see no errors. For example, avionics software which is covered by the DO-178B

standard [14], requires MCDC coverage (Chilenski and Miller [60]) at the highest levels.

However, despite claims of its effectiveness, there are more sceptical evaluations such as

Bhansali [34] and we do in fact see faults in software in flight critical software (i.e. Class

A) as noted by Shooman [285].

From this perspective, the shift to directly examining fault detection rather than coverage

is welcome.

3.4.2.2 Variety

Another weakness in the empirical research conducted to date is that there appears to be

very little variety in the types of programs tested. For example, Cohen et al. [69], Dunietz

Combinatorial r-way Techniques

et al. [106] and Nair et al. [239] all examine data input processing “screens”. It seems

plausible that these may have all been taken from the same or at least similar systems as all

of these papers have close ties with AT&T and Bell Labs, as does much of the work in this

field. Unix commands or Unix-like commands are studied in both Cohen et a l [69] and

Grindal et al. [138], and both Kobayashi et al. [197] and Kuhn and Okun [201] have based

their work on the TCAS system, although Kobayashi et al. concentrated on the

specification and Kuhn and Okun on actual code. Schroeder et al. [277] broke this pattern

and used two “production” programs that they had direct access to. However, they only

tested a sub-section of each program.

3.4.2.3 Coverage and Detection

Although good coverage results (e.g. greater than 80% blocks) seem to be universally

reported, there is less consistency in the results for fault detection. Some authors - for

example, Kuhn and Okun [201], Grindal et al. [138] - have obtained good results on fault

detection, and Smith et al. [286] reported one set results consistent with these two afore

mentioned experiments. Other authors have seen less success, i.e., Schroeder et al. [277]

reported that only 50% to 60% of faults were detected. Results from Kobayashi et al. [197]

are mixed, ranging from approximately36 44 to 100% fault detection with the mean around

81%. Smith et al. [286] also reported poor results with one particular class of fault,

interface faults. Here their results were consistent with those reported in Schroeder et al.

[277].

3.4.2.4 Faults

There are several confounding aspects to those studies based around fault detection that

have reported good results. As stated above, Kuhn and Okun [201] offered no comparison

to the technique that they used (i.e. there was no control) so it is open to speculation

whether any other technique, e.g., random testing, would perform as well. Similarly,

Grindal et al. [138] reported that all the techniques reported good results so the detection

of defects on its own is in itself not good evidence that the technique is effective. It is

36 Figures were estimated from the histograms presented in the paper.

119-220

Combinatorial t -way Techniques

possible that in this case at least the faults may have been too simple to truly stress the

techniques applied.

We also have to consider the possibility that the sets of faults examined may not be

consistent with real faults or that they are distributed in a different manner to real faults.

The majority of studies inserted faults by hand, i.e., Kuhn and Okun [201], Schroeder et a l

[277] and Grindal et a l [138] who took the existing set of faults from Kamsties and Lott

[186] and added additional “mutation like” faults by hand. Only Kobayashi et a l [197]

used a systematic technique, namely mutation. Interestingly, these authors observed

different fault detection rates to the study by Kuhn and Okun [201] for similar “code”.

Whether or not this variation in how faults are inserted introduces a bias in the results

has been investigated by Andrews, Briand and Labiche [11] who compared the fault

detecting ability of existing test set suites against both code with hand inserted faults and

code that had faults inserted by a mutation tool. In general, they found that automatically

generated code mutants tend to be easier to detect than hand seeded faults. For the one

program that had a set of known actual faults there was little difference in the difficulty of

detection between these and faults introduced by mutation.

Closely associated with how faults have been inserted, is the number of faults that have

been included. For example, Kuhn and Okun [201] used 41 faults (versions) in the TCAS

program whereas Kobayashi et a l [197] used 327 for one single predicate from the TCAS

specification. Indeed the contrast between the success rates reported by these two groups

on similar problems37 raises some doubts on general applicability of the results in Kuhn and

Okun [201]. Even taking into account that fact that Kuhn and Okun used higher factor tests

than Kobayashi et a l [197] (6-way versus 4-way) this does not completely account for the

differences between the two sets of results. The same observation applies to number of

faults used in Schroeder et a l [277] and Grindal et a l [138] where only a small percentage

of the number of possible faults were examined.

37 It should be noted that Kuhn and Okun used the TCAS program code whereas Kobayashi et al. used the specification

from TCAS II which includes extra logic for conflict resolution not present in TCAS I specification. Therefore, it is

possible that the TCAS II study considered complex predicates not present in the TCAS study.

120 - 220

Combinatorial f-way Techniques

3 . 4 .2. 5 P r o g r a m S i z e

Related to the discussion above is the level at which the techniques were applied. Kuhn

and Okun [201] performed the testing at the level of the program, i.e., by manipulating the

external interface in contrast to Kobayashi et al. [197] who must have effectively worked

at the level of a single function in order to isolate each of the predicates that they were

investigating, although they did not state this explicitly.

Likewise, Schroeder et al. [277] and Grindal et al. [138] performed their investigations

also apparently at the program level. This may have been a deliberate attempt to study the

effectiveness of the technique in a black box environment or might perhaps indicate that

the information necessary to perform testing at a lower level was not available.

Importantly however, this does not change the fact that testing at the lowest level, often

referred to as unit testing [13] - allows more control of the environment and greater access

to the results of the test process. Freedman [127] investigated the problem of how testable

software was and observed that two factors have a large bearing on this matter. They are:

• observability: the ease of determining whether specified inputs affect the outputs;

• controllability: the ease of producing a specified output from a specified input.

One area that touches these issues is the use of static data such as counters, timers etc.

especially when this data is hidden from external view. Baresel et al. [24], Lammerman et

al. [206], Gross et al. [143], [144], as well as McMinn and Holcombe [226], [228], have all

noted that variables declared as static in the C language presents a problem for

evolutionary test generation. Primarily because if the static data is embedded with the

function under test, the variables are not controllable nor in particular observable.

3.4.3 Empirical Studies: Summary

As noted by Tichy et al. [298], there is in general a lack of empirical work in computer

science and, at this point, Tichy’s [297] plea for more experimental investigation only

needs to be repeated. There are too few experimental results on too few different test

subjects with too few sets of comparative data to be able to definitely know whether

combinatorial techniques will live up to its promise of being effective at detecting software

errors.

121 - 220

Combinatorial f-way Techniques

3.5 Weaknesses

If we examine the field studies described in section 3.3 and the empirical investigations

detailed in section 3.4, we find that the following points stand out:

• Direct comparisons with other techniques are either absent or are not consistent (for

example the comparisons with randomly generated tested discussed in sections 2.2.1 and

3.4.2).

• The comparison with human testing although present is flawed in that too few details are

presented on how testing was performed, how test sets were selected and what adequacy

criteria were meet, e.g. statement coverage.

• Also in relation to human generated tests, it has yet to be shown that the technique is

least as good as good as a human tester, a necessity if it is to be applied in critical

applications.

• Less attention than desirable has been given to the oracle problem. Although the

technique may be able to detect errors, but for factors greater than two it also generates a

large number of tests. Some method of reducing the number of tests that need to be

examined by people must, therefore, be developed.

• In addition, there have been very few attempts to estimate the significance of the

research in any formal sense for example by using statistical hypothesis testing.

3.5.1 Comparisons

The evidence on the utility of the technique that is presented in section 3.3 is especially

weak in the early work on software testing; with the studies with the least comparative

information being highlighted in section 3.3.3.

The number of formal (i.e. measured) comparisons with other test data generation

techniques is minimal. As stated in section 3.4.2, some empirical work has made

comparisons with random testing, i.e., Cohen et al. [69], Nair et al. [239], and Kobayashi

et al. [197] but particular comparison has not been universally applied. It is especially

disappointing that the two studies by Grindal et al. [138] and Kuhn and Okun [201] did not

include it particularly since Ince [175] suggested some twenty years previously that

random testing be used as base method for comparison with other more complex

techniques in experimental studies. Indeed, random testing has been used widely as a

122 - 220

Combinatorial t -way Techniques

comparator in empirical studies outside this area such as Frankl and Weiss [125], [121] and

in the large study by Hutchins et al. [174] which continues to form the cornerstone of

much empirical work in testing research such as that performed by Reid [269], [270].

A number of field studies including Perkinson [263], Burr and Young [50], Smith et al.

[287], [286] and empirical work by Cohen et al. [69] and Grindal et al. [138] [139] have

also investigated the use of single factor experiments as a technique. However, this group

of authors came to different conclusions. Those who conducted field studies generally

found that the technique was less effective than suggested by the empirical study

performed by Grindal et al. [139]. It should be noted however, that the results of the field

studies performed by Smith et al. [287], [286] tended to agree with Grindal et al. [139]

rather than with the other field studies. It would therefore seem profitable to include the

base choice generation technique in any comparative work undertaken.

3.5.2Human Test Sets

The purpose of automating the test case generation process is to remove or reduce the

need for human intervention. However, this is only useful if the tests generated without

human intervention are at least as effective as test sets for the same code generated by

human testers. Although the field studies suggest that t-way adequate test sets may fulfil

this criterion, the evidence is by no means conclusive. Although the studies reported by

Dalai et al. [93], [92] state that more errors were found using t-way adequate techniques,

they provide virtually no information on exactly what the effectiveness of the technique is

being compared with. Later studies such as that by Yilmaz, Cohen and Porter [341] are

better but they are still lax in detailing exactly what is being compared with what and, just

as importantly, in detailing how errors are being detected.

To gauge how useful the technique is in practice it needs to be directly compared with

human generated tests. However, as noted by Ellims, Bridges and Ince [112] very few

studies have been performed that examine human testing performance. Fewer still directly

compare performance of humans versus automated techniques directly. Indeed the only

study known to the author is by Grochtmann et al. [141]. Here test sets generated by

students were compared directly with path following genetic algorithms to determine the

maximum execution time of several procedures.

123 - 220

Combinatorial t -way Techniques

3.5.3 Test Reduction

The primary motivation for using f-way adequate tests, at least initially, was improved

testing with smaller test sets. Although the second feature may be true of 2-way adequate

test sets, as noted in section 3.3.1 the number of tests required for higher factors is very

large, at least relative to what would or could be generated by hand.

By itself needing such a large number of tests is not a problem except that they may take

an unreasonable time to execute. However as pointed out by Ould [257] the major problem

with testing is determining whether a test passed. That is, whether the software under test

produced a correct result or not. Therefore for the technique to succeed there needs to be

either an oracle such as the formal models proposed by Kuhn et al. [204] that can

determine whether a result is correct or there has to be a mechanism for determining the

quality of a test vector so that a small set of vectors can be selected from the larger set. If

this can be done then the number of vectors that need to be examined by hand can be

minimised.

A mechanism that can do this needs to have the property that it can distinguish a good

test case from an average or perhaps even a bad test case. The usual metrics used to

measure code coverage such as statement and branch adequacy are in some ways

inadequate for the purpose. As noted by Weyuker [324], these criteria are necessary but not

sufficient. Coverage of all lines of code does not imply that code has been fully tested and

it is trivial to provide examples where this would be true. The most obvious case would be

straight line code that performed large amounts of possibly complex arithmetic. A single

test vector would be sufficient to provide coverage but not actually do anything very

useful, a point addressed by Hamlet on several occasions [149], [151].

3.6 Final Appraisal

It is reasonably clear that little opportunity exists for the development of new tools for

generating t-way adequate test sets. Although some effort was put into this activity and an

adequate tool for generating 2-way (pairwise) test sets was created, activity in this area was

overtaken by events. More efficient tools have since become available including the jenny
program [182] and tool sets from the research conducted by Lei et al. [211], [210] have

become more widely available (Kuhn et al. [204]).

124 - 220

Combinatorial r-way Techniques

Therefore, the research in this thesis will focus on the effectiveness of t-way

combinatorial test sets for detecting errors in code and on finding an efficient mechanism

to make the technique tractable without resorting to formal models as suggested by Kuhn

et al. [204]. The desire to avoid the use of formal models are derived from the fact that

these techniques are not currently widely used in industry. There also remains the question

of testing the model itself, as while it may be possible to “prove” that it is complete against

some criteria there is no way of proving that it actually does what is intended.

For example, it may be necessary to convert a model or other formal definition of a

program back into English so that the end customer can understand it38. Likewise, the end

customer may use other methods to define functionality. The example is given by

McDermid et al. [221] where the end customer may use their own sets of formal, or as is

more usual, semi-formal methods that are not compatible, which presents a two way

translation problem.

38 Personal Communication from Professor Martyn Thomas at 9th Australian Workshop on Safety Critical Systems and

Software.

Program of Work

4. Program of Work

4.1 Introduction

The research presented here focuses on determining the effectiveness of combinatorial

test detecting errors in code and on finding an efficient mechanism to make the technique

tractable without resorting to formal models as suggested by Kuhn et al. [204]. This second

aspect of the research is important because in practice, as formal models are not currently

widely used in industry at present, there remains the question of testing the model as while

it may be possible to “prove” that it is complete against some criteria, there is no way of

proving that it actually does what is intended.

For example, it may be necessary to convert a model or other formal definition of a

program back into English so that it can be understood by the end customer. Likewise, the

end customer may use other methods to define functionality. An example is given by

McDermid et al. [221] in which the end customer may use their own sets of formal

methods or, as is more usual, semi-formal methods that are not compatible, which presents

a two way translation problem.

The aim of the research to be conducted is twofold. First to determine whether t-way

adequate test sets are a “reliable” method of automatically generating test sets and second

to determine whether test set minimisation can be used to reduce the number of tests that

need to be considered by a human examining the output for correctness to a manageable

level. Here, the term “reliable” is used in the sense that what is wanted is a method that can

be expected to have a good chance of detecting errors.

To directly address the weaknesses raised in section 3.5 I want to cover the following

points:

• I want to provide a good comparison with other automatic generation techniques;

• I want to be able to compare these results with human generated tests;

• I want a method that can determine whether an individual test vector is good and

therefore worth pursuing to make the oracle problem manageable.

The first point is derived directly from observations made in section 3.4.2 and section

3.5.1 where it was noted that one of the features of empirical work is the lack of

comparison with other techniques, with the exception of the studies performed by

126 - 220

Program of Work

Kobayashi et al. [197]. The critical point being that any technique for automatically

generating test data has to be shown to be more effective than other, possibly less

expensive, techniques for generating data, e.g., random testing. In the case of t-way

adequate techniques this has not yet been done.

The second point comes from a desire to be able to use automatically generated tests in

both safety related and safety critical applications. However, if automatically generated

tests are to be used in those situations, they have to prove themselves at least as effective as

the human generated tests that they are intended to replace. The ideal situation would of

course be that they were shown to be superior. This is a central issue in being able to use

automatically generated tests, in practice, however there is virtually no literature that

addresses this point in a completely satisfactory manner39. The field studies examined in

section 3.3 provide some evidence that r-way adequate tests may be as effective as human

generated tests but as pointed out in section 3.3.2 many of these are flawed in that they

provide too little information on techniques that r-way adequate tests are being compared

with.

The third point raised above is derived directly from the need to be able to deal with

potentially thousands of test vectors that r-way adequate test sets can contain. Other

methods may exist, e.g., the use of formal models by Kuhn and Okun [201]. However, this

begs the question of why, if a formal model exists, why do we not then directly derive the

code from it? Other possibilities for addressing the oracle problem, for example Kuhn has

suggested assertions embedded within the code could be used40. However, if we consider

the current state of practice in industry now, it is probable that for some time “the oracle”

will be the engineer performing the testing, hence there is need to reduce the number of

vectors to a manageable minimum number.

The remainder of this chapter is set out as follows:

• Section 4.2 briefly covers the type of work to be performed and looks at the techniques

that are available to perform that work;

39 The only study that the author is aware of that addresses this issue directly is [141] which examined temporal

correctness, used students not professional programmers but did include random testing and was performed on

industrial code.

40 Personal communication, December 2008.

127 - 220

Program of Work

• Section 4.3 looks what I am attempting to achieve in a more formal manner and puts

forward the hypotheses to be tested in this thesis.

4.2 Foundation work

4.2.1 Problem Overview

If we take the three specific points brought out in the introduction above, then it seems

clear that to deal with the first point any work that compares different test generation

techniques to be acceptable, it should be compared directly with other techniques. The

primary method of interest that all work such as this should be compared with is random

test generation, in its simplest form, i.e., without replacement. Given the work performed

in other empirical studies the candidates for this thesis that stand out are random designs as

used by Schroeder et a l [277] and the base choice technique as proposed by Ammann and

Offutt [9] and used in the study by Grindal et al. [138].

The second point can, in turn, be addressed in two ways: by either taking a body of

available code and defining a set of “good” hand-generated vectors for it or by locating

such a set of code that already has such test vectors. Given the authors position in industry,

the second option is available and has been used in this study. To the best of the author’s

knowledge this is a unique situation.

The final point in section 4.1 has two components The first is to define what we mean by

“good” and the secondly is to extract those “good” tests in such a manner as to avoid

reducing the overall error detection ability of the test set. Given the potential weakness of

code coverage as a measure of a test vectors ability to detect errors and the potential

number of vectors that are candidates for inclusion in the final test set, it was decided that a

more rigorous measure of a test vectors error detection ability was required. The current

best candidate for determining the goodness of a test appears to be mutation adequacy and

evidence for its effectiveness is detailed in section 4.3.2.

The second part of the problem, as stated above, is how to reduce the size of the test sets

without sacrificing quality; section 4.3.3 is a brief overview of work that has been

performed in the area of test suite reduction or minimisation.

128 - 220

Program of Work

4.2.2 Mutation

In section 3.4.2.1 it was noted that there had been a marked shift in empirical studies

from using coverage criteria as a measure of effectiveness to studies that directly examined

the error detection potential of the technique. To date all studies that have used error

detection as a criteria have used hand seeded faults. In the study performed by Grindal et

al. [138] it was noted that mutation like hand seeded faults were used. The obvious

extension to this is not to use hand-seeded faults, especially those that mimic code

mutation, but rather to use code mutation directly.

Code mutation as a technique appears to be a good candidate for investigating the fault

detection properties of f-way adequate test sets. At the least, it can be used to compare one

test set against another with perhaps greater fidelity and a higher level of discrimination

than metrics based purely on the code structure such as statement and branch coverage.

Ould [257] argued that an automatically generated set of test vectors is only effective if

it generates test cases that are likely to expose errors. Therefore the critical question is,

does code mutation meet this criteria?

Offutt et al. [246], [247] performed a set of experiments which used test sets that were

adequate for revealing single mutation faults on programs that contained double mutation

faults on the same execution path. They concluded that, for the programs studied, that test

sets that were adequate for revealing simple faults (i.e. single mutations) were also

adequate for detecting more complex faults, i.e., high order mutants (mutant of mutants).

However, a study by Frankl, Weiss and Hu [121] performed a similar experiment and

reached a different conclusion. Namely that compound mutations are not a good model for

faults. However, their results are less clear cut than those of Offutt and 50% of their results

did demonstrate good coupling. Moreover, their data show that in five out of ten of the

subject programs, mutation adequate test sets performed better than all-uses adequate test

sets. In another two cases, they worked as well. These findings suggest that mutation is at

least no worse than all-uses as an adequacy criteria.

To further look at this question, the seminal work performed by Andrews, Briand and

Labiche [11] used the large set of programs and associated test vectors from Hutchins et al.

[174], which have hand-inserted faults and the space program developed by the European

Space Agency, which contains a known set of real faults. They found that mutants do not

129 - 220

Program of Work

appear to be either easier or harder to detect than real faults. This is in contrast to hand

seeded faults41, which were found to be harder to detect than mutants. Andrews, Briand and

Labiche [11] concluded that “mutants, based on the mutation operators presented here, do

provide test effectiveness results that are representative o f real faults” (pg. 8).

4.2.3 Optimisation and Minimisation

Optimisation of test sets comprises two related areas: test case prioritisation and test case

minimisation. Test case prioritisation is used to schedule or order test case execution to

maximise some property such as the rate of fault detection (Rothermel et al. [274]) and is

usually discussed in term of minimising the cost of performing regression testing. By

contrast, minimisation attempts to find the smallest possible set of tests that meet some

criteria such as maintaining statement or branch coverage.

Prioritisation has seen a reasonable amount of work over time with notable recent

contributions by Rothermel et al. [274], Rothermel, Untch and Chu [275] and Jones and

Harrold [185], who also addressed the minimisation problem. However, as the emphasis

here is on reducing the cost of performing regression testing, prioritisation is of only

passing interest to the problem at hand.

To deal with the potentially large number of test cases that can be generated and to make

the oracle problem tractable we want to be able to reduce to a practical minimum the

number of test cases that have to be examined. Note that the size of the test case set does

not have to be as small as theoretically possible, just small enough that it becomes

tractable.

Test set minimisation has received minimal attention in terms of automatic test set

generation although an initial investigation conducted by Ince and Hekmatpour [177] that

used randomly generated test sets and statement coverage adequacy demonstrated some

initial success by reducing the number of test cases that needed to be examined manually.

41 A code faults are of course hand seeded, how ever the difference here is the difference to those faults inserted by

stupidity versus those inserted by malice (with apologies to Winston Churchill). Andrews concluded that faults inserted

deliberately by hand were more difficult to detect than those occurring as part of writing the code.

130 - 220

Program of Work

Much42 of the other work performed in this area has examined how minimisation affects

the fault detecting ability of the test cases. Wong et al. [335] concluded that “there is little

or no reduction in its fault detection effectiveness” (pg. 368) for more demanding criteria.

However, Rothermel et al. [273] reached the opposite conclusion, stating that minimisation

can compromise the effectiveness of a set of tests where all-edges is used as the adequacy

criteria. The conclusions from these two studies are not exactly comparable, because

unfortunately they both used different adequacy criteria. A study by Jones and Harrold

[185] investigated two algorithms for test set reduction (minimisation) for the MC/DC

criteria and found that the fault detecting ability of the minimised test set could be reduced

depending on the program and nature of the faults present. Interestingly, the prioritisation

algorithm presented in [185] closely mirrored the selection algorithm used by Sherwood

[281], [282] for generating combinatorial data sets.

There are several problems with using adequacy criteria such as code coverage for

minimisation. The primary objection being that what constitutes an adequate test set does

not have a good theoretical underpinning, moreover most simple adequacy criteria, such as

code coverage, are recognised as being inadequate, they are minimum criteria. While it can

be shown that some conditions are necessary, for example, statement coverage (Weyuker

[324]) it has also been shown by Howden [169] that no method can be considered reliable

in any absolute sense. In more practical terms Hutchins et al. [174] in their investigation of

the benefits of data and control flow adequacy criteria concluded that “code coverage

alone is not a reliable indicator o f the effectiveness o f a test set” (pg. 191). Therefore, it is

unlikely that code coverage adequacy criteria alone are an adequate indicator and thus, by

implication, are not the best target for minimisation.

The alternative to code coverage metrics is to use a fault-based strategy that allows fault

detection capability of a vector to be measured directly. Two such strategies have been

suggested: code mutation as proposed by Hamlet [154] and DeMillo et al. [98] and fault

injection as proposed by Voas and McGraw [309]. Of these, code mutation has received

the majority of the attention to date and has been widely used in studies that compare the

effectiveness of test sets, for example by Daran and Thevenod-Fosse [95], Frankl, Weiss

42 This section does not comprise a complete review of the literature.

131-220

Program of Work

and Hu [121], as well as Zhan and Clark [345]. Code mutation also has the advantage that

it subsumes some conditional coverage techniques (Offutt and Voas [253]) such as

statement and branch coverage.

In addition, some work has been done with minimisation of mutation adequate test sets.

An early suggestion by Offutt [248] was simply to ignore vectors that did not kill any

mutants. In later work Offutt, Pan and Voas [255] suggested a mechanism for selecting

minimal sets of vectors that again removes mutants as they are killed but runs the set of

vectors in different orders.

To the authors knowledge, no work has been conducted on minimising complete t-way

adequate test sets. In the area of combinatorial test sets, the work that comes closest is

Dadeau, Ledrun and Du Bousquet [88] in which the researchers minimised the test set via

selective pruning of the search tree. Their results are not applicable here because the

combinatorial technique they used was not t-way adequate and was aimed at producing

sequences of function calls and associated input data.

The work on weighting by Colboum and Bryce [79], [43], [44] is related to the problem

considered here but was targeted at situations where it may not be possible to run a

complete set of tests. The situation they had in mind was the testing of different

configurations. However, as noted in section 3.2.3, no empirical work validating this

approach has yet been performed.

4.3 Hypothesis

As stated in the introduction to this chapter there are two primary goals of the empirical

work presented here:

• to determine if t-way adequate test sets are “reliable”;

• to determine if we can reduce the size of the final test set, and hence the size of the

oracle problem.

The first of the objectives can be broken down into two sub-goals. The first sub-goal is

to determine whether 2-way adequate test sets are a reliable method for generating test

sets, thus testing assertions by authors such as Burroughs et al. [51], Cohen et al. [68],

[70], [67] and Huller [173] that this is the case. The second sub-goal is to test the

conclusions from the field study work by Kuhn et al. [313], [202], [203] and from the

132 - 220

Program of Work

empirical results from Kuhn and Okun [201] that only small factors, i.e., less than or equal

to six are required to produce good test sets.

To achieve the aims of this research, it is proposed to evaluate automatically generated t-

way adequate test sets against a set of code and associated unit (C function) tests from a

safety-related application that has undergone multiple levels of test and review and that has

been in field use for nearly ten years with no reported errors43. The set code to be used has

the required unit tests already in place and it is believed that these are of high quality

compared with the current industrial state of the art That is, unit tests have been reviewed

and have had their code coverage measured directly. The development process for the code

and its associated unit tests is covered more fully in section 5.2.2, 5.2.3 and 5.2.4. the

remainder of this section coverss the second and third points from section 4.2.

To address the first point from section 4.2 and to provide a comparison with other work

it is also proposed that the fault detection ability of the test sets will be evaluated against

the following other test generation methods:

• random testing without replacement;

• random designs with the same input ranges, and;

• a single factor experiment, i.e., base choice.

The comparison against a set of human generated tests that are believed to be of

reasonably high quality will give an indication of whether the f-way adequate techniques

can reliably be used as a replacement for that test activity.

Random test sets are of interest because, as suggested by Ince [175], they form a base

method for comparison with other more complex techniques in experimental studies. Test

generation methods have to do at least as well as randomly generated test sets to be

considered effective.

Random designs are of interest because of the work by Dunietz, Mallows and Iannino

[106] and Schroeder et al. [277] that indicates that the random design generation technique

43 Engine control unit 47, which recently returned from the field as part of an engine update, was still functioning and had

recorded over 50,000 hours of use. In 2006, it was estimated that the total time in use for the software exceeded two

million hours.

133 - 220

Program of Work

may do as well as r-way adequate test generation techniques but with the advantage that

they are both simpler to understand and simpler to implement.

Likewise, single factor experiments, i.e., base choice proposed by Ammann and Offut

[9], are of interest because they have been found to be almost as effective as t-way

adequate tests by at least two research groups, Grindal et al. [138] and Smith et al. [287],

[286], who found them to be more effective than 2-way adequate test sets.

The final weakness identified in section 4.2 concerns the oracle problem. It is proposed

that test set minimisation is a suitable method for reducing the number of vectors that need

to be considered by a human to a manageable level and to remove or mitigate the

requirement that a formal model or specification of the code that is being tested needs to

exist.

Formally, the hypotheses to be tested are as follows:

HI : that 2-way adequate test sets are at least as effective at killing mutants as hand

generated tests.

H2 : that t-way adequate test sets for a small factor greater than two, are at least as

effective at killing mutants as hand-generated tests.

H3 : that it is possible to construct a minimised test set from a r-way adequate test set that

is small enough to allow the correctness of results to be checked manually.

134 - 220

Experimental Design

5. Experimental Design

5.1 Introduction

This chapter describes the major components of the work undertaken to address the

questions proposed in the previous chapter. The work described in this chapter was

performed in four phases. The initial work on sort routines was used to support

development of the Csaw mutation tool set, sort routines being used as they all have the

same functional purpose (i.e. specification) but employ different implementations which

allowed the same test scaffolding to be used.

The work with industrial code and its associated hand-generated unit tests implements

directly the program of work set out in chapter 4. That is to take a body of code, apply a

number of different techniques for automatically generating test data, and compare the

results both between those techniques and with the hand-generated test. The aim being to

determine empirically which, if any, of those automatic generation techniques are

competitive with hand-generated test sets. The work on test set optimisation follows

directly from that work.

This chapter is divided into six main sections as follows:

• section 5.2 is a description of the experimental subjects that were used in this research;

• section 5.3 looks in detail at the two major tools that were developed to support the work

undertaken and summarises the smaller tools that were developed to support the work

undertaken;

• section 5.4 contains the description of experiments performed with sort code;

• section 5.5 contains the first set of experiments conducted with the industrial code and 2-

way (pairwise) testing;

• section 5.7 examines a minimisation procedure for t-way adequate test sets;

• section 5.8 looks at the effect of including small sets of hand-generated tests on the

behaviour of f-way adequate test sets.

135 - 220

Experimental Design

5.2 Experimental Subjects

5.2.1 Sort Routines

Initial work on the mutation tool on “real” code was undertaken using a number of sort

routines made available on the web by Lamont [207]. Sort routines were used because they

provided a varying set of code with different levels of complexity, but with the same

functional purpose. This meant that it was possible to use the same set of test vectors thus

minimising the amount of “support” work that needed to be performed to hand-generate

test vectors and to construct an oracle function. The routines used in this phase of the work

were C implementations of the bubble sort, insertion sort, heapsort, shellsort and quicksort

algorithms. The interface to each function follows the following pattern:

void <name>Sort (int numbers[],int array_size)

One immediate issue that had to be dealt with was how to treat the array of elements to

be sorted. It was arbitrarily decided that a maximum array size of seven would be used and

that the array size for a test would be set to a value between one and seven. Each element

of the array would then be treated as a separate variable for automatically generating the t-

way covering sets. This restriction is not considered significant, as other researchers have

used limited sized arrays, for example Gotlieb [135] containing “at most 4 integers ranging

from 0 to 24”. The use of arrays much larger than this would introduce errors for indexing

at byte, word and long word boundaries but would also require huge sets of test vectors to

cover. Other options for dealing with arrays exist as discussed below (sections 5.2.4.1 and

7.3), but they did not seem necessary for the initial investigations undertaken with sort

routines.

5.2.2Industrial Code

The industrial code examples used in this research were drawn from the first release of

software for running an industrial engine control unit. This software is considered to be

safety related and has been developed using quality control process consistent with a

process that meets the criteria for a System Integrity Level of two (SIL 2) [16] has unit

testing consistent with a system defined as being SIL 3.

136 - 220

Experimental Design

The software itself comprises of major logic sections that deal with the standard engine

functionality such as:

• real time processing of engine rotational information;

• running a torque based proportional, integral and differential (PID) control loop

synchronous with engine position;

• 5 and 25 millisecond periodic processing of analogue and digital inputs;

• 25 millisecond periodic calculation of spark angle;

• 5 millisecond periodic calculation of desired throttle position based on torque demand;

• 25 millisecond periodic combustion model;

• 5 and 25 millisecond periodic control of analogue and digital outputs.

Code examples have been drawn from the following sections; the PID feedback control

loop (GOV), analogue and digital input processing (AIP, DIP), and the throttle control

(THC).

5.2.3 Development Process

The manner in which code and the associated unit tests were developed is significant to the

study. Many studies that have examined human developed tests have used students to

develop the tests, including Laitenberger [205] with the notable exception of a study by

Myres [237] who used professional programmers. A possible implication of this is that the

hand-generated test sets used in these studies may be biased. For example, it is probable

that the test sets are weak as students generally have little experience of performing

controlled testing activities unless it forms part of their formal studies. Alternatively,

student tests may be too strong if too much effort has been used to develop test sets.

However, a review of the topic by Ellims et al. [112] suggests that this second scenario is

not likely.

The industrial code in this study was developed using an instance of the generic quality

management system (QMS) at Pi-Shurlok that is based on a standard “V” model

(McDermid and Rook [223]). The QMS has been specifically set up so that it is simple to

modify for specific projects as detailed in Ellims and Jackson [115], and thus gives as

much flexibility as possible.

137 - 220

Experimental Design

The QMS meets the requirements of ISO 9001 [15] and has achieved ISO 15504 [17]

Capability Level 3 for all the processes in the defined scope of assessment that cover the

requirements of the key European car manufacturers. In addition the specific quality plan

and activities for this project (Wallace) have been externally audited to be consistent with

the requirements for software to be developed for D0178B [14] Class B applications and

with only small changes considered necessary to meet Class A requirements.

The left side of the “V” is comprised of the following major steps: requirements analysis

and definition, functional requirements, architectural design, module design and coding.

The right side of the “V” contains the corresponding verification and validation activities.

Each of the major components listed above consists of the number of sub-components

such as review activities and checklists. Of particular interest here is the process for unit

testing. Figure 13 shows the unit test activity and the simplified process flow within the

activity. The term simplified is used as not all the features are shown, for example the

activity Code Correction or Update involves a change request (CR) being raised, approved

and acted on.

It should be noted that there are two phases to test execution - one on the host and one

on the target system. Host execution is encouraged since running tests on the host

environment is far more efficient than running tests on the target environment because of

better tools (debuggers) and faster turnaround in the host environment. However, the tests

have not passed until they have been executed successfully on the target hardware because

issues with processor hardware and compilers are not that uncommon.

An essential point to note is that unit tests were reviewed and weaknesses detected were

fed back into the test or occasionally test sets were reworked completely. For example, the

main reviewer for the Wallace project (i.e. the author) has rejected tests that take a

scattergun approach to the generation of input data. The review process serves two

purposes. First, it directly improves the quality of the test sets and second, it teaches the

engineers involved what comprises a good set of tests.

138 - 220

Experimental Design

Repeat if
necessary

Test Correction or
Update

Unit Test Design

Unit Test Execution
(Host)

Unit Test Design
Review

Unit Test Execution
(Target)

Code Review

Code Correction or
Update

Unit Test Coverage
(Host)

Module Coding

Module Design
Review

Module Design

Fig. 13. Simplified process for performing unit tests. Shaded boxes show associated
activities that must be completed before or in conjunction with unit testing.

Another feature of the process is that the coverage metrics for statement, branch and

LCSAJ developed by Woodward et al. [336] were not collected as part of the test

development process. Engineers are expected to design adequate tests without requiring

direct feedback.

5.2.4 Test Subjects

5.2.4.1 Selection Criteria

Of the available functions, eleven were selected for inclusion in this study. Nearly half of

the subject functions were selected (dip_check_cal, dip_debounce,
_sdc_j?re_start, _aip_apply_f ilters) because they contain known faults that were

discovered during the original unit test process. Note that the function dip_check_cal
was not included in more advanced work because it was so simple.

139 - 220

Experimental Design

The remaining functions were selected because they all had the following properties to

some degree:

• by the standards of the project, they have a reasonably complex control structure,

• they have a relatively simple interface to the outside world.

By simple, what is meant is that the functions did not rely on large arrays of data that

had a significant amount of structure. The reason for excluding functions that relied on

large or complex data structures, most of which are large arrays, is simple. It is not obvious

how to deal with these within the context of a combinatorial test data generation system.

A number of obvious options were considered for dealing with data of this type:

• Treat each element of the array as a single variable and assign values to each array

element independently of all other elements. This is the approach taken in the

preliminary work on sorting algorithms.

• Deal with each array as a single object and select between a predetermined set of objects

that are manually assigned values.

• Deal with each array as a set of smaller arrays and build the larger structure up by

combining different sets of sub-arrays.

Each of these suggested approaches has a number of drawbacks. For large structures the

first approach leads to truly huge numbers of possible combinations and correspondingly

large sets of test vectors even for quite small arrays. The second option does not really

solve the problem because the arrays are still generated by hand and are therefore merely

using the combinatorial techniques to select between them. Although this approach may

remove some of the bias in the data selection process noted by Teasley et al. [293], it is not

a complete solution. The third option seems attractive. However, for the type of data

usually included in the arrays it would inevitably introduce undesirable boundary effects

where the sub-arrays were stitched together.

For some arrays some other options exist. For example, where the array is used in a table

lookup operation (i.e. where we are interpolating between data points in an array) and the

look-up operation is performed by calling a function, we can replace the function call with

a test stub and directly supply the result of the table lookup to the code under test.

140 - 220

Experimental Design

Also excluded from consideration were functions that were either written in assembly

language or that contained significant amounts of assembly code embedded within them44.

5.2A.2 The Test Subjects

This section describes the set of subject functions used in this research. Each function is

described to give an idea of its functional purpose and then information on the structure

and complexity of each function is presented.

_dip_debounce is used to supply stable values of digital input values to the outside

world. A value is deemed stable when it has had the same value for a calibrated time

period (number of samples).

_aip_median_filter is used to select the median of the current input value and the

previous two input values read. This is probably similar to the mid function used in

research by Offutt et al. [252], Gotlieb [135] although the parameters here are arrays rather

than individual items as would more normally be used.

_sdc_fuel_control is used to decide which state the engine is in, given a small number of

inputs, namely engine RPM, start signal, shutdown status etc. and to prioritise among those

conditions.

aip_spike_filter is used to remove large values seen in the input data. Its primary use is

to cope with inlet manifold explosions where there is a rapid increase in the inlet pressure

in a very short period of time.

_aip_apply_filters is used to control which filters (low pass, median, spike etc.) are

applied to the raw analogue input values and in which order.

_thc_decide_state is used to decide what mode of operation of the throttle is being

controlled. Possible states include, self calibration (location of end stops), recovery from

non-volatile RAM failure, whether other control logic is overriding throttle movement and

so on.

_thc_autocal is used to control the sequencing of an auto-calibration process for the

throttle, waste-gate or bypass valves.

44 Assembly code is quite common in embedded real time systems to access special purpose instructions that have no

direct analogue in high level languages, e.g., for implementing semaphores, accessing special purpose registers etc.

141 - 220

Experimental Design

_gov_rpm_err is used to calculate the difference between the desired and the actual

RPM and apply both a lead/lag and low pass filter with appropriate clipping to avoid over

and underflow in the calculations.

_sdc_pre_start is used to control the start or restart of an engine. This includes

considerations such as the engine must not be rotating before the starting device is

energised; that the fuel valves have been closed and the outlet manifold is flushed of any

un-bumt fuel/air mixture.

_gov_gen_ffd_rpm is used to control the pre-loading of the integral term in response to

outside stimulus such as a digital input that will indicate that in a known time a load will be

placed on the engine. Further details can be found in Ellims and Zurlo [117].

A selection of properties for each of the functions is shown in Table 13 which contains

the following information. The first column is the function name and the second column is

the number of executable statements in the function, excluding blank lines, comments and

braces. The third column gives the total number of mutants generated for each function.

The fourth column gives the number of valid mutants45 that would actually compile

(ignoring warning for divide by zero etc). The fifth and sixth columns are the nesting factor

and the condition factor as used in Michael et al. [232]46. The seventh column is a simple

count of the number of i f statements in the code, each case of a switch statement being

counted as a single i f statement. The final column is the number of inputs to the function.

The function _dip_debounce stands out here, but this is because the underlying data

structure is a set of arrays and the original test set contained data values for the first,

middle and last elements of those arrays. As we are mirroring the original testing the

original test structure was kept so as to be able to reuse the manually generated vectors.

45 To deal with the mutants that could not be compiled, code that forced a divide by zero was inserted in place of the

mutated function body which caused each of these mutants to die.

46 Nesting factor is the maximum depth of nesting and the condition factor is the maximum number of comparisons

performed in a single i f statement.

142 - 220

Experimental Design

Table 13. Summary of some properties of the code under study, with the C functions
ranked by the total number of mutations that are generated.

Function Name Lines Total
Mutants

Valid
Mutants

Nesting
Factor

Condition
Factor

if
statement

s

Inputs

_dip_debounce 12 127 81 2 2 2 17

_aip_median_filter 25 217 217 1 1 4 3

_sdc_fuel_control 17 267 213 2 2 5 9

aip_spike_filter 22 354 178 3 1 4 7

_thc_decide_state 16 387 386 7 2 7 9

_thc_autocal 33 782 669 5 2 8 6

_aip_apply_filters 30 605 311 2 2 4 8

_gov_rpm_err 22 1054 783 2 1 5 9

_sdc_pre_start 51 1472 1237 3 1 8 3

_gov_gen_ffd_rpm 62 1698 1227 4 2 11 16

5.3 Tools

Two large and several small tools were developed to support the work presented here. The

first of the large tools was an implementation of the AETG algorithm developed by Cohen

et al. [67]; the second was a tool to mutate C functions as investigations indicated that no

such tool was available47.

The small tools consisted of a data transformation program for output from the jenny
tool and a program to generate different types of random data sets.

5.3.1 r-way Test Generation Tools

5.3.1.1 Description

Initial work on combinatorial adequate test sets reported in Ellims, Ince and Petre [114]

employed a tool based on the AETG algorithm by Cohen et al. [67] to generate the f-way

adequate test sets. However, this tool is inherently inefficient because it performs a linear

search to match t-way tuples generated in candidate vectors with tuples remaining to be

covered. Although adequate for pairwise (2-way) and 3-way test set generation, this tool

proved to be infeasibly slow for values of t greater than three.

47 Jeff Offutt who developed the Mothra and Godzilla tool sets [99] was contacted on this matter at the start of this work

and indicated that no such tools were available.

143 - 220

Experimental Design

Recent work by Lei et al. [211], [210] on the generation of t-way test sets compares the

performance of their tool FireEye with other available tool sets. One of those tools is

jenny which is freely available on the web. Table 14 compares test set sizes (top) and

generation time (bottom) in seconds generated by FireEye, jenny and my

implementation of the AETG algorithm on the TCAS code input data definition used in

Hutchins et al. [174].

It can be clearly seen that jenny is far more time efficient than the tool specifically

developed for this research. This is significant as for the most complex of the subject

functions and for the larger 5-way adequate test sets, jenny takes several tens of seconds

to generate test cases, my implementation would potentially have taken days. Using the

jenny tool, is however, not without its drawbacks. For example, the method used to

generate the vectors is not explicitly stated and the tool does not deal with single value

(e.g. initialisation) data items which all had to be handled manually.

In addition, jenny generates completely generic data patterns (e.g. al to z255), which

have to be converted to actual data values. A small tool was developed that partly

automates this process. However, this process adds a non-trivial amount of time to data set

preparation time.

Table 14. Comparative performance of three tools for generating 2 and 3-way adequate
test sets. For each tool, the size of the test set is given and time taken to generate the test

set is given in seconds.

FireEye jenny our AETG
2-way 100 108 105

0.8s 0.001s 422s
3-way 400 413 418

0.36s 0.71s 18,986s

5.3.1.2 Validation

Validation of the tool relied on internal consistency checks and testing the tool on some

simple examples from published research.

The primary internal consistency checks involves firstly, independently calculating the

number of pairs, triples etc. that can be expected to be generated and checking that the

code used to generate the actual sets produces the same number of set elements. In addition

144 - 220

Experimental Design

at the end of the generation process, the set of test vectors that was generated is used to

removed pairs, triples etc. from a copy of the original set generated and ensure that at the

end of this process the copy of the of the original set is empty.

External consistency checks involved checking that the numbers of vectors generated

with the tool was consistent with the numbers reported in example problems presented in

the literature. These example problems were primarily taken from Cohen et al. [76] and

then from Lei et al. [211] after the switch from the AETG based algorithm to the j e n n y

tool was made.

The comparison with results from Cohen et al. is given in Table 15 and for Lei et al.

above in Table 14 above. In Table 15, column one is the name applied in [76] to the

problem. Column two is the number of vectors generated by the AETG tool as reported in

Yu-Wen and Aldiwan [344] and Lei and Tai [212], column three is the number of vectors

generated by Cohen et a l ’s implementation of AETG and column four is the number of

vectors generated by the tool developed for this thesis. Column five, is the definition of the

problem as given in Cohen et al. [76].

Table 15. Performance of AETG based tool for generating 2-way (pairwise) test vectors
against examples from literature.

Label AETG Cohen This
W ork

Definition

CA-1 9 9 9 CA(N; 2,4,3)
MCA-148 15 17 18 CA(N; 2, 3U)
MCA-1 19 20 20 MCA (N; 2 ,51 38 2Z)
MCA-2 45 44 47 MCA (N; 2 ,71 6 51 4" 38 23)
MCA-3 30 28 28 MCA (N; 2, 51 44 3 “ 23)
MCA-4 34 35 36 MCA (N; 2 ,61 51 4b 38 23)

5.3.2Mutation Tool

5.3.2.1 Description

The Csaw tool set comprises a number of programs that mutate a function or small set of

functions and then run the resulting mutants. The major component is a program l i n e . c

that processes a specially formatted C program one line at a time, breaking each line down

48 There are two rows labeled MCA-1, the first is taken from Table 7, the second from Table 5.

145 - 220

Experimental Design

into tokens. The program itself has several passes, first to build up a symbol table and then

to apply mutations one line at a time. The output from l i n e . c is a single file that contains

all the mutants. Untch et al. [306] suggested that this approach may have a compilation

bottleneck. However, this has not been found to be the case.

The second program d r i v e r .c is used to execute the mutations defined in line. c
against a set of test vectors defined in a header file. To avoid issues with mutations causing

infinite loops and with invalid operations such as divide by zero driver.c runs each

mutant/vector pair as a child process using the fo rk system call. This allows the parent to

monitor the execution without itself being involved; this allows it to kill a runaway mutant

or to record an abnormal execution termination.

The effort involved in constructing each of these components is also instructive. It took a

little over a month to put the major components of line. c code tool in place. By contrast

the d r i v e r . c program however was much more problematic and took nearly twice as

long to get functioning correctly49.

The overall approach taken is not without its problems. One of the more significant

problems is that, because of the simplistic approach (one line at a time) the C code is not

parsed apart from building the symbol table50, which requires that the user manipulate the

source to put it in a form that can be correctly processed. This means that the approach

relies on pattern matching to recognize certain elements of the program such as variable

declarations which, in turn, means that recognizable declarations have to be explicitly

defined. To reduce this burden, static tables have been used; these can be expanded as

necessary. In practice, that has not so far been a significant issue.

The other major weakness of the one line at a time approach is that multi-line mutations

are not possible. For example, the SMVB operator51 defined by Agrawal et al. [5] cannot

be implemented. In addition, multi-line comments cannot be dealt with and the tool

requires that all comments be removed before processing. One novel aspect of the tool is

that it will mutate the type specifier associated with a variable declaration. In some

49 The relive sizes of the files used to build each of these two program is 122 Kbytes for line.c and 18 Kbytes for driver.c.

50 To use the Csaw tool the user is required to manipulate the code into a suitable form, e.g., one statement per line.

Details can be found in the Csaw users manual [111].

51 Move a closing brace up or down one line.

146 - 220

Experimental Design

quarters, this may seem unusual. However, in embedded systems where memory is usually

at a premium it is common practice to use the smallest possible type to store values. Thus,

both char and unsigned char are commonly used to store integer values. In practice, this

has caught the author out at least once in production software.

There are, of course, also some advantages to the approach taken. For instance it should

not be difficult to adapt the tool to other languages such as C++ and Java, which have

similar structures. Further details of the Csaw tool are in the user’s manual [111] and a

comparison with mutation operators defined for FORTRAN by Offutt and Voas [253] and

C by Agrawal et al. [5] is in Appendix A.

53.2.2 Validation

There are two main programs to be validated in the Csaw tool set, the line. c program

that is used to create the mutants and various associated files and the driver. c program

that is used to run the oracle and the mutant with each test vector in a set.

A different approach was taken with each of the two programs. Validation of the

mutation program l i n e . c was essentially constructive, initially using small test program

fragments that were specially constructed to test each new feature as the tool was

developed. Final testing was done using the set of sort functions sourced from the internet

which overlapped with testing of the driver program.

Testing of the d r i v e r . c code involved running the completed program. The sort

routines were used as they provided some variety in the code but all the code had

essentially the same functional specification and could use the same test sets.

The actual verification involved several problems. In particular, mutant code cannot be

run as a called function because if it causes a signal (Linux was used as the development

platform), because of a divide by zero, for example, then the driver program is also

terminated. This problem necessitated the use of a parent/child model where the parent is

the driver and the child is the code under test.

Two primary strategies were used, therefore to perform validation:

l.The child process (target code) appended a summary of its execution to a text file,

likewise the driver code appends information of how the child process terminated.

147 - 220

Experimental Design

Crosschecking these against each other confirmed that the driver is correctly reporting

results.

2. A small subset of the mutants was selected based on being able to determine a priori

whether their execution will pass or fail.

The methods used in point 2 eventually lead to the development of a small stand alone

test suite where code with hand mutated code is mixed with non-mutated code.

5.3.3 Other Tools

Several other small tools were developed to support the work but did not require the same

amount of effort as the large tools described above. A brief description of these is given in

Table 16.

Table 16. Small programs necessary to support the work reported here.

Program Function
comb A small program used to generate all t-way combinations of n

variables. Used to independently check the adequacy of vectors
sets generated by the AEGT implementation.

mcomp A program that takes in two lists of live mutants and then
compares them against each other. Output is two unique lists of
live mutants.

random Used to construct both fully random and test sets based on random
designs. For random test sets the full range for each variable was
used, for random design test sets, we randomly selected values
from a set of n values.

trans A small program that was used to transform the output data
generated by the jenny program into the format used in the
t e s t_vect or s . h file included in the mutant driver code.

5.4 Sort Experiments

5.4.1 Aims

The work doing during this phase had two principle aims. The first was to verify that the

Csaw tool set was able to deal with real code both by systematically corrupting it and by

being able to execute the resulting mutations. The second aim was to investigate one

unusual feature of the Csaw tool. Csaw, unlike any other mutation system that the author

148 - 220

Experimental Design

knows about, has the ability to mutate variable type declarations. That is it will replace a

type specifier such as “int” with alternatives such as “short int”, “long int”,
“signed int”, “signed char”, and so on.

5.4.2 Procedure

Work with sorting functions was carried out in two distinct stages. In the first stage the sort

functions were used as input into the mutation tool to check that the tool could deal with

actual code. The second stage of work was an ad hoc series of tests that were aimed at

testing the mutation driver code.

The initial work with the mutation driver was performed with three test sets: one

developed by hand, one generated randomly and a third 2-way adequate test set. Unlike

latter tests, the test oracle for this work was a voting procedure that compare the output of

the mutation under test, the un-mutated code and output from a third sort routine.

Unexpectedly, the small hand-generated test set outperformed both a larger random test set

and a test set generated using the AETG algorithm that contained four times as many

vectors.

Examination of the test sets showed two significant points:

• The test sets all contained values that could be contained within a 16 bit signed or

unsigned integer type.

• A large number of the mutants that survived were type mutations (see below).

As it was probable that the first of these points was the root cause of the low number of

type mutations killed, investigating this was the first work that was carried out as a

priority.

The method used was as follows:

• Several test sets were randomly created in which the array size was a value between two

and seven and elements were randomly selected from values ranging from -2147483647

to 2147483647 with 10, 20, 40, 60 and 80 vectors.

• Another test set was created using the AETG algorithm by selecting six candidate values

from points where the number of bits required to store a number changed (i.e. at byte

and word boundaries).

149 - 220

Experimental Design

• A further hand-generated test set of ten vectors was created using these same values.

This set was constructed to ensure that it contained sorted, reverse sorted etc. patterns of

data (as had the original hand-generated vectors).

• The voting oracle was replaced by a simple comparison between the mutated function

and the un-mutated code. This was done, as usually no such voting procedure is

available, as only a single implementation of the function would exist.

5.4.3 Experimental Results

The results from test runs that are shown in Table 17 indicate that there was no strong

difference between the effectiveness of the test sets.

An examination of the code of live mutants showed that, for the simpler functions, the

majority were type mutations and most of these were from a redefinition of the array size

variable, which was constrained to hold a value between two and seven. It is therefore not

surprising that these were not detected.

The remaining type mutations are equivalent, e.g., “signed inf ’ for “inf’, non-equivalent

mutations being effectively killed where data is takes on values that would allow them to

be killed.

Table 17. Summary of algorithms, and performance for the seven test sets used. The size
of the test set is shown and the number of live mutants and the execution time is given for

each algorithm.

AETG HandlO R10 R20 R40 R60 R80
52 10 10 20 40 60 80

Bubble alive 16 16 16 16 16 16 16
clock time (s) 1607 311 321 598 1024 1807 2395

Insert alive 20 20 20 20 20 20 20
clock time (s) 1093 199 251 451 944 1491 2018

Heap alive 44 46 45 45 45 45 45
clock time (s) 3084 727 666 1184 2422 3663 4991

Shell alive 67 67 67 67 67 67 67
clock time (s) 5099 981 1012 1923 3901 5856 7723

Quick alive 69 113 76 68 68 68 68
clock time (s) .3767 739 517 964 1876 3047 3911

One of the most interesting features of Table 17 is the consistency of the results. With one

exception, quicksort, there appeared to be very little to differentiate between any of the test

data generation techniques.

150 - 220

Experimental Design

For the more complex of the functions, a significant number of mutations survived. Here

two cases stood out: first, the heap sort routine contained an integer used as a Boolean flag.

Many of the operator mutants associated with this variable appeared to remain alive.

Second, both shellsort and quicksort contained large numbers of mutations that were

obviously not equivalent but that were nevertheless not detected.

5.4.4Boolean Flags

In an examination of the mutations left alive from the heapsort runs it was noted that

mutants associated with a Boolean flag used in the while loop comprised a large

proportion.

The three uses of the variable were “done - 0” and “ ! d o n e ” and “done = 1”. A

significant number of the mutants were judged to be equivalent, e.g., with memory

initialized to zero mutants such as “done *= 0” or “done &= 0” had no effect.

To see if breaking the codes reliance on the C language using any non-zero value as

TRUE had any beneficial effect I assigned the variable done a specific value to indicate

TRUE and replaced the clause “ ! d o n e” with a test for equality on that value.

This slightly increased the number of mutants generated but had little effect on those that

survived all tests. Similar results were obtained using Boolean values in code used in

Ellims, Ince and Petre [113].

The unfortunate implication of this is that it would appear that some common code

constructs exist that are going to be intrinsically difficult to deal with. This is of course not

the first instance where Boolean flags have caused researchers problems, e.g., Michael et

al. [232]. Dealing with the effects in an effective manner likewise appears non-trivial.

5.4.5 Time Equivalence

The observation that a number of mutations of both shellsort and quicksort functions were

so obviously not equivalent in the code sense but produced identical results was initially

perplexing. However, it was obvious that in some manner they must be compensating for

the incorrect code by some other means. The most reasonable explanation for how this

151-220

Experimental Design

compensation might have taken place is that the routines might have performed more

work.

If this was the case, then it seemed plausible that it might be possible to observed this by

measuring the execution time and detecting a delta.

The system that was used for this work was a 2GHz Pentium with 512 megabytes of

RAM running SUSE Linux 9.2. Unfortunately, Linux has very poor timing facilities and

the kernel build only supports a resolution of a hundredth of a second. Consequently, it

was impossible to measure the time taken to run a single invocation of a function.

The first attempt to address this in an alternative way involved reworking the driver. c
program so that:

• oracle data was collected for all vectors prior to running any mutant (to be folded into

standard version);

• all vectors would be run over a mutant as a single operation.

There were a number of significant issues with this batching approach. First the results

were very difficult to replicate with 100% consistency. Second, by having long runs it

allowed the O/S more opportunities to interfere with the times generated.

Table 18. Summary of best results for batch timing.

Delta R10 R20 R40
Bubble +1-5% -1 0 -

+/1 10% 0 -1 +1
Shell +/- 5% - 0 0

+/-10%

As the approach taken above was problematic, a search for a timing method with more

resolution was investigated, namely a technique for directly accessing the clock cycle

counter on a Pentium chip (Saikkonen [276]). A small series of experiments were

conducted using the shell sort algorithm which again lead to no positive results possibly

because of interference from the O/S itself as there were a number of issues associated

with disabling interrupts. Other possible problems include cache usage and pipeline

effects. It would be interesting to repeat this work in a more controlled environment such

as an embedded system with no operating system.

152 - 220

Experimental Design

Results for timing experiments with the system clock were rather mixed. Table 18 shows

the best results obtained for the tests run with each of the test sets (random with 10, 20 and

40 vectors). A zero indicates no new mutants were killed, a negative number that, many

extra mutants died, and a positive number that more survived, a result which is clearly

erroneous.

It should be noted that both shellsort and quicksort have final passes that are potentially

capable of compensating for other errors in the code; shellsort has a final pass that

compares all adjacent pairs and swaps them and this may be sufficient if the error being

compensated for is minor and the array is very close to be ordered. The quicksort algorithm

performs a single pass of straight insertion sort (Knuth [195]).

5.5 Industrial Pair-wise (2-way) Experiments

This part of the study consisted of one major experiment and two subsidiary experiments.

The major experiment involved running the mutations for each function with the hand

generated test vectors, the vectors produced by my implementation of the AETG algorithm

for generating pair-wise adequate test sets, and randomly generated test data of a similar

size. Part of this experiment also looked at whether the resulting test vectors were adequate

for the data.

The second experiment took a subset of the C functions and examined whether a more

sophisticated approach to using the AETG algorithm could produce an improvement in

performance.

The third experiment examined whether simply generating more vectors could improve

the effectiveness of random testing. This experiment was done in order to establish a

comparator for the pair-wise technique as suggested by Ince [177].

5.5.1 Procedure

The procedure employed in these experiments consisted of the following steps:

• From the project archive, I extracted the hand-generated test vectors, the comparisons

originally used to determine correctness, and the information used to generate them from

the detailed designs and data dictionary.

153 - 220

Experimental Design

• The data on comparisons were used to construct an “oracle” that compared result data

generated by the mutated function with data generated by the original version of the

function. Any differences between the two sets results were flagged as a failure that kills

the mutant.

• I then generated a 2-way adequate test set. For numeric variables, I selected the

minimum, median and maximum values in the range defined in the data dictionary. For

enumeration variables, I used all valid values and one out of range value to exercise the

default statement in the code. For Boolean variables TRUE and FALSE were used.

• Finally, I generated a test set of the same size as both the hand and the t-way test sets for

purely random tests. Numeric values were drawn from the whole range with equal

probability and replacement. Enumerations and Boolean values were selected as above.

The generator described in Park and Miller [261] was used for this.

5.5.2 Experimental Results

5.5.2.1 Minimum, Median and Maximum Values

The first experiment directly compared the hand-generated test vectors with test vectors

generated by the straightforward application of the AETG algorithm using three values

(minimum, middle and maximum) for scalar types and all values for enumerations. As a

comparison, I included randomly generated sets of test vectors of comparable size.

Table 19 shows the results of this experiment, showing the function name, the number of

valid mutants (i.e. those that compile with no errors), the number of vectors in the test set

for the hand-generated data and the number of vectors generated by my implementation of

the AETG algorithm. The next two columns show the number of mutants left alive after

running each set of test vectors on all valid mutants for hand-generated and AETG

generated tests. The final two columns detail the results for randomly generated test sets

for the same size as the hand-generated vectors (Random versus Hand) and the same size

as the AETG generated vectors (Random vs. AETG). Note that where the size of the hand

generated test sets and those generated by the AETG algorithm were similar only one size

of random test (the larger) was used.

The main results can be summarised as follows:

154 - 220

Experimental Design

• Random testing gives the best kill rate for a single function and AETG for one also, in

the remaining functions the hand-generated test perform best (6 of 8).

• Random testing outperforms the AETG algorithm for two functions, and there was one

draw. Of the remaining cases the AETG vectors beat the random test vectors by a

substantial margin, and the remainder the performance of random testing is close to that

of the AETG algorithm.

• For the most complex functions (i.e. those in the last two rows), the hand-generated tests

outperforms both techniques by substantial margins52.

Table 19. Results of the first experiment showing the number of mutants left alive after

all test vectors have been applied. The test set that left the fewest mutants alive is in bold.

Function Name Valid
Mutants

Hand
Vectors

AETG
Vectors

Alive
Hand

Alive
AETG

Random
vs. Hand

Random
vs. AETG

_dip_debounce 81 18 17 12 9 12 —

_dip_check_cal 97 8 8 0 0 0 —

aip_spike_filter 178 40 15 18 42 82 90

_sdc_fuel_control 213 15 15 21 107 101 —

_aip_median_filter 217 27 9 41 47 53 57

_aip_apply_filters 311 68 21 64 58 57 57

_sdc_pre_start 1237 14 16 675 746 — 891

_gov_gen_ffd_rpm 1227 14 18 152 729 — 744

5.5.2.2 Error Detection

The second experiment in this set looks at the functions that have known five known

coding errors committed by programmers during development of the code and extracted

from the project change request database. The subject functions are listed in Table 20. As

before, column one is the function name, column two shows whether the error was “found”

with the hand-generated test set and column three shows whether the AETG test set found

the error. Column four shows whether the randomly generated test vectors found the error.

The column five shows whether the error was a mutant or not.

52 A statistical analysis is performed in section 5.6.3.

155 - 220

Experimental Design

When I applied the three sets of test vectors used against mutants in the first experiment

I found that all of the test data generation techniques appeared to be effective at revealing

the actual errors inserted in the code during development. Therefore, this second

experiment did not allow us to draw any strong conclusions; but suggested that many real-

world errors could, in practice, be quite “shallow” and possibly amenable to being found

by any testing technique (automated or non-automated). Duran and Ntafos [107] reached

similar conclusions. However, it should be noted that the complex functions were not

included in the set of functions that were tested here.

Table 20. Effectiveness of test sets versus known actual errors in the code.

Function Name H and: error
found

AETG: error
found

Random: error
found

Error is
mutant

_dip_check_cal Yes Yes Yes Yes

_dip_debounce Yes Yes Yes No

_sdc_pre_start Yes Yes Yes No

_aip_apply_filters Yes Yes Yes Yes

_aip_apply_filters Yes Yes Yes No

5.5.23 Improved Data Point Selection

This third experiment looked at some simple ways of making data generated by the

AETG algorithm more effective. For example, the following were considered:

• Invert: changing the assignment of values, i.e., converting elements that had the value

t r u e to f a l s e and vice versa.

• Interleave: rather than simply selecting the minimum, middle and largest value, I

interleaved values that appeared together in conditional statements.

• Invert and interleave: inverts the interleaved values rather than just the minimum, middle

and maximum.

• Biasing: altering the distribution of the data generated by adding duplicate elements. For

example, specifying three values for a Boolean value as f a l s e , f a l s e , t r u e rather

than just f a l s e and t r u e .
• Interleave + biasing: a simple combination of the two previous techniques.

156 - 220

Experimental Design

Interleaving is very similar to domain partitioning. However, because the analysis here

has been less rigorous than might normally be required for domain partitioning, the term

has not been applied. This less rigorous analysis is intentional in that I was deliberately

attempting to avoid performing the type of analysis used in the construction of the original

test sets, while attempting to obtain some of the advantages of such analysis. An example

of the procedure as applied to the _sdc_f uel_control function is shown below.

The function compares four variables (A to D) against a global value for engine speed

measured in revolutions per minute (RPM). Values were then allocated as shown in Figure

14.

RPM Value Selected for Variable

500 1000 2000 4000

400 I 600 I 1100 I ^

I 450 I 650 I 1150

400̂ 600̂ 1100 I 2500

I 450 J 650 I 1150 I 2550

Fig. 14. Allocation of values for variable A to D and RPM for the_sdc_f uel_control
function when Interleaving (not to scale).

One interesting aspect seen here is that the function _sdc_pre_start was not

amenable to interleaving, no complex comparisons between variables being present.

Exactly why this function seems to be so difficult to test is, at this point slightly bemusing.

There are some hints in the nature of the code however. For example, no computed

values are assigned, all assignments are from constant values and many of these are to

logical t r u e which in C is any no-zero value. Explicitly assigning TRUE to a fixed value

and testing for that may form part of the solution. However, the driver program did test for

equality of returned values so this may not explain why this function is so hard to test.

Variable
0

RPM |“

A -

B —

C -

D -

157 - 220

Experimental Design

The results from the third experiment are shown in Table 21. The first column is the

function name, the second column (Base) is the number of mutants left alive as in

experiment 1. The column labelled “invert” is an inversion of data fields in the vectors

used in experiment 1. The column labelled “Interleave” is a new set of test vectors

generated using the technique outlined above. The column labelled “Interleave + Inverted”

has the interleaved values used in column three inverted. The column labelled “biased” has

one or more variables biased with the introduction of duplicate values. The seventh column

combines the input values for the interleaved and biased test data generation. The last

column replicates data for hand-generated tests for reference.

Table 21. Results for experiment three, to improve the mutant kill rate by modifying the
input data points (e.g. interleaving) or the interpretation of those points (inverting). Two
sets of data are shown for each function, the top row is mutants left alive and the bottom,

the number of vectors

Function Base Invert Interlea
ve

Interleave
+ Inverted

Biased Interleave
+

Biased

Hand

_sdc_fuel_control 107 97 96 25 31 26 21
15 15 23 23 15 23 15

_sdc_pre_start 746 746 n/a n/a 956 n/a 675
16 16 20 --- . 14

_gov_gen_ffd_rpm 729 614 584 577 637 562 152

18 18 26 26 19 27 14

Of the three complex functions retested in this third experiment, one, _sdc_fuel_control

showed a significant improvement in the number of mutants killed in both the Interleave +

Inverted and Biased test sets, coming close to the number of mutants left alive with hand

generated tests. Some improvement was also evident for the _gov_gen_ffd_rpm function

with the Interleave and Interleave + Inverted test sets. However, the level of improvement

is nowhere near as high in percentage terms and pairwise testing is still not competitive

with the hand-generated tests. As can be seen from the table, there was no improvement in

the number of mutants killed for the _sdc_pre_start function.

5.5.3 Summary

This set of experiments gives a clear indication that test sets constructed to be 2-way

adequate (pairwise) are not competitive with a carefully constructed set of hand-generated

158 - 220

Experimental Design

vectors in this experiment. The third experiment in series also suggests that while better

data models, as suggested by Dalai et al. [93], [92] and Bell and Vouk [32] may improve

the ability of automatically generated 2-way adequate test sets they are not a complete

solution. To investigate this further an extended set of experiments using higher factors

was performed as detailed in the next section.

5.6 Industrial/-way Experiments

5.6.1 Aims

The aims of this experiment were two fold. First, to evaluate the effectiveness of /-way

adequate test sets relative to a set of high quality hand-generated tests. Second, to compare

these tests with other techniques with similar problem analysis complexity.

5.6.2 Procedure

The procedure employed in this experiment consisted of the following steps for each

functions:

• Generate /-way adequate test set sets for / = 2 to / = 5. Numeric variables, enumeration

and Boolean values were treated as in section 5.5.1.

• Generate a test set of the same size as the /-way test sets using random selection from the

same set of values with replacement. That is, select one valid value for each variable

from the set of values used in generating the /-way tests.

• Generate a test set of the same size as the /-way test sets for purely random test. Numeric

values were drawn from the whole range with equal probability and replacement.

Enumerations and Boolean values were selected as above. The generator described in

Wichmann and Hill [329] was used to ensure long sequences.

• For each function generate one or more sets of “base choice” test vectors as defined in

Ammann and Offutt [9]. In base choice, a base vector is selected, perhaps based on

expected or normal use and additional vectors are generated from this base by changing

a single value of one variable in each new vector until all values have been used for all

variables.

159 - 220

Experimental Design

• For each function, execute each of the valid mutants on each test vector and for each test

set recorded the number of mutants that were killed.

5.6.3 Experimental Results

Results are shown in Table 22. The first column gives the function name and the second

states the information given in the next four rows as follows. For each function the first

row (vectors) is the number of test vectors in the set determined by the size of /-way test

vectors. The second row (/-way) is the number of mutants killed by /-way vectors for / = 2

to 5. The third row (rand sel) is the number of mutants left alive a using a test set created

by random selection and the fourth row (random) is the number alive after applying the

randomly generated test sets. The seventh column (Base) gives the number of vectors in

the base choice test set and the number of mutants left alive below it (row labelled /-way).

The final column (Hand) gives the number of vectors in the hand-generated test sets and

the number of mutants left alive below it. For each function, the smallest test set that had

the best performance is in bold.

Table 25 gives indicative information on the amount of time in seconds that it took to

run each set of /-way adequate test sets data for each function.

160 - 220

Experimental Design

Table 22. Number of mutants killed for each of the sets of test vectors applied.

Function Name Process 2-way 3-way 4-way 5-way Base Hand
_dip_debounce vectors 19 60 205 634 25 18

r-way 9 9 9 9 28 12
rand sel 14 9 9 9
random 11 10 10 9

_aip_median_filter vectors 12 28 54 7 27
r-way 49 40 40 56 41

rand sel 46 43 40
random 40 40 40

_sdc_fuel_control vectors 17 57 174 504 17 15
r-way 101 49 25 22 36 21

rand sel 126 31 24 22
random 84 58 25 18

aip_spike_filter vectors 16 49 146 400 14 40
r-way 42 23 23 23 80 18

rand sel 66 37 32 23
random 82 82 66 16

_thc_decide_state vectors 73 271 972 2883 28 17
r-way 228 206 100 57 313 60

rand sel 182 146 63 57
random 348 346 307 232

_thc_autocal vectors 20 70 181 377 14 6
t- way 333 188 187 187 270 197

rand sel 407 299 264 189
random 410 335 299 221

_aip_apply_filters vectors 34 142 562 1949 23 68
r-way 47 46 46 46 64 64

rand sel 46 46 46 46
random 46 46 46 46

_gov_rpm_err vectors 17 62 208 662 17 17
r-way 443 443 443 443 444 446

rand sel 443 443 443 443
random 465 462 462 460

_sdc_pre_start vectors 22 79 228 573 13 14
r-way 736 673 673 673 965 675

rand sel 700 673 673 673
random ' 742 742 742 742

_gov_gen_ffd_rpm vectors 21 81 299 1040 29 14
r-way 701 190 158 140 785 152

rand sel 663 270 148 140
random 502 265 152 152

The primary concern of this section of the experimental work was to find which of the

techniques was best at killing mutants in the selected functions. One way of considering

161 - 220

Experimental Design

this is to look at which technique kills the most mutants for each function. The results are

summarised as follows:

• r-way test vectors won or drew in six of the ten cases.

• Test vectors generated via random selection (random design) won or drew in half the

cases.

• Random data generation won or drew in four of the ten cases but notably only has a

single win in the second half of the table.

The selection of “a winner” from these results in this way is arbitrary in that it is the test

set that killed the most mutants won regardless of the number of vectors required. Indeed

for some code only small numbers of vectors were required. Another way to approach the

concept of a winner is to examine the number of cases where a method failed to achieve a

result comparable with the hand-generated tests. Here, there is one failure for r-way and

random selection plus a near miss (_sdc_fuel_control by one) and four failures for random

testing.

I also calculated the mean number of vectors required to kill each mutant. Here the

number of vectors required to achieve the best result is used and I found that r-way requires

2.62 vectors per mutant, random selection required 2.71 vectors per mutant and random

required 3.70.

Base choice was never the best performing technique and its performance was

comparable with the hand-generated tests in only two cases. These results were surprising

given that previous work by Smith et al. [286] and Grindal et al. [138] found that the

technique to perform rather better.

The question is: are the main results for t-way and random testing statistically

significant, given that the sample is small and the distribution of the data is not known?

The Wilcoxon matched pairs signed ranks test53 was applied to the results for r-way and

random test sets versus those for the hand-generated vectors. Given the differences in the

numbers of mutants generated for each function, the data was normalised to an interval

scale by converting the raw score to a percentage value (mutants left alive as a percentage

53 Calculations were made using the wilcox.exact function in the exactRankTests package of R versions 2.9.1 running

under WindowsXP. Note that the wilcox.test functions should not be used if there are ties.

162 - 220

Experimental Design

of total mutants). Table 23 shows the statistical values generated for the r-way test sets

versus the hand generated test sets, the first row being the level of significance for a two-

tailed test, and the second and third rows the sum of the positive and negative ranks.

The original hypotheses were:

HI: that 2-way adequate test sets are at least as effective at killing mutants as hand

generated tests.

H2: that r-way adequate test sets for a small factor greater than two, are at least as effective

at killing mutants as hand-generated tests.

For the purpose of statistical analysis, the first hypothesis can be restated as the null

hypothesis Hlo: The difference between the members of each pair (x, y) has median value

zero and there is no difference between the treatments. The alternative H1a: is that the

median value is not zero, i.e., that there is a difference.

Table 23. Two-tailed P values and Wilcoxon values of positive and negative sums for
percentage of mutants left alive for r-way adequate and hand-generated test sets.

t =2 t =3

Till t = 5
p 0.01953 0.3223 0.4492 0.5566
w+ 50 38 35.5 21
w 5 17 19.5 34

For HI, the null hypothesis Hlo is rejected if the P value is less than a = 0.05 (5% level

of significance). For HI this is clearly the case, and thus we can state that there is a

significant difference between the median number of mutants left alive between the two

samples (T = 5, n = 10, P < 0.05, Wilcoxon signed ranked test for matched pairs, two-

tailed). In addition, if we examine the W+ and W" rank sum values we see that the r-way

adequate test has a larger number of mutants left alive.

For H2 the null hypothesis H2o is the same: the difference between the members of each

pair (x, y) has median value zero, and there is no difference between the treatments.

However, in this case the P values for t = 3, 4 and r = 5 exceed 0.05 (P > 0.05 in all cases),

thus we cannot reject the null hypothesis H2o and conclude that there is no statistically

significant difference between the two sets of test vectors. Further, if we examined the W+

and W rank sum values it can be observed that as we progress from r = 3 to t = 5, the rank

sums progressively change to favour the r-way test sets and the rank sums for t =5 suggest

163 - 220

Experimental Design

that it may be more effective. However, a post-hoc single-tailed test does not reach a

significance of P < 0.2. However, the hypothesis should not be rejected out of hand,

because the number of samples is low (n = 10); instead, more investigation is warranted.

The result also suggests that testing for t - 6 would be worth while (although

computationally expensive) in order to throw further light on the topic.

Table 24. Two-tailed P values and Wilcoxon values of positive and negative sums for
percentage mutants left alive for random test sets with the same number of vectors as the

assocated r-way adiquate test sets and hand-generated test sets.

t =2 equivalent t =3 equivalent t = 4 equivalent t = 5 equivalent
p 0.01953 0.01953 0.05469 0.3008
w+ 50 50 39 32
w 5 5 6 13

If we apply the same tests to the results for random tests show in Table 24, we see a

similar pattern, however here we reject the null hypothesis for random test sets the same

size as the matched 2-way and 3-way adequate test sets. For the random test set of the

same size as the 4-way adequate test set we should accept the null hypothesis as P > 0.05.

However there is quite a possibility of committing a Type I error54 given the closeness of

computed P value to the selected limit (P = 0.05469). This is supported by observing that

the Wilcoxon'rank sums (W+ = 39, W = 6) and n = 9 (one tie). For the random test set of

the same size as the 5-way test sets we cannot reject the null hypothesis and state that at the

5% level of significance random test sets perform as well as the hand generated test sets (T

= 13, n = 9, P < 0.05, Wilcoxon signed ranked test for matched pairs, two-tailed). It should

be noted however that Wilcoxon rank sums (W+ = 32, W = 13) still appear to favour the

hand-generated test vectors so the evidence here is perhaps not as strong as in the case of

the 5-way adequate test sets, and warrants further investigation.

Given these results, the obvious question to ask is, is the ability to kill mutants of the 5-

way adequate test sets and the randomly generated test sets of the same size, the same?

Applying the Wilcoxon matched pairs signed ranks test we have a null hypothesis Ho that

the performance of the two test sets is the same. Directly comparing the performance of the

two test sets gives P = 0.2188 and means we cannot reject the null hypothesis (T = 6, n = 7,

54 We reject the null hypothesis when it is actually true.

164 - 220

Experimental Design

P > 0.05, Wilcoxon signed ranked test for matched pairs, two tailed). However,

examination of the Wilcoxon rank sums (W+ = 6, W- = 22) suggest that the 5-way

adequate test sets are perhaps more effective, more evidence is however required.

Table 25. Execution times for the t-way adequate test sets.

Function Name Valid
Mutants

2-way 3-way 4-way 5-way Max
(hours)

_dip_debounce 81 76 210 743 1649 0.46
_aip_median_filter 217 64 127 248 0.07
_sdc_fuel_control 213 132 362 808 3667 1.02
aip_spike_filter 178 109 433 858 1665 0.46
_thc_decide_state 311 707 2723 8156 43451 12.07
_thc_autocal 386 139 582 2313 4253 1.18
_aip_apply_filters 669 198 420 675 2788 0.77
_gov_rpm_err 783 212 851 3239 8563 2.34
_sdc_pre_start 1237 906 1506 5083 16,231 4.51
_gov_gen_ffd_rpm 1227 972 2612 17,758 33,653 9.35

Another factor that needs to be considered is whether the two sets of vectors kill the

same mutants, or whether the set of mutants killed by each are disjoint with only a small

intersection. Data presented in Table 26 shows the number of mutants left alive for each

the hand-generated tests and the difference between the two (delta). In addition, it also

gives the number of unique mutants that were left alive by one set of test vectors but not

the other. The data indicates that there was actually a significant overlap. This result is

significant because it implies that it is reasonable to assume that each of the two sets of test

vectors have a similar ability to detect actual faults. Although the relationship between the

ability to kill mutants and detect faults has not been investigated in this work studies such

as Andrews et al. [11] have indicated that if a test set is good at one task, then it is also

good at the other.

165 - 220

Experimental Design

Table 26. The number of mutants not killed by the largest r-way adequate test seta and
hand-generated tests. The final two columns are the number of killed mutants unique to

each set.

Function Name r-way
Alive

Hand
Alive

Delta r-way
Unique

Hand
Unique

_dip_debounce 9 12 3 1 4
_aip_median_filter 40 41 1 0 1
_sdc_fuel_control 22 21 -1 8 7
aip_spike_filter 23 18 -5 9 4
_thc_decide_state 57 60 3 4 7
_thc_autocal 187 197 10 0 10
_aip_apply_filters 46 64 18 0 18
_gov_rpm_err 443 446 3 3 6
_sdc_pre_start 673 675 2 0 2
_gov_gen_ffd_rpm 140 152 12 1 13

5.6.4 Investigations

There are several interesting features present in Table 22 that deserve comment:

• Why is it so difficult to obtain a good kill rate for the _sdc_pre_start function?

• Is the fault detecting ability of random testing really static for _sdc_pre_start?

• Can the results for _gov_gen_ffd_rpm be improved if we use more random tests?

An examination of live mutant’s _sdc_pre_start code reveals that the majority of live

mutants were connected with manipulating variables that have Boolean values. As has

been noted in other work Ellims, Ince and Petre [114] and in a large amount of research on

searched-based test data generation, e.g., Michael et al. [232] and Bottaci [39], Boolean

data appears to be intrinsically difficult to deal with.

The _sdc_pre_start code was executed with a number of different randomly generated

test sets using different seeds for 288, 573, 1200 and 2400 values. Although some of the

vector sets showed some improvement, the best result returned was only 717 live mutants

and all data sets showed the same flat pattern as shown in Table 22.

Code for _gov_gen_ffd_rpm was run with a test set of 2000 and 5000 vectors taking 12

and 32.4 hours to execute. The test set of size 2000 showed no improvement while the test

set of 5000 vectors killed only two additional mutants.

166 - 220

Experimental Design

5.7 r-way Optimization

5.7.1 Aims

There are two obvious issues with the data presented above. First, that the execution times

with t-way test generation were long for some functions when compared with the time

taken to generate the tests by hand. Timesheet data gave an average of 5.6 hours for AIP

functions, 5.7 hours for DIP and 1.9 hours for SDC functions. Second, the number of

vectors that would have to be examined to determine whether a test passed or failed is

infeasibility large. In practice, a large part of the problem with generating tests by hand is

determining whether the output is correct. Given the volume of tests generated

automatically, determining whether the code passes or fails places an unacceptable burden

on the tester and significantly reduces the utility of any automatic generation technique.

Therefore, this experiment has two aims. First, to investigate the potential of reducing

the amount of time required to run all the mutants. Second, to determine if a minimal test

set can be extracted from the process to reduce the oracle problem to a manageable level.

5.7.2 Procedure

For this experiment, the test driver was modified to record which vectors killed which

mutants for each set of test vectors. After all vectors from a t-way test set had been run

over all remaining mutants the minimisation routine determined which vector killed the

most mutants and this vector is selected to be retained. The mutants that this vector killed

were removed from further consideration. This process was repeated for each vector in the

test set until there were no vectors remaining that killed more than one mutant.

The run with the next set of vectors excluded from consideration those mutants that were

previously killed by all preceding test sets but otherwise the minimisation process was

identical. This continued until the final set of vectors was run, when the restriction on not

selecting vectors that only kill a single vector was removed.

Other procedures to reduce the number of vectors that need to be considered have been

investigated previously. A simple suggestion by Offutt [248] was to ignore the vectors that

do not kill any mutants. However, these experiments suggested that savings might not be

great, as a large number of vectors kill at least one mutant, which is why I delay selecting

167 - 220

Experimental Design

any vectors that kill only a single mutant until the final pass. Offutt et al. [255] suggested a

mechanism for selecting minimal sets of vectors that again removes mutants as they are

killed but runs the set of vectors in different orders.

5.7.3 Experimental Results

The results from experiment 2 are shown in Table 27. This table reports the time to run

the largest r-way test set (max), the time using the minimisation procedure outlined above

(min) and the percentage time saving for the minimisation (gain) for each function tested.

Information on vectors given in the table is the number of hand-generated vectors (hand),

the size of the largest single r-way adequate test set (max) and the size of the optimised test

set (min). For reference the t value of the test set that first resulted in the maximum number

of mutants killed is shown in the second column, which is labelled r.

Table 27 shows that, in terms of time saved, the minimisation procedure delivered

significant saving for most of the functions, with an average saving of close to 53%.

However, it is also clear that for functions that showed no increase in mutants killed at

higher values of r (e.g. _dip_debounce) the process can be counter-productive. However,

that it is not always the case, for example _aip_apply_filters. The benefits where high r

values did show improvement are more supportive of the idea that the minimisation

scheme trialled here is worth while.

Table 27. Summary data for r-way minimisation runs.

Function Name t Time (seconds) Vectors
max min gain hand max min

_dip_debounce 2 1649 2029 123% 18 634 6
_aip_median_filter 3 248 67 27% 27 54 9
_sdc_fuel_control 5 3667 1144 31 % 15 504 12
aip_spike_filter 2 1665 628 37% 40 400 9
_thc_decide_state 5 43451 6942 16% 17 2883 13
_thc_autocal 4 4253 1276 30% 6 377 13
_aip_apply_filters 2 2788 2029 73 % 68 1949 7
_gov_rpm_err 2 8563 6118 71 % 17 662 4
_sdc_pre_start 2 16231 18212 112% 14 573 12
_gov_gen_ffd_rpm 5 33653 5767 17% 14 1040 22

168 - 220

Experimental Design

Results for the size of the test sets from the minimisation routine were less ambiguous

than those for time minimisation. In eight of the ten cases, the test sets were smaller than

the hand-generated test sets. In the remaining two cases, they are not substantially larger in

terms of total tests required. Spearmans’rank order correlation was applied to the size of

the of the hand-generated and t-way adequate test sets the calculated value of rs is -0.665

with eight degrees of freedom which suggests a modest55 negative correlation. Testing the

significance of this, the null hypothesis Ho is that there is no correlation. At the 5%

confidence interval P is 0.648 which is less than the calculated value so we cannot reject

Ho at the 5% level of confidence.

There is however one down side, as reported in Smith et al. [286] to this minimisation

process. Namely, vectors that were selected by the minimisation procedure were not very

user friendly. That is, it would take a significant effort to understand what is being tested.

Here, none of the test cases contained tests that would be obvious to an engineer producing

the test cases by hand (the author was the engineer in charge of the Wallace56 project).

Indeed many of the test cases, especially those for the function _aip_apply_filters

contained data that, in practice, would not be used and would be disallowed by the tool that

vets the engine control unit calibration data. The importance of this is not completely clear;

the vectors in the t-way adequate test set are clearly capable of killing almost the same set

of mutants as the hand-generated test sets (see Table 26) which suggests that they are as

adequate for killing mutants. The questions then becomes are mutant adequate test sets

good at detecting real faults? That question is however outside the scope of this work.

One possible method of addressing this issue is to use as a first pass to the minimisation

process a small set of hand-generated vectors. The feasibility of doing this is considered in

the next section.

55 Fowler and Cohen [120] pg. 132.

56 There was also a project Gromet.

169 - 220

Experimental Design

5.8 Minimisation with Hand Vectors

5.8.1 Aims

Given the results from the minimisation experiments in the previous section, an obvious

question to ask is whether there is any benefit to be gained by including a small number of

user generated tests in the process.

Because there is a set of user derived tests available, the aim of this experiment was to

simulate the situation where the user creates a small number of tests to target the main

paths though the code. This approach potentially has a number of advantages compared

with taking the purists view that the creation of tests sets is an either/or situation with

regards to the use of automatically generated data.

It should be noted that this procedure is most probably not equivalent to the “seeding”

suggested by Cohen et al. [67] and Czerwonka [87]. The reason for this is that the process

does not take into consideration the tuples that are potentially covered by the hand

generated test. Indeed this is not actually possible given the disjoint nature of the set of

values from which that the two sets of vectors were drawn.

5.8.2 Procedure

The driver program was further modified so that it would take as parameters the number of

values to be selected at random without replacement from the test set and the seed to use

for the random number generator. An example of this procedure is shown in Figure 15

where the compiled code containing the hand-generated test is passed the parameter r8

which specifies that 8 vectors are to be selected and the parameter i l specifies that seed 1

is to be used57.

dec_hand.out r8 il g p >res_r8_l_dec_hand.txt
dec_2way.out n g p >res_r8_l_dec_2way.txt
dec_3way.out n g p >res_r8_l_dec_3way.txt
dec_4way.out n g p >res_r8_l_dec_4way.txt
dec_5way.out n >res_r8_l_dec_5way.txt

Fig. 15. Example application of the optimization process.

57 Seeds are all large seven-digit prime numbers taken from a table of first 10,000 prime values.

170 - 220

Experimental Design

The other parameters shown in Figure 15 are defined in Table 28.

Table 28. Parameters that can be passed to the mutation driver program.

Param eter Usage
d write child debug file, used to enable the output of debugging

information from the child process spawned for each mutant.
g generate a no-run list, creates a list of mutants that can be

excluded for the next iteration as vectors have been found
that kill them.

i initialise/select random seed to be used
m use a no-run list, read in the set of mutants that are not to be

run during this execution.
P perform partial minimisation, select only vectors that kill

more than one vector
r enable random selection of test vectors with subset sized N
s skip mutation execution, also used for debugging. Allows the

driver to be run without spawning any child processes.

Each of the larger functions in the industrial code based was then run though the

minimisation process five times with different seeds using values for the r parameter of 2,

4, 6 and 8 (i.e. for a total of 20 runs). Data was collected on the number of mutants not

killed, the total execution time, and size of the resulting optimised vector set. The mean

values for each set of runs with equal r values were then calculated.

5.8.3 Experimental Results

Experimental results are summarised in Table 29. As previously the first column is the

name of the function being tested. The second column lists the measures used to compare

the results from this experiment with the results from the optimisation runs presented in

Table 27 (vectors and time in seconds) and the live mutants from Table 22 (alive). Data

from these tables are replicated in the final column, which is labelled “best to date”. The

remaining columns show the number of vectors drawn from the hand-generated test sets.

The data given being the mean of the five runs.

Table 29 shows that adding small numbers of hand-generated vectors has a small effect

on the size of the resulting test data sets (number of vectors) and a slightly better effect on

the execution times.

171 - 220

Experimental Design

The effects however are not always consistent, for example for _gov_rpm_err the

number of vectors in the resulting test set was larger than for the best case without the

hand-generated vectors. However, the improvement in time was a little more consistent;

with four of the six functions showing a clear improvement which is probably because the

hand-generated phase of the optimisation process is very short and results in all subsequent

phases being more efficient. There was also a small reduction in the number of mutants left

alive in some cases, but this effect was relatively small.

The statistic significance of these results was investigated using Wilcoxon matched pairs

signed ranks test for N = 8 and the data for the best performance from the optimisation

process (best to date). The null hypothesis is the same as previously, i.e., Ho: the difference

between the members of each pair (x, y) has median value zero and there is no difference

between the treatments. For execution times at the 5% confidence level we cannot reject

the null hypothesis (T = 1, n = 6, P = 0.0625, Wilcoxon signed ranked test for matched

pairs, two-tailed) and conclude that there is no difference between the two samples. For the

size of the final set of test vectors at the 5% level of confidence (T = 4, n = 5, P = 0.5,

Wilcoxon signed ranked test for matched pairs, two-tailed) we cannot reject the null

hypothesis and conclude there is no difference.

These results suggest that there was no negative effect of adding a small number of

hand-generated tests to the r-way adequate test sets and that this procedure may be

advantageous in that the execution time has the potential be considerably reduced. We

should also consider the amount of effort required to check the reduced test sets manually

for correctness. If we assume that manually generated tests will be simpler to verify than

automatically generated tests then the total effort of checking the vectors has potentially

been reduced.

172 - 220

Experimental Design

Table 29. Summary of results for adding N (2, 4, 6, 8) hand-generated tests randomly
drawn without replacement from the set of hand-generated tests associated with each of the

subject functions.

Function Name Measure Hand generated vectors ac ded Best to
dateN = 2 N = 4 N= 6

00II55
_dip_debounce not run not run not run not run
_aip_median_filter not run not run not run not run
_sdc_fuel_control not run not run not run not run
aip_spike_filter not run not run not run not run
_thc_decide_state alive 56 56 55 55 57

time (s) 4803 4660 3489 2826 6942
vectors 9 9 10 11 13

_thc_autocal alive 187 187 187 187 187
time (s) 2356 2076 1578 1420 1276
vectors 15 16 15 15 13

_aip_apply_filters alive 46 46 46 46 46
time (s) 1613 2130 2157 1706 2029
vectors 6 7 7 7 7

_gov_rpm_err alive 443 442 438 440 443
time (s) 3685 5504 3280 4217 6188
vectors 5 5 6 6 4

_sdc_pre_start alive 673 673 673 673 673
time (s) 7211 7492 8201 7484 18212
vectors 12 12 9 9 12

_gov_gen_ffd_rpm alive 143 140 140 140 140
time (s) 3439 2258 3796 2534 5767
vectors 17 17 17 15 22

173 - 220

Conclusions

6. Conclusions

6.1 Introduction

This chapter is divided into sections as follows:

• Section 6.2 gives a brief summary of the main experimental results.

• Section 6.3 reviews the original hypothesis that was investigated and the conclusions

that can be reached given the experimental results.

• Section 6.4 discusses results from random testing.

• Section 6.5 briefly discusses the effect of combining human generated and automatically

generated test vectors.

• Section 6.6 looks at the threats to the validity of the experiments that were conducted.

• Section 6.7 looks at specific weaknesses in the work that was undertaken and suggest

ways of avoiding those in future.

6.2 Summary

The original research question being investigated was to determine whether automatic test

data generation as currently documented in the literature is competitive in terms of error

detection capabilities with test sets developed by traditional human methods when applied

to unit testing. Specifically, the tests were designed to test the following hypotheses:

• that 2-way adequate test sets are at least as effective at killing mutants as hand-generated

tests;

• that r-way adequate test sets for small factors (t = 3, 4, 5) are at least as effective at

killing mutants as hand-generated tests;

• that it is possible to construct a minimised test set from a t-way adequate test set that is

small enough to allow the correctness of results to be checked manually.

The main sets of experiments that were conducted are as follows:

• experiments that tested a set of sort functions using 2-way, random and hand-generated

tests.

• experiments that tested small set of functions drawn from the code for an engine control

system using 2-way, random and hand-generated tests (Table 19 and Table 22).

174 - 220

Conclusions

• extending the second set of experiments to higher factors to determine if that resulted in

an improvement in coverage (Table 22);

• experiments that used data on which test vectors kill which mutants to minimise the size

of the test sets to allowing them to be reviewed manually (Table 25);

• experiments that added small numbers of hand-generated tests as the first stage in the

optimisation process (Table 27).

Allied with these experiments were a number of additional investigations such as the

timing experiments described in section 5.4.1.5, the examination of the techniques ability

to detect real faults that is described in section 5.5.2.2 and work with more complete data

models in section 5.5.2.3.

Overall, the main planned set of experiments were aimed at the obvious interpretation of

the primary research question. That is, whether automatically generated test sets can

discover as many faults as hand-generated test sets. The ad-hoc investigations had the same

purpose.

6.3 Conclusions

The results of these experiments have been surprising. At the start of this study, it was

suspected that 2-way techniques would offer an effective way of testing critical software

given the volume of studies that supported this view. However, the results show that

although 2-way adequate test sets may be effective in some situations, for example the

field studies reported in chapter 3, they have generally fallen short of expectations.

Nevertheless, the research conducted here supports the view that test sets that are adequate

to higher factors show significant promise. Likewise, the process of optimising versus

mutation adequacy appears to be very effective at reducing the number of vectors that need

to be examined by hand. The next three sections address these points more formally.

6.3.1 Hypothesis One

Hypothesis one was “that 2-way adequate test sets are at least as effective at killing

mutants as hand-generated tests”.

The results given in Table 19 and Table 22 indicate that 2-way (pairwise) combinatorial

techniques that use simple selection criteria for selection of data points are not adequate

175 - 220

Conclusions

with respect to hand-generated tests for the more complex functions where complexity is

indicated by the number of mutants generated, the nesting level of the code, or number of

condition statements. This is supported by the statistical analysis given in section 5.6.3 on

the data in Table 22.

This is counter to the conventional view put forward in a number of field studies such as

Dalai et al. [93], [92], Burroughs et al. [51], Huller [173], in various results reported by

Cohen et al. [68], [70], [67] and work by Burr and Young [50]. However, the results

presented in this thesis give some support to the observations of Smith et al. [287], [286]

who found that 2-way test vectors were less effective than base choice [9] for certain

classes of faults.

Of the empirical studies, only the work by Grindal et al. [138] [139] strongly supported

the effectiveness of 2-way adequate test tests. In common with Smith et al. [287], [286],

Grindal et al. found that base choice techniques were effective, another result that is not

supported by the work presented here, which found base choice to be possibly the worst of

the techniques examined.

The reason for the disparity between the results reported in this thesis on 2-way testing

and earlier work is not clear although it is possible that the earlier work was biased because

it included comparisons with testing that was originally poorly performed. For example,

comparisons with the field studies by Dalai et al. [93], [92]. Latter field studies by Smith et

al. [287], [286] could also have had a bias in that real faults were being examined and this

may have skewed the distribution of faults that could be detected.

The empirical study by Grindal et al. [138] [139], however, is difficult to explain on the

same grounds. One possibility is that the code was not complex enough for the purpose

having been created originally to test manual fault detection techniques by Kamsties and

Lott [186]. A similar effect was observed with studies performed here that used different

sort functions. In this case it was found that the it was virtually impossible to differentiate

between the different test data generation techniques. Quite what this says about a large

number of empirical test studies that have made use of sort functions is uncertain.

However, it suggests that simple functions of this type are not good subjects for testing

research.

176 - 220

Conclusions

6.3.2Hypothesis Two

Hypothesis two was “that t-way adequate test sets for a small factor greater than two, are

at least as effective at killing mutants as hand-generated tests”.

The results presented in Table 22 show that test sets that involve higher values of t-way

adequate tests are as effective as hand-generated tests at killing mutants. Again, this is

supported by the statistical analysis. However, this statement holds only in terms of being

able to distinguish mutated from original code. This work has not assessed the ability of

distinguish “real” faults from code mutants to any great extent. However, as noted

previously, results from both Offutt [247] and Andrews, Briand and Labiche [11] strongly

suggest that a test set adequate for killing mutants for one will be effective at finding real

faults.

The results here strongly support the body of work by Dunietz et al. [106]; Kobayashi et

al. [197]; Kuhn, Wallace, Reilly and Gallo [313], [202], [203] and [201] and contradicts

the results given in study by Schroeder, Bolaki and Gopu [277].

Why this contradiction should have arisen is not known. However, one possible reason

is that Schroeder et al. [277] performed the testing from the external interface to the

program, which might have made it more difficult to target effective combinations at the

points where they would be most effective.

Other possible explanations include:

• that the data structures or the structure of the data in Schroeder et al. is more complex

than in the code examined in this study (see section 6.8 for a discussion of arrays);

• at t = 4 the factor applied was not sufficient to trigger the faults.

6.3.3 Hypothesis Three

Hypothesis three was “that it is possible to construct a minimised test set from a t-way

adequate test set that is small enough to allow the correctness of results to be checked

manually”.

Results from the minimisation experiments given in Table 27 are highly encouraging to

say the least. For the code examined, all but two of the resulting sets of test vectors are

actually smaller than the vector sets for that hand-generated code. For the remaining two

sets the vectors are not overly large being just over half the size again in one test set and

177 - 220

Conclusions

just of twice the size in the other set. However, vector sets of 22 and 13 vectors are not

excessive even compared with some of the existing hand-generated vector sets in the

project. In addition, each of these larger vector sets outperforms the hand-generated tests

slightly.

Unfortunately, there is little work that can be directly compared with the study here.

Only one paper Offutt, Pan and Voas [255] directly addresses the issue of minimising

mutation adequate test sets. Moreover, the reductions in test set size observed by these

researchers was only on the order of 33% though it is assumed from a much smaller base

figure. A reduction of this order would be almost useless when we consider factors larger

than three as it would still leave us with several hundred or thousand test cases that need to

be considered. From this perspective, the effectiveness of the rather simplistic

minimisation procedure developed here is at first sight astonishing.

In addition, the batched procedure used here has at its disposal a much larger amount of

information than the procedure suggested by Offutt, Pan and Voas [255], which removes

mutants as they are killed and is therefore much less likely to be able to identify and select

the best test cases than the batched procedure. That being said, the minimisation procedure

suggested here is only locally optimal.

6.4 Threats to Validity

One threat to the external validity of the results reported here is that code being tested

may not be representative of other code although other researchers Gotlieb [135], Offut et

al. [252] have used a variant of aip_median_filter and Dillon and Meudec [104] used the

function itself. This is a general problem in testing research and code from different

application domains is likely to have different properties. The code used here is thought to

be representative of fixed point integer code widely used in the real-time embedded

applications domain.

A novel threat is that because the complete software development process was strongly

controlled as detailed in Ellims, Bridges and Ince [112], the code used in this thesis may

actually be easier to detect faults in than more typical code. Thus the results presented here

are possibly optimistic. The only way to test this possibility would be to repeat the

178-220

Conclusions

experiments with other code sets. However, often these rarely have the necessary hand

generated test vectors available for comparison. Another threat is that code mutation may

not be representative of real faults. Results in both Offutt [247] and Andrews, Briand and

Labiche [11] strongly suggest that test sets that are adequate for mutation will also be

effective for real faults.

The final threat to validity that needs to be considered is that of equivalent mutants. In

the work presented here, these have mainly been ignored. The effect on the results,

however, is expected to be minimal because equivalent mutants affect all of the techniques

being used to the same degree. Thus, although the results are internally consistent and

direct comparison between test sets is possible, making comparisons with other work is

more difficult.

The major threat to internal validity comes from the way in which the data points that

were used in the t-way and random selection data sets were limited to minimum, median

and maximum values. This is a simplistic approach. However, it should tend to bias the

results against success, resulting in a false negative. Moreover, the data selection process

does follow examples in books such as Copeland [81], which will possibly provide the

primary source of information on combinatorial techniques for practitioners.

The tool used to insert faults into the code may also present a risk to internal validity

because although it avoids the bias associated with hand-seeded faults, it is a relatively

simple tool and is not capable of introducing mutants over multiple lines. Analysis of the

results however suggests that the majority of effective operators have been implemented;

this analysis is provided in Appendix A.

6.5 Observations

6.5.1 Random Testing

Random testing as a data generation technique can be surprisingly effective. However, it

does not appear to be reliable in the sense that, although it may often provide good results,

it cannot be counted on to provide good results always. Of the ten functions tested to high

factors, random testing performed best in three of the first five least complex functions, but

179 - 220

Conclusions

only performed best in two of the second five functions and in both cases was tied with

another technique that performed equally as well.

In addition, for two of the most complex functions _sdc_pre_start and

_gov_gen_ffd_rpm - the use of very large numbers of random tests did not show any real

improvement in the performance. This result matches observations on random testing made

by a number of other authors such as Michael et al. [232], Frankl et al. [121] and Reid

[269], [270] that indicate that when random testing works, it works well, but when it does

not work, the results can be spectacularly bad.

6.5.2Combined Human/Machine Vectors

Some initial work has been done (section 5.8) using small numbers of hand-generated

vectors as the first step in the optimisation process. Initial results suggest that although the

number of mutants killed is only minimally affected, additional savings could be made in

execution time. As processor time is cheap when compared with human effort, this

additional step may not ultimately prove to be effective.

However, the above conclusion does not take into account the fact that a small number

of human derived tests may be simpler to validate than the automated tests. For example, a

carefully selected set of tests that have easy to determine correct results may be of more

use and perhaps more effective than automatically generated tests that required significant

human input to determine their correctness. The limited work done here does not discount

this possibility, which is worth further investigation.

6.6 Discussion of Tools

6.6.1 Hand Generated Tests

The original hand-generated tests were embedded in spreadsheets. The main reason for this

was that it was found that a major issue with developing unit tests by hand was that it took

so much effort to compute the expected results.

To speed up the process spreadsheets were used to allow the user to calculate expected

results that could then be extracted as a comma separated file and pasted into a C program

to run the tests on the function. As much of the code for this is very similar, this approach

180-220

Conclusions

eventually resulted in the development of the Test Harness Generator (THG) as reported

by Ellims and Parkins [116]. THG automates much of the process of taking a set of input

data and expected results and producing a complete test harness for a function in C that can

be compiled. Use of a spreadsheet even allows some opportunities for automatically

generating input data.

For the research conducted here, this has several downsides. First, the sheets used for

THG are quite complex containing information on the function called, the functions to be

called (if any), values for #de f i n e names used in the sheet, and so on. Second, the sheets

contain large numbers of values defined in terms of previous values.

The net effect of this is that extracting the values is not straightforward and is time

consuming when done by hand. In hindsight, the THG Visual Basic program should have

been modified to extract the data. Furthermore, to produce a practical test method, some

integration within the tool chain is required.

6.6.2 r-way Generation Tools

During the course of the work undertaken here two different tools have been used to

generate t-way adequate test sets - an implementation of the AETG algorithm as presented

in Cohen et al. [67] and the other, je n n y [182], a tool taken from the internet. Each of

these tools has its own advantages and disadvantages.

As stated in section 5.3.1, the implementation of the AETG algorithm was far too slow

to be of practical use for more than three factors. This was this tools major drawback.

However, as implemented the tool has two advantages over the j enny tool.

The first advantage is in data input, the AETG implementation takes a list of variables

and the values that they can take on as shown in Figure 16. Here, the first line specifies the

seed for the random number generator as defined by Wichmann and Hill [329], the second

tells the tool how many parameters to expect (18) and how many values to use for each of

the variables. The following lines specify the values to be used for those variables. Some

data lines specify Boolean values (e.g. line 3 with 666, 667) which are replaced manually

using a text editor, and some specify actual values (e.g. line 7 with 0 5139062 and

10278125), which can be used directly.

181-220

Conclusions

In contrast, the je n n y tool takes the generation specification as a set of program

parameters on the command line. This corresponds directly with the second line in Figure

16. As je n n y has no information on the values each variable should take on it assigns

alphanumeric strings to each output in the form al, a2, ... an for the first input; b l, b2 ...

bn for the second and so on. This means that a translation step between the representation

used in j en n y and the values required by the test harness is required.

The second advantage for the AETG implementation is that the output is in the correct

format to be directly included into the mutant driver program. Output from the je n n y tool

however has to be post processed; however using an adapted input stage from the AETG

implementation to convert its output into the same format as the output from my AETG

implementation reduces the size of the problem.

1
18 2 2 2 3 3 3 4 3 2 3 3 2 2 3 3 3 3 3
6 6 6 6 6 7
6 6 6 6 6 7
7 6 6 767
0 1 2 8 0 2 5 6 0
0 5 1 3 9 0 6 2 1 0 2 7 8 1 2 5
8 2 0 0 0 0 4 1 1 1 2 5 0 8 2 2 2 5 0 0
8 8 1 88 2 88 3 88 4
0 4 4 0 0 8 8 0 0
5 5 5 5 5 5
0 1 0 2 0 2 0 4 0
0 1 0 2 0 2 4 0 0
5 5 5 5 5 5
6 6 6 6 6 7
62 3 1 1 62 2
0 1 2 8 0 2 5 6 0
0 1 2 7 2 5 5
0 1 2 0 0 2 4 0 0
0 1 2 8 0 2 5 6 0

Fig. 16. Input format for the AETG based tool for the _ g o v _ f f d_rpm function.

The AETG implementation also has one further advantage. The hand-generated test

vectors included data for values that were defined as inputs but that were not directly used

by the code under test. For example, where code access a specific array element, the hand

generated test initializes the target element and those either side to known values. This

allows off by one errors to be more easily detected. The AETG implementation can take

this into account but the j e n n y tool cannot. With je n n y , initialization data such as this

has to be inserted by hand.

182 - 220

Conclusions

The jenny tool is however not without its own advantages. The clearest of these is the

speed with which it can generate the vectors sets. Also there is a slight advantage in the

number of vectors generated though this is not large.

There may also be an advantage in the way in which the jenny tool allocates values to

variables that have already been completely removed from the set of t-way tuples yet to be

covered. The AETG implementation uses the first value defined for each variable in this

case whereas the jenny tool uses a series of values which seems to give a slightly better

mutant kill rate. The fact that the AETG algorithm as presented in Cohen et al. [67] does

not define what should happen has been previously noted by Cohen et al. [76] but has not

been investigated further as part of the work presented here.

6.6.3 Csaw

The Csaw manual [111] gives an outline of the process for using the tool as follows:

• Put the function or functions of interest into the required format.

• Add the names of global variables etc. using the special operators provided.

• Compile the code.

• Remove those mutants that do not compile.

While this appears reasonably straight forward, in practice it can be quite time

consuming. For example, the process of preparing the functions while conceptually simple

is subject to human error, which can affect the quality of the mutants. Also if a statement

that is spread over two lines is not modified so that it is on a single line, the statement

deletion operator will not function correctly. Although a minor point, this does affect both

the integrity of the mutation process and which mutations compile.

Removal of the mutations that do not compile is also very time consuming. In the initial

work these had to be removed by hand and a dummy function left in their place, but for the

larger functions this was impractical and the mutation tool l i n e . c was modified to take a

list of mutations to be removed automatically. However, selecting the mutations to be

removed remains a manual operation that requires a scan of the error file that is produced

by the g cc compiler. Ideally, extraction of failed function identifiers should be automated

but the multi-line nature of the error messages in the output file makes this awkward.

183 - 220

Conclusions

6.6.4 Process Integration

Given the points above it will be obvious that integration within and between the tools is

fairly minimal. Although this did not directly affect the quality of results for individual

functions it did affect the number of functions that could be examined.

In conclusion, therefore, to make the technique explored in this work a practical

proposition for a production environment requires two main improvements. First, the test

data generation tool chain needs to be improved so that no or only minimal work is

required to convert the data specification into a usable set of test vectors. Second, that the

mutation process needs to be more fully automated to remove at least some of the work

that currently has to be performed by hand.

6.7 Summary

In summary what has been shown here is as follows:

• That 2-way test sets for unit testing do not appear to be competitive with high quality

hand-generated test sets in terms of effectiveness.

• That t-way adequate test sets of factor 5 (or above) appear to be as effective as hand

generated test sets.

• That it is possible to minimise the test sets created using t-way adequate techniques such

that, there is no loss of detection ability and the minimised test set is small enough to be

validated by'hand.

Several other interesting points have been raised by the experiments reported in this

thesis. These include:

• That the base choice method formalised by Ammann and Offutt [9] is not competitive

with either t-way adequate test sets, hand-generated test set or even with random testing.

• That random testing can be very effective on functions that have low “complexity”, for

example, it performed well on sorting functions and in the first half of the functions

drawn from an industrial project.

This last point is potentially significant for a large amount of empirical work on the

effectiveness of software testing techniques. As noted in section 2.2.5 high complexity

does not seem to be a feature of many functions used in testing research.

184 - 220

Future Work

7. Future Work

7.1 Introduction

The experimental work described in this thesis was focused on determining two things.

First, it asked whether t-way adequate test sets are “reliable” in the sense that they do at

least as well as hand-generated test sets. Second, it set out to show that there is a workable

procedure for reducing the number of test vectors that need to be considered by hand. That

is, to make the “oracle problem” tractable.

To address the first point, several experiments were performed on industrial code that

compared the ability of t-way adequate test sets up to factor five to kill code mutants with

the ability of hand-generated test sets and of a small number of automatically generated

test sets to do the same thing. These experiments showed that t-way adequate test sets were

comparable in performance with the hand-generated test sets and appeared to show an

advantage over the other techniques with which it was compared.

To address the second point, a “brute force” optimisation process used in batches (t = 2,

3, 4 and 5) was applied that recorded which vectors killed which mutants and successively

selected the best. This approach conclusively showed that a small set of test vectors can be

extracted from a much larger set of vectors with no loss in the ability to distinguish

mutants from the original code.

The work is, however, incomplete in a number of ways and the purpose of this chapter is

to explore possible routes by which the work could be expanded and extended in order to

increase both confidence in the reliability of the results and to increase the utility of the

results.

7.2 Code Variety

The code selection criteria are given in section 5.2.4.1 and this can lead to several

possible sources of bias, some of which are given in section 6.6. Although it is believed

that the code used is representative of high quality, real-time embedded code, there are a

small number of issues associated with the sample as follows:

185 - 220

Future Work

• Only a small percentage of the actual code that makes up the project has been examined.

Moreover, no single module has been examined in detail and there is a bias towards

selecting functions with more complex logic.

• The code used was taken from a single project.

• The code was selected to avoid dealing with complex data structures.

• The test has been applied to single functions, i.e., unit testing.

To address the first and last points, one possibility is to test a complete code module,

starting with unit tests of the same form that have been used in the empirical work reported

here before moving on to testing combinations of functions and then attempting to build up

to a complete module test. This last point may seem unnecessary, however as pointed out

in section 3.4.2.5 this is the procedure used by the majority of empirical work done in

combinatorial testing to date. Given the difference in results reported by Kuhn and Okun

[201] and Schroeder, Bolaki and Gopu [277], this may throw some light on what the

possible issues that arise when the technique is applied to complete programs, or large

sections of programs. What effect this has on the ability of a vector set to kill mutants is

poorly understood but would be of considerable interest to practitioners to be able to

reliably test larger conglomerations or units58.

To address the second point, there is only one possible solution, which is to use code

from another project. However, this is not a trivial matter because to be able to make

comparisons with the work performed here; unit test sets constructed by hand are required.

To be able to satisfy this requirement the unit tests for the Boar project reported in Ellims,

Bridges and Ince [112] have been extracted from the project archive and these may provide

an interesting comparison. Unit tests for the Boar project were outsourced and it is known

that there is a significant difference between Wallace and Boar in what activity in the unit

test process (test design versus test run) errors were revealed.

In addition to this, a copy of the TCAS program investigated in Kuhn and Okun [201]

and used by Andrews, Briand and Labiche [11] has recently been obtained which this

58 The author was involved in extended discussions on this topic when defining “software unit” for the draft of the ISO

26262 standard.

186 - 220

Future Work

should allow a direct connection between the work reported here and the work performed

by those authors to be established.

7.3 Structured Data

The Wallace system has functions within it with higher complexity than those that were

used in this study. However, the inputs to these functions are large arrays of one or more

dimensions and it is not obvious how best to deal effectively with these data structures. For

example, does one treat the array (or other structure) as a collection of individual variables

or as a complete unit where one selects between various predetermined options?

The approach taken in this work to data is the former. As typified by the work done with

the sort functions in section 5.4.1, each array element has been dealt with as if it were an

isolated variable

However, this approach would probably not work in situations in which the elements of

an array have internal structure. For example, an array with two or three axes may

represent an n-dimensional surface that needs to be smooth. Thus setting each element

without regard to its neighbours and in turn to their nearest neighbours may not produce

realistic, or more importantly, useful results.

The other situation present in the Wallace code base is where arrays are used to schedule

events based on either a time frame or on an engine position as measured by the engine-

timing wheel. In this case, the points where actions take place are directly dependent on the

previous elements. As before, this situations could be problematic if the elements of the

array are treated as separate items. In this case, however, there is a possible solution.

Because the arrays are filled dynamically at run time, it is possible the problem could be

abstracted one level. That is, instead of setting the array elements directly, the code used to

set the elements could be called (after verification) and t-way adequate test set used to

drive the generation process.

The discussion above is, of course purely speculation. Whether or not using unstructured

data is actually an issue for single executions of a function as used in unit testing remains

to be investigated.

187-220

Future Work

7.4 Data models

As noted in section 5.5.2.3, the data selection model, i.e., minimum, middle and

maximum value, that is used is in the main body of this work is possibly too simplistic.

The data given in Table 21 indicates that there can be an advantage in using more complete

data models. The data for the three functions in Table 20 (taken the initial experiments

with 2-way adequate test sets with the AETG based tool) are shown with the data from

Table 22, which used the je n n y tool to generate the t-way adequate test sets in Table 30.

In Table 30, the first column contains the function names, the second column contains

the data for hand-generated tests and the third contains the results for 2-way adequate tests

generated by the AETG based tool. The fourth column shows the best results from Table

21 for the improved data selection process. The last four columns contain the data for the t-

way testing using the je n n y tool.

Table 30. Combined data from Table 20 and Table 22, the first row for each function is the
number of surviving mutants and the second is the number of vectors.

Data from Tab le 20 t-way Data From Table 22
Hand AETG Best 2-way 3-way 4-way 5-way

_sdc_fuel_control 21 107 26 101 49 25 22
15 15 23 17 57 174 504

_sdc_pre_start 675 746 736 673
14 16 22 79

_gov_gen_ffd_rpm 152 729 562 701 190 158 140
14 18 27 21 81 299 1040

The application of a more sophisticated data selection process to the _sdc_fuel_control

and _gov_gen_ffd_rpm functions showed a large improvement over both 2-way adequate

test sets. For the function _sdc_fuel_control, the improvement was not matched by the

simplistic data selection scheme until the 4-way test set was applied. Note that no

improvement was observed for the function _sdc_pre_start. However, in isolation this does

not invalidate the results because, as noted previously this function seems to be

extraordinarily difficult to test.

This strongly suggests that the full set of experiments in section 5.6 should be repeated

using more complete data models as outlined in section 5.5.2.3 because it is possible that

the kill rates could be markedly improved. This ties in with the observations that the

188-220

Future Work

production of good data models is not a trivial task and that it requires expert input as

made by Dalai et al. [93], [92] and Bell and Vouk [32].

One final observation needs to be made here. It would also be an advantage to the tester

if the Csaw tool were modified so that it could automatically collect data on which mutants

could not be killed. This information would provide more concrete feedback to the tool set

user on how value selections could be improved and might remove the need for some trial

and error.

7.5 Oracles

The ability of the minimisation technique trailed in this thesis to select good test sets is

dependent on the ability of the oracle code to detect differences in the output of the

mutated and un-mutated programs. In the experiments conducted as part of this research, it

seems to be a reasonable assumption that the oracles for the majority of the functions are at

least adequate, given the reduction achieved in the size of the final test sets.

It is, however, a reasonable question to ask, at what point does the oracle become

ineffective? To recap, the oracles consist of two parts: the un-mutated function and its

associated outputs, and a function used to compare those outputs with the outputs of the

mutated code. In many instances, these comparison functions compare not only the

expected outputs but also the inputs to check they have not been inadvertently modified. In

some cases (for example where the output is an array), they also compare values to each

side of the element that is supposed to be modified.

One way to address this question might be to systematically degrade the existing

comparison functions so that the comparisons that are not strictly necessary, such as

checking the inputs remain unmodified, are removed. This approach should provide

information on the true robustness of the optimisation techniques explored in this thesis.

It should also be possible to determine how robust the technique is in relation to errors in

the un-mutated function. In the work undertaken to date, I have assumed that the actual

target function is correct. This is not unreasonable given that the target functions are taken

from a production system that has been in use for nearly a decade with no errors reported

from the field. In addition, the target functions were developed within a quality control

system that is capable of dealing with SDL 3 level software. This, however, might not be

189 - 220

Future Work

the norm. If the purpose of testing is to discover errors in the software then at some point

un-mutated code will be used that contains errors. Thus, to test the reliability of the

techniques explored here, the obvious experiment would be to use mutated code as the

oracle function, re-generate the mutants, and re-run the optimisation procedure. The

expected result is that the final set of vectors selected should be similar to, if not the same

as the optimised test sets that were obtained from the original experiments.

There is also the issue of how to improve the comparison between the un-mutated code

and the mutated code. For example, in section 5.4.1 it was found that both the shellsort and

quicksort functions produced identical results for the un-mutated and mutated code, even

when the mutated code appears to be functionally incorrect. An initial attempt to

differentiate the assumed correct code from the mutated code was made using execution

time, but this was ineffective.

The obvious alternative to measuring execution time would be to internally record the

number of times that the loops are iterated and compare those values for the mutated and

un-mutated code. It should be a reasonably simple matter to add the necessary code by

hand or to havu the Csaw tool add the necessary code. However, this is perhaps a partial

solution, a more complete solution is to record the complete execution of the function

being tested be employing the techniques that are used with watchdog processors for

control flow checking. For example, it should be possible to add assigned node signatures

and compare the final signatures for both the mutated and un-mutated functions, Mahmood

and McCluskey [218] give a brief survey of relevant techniques.

7.6 Optimisation

The optimisation technique trailed here is a general purpose technique and as applied

only has only a minor dependency on the f-way adequate test sets in that it is applied

sequentially to each larger factor.

Thus, the optimisation process could also be applied to the data sets generated using

random selection. It would be interesting to compare the size of the optimised test sets

obtained by random selection with the optimised test sets derived for t-way adequate tests.

In general, this comparison can be used as a comparative measure of the effectiveness of

190 - 220

Future Work

the two techniques. I would expect stronger techniques to produce smaller optimised sets

of vectors than a weaker technique.

Given that the technique can be applied to random testing, there is no reason why the

technique cannot also be applied to techniques such as Malaiya’s [219] anti-random testing

or to boundary following techniques as suggested by Hoffman et al. [164].

191-220

References

8. References

[1] Abdellatif-Kaddour, O., Thvenod-Fosse, P., and Waeselynck, FL, "Property-
oriented testing: a strategy for exploring dangerous scenarios," in Proceedings o f
the 2003 ACM symposium on Applied computing. Melbourne, Florida: ACM Press,
2003.

[2] Abrial, J. R., Borger, E., and Langmaack, H. E., Formal Methods for Industrial
Applications, Specifying and Programming the Steam Boiler Control, vol. 1165.
Berlin: Springer, 1996.

[3] Ackermann, J., "Robust control prevents car skidding," Control Systems Magazine,
vol. 17, pp. 23-31, 1997.

[4] AD AC, "Die AD AC Pannenstatistik," in Motorwelt, vol. 5, 1989.
[5] Agrawal, H., DeMillo, R. A., Hathaway, B., Hsu, W., Hsu, W., Krauser, E. W.,

Martin, R. J., Mathur, A. P., and Spafford, E., "Design of Mutant Operators for the
C Programming Language," Department of Computer Science, Purdue University,
W. Lafayette SERC-TR-41-P, April 12, 2006 2006.

[6] Alander, Mantere, and Moghadampour, "Testing software response times using a
genetic algorithm," in Proceedings o f 3rd Nordic Workshop on Genetic algorithms
and their applications (3NWGA), 1997.

[7] Alander, Mantere, and Turunen, "Genetic algorithm based software testing," in
Proceedings o f International Conference (ICANNGA97). Norwich (UK): Springer-
Verlag, 1997.

[8] Ammann, P. and Offutt, J., Introduction to Software Testing. Cambridge:
Cambridge University Press, 2008.

[9] Ammann, P. E. and Offutt, J., "Using Formal Methods to Derive Test Frames in
Category-Partition Testing," presented at Proc. of 9th Annual Conf. on Computer
Assurance (COMPASS'94), Gaitersburg, Maryland, USA, 1994.

[10] Andrews, D. M. and Benson, J. P., "An automated program testing methodology
and its implementation," in Proceedings o f the 5th international conference on
Software engineering. San Diego, California, United States: IEEE Press, 1981.

[11] Andrews, J. H., Briand, L. C., and Labiche, Y., "Is Mutation an Appropriate Tool
for Test Experiments?," presented at Proc. of the 27th Int'l Conf. on Software
Engineering, St. Louis, MO, USA, 2005.

[12] Annon, "NIST/SEMATECH e-Handbook of Statistical Methods," 2008.
[13] Anon, IEEE Std 610.121990: IEEE Standard Glossary o f Software Engineering

Terminology. New York: IEEE, 1990.
[14] Anon, "DO-178B Software Considerations in Airborne Systems and equipment

certification," RTCA, Washington 1992.
[15] Anon, Quality systems -- Model for quality assurance in design, development,

production, installation and servicing: ISO, 1994.
[16] Anon, "Functional Safety of Electrical/Electronic/Programmable electronic safety-

related systems, Part 1: General Requirements, BS EN 61508-1:2002," British
Standards, 2002.

192 - 220

References

[17] Anon, ISO/IEC 15504:2004 Information technology - Process assessment ISO,
2004.

[18] Anon, "MISRA-C:2004 Guidelines for the use of the C language in critical
systems.," MIRA Limited, Nuneaton 2004.

[19] Anon, "Numerical Algorithms Group," vol. 2006, 2006.
[20] Apt, K. R., Principles o f constraint programming. Cambridge: Cambridge

university Press, 2003.
[21] Ashlock, D., "Finding designs with genetic algorithms," in Computational and

Constructive Design Theory, Wallis, W. D., Ed. Bristol: Kluwer Academic
Publishers, 1996, pp. 49-65.

[22] Baresel, A., Binkley, D., Harman, M., and Korel, B., "Evolutionary testing in the
presence of loop-assigned flags: a testability transformation approach," in
Proceedings o f the 2004 ACM SIGSOFT international symposium on Software
testing and analysis. Boston, Massachusetts, USA: ACM Press, 2004.

[23] Baresel, A., Pohlheim, H., and Sadeghipour, S., "Structural and functional sequence
test of dynamic and state-based software with evolutionary algorithms," in
Proceedings o f Genetic and Evolutionary Computation Conf. (GECCO'03).
Chicago, USA.: Springer, 2003.

[24] Baresel, A. and Sthamer, H., "Evolutionary testing of flag conditions," in
Proceedings o f Genetic and Evolutionary Computation Conf. (GECCO’03).
Chicago, USA.: Springer, 2003.

[25] Baresel, A., Sthamer, H., and Schmidt, M., "Fitness Function Design To Improve
Evolutionary Structural Testing," in Proceedings o f the Genetic and Evolutionary
Computation Conference: Morgan Kaufmann Publishers Inc., 2002.

[26] Barnes, J., High integrity Ada: the SPARK approach. Harlow: Addison Wesley
Longman, 1997.

[27] Bartak, R., "On-Line Guide to Constraint Programming," 1998.
[28] Baudry, B., Fleurey, F., Jzquel, J.-M., and Le Traon, Y., "Genes and Bacteria for

Automatic Test Cases Optimization in the .NET Environment," in Proceedings o f
the 13th International Symposium on Software Reliability Engineering (ISSRE'02):
IEEE Computer Society, 2002.

[29] Baudry, B., Hanh, V. L., Jezequel, J. M., and Le Traon, Y., "Building Trust into
OO Components Using a Genetic Analogy," in Proceedings o f the 11th
International Symposium on Software Reliability Engineering (ISSRE’00): IEEE
Computer Society, 2000.

[30] Baudry, B., Hanh, V. L., and Le Traon, Y., "Testing-for-Trust: The Genetic
Selection Model Applied to Component Qualification," in Proceedings o f the
Technology o f Object-Oriented Languages and Systems (TOOLS 33): IEEE
Computer Society, 2000.

[31] Beizer, B., Software testing techniques (2nd ed.): Van Nostrand Reinhold, 1990.
[32] Bell, K. Z. and Vouk, M. A., "Effectiveness of Stochastically Generated

Dependencies in Pairwise Testing," in Supplementary Proceedings o f the 15th
IEEE International Symposium on Software Reliability Engineering (ISSRE’04).
Saint Malo, France: ACM Press, 2004.

193 - 220

References

[33] Bertolino, A. and Marre, M., "Automatic Generation of Path Covers Based on the
Control Flow Analysis of Computer Programs," IEEE Trans. Softw. Eng., vol. 20,
pp. 885-899, 1994.

[34] Bhansali, P. V., "The MCDC paradox," SIGSOFT Softw. Eng. Notes, vol. 32, pp. 1-
4, 2008.

[35] Bicevskis, J., Borzovs, J., Staujums, U., Zarins, A., and Miller, E., "SMOTL - a
system to construct samples for data processing program debugging," IEEE
Transactions on Software Engineering, vol. 5, 1979.

[36] Bird, D. L. and Munoz, C. U., "Automatic generation of random self-checking test
cases," IBMSyst. J., vol. 22, pp. 229-245, 1983.

[37] Blanco, R., Tuya, J., Tuya, J., and Diaz, A., "A scatter search approach for
automated branch coverage in software testing," in Proceedings o f the Eleventh
Annual International Workshop on Software Technology and Engineering Practice
(STEPV3): IEEE Computer Society, 2003.

[38] Boland, P. J., Singh, H., and Cukic, B., "Comparing Partition and Random Testing
via Majorization and Schur Functions," IEEE Trans. Softw. Eng., vol. 29, pp. 88-
94,2003.

[39] Bottaci, L., "Instrumenting Programs with Flag Variables for Test Data Search by
Genetic Algorithms," presented at Proc. of the Genetic and Evolutionary
Computation Conference, 2002.

[40] Bottaci, L., "Predicate expression cost functions to guide evolutionary search for
test data," in Proceedings o f Genetic and Evolutionary Computation Conf.
(GECCO’03). Chicago, USA.: Springer, 2003.

[41] Boyer, R. S., Elspas, B., and Levitt, K. N., "SELECT - a formal system for testing
and debugging programs by symbolic execution," SIGPLANNot., vol. 10, pp. 234-
245, 1975.

[42] Brownlie, R., Prowse, J., and Phadke, M. S., "Robust Testing of AT&T
PMX/StarMAEL Using Oats," AT&T Technical Journal, vol. 71, pp. 41-47, 1992.

[43] Bryce, R. C. and Colboum, C. J., "Test prioritization for pairwise interaction
coverage," SIGSOFT Softw. Eng. Notes, vol. 30, pp. 1-7, 2005.

[44] Bryce, R. C. and Colboum, C. J., "Prioritized interaction testing for pair-wise
coverage with seeding and constraints," Information and Software Technology, vol.
48, pp. 960-970, 2006.

[45] Bryce, R. C. and Colboum, C. J., "One-Test-at-a-Time heuristic Search for
Interaction Test suites," presented at Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO'07), London, England, 2007.

[46] Bryce, R. C., Colboum, C. J., and Cohen, M. B., "A framework of greedy methods
for constructing interaction test suites," in Proceedings o f the 27th international
conference on Software engineering. St. Louis, MO, USA: ACM Press, 2005.

[47] Buehler, O. and Sthamer, H., "Evolutionary functional testing of a vehicle brake
assistant system," in The Six Metaheuristics International Conference Vienna
(MIC2005)'. Morgan Kaufmann Publishers Inc., 2005.

[48] Buehler, O. and Wegener, J., "Evolutionary functional testing of an automated
parking system," in Proceeding o f the In f I Conf. on Computers, Communications
& Control Technologies (CCCT’03) and 9th Annual In f I Conf. on Information
Systems Analysis and Synthesis (ISAS’03). Florida USA: IEEE, 2003.

194 - 220

References

[49] Bueno, P. M. S. and Jino, M., "Automatic test data generation for program paths
using genetic algorithms," International Journal o f Software Engineering and
Knowledge Engineering, vol. 12, 2002.

[50] Burr, K. and Young, W., "Combinatorial test techniques: table-based automation,
test generation and code coverage," in Intl. Conf on Software Testing, Analysis,
and Review (STAR). San Diego, CA, 1998.

[51] Burroughs, K., Jain, A., and Erickson, R. L., "Improved quality of protocol testing
through techniques of experimental design," in IEEE International Conference on
Communications (SUPERCOMM/ICC'94). New Orleans, LA, USA: IEEE, 1994.

[52] Cameron, P. J., Combinatorics: Topics, Techniques, Algorithms. Cambridge:
Cambridge University Press, 1994.

[53] Chan, K. P., Chen, T. Y., and Towey, D., "Restricted Random Testing," in
Proceedings o f the 7th International Conference on Software Quality: Springer-
Verlag, 2002.

[54] Chen, T. Y., Cheung, S. C., and Yiu, S. M., "Metamorphic testing: a new approach
for generating next test cases," Department of Computer Science, Hong Kong
University of Science and Technology HKUST-CS98-01', 1998.

[55] Chen, T. Y., Tse, T. H., and Yu, Y. T., "Proportional sampling strategy: a
compendium and some insights," J. Syst. Softw., vol. 58, pp. 65-81, 2001.

[56] Chen, T. Y. and Yu, Y. T., "On the Relationship Between Partition and Random
Testing," IEEE Trans. Softw. Eng., vol. 20, pp. 977-980, 1994.

[57] Chen, T. Y. and Yu, Y. T., "On the Expected Number of Failures Detected by
Subdomain Testing and Random Testing," IEEE Trans. Softw. Eng., vol. 22, pp.
109-119,1996.

[58] Chen, T. Y. and Yu, Y. T., "On the Test Allocations for the Best Lower Bound
Performance of Partition Testing," in Proceedings o f the Australian Software
Engineering Conference, 1998.

[59] Cheon, Y. and Kim, M., "A fitness function for modular evolutionary testing of
object-oriented programs," Dept, of Computer Science, University of Texas at El
Paso TR #05-35, 2005.

[60] Chilenski, J. J. and Miller, S. P., "Applicability of Modified Condition/Decision
Coverage to Software Testing," Software Eng. Jnrl., pp. 193-200, 1994.

[61] Claessen, K. and Hughes, J., "QuickCheck: a lightweight tool for random testing of
Haskell programs," in Proceedings o f the fifth ACM SIGPLAN international
conference on Functional programming: ACM Press, 2000.

[62] Clarke, J., Dolado, J. J., Harman, M., Hierons, R., Jones, B., Lumkin, M., Mitchell,
B., Mancoridis, S., Rees, K., Roper, M., and Shepperd, M., "Comparing the
effectiveness of software testing strategies," IEE Proceedings- Software, vol. 150,
pp. 161- 175, 2003.

[63] Clarke, L. A., "A system to generate test data and symbolically execute programs,"
IEEE Transactions on Software Engineering, vol. 2, pp. 215-222, 1976.

[64] Clarke, L. A., Richardson, D. J., and Zeil, S. J., "TEAM: a support environment for
testing, evaluation, and analysis," in Proceedings o f the third ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments. Boston, Massachusetts, United States: ACM Press,
1988.

195 - 220

References

[65] Clocksin, W. F. and Mellish, C. S., Programming in Prolog. Berlin: Springer-
Verlag, 1994.

[66] Cohen, D. M., Dalai, S. R., Fredman, M. L., and Patton, G., "Method and system
for automatically generating efficient test cases for systems having interacting
elements," Office, U. S. P., Ed., 1996.

[67] Cohen, D. M., Dalai, S. R., Fredman, M. L., and Patton, G. C., "The AETG
System: An Approach to Testing Based on Combinatorial Design," IEEE Trans.
Softw. Eng., vol. 23, pp. 437-444, 1997.

[68] Cohen, D. M., Dalai, S. R., Kajla, A., and Patton, G. C., "The Automatic Efficient
Test Generator (AETG) System," presented at Proc. 5th International Symposium
on Software Reliability Engineering, Monterey, CA, USA, 1994.

[69] Cohen, D. M., Dalai, S. R., Parelius, J., and Patton, G. C., "Efficacy of AETG Test
Cases as measured by code coverage, ," vol. 2008, 1995, pp. Technical
Memorandum.

[70] Cohen, D. M., Dalai, S. R., Parelius, J., and Patton, G. C., "The Combinatorial
Design Approach to Automatic Test Generation," IEEE Softw., vol. 13, pp. 83-88,
1996.

[71] Cohen, J., "Constraint logic programming languages," Commun. ACM, vol. 33, pp.
52-68, 1990.

[72] Cohen, M. B., Colboum, C. J., and Ling, A. C. H., "Augmenting Simulated
Annealing to Build Interaction Test Suites," in Proceedings o f the 14th
International Symposium on Software Reliability Engineering: IEEE Computer
Society, 2003.

[73] Cohen, M. B., Dwyer, M. B., and Shi, J., "Exploiting Constraint Solving History to
Construct Interaction Test Suites," presented at Testing: Academic and Industrial
Conference Practice and Research Techniques (TAICPART-MUTATION 2007),
Windsor, England, 2007.

[74] Cohen, M. B., Dwyer, M. B., and Shi, J., "Interaction testing of highly-configurable
systems in the presence of constraints," presented at Proceedings of the 2007
international Symposium on Software Testing and Analysis (ISSTA '07), London,
United Kingdom, 2007.

[75] Cohen, M. B., Dwyer, M. B., and Shi, J., "Constructing Interaction Test Suites for-
Highly-Configurable Systems in the Presence of Constraints: A Greedy Approach,"
IEEE Transactions on Software Engineering, vol. 34, pp. 633-650, 2008.

[76] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., and Colboum, C. J., "Constructing
test suites for interaction testing," in Proceedings o f the 25th International
Conference on Software Engineering. Portland, Oregon: IEEE Computer Society,
2003.

[77] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., Colboum, C. J., and Collofello, J.
S., "Variable Strength Interaction Testing of Components," in Proceedings o f the
27th Annual International Conference on Computer Software and Applications:
IEEE Computer Society, 2003.

[78] Colboum, C. J., Chen, Y., and Tsai, W., "Progressive Ranking and Composition of
Web Services Using Covering Arrays," presented at Proceedings of the 10th IEEE
international Workshop on Object-Oriented Real-Time Dependable Systems,
Washington, DC, 2005.

196 - 220

References

[79] Colboum, C. J., Cohen, M. B., and Turban, R. C., "A deterministic density
algorithm for pairwise interaction coverage," in Proc. o f the IASTED Intl.
Conference on Software Engineering, 2004.

[80] Cooper, D. W., "Adaptive testing," in Proceedings o f the 2nd international
conference on Software engineering. San Francisco, California, United States:
IEEE Computer Society Press, 1976.

[81] Copeland, L., A Practitioner's Guide to Software Test Design. Boston: Artech
House Publishers, 2004.

[82] Coward, D. and Ince, D. C., The symbolic execution o f software; THE sym-bol
SYSTEM. lONDON: cHAPMAN & hALL, 1995.

[83] Coward, P. D., "A review of software testing," Inf. Softw. Technol., vol. 30, pp.
189-198,1988.

[84] Coward, P. D., "Symbolic execution and testing," Inf. Softw. Technol., vol. 33, pp.
53-64,1991.

[85] Cuellar, J. R. and Wildgruber, I., "The real-time behavior of the steam-boiler," in
Formal Methods for Industrial Applications: Specifying and Programming the
Steam Boiler Control, vol. 1165, Abrial, J. R., E. Borger, and H. Langmaack, Eds.
Berlin: Springer, 1996, pp. 184-202.

[86] Cytron, R., Ferrante, J., Brosen, B. K., Wegman, M. N., and Zadeck, F. K.,
"Efficiently computing static single assignment form and the control dependence
graph," ACM Trans. Program. Lang. Syst., vol. 13, pp. 451-490, 1991.

[87] Czerwonka, J., "Pairwise testing in real world," presented at Pacific Northwest
Software Quality Conference, 2006.

[88] Dadeau, F., Ledmn, Y., and Du Bousquet, L., "Directed Random Reduction of
Combinatorial Test Suites," presented at Proc. Second Int'l Workshop on Random
Testing (RT’07), Atlanta, GA (USA), 2007.

[89] Daich, G. T., "New spreadsheet tool helps determine minimal set test parameter
combinations," STSC CrossTalk, 2003.

[90] Daich, G. T., "Testing combinations of parameters made easy," in Proceedings o f
AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference. Boston,
Massachusetts, USA: IEEE, 2003.

[91] Dalai, S., Jain, A., Karunanithi, N., Leaton, J., and Lott, C., "Model-based Testing
of a Highly Programmable System," presented at Proc. of the Ninth International
Symposium on Software Reliability Engineering, 1998.

[92] Dalai, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G. C., and
Horowitz, B. M., "Model-based Testing in Practice," presented at Proc. of the 21st
Int'l Conf. on Software Engineering, Los Angeles, California, United States, 1999.

[93] Dalai, S. R. and Mallows, C. L., "Factor-Covering Designs for Testing Software,"
Technometrics, vol. 40, pp. 234-243, 1998.

[94] Daley, N., Hoffman, D., and Strooper, P., "A framework for table driven testing of
Java classes," Softw. Pract. Exper., vol. 32, pp. 465-493, 2002.

[95] Daran, M. and Thevenod-Fosse, P., "Software Error Analysis: a Real Case Study
Involving Real Faults and Mutations," SIGSOFT Softw. Eng. Notes, vol. 21, pp.
158-171, 1996.

[96] Darringer, J. A. and King, J. C., "Applications of symbolic execution to program
testing," IEEE Computer, pp. 51-59, 1978.

197 - 220

References

97] Deason, W. H., Brown, D. B., Chang, K. H., and J. H. Cross, I., "A Rule-Based
Software Test Data Generator," IEEE Transactions on Knowledge and Data
Engineering, vol. 3, pp. 108-117, 1991.

98] DeMillo, R. A., Lipton, R. J., and Sayward, F. G., "Hints on Test Data Selection:
Help for the Practising Programmer," Computer, pp. 34-41, 1978.

99] DeMillo, R. A. and Offutt, A. J., "Constraint-Based Automatic Test Data
Generation," IEEE Trans. Softw. Eng., vol. 17, pp. 900-910, 1991.

100] DeMillo, R. A. and Offutt, A. J., "Experimental results from an automatic test case
generator," ACM Trans. Softw. Eng. Methodol., vol. 2, pp. 109-127, 1993.

101] Diamond, W. J., Practical Experiment Design For Engineers and Scientists. New
York: John Wiley & Sons, 2001.

102] Diaz, E., Blanco, R., and Tuya, J., "Applying tabu and scatter search to automated
software test case generation," in Proc. Sixth Metaheuristic Int'l Conf. Vienna,
2005.

103] Diaz, E., Tuya, J., and Blanco, R., "Automated software testing using a
metaheuristic technique based on tabu search," in Proceedings o f 18 IEEE Int'l
Conf. on Automated Software Eng. (ASE'03). Boston, Massachusetts, USA: IEEE,
2003.

104] Dillon, E. and Meudec, C., "Automatic Test Data Generation from Embedded C
Code," presented at Computer Safety, Reliability, and Security 23rd Int'l Conf.
(SAFECOMP 2004), Potsdam, 2004.

105] Dorigo, M. and Gambardella, L. M., "Ant colony system: a cooperative learning
approach to the travelling salesman problem," IEEE Trans, on Evolutionary
Computation, vol. 1, pp. 53-66, 1997.

106] Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mallows, C. L., and Iannino, A.,
"Applying Design of Experiments to Software Testing: Experience Report,"
presented at Proc.of the 19th Int'l Conf. on Software Eng., Boston, Massachusetts,
United States, 1997.

107] Duran, J. and Ntafos, S., "An Evaluation of Random Testing," IEEE Trans. Softw.
Eng., vol. 10, pp. 438-444, 1984.

108] Edvardsson, J., "A Survey on Automatic Test Data Generation," in Proceedings of
the 2nd Conference on Computer Science and Engineering. Linkoping, 1999.

109] Eiben, A. E. and Smith, J. E., Introduction to evolutionary computing. Berlin:
Springer-Verla, 2003.

110] Ellims, M., "On wheels, nuts and software," in Proceedings o f the 9th Australian
workshop on Safety critical systems and software - Volume 47. Brisbane, Australia:
Australian Computer Society, Inc., 2004.

111] Ellims, M., "The Csaw Mutation Tool Users Guide," Department of Computer
Science, Open University 2007.

112] Ellims, M., Bridges, J., and Ince, D. C., "The Economics of Unit Testing,"
Empirical Softw. Eng., vol. 11, pp. 5-31, 2006.

113] Ellims, M., Ince, D., and Petre, M., "AETG vs. Man: an Assessment of the
Effectiveness of Combinatorial Test Data Generation," Department of Computer
Science, Open University 2007/08, 2007.

114] Ellims, M., Ince, D., and Petre, M., "The Csaw C Mutation Tool: Initial Results,"
presented at Mutation 2007, Windsor, UK, 2007.

198 - 220

References

115] Ellims, M. and Jackson, K., "ISO 9001: Making the Right Mistakes," in SAE World
Congress. Detroit, USA: SAE, 1999.

116] Ellims, M. and Parkins, R. P., "Unit Testing Techniques and Tool Support," in SAE
World Congress. Detroit, USA: SAE, 1999.

117] Ellims, M. and Zurlo, J. R., "Feedforward Engine Control Governing System,"
Office, U. s. P., Ed. USA, 2003.

118] Ferguson, R. and Korel, B., "The chaining approach for software test data
generation," ACM Trans. Softw. Eng. Methodol, vol. 5, pp. 63-86, 1996.

119] Fetzer, J. H., "Program Verification: the Very Idea," Comm, o f the ACM, vol. 31,
pp. 1048-1063.

120] Fowler, J. and Cohen, L., Practical Statistics for Field Biology. Chichester: John
Wiley & Sons 1990.

121] Frankl, Weiss, S. N., and Hu, C., "All-uses vs. mutation testing: an experimental
comparison of effectiveness," J. Syst. Softw., vol. 38, pp. 235-253, 1997.

122] Frankl, P. G. and Deng, Y., "Comparison of delivered reliability of branch, data
flow and operational testing: A case study," SIGSOFT Softw. Eng. Notes, vol. 25,
pp. 124-134, 2000.

123] Frankl, P. G., Hamlet, R. G., Littlewood, B., and Strigini, L., "Evaluating Testing
Methods by Delivered Reliability," IEEE Trans. Softw. Eng., vol. 24, pp. 586-601,
1998.

124] Frankl, P. G. and Iakounenko, O., "Further empirical studies of test effectiveness,"
SIGSOFT Softw. Eng. Notes, vol. 23, pp. 153-162, 1998.

125] Frankl, P. G. and Weiss, S. N., "An Experimental Comparison of the Effectiveness
of Branch Testing and Data Flow Testing," IEEE Trans. Softw. Eng., vol. 19, pp.
774-787, 1993.

126] Frankl, P. G. and Weyuker, E. J., "An Applicable Family of Data Flow Testing
Criteria," IEEE Trans. Softw. Eng., vol. 14, pp. 1483-1498, 1988.

127] Freedman, R. S., "Testability of Software Components," IEEE Trans. Softw. Eng.,
vol. 17, pp. 553-564, 1991.

128] Gallagher, M. J. and Narasimhan, V. L., "ADTEST: A Test Data Generation Suite
for Ada Software Systems," IEEE Trans. Softw. Eng., vol. 23, pp. 473-484, 1997.

129] Girgis, M. R., "An experimental evaluation of a symbolic execution system," Softw.
Eng. J., vol. 7, pp. 285-290, 1992.

130] Glass, H. and Cooper, L., "Sequential Search: A Method for Solving Constrained
Optimization Problems," J. ACM, vol. 12, pp. 71-82, 1965.

131] Godefroid, P., Klarlund, N., and Sen, K., "DART: directed automated random
testing," in Proceedings o f the 2005 ACM SIGPLAN conference on Programming
language design and implementation. Chicago, EL, USA: ACM Press, 2005.

132] Goldberg, A., Wang, T. C., and Zimmerman, D., "Applications of feasible path
analysis to program testing," in Proceedings o f the 1994 ACM SIGSOFT
international symposium on Software testing and analysis. Seattle, Washington,
United States: ACM Press, 1994.

133] Goldberg, D., "What every computer scientist should know about floating-point
arithmetic," ACM Comput. Surv., vol. 23, pp. 5-48, 1991.

134] Goodenough, J. B. and Gerhart, S. L., "Toward a theory of test data selection,"
IEEE Trans. Softw. Eng., vol. 1, pp. 156-173, 1975.

199 - 220

References

135] Gotlieb, A., "Exploiting Symmetries to Test Programs," presented at Proceedings
of the 14th International Symposium on Software Reliability Engineering, 2003.

136] Gotlieb, A., Botella, B., and Rueher, M., "Automatic test data generation using
constraint solving techniques," SIGSOFT Softw. Eng. Notes, vol. 23, pp. 53-62,
1998.

137] Gouraud, S. D., Denise, A., Gaudel, M. C., and Marre, B., "A New Way of
Automating Statistical Testing Methods," in Proceedings o f the 16th IEEE
international conference on Automated software engineering: IEEE Computer
Society, 2001.

138] Grindal, M., Lindstrom, B., Offutt, A. J., and Andler., S. F., "An Evaluation of
Combination Strategies for Test Case Selection," Department of Computer Science,
University of Skovde HS-IDA-TR-03-001, 2003 2003.

139] Grindal, M., Lindstrom, B., Offutt, J., and Andler, S. F., "An evaluation of
combination strategies for test case selection," Empir Software Eng, vol. 11, pp.
583-611,2006.

140] Grindal, M., Offutt, J., and Andler, S. F., "Combination testing strategies: a
survey," Software Testing, Verification and Reliability, vol. 15, pp. 167-199, 2005.

141] Grochtmann and Wegener, "Evolutionary testing of temporal correctness," in
Quality Week Europe 98. Boston, Massachusetts, USA, 1998.

142] Gross, H. G., Jones, B., and Eyres, D., "Evolutionary algorithms for the verification
of execution time bounds for real-time software," in IEE Colloquium on Applicable
Modelling, Verification and Analysis Techniques for Real-Time Systems. London,
UK, 1999.

143] Gross, H. G. and Mayer, N., "Evolutionary Testing In Component-based Real-time
System Construction," in Proceedings o f the Genetic and Evolutionary
Computation Conference: Morgan Kaufmann Publishers Inc., 2002.

144] Gross, H. G. and Mayer, N., "Search-based Execution-Time Verification in Object-
Oriented and Component-Based Real-Time System Development," in Eighth IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS'03): IEEE, 2003.

145] Gupta, N., Mathur, A. P., and Soffa, M. L., "Automated test data generation using
an iterative relaxation method," in Proceedings o f the 6th ACM SIGSOFT
international symposium on Foundations o f software engineering. Lake Buena
Vista, Florida, United States: ACM Press, 1998.

146] Gupta, N., Mathur, A. P., and Soffa, M. L., "UNA Based Iterative Test Data
Generation and its Evaluation," in Proceedings o f the 14th IEEE international
conference on Automated software engineering: IEEE Computer Society, 1999.

147] Gupta, N., Mathur, A. P., and Soffa, M. L., "Generating Test Data for Branch
Coverage," in Proceedings o f the 15th IEEE international conference on
Automated software engineering (ASE 2000): IEEE Computer Society, 2000.

148] Gutjahr, W. J., "Partition Testing vs. Random Testing: The Influence of
Uncertainty," IEEE Trans. Softw. Eng., vol. 25, pp. 661-674, 1999.

149] Hamlet, D., "Are We Testing for True Reliability?," IEEE Softw., vol. 9, pp. 21-27,
1992.

150] Hamlet, D., "Random testing," in Encyclopedia o f Software Engineering,
Marciniak, J., Ed. Bristol: Wiley, 1994, pp. 970-978.

200 - 220

References

[151] Hamlet, D., "Implementing prototype testing tools," Softw. Pract. Exper., vol. 25,
pp. 347-371,1995.

[152] Hamlet, D. and Taylor, R., "Partition Testing Does Not Inspire Confidence," IEEE
Trans. Softw. Eng., vol. 16, pp. 1402-1411, 1990.

[153] Hamlet, R., "Introduction to special section on software testing," Commun. ACM,
vol. 31, pp. 662-667, 1988.

[154] Hamlet, R. G., "Testing Programs with the Aid of a Compiler," IEEE Trans. Softw.
Eng., vol. 3, pp. 279-290, 1977.

[155] Harman, M., Fox, C., Hierons, R., Lin, H., Danicic, S., and Wegener, J., "VADA:
A Transformation-Based System for Variable Dependence Analysis," in
Proceedings o f the Second IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM'02): IEEE Computer Society, 2002.

[156] Harman, M., Lin, H., Hierons, R., Wegener, J., Sthamer, H., Andr, Baresel, and
Marc, R., "Testability Transformation," IEEE Trans. Softw. Eng., vol. 30, pp. 3-16,
2004.

[157] Harman, M., Lin, H., Hierons, R. M., Baresel, A., and Sthamer, H., "Improving
Evolutionary Testing By Flag Removal," in Proceedings o f the Genetic and
Evolutionary Computation Conference: Morgan Kaufmann Publishers Inc., 2002.

[158] Harrel, J. M., "Orthogonal array testing strategy (OATS) technique," 2004.
[159] Hentenryck, P., Simonis, H., and Dincbas, M., "Constraint satisfaction using

constraint logic programming," Artif. Intell., vol. 58, pp. 113-159, 1992.
[160] Hnich, B., Prestwich, S. D., and Selensky, "Constraint-Based Approaches to the

Covering Test Problem," presented at CSCPL'04, 2005.
[161] Hnich, B., Prestwich, S. D., Selensky, E., and Smith, B. M., "Constrant Models for

the Covering Test Problem," 2006.
[162] Hoare, C. A. R., "How Did Software Get So Reliable Without Proof?," in

Proceedings o f the Third International Symposium o f Formal Methods Europe on
Industrial Benefit and Advances in Formal Methods: Springer-Verlag, 1996.

[163] Hoffman, D. and Brealey, C., "Module test case generation," SIGSOFT Softw. Eng.
Notes, vol. 14, pp. 97-102, 1989.

[164] Hoffman, D., Strooper, P., and White, L., "Boundary values and automated
component testing," Software Testing, Verification and Reliability, vol. 9, pp. 3-26,
1999.

[165] Hoffman, D. M. and Strooper, P., "Automated Module Testing in Prolog," IEEE
Trans. Softw. Eng., vol. 17, pp. 934-943, 1991.

[166] Hoskins, D., Turban, R. C., and Colboum, C. J., "Experimental designs in software
engineering: d-optimal designs and covering arrays," in Proceedings o f the 2004
ACM workshop on Interdisciplinary software engineering research. Newport
Beach, CA, USA: ACM Press, 2004.

[167] Hoskins, D. S., Colboum, C. J., and Montgomery, D. C., "Software performance
testing using covering arrays: efficient screening designs with categorical factors,"
presented at Proceedings of the 5th international Workshop on Software and
Performance (WOSP '05), Palma, Illes Balears, Spain, 2005.

[168] Howden, W. E., "Methodoiy for the generation of program test data," IEEE Trans.
Comput., vol. 24, pp. 554-559, 1975.

201 - 220

References

169] Howden, W. E., "Reliability of the path analysis testing strategy," IEEE Trans.
Softw. Eng., vol. 2, pp. 208-215, 1976.

170] Howden, W. E., "DISSECT - A symbolic evaluation and program testing system,"
IEEE Trans. Softw. Eng., vol. 4, pp. 70-73, 1978.

171] Howden, W. E., "An evaluation of the effectiveness of symbolic testing," Softw.
Pract. Exper., vol. 8, pp. 381-397, 1978.

172] Howden, W. E., "Functional program Testing," IEEE Trans. Softw. Eng., vol. 6, pp.
162-169,1980.

173] Huller, J., "Reducing time to market with combinatorial design method testing," in
Proceedings o f 10th Annual International Council on Systems Engineering
(.INCOSEVO). Minneapolis, MN, USA, 2000.

174] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T., "Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria," in
Proceedings o f the 16th international conference on Software engineering.
Sorrento, Italy: IEEE Computer Society Press, 1994.

175] Ince, D. C., "The automatic generation of test data," Computer Journal, vol. 30, pp.
63-69,1987.

176] Ince, D. C., "Software Testing," in Software Engineers Reference Book:
Butterworth-Heinemann, 1991, pp. 19/1-19/15.

177] Ince, D. C. and Hekmatpour, S., "An empirical investigation of random testing,"
The Computer Journal, vol. 29, pp. 380, 1986.

178] Irvine, S. A., Pavlinic, T., Trigg, L., Cleary, J. G., Inglis, S., and Utting, M.,
"Jumble Java Byte Code to Measure the Effectivness of Unit Tests," presented at
Mutation 2007, Winsor, UK, 2007.

179] Isermann, R., Schwarz, R., and Stolzl, S., "Fault-tolerant drive-by-wire systems,"
Control Systems Magazine, vol. 22, pp. 64-81, 2002.

180] Jarvis, R. A., "Adaptive global search in a time variant environment using a
probabilistic automaton with pattern recognition supervision," IEEE Trans. Systems
Science and Cybernetics, vol. 6, pp. 209-217, 1970.

181] Jasper, R., Brennan, M., Williamson, K., Currier, B., and Zimmerman, D., "Test
data generation and feasible path analysis," in Proceedings o f the 1994 ACM
SIGSOFT international symposium on Software testing and analysis. Seattle,
Washington, United States: ACM Press, 1994.

182] jenny, "http://www.burtleburtle.net/bob/math."
183] Jones, B. F., Eyres, D. E., and Sthamer, H. H., "A strategy for using genetic

algorithms to automate branch and fault-based testing," Computer Journal, vol. 41,
pp. 98-107, 1998.

184] Jones, B. F., Sthamer, H. H., and Eyres, D. E., "Automatic structural testing using
genetic algorithms," Software Engineering Journal, vol. 11, pp. 299-306, 1996.

185] Jones, J. A. and Harrold, M. J., "Test-Suite Reduction and Prioritization for
Modified Condition/Decision Coverage," IEEE Trans. Softw. Eng., vol. 29, pp.
195-209, 2003.

186] Kamsties, E. and Lott, C. M., "An Empirical Evaluation of Three Defect-Detection
Techniques," in Proceedings o f the 5th European Software Engineering
Conference: Springer-Verlag, 1995.

202 - 220

http://www.burtleburtle.net/bob/math

References

187] Kaner, C., Bach, J., and Pettichord, B., Lessons learned in software testing: a
Context driven approach. New York: John Wiley & Sons, 2002.

188] Kemmerer, R. A. and Eckmann, S. T., "UNISEX: A UNIX-based Symbolic
Executor for Pascal," Software - Practice and Experience, vol. 15, pp. 439-458,
1985.

189] Keppel, G. and Saufley, W. H., Introduction to Design and Analysis: A Students
Handbook. San Francisco: W.H Freeman and Company, 1980.

190] Kimberley, W., "Building the BMW 7 Series," in Automotive Design and
Production: Gardner Publications, 2005.

191] King, J. C., "A new approach to program testing," SIGPLANNot., vol. 10, pp. 228-
233,1975.

192] King, J. C., "Symbolic execution and program testing," Commun. ACM, vol. 19, pp.
385-394, 1976.

193] King, K. N. and Offutt, A. J., "A Fortran language system for mutation-based
software testing," Softw. Pract. Exper., vol. 21, pp. 685-718,1991.

194] Kneuper, R., "Limits of formal methods " Formal Aspects o f Computing, vol. 9, pp.
379-394, 1997.

195] Knuth, D., The Art o f Computer Programming: Sorthing and Searching, vol. 3, 2nd
ed. Reading: Addison-Wesley, 1998.

196] Kobayashi, N., Tsuchiya, T., and Kikuno, T., "A new method for constructing pair
wise covering designs for software testing," Inf. Process. Lett., vol. 81, pp. 85-91,
2002.

197] Kobayashi, N., Tsuchiya, T., and Kikuno, T., "Non-Specification-Based
Approaches to Logic Testing for Software," Information and Software Technology,
vol. 44, pp. 113-121,2002.

198] Kopetz, H., "Automotive Electronics," presented at 11th Euromicro Conference on
Real-Time Systems, 1999.

199] Korel, B., "Automated Software Test Data Generation," IEEE Trans. Softw. Eng.,
vol. 16, pp. 870-879,1990.

200] Korel, B. and Al-Yami, A. M., "Assertion-oriented automated test data generation,"
in Proceedings o f the 18th international conference on Software engineering.
Berlin, Germany: IEEE Computer Society, 1996.

201] Kuhn, D. R. and Okun, V., "Pseudo-Exhaustive Testing for Software," presented at
30th Annual IEEE/NASA Soft. Eng. Workshop (SEW'06), 2006.

202] Kuhn, D. R. and Reilly, M. J., "An Investigation of the Applicability of Design of
Experiments to Software Testing," presented at Proceedings of the 27th Annual
NASA Goddard Software Engineering Workshop (SEW-27'02), 2002.

203] Kuhn, D. R., Wallace, D. R., and Gallo, A. M., "Software Fault Interactions and
Implications for Software Testing," IEEE Trans. Softw. Eng., vol. 30, pp. 418-421,
2004.

204] Kuhn, R., Lei, Y., and Kacker, R., "Practical Combinatorial Testing: Beyond
Pairwise " in IT Professional, vol. 10, 2008, pp. 19-23.

205] Laitenberger, O., "Studying the Effects of Code Inspection and Structural Testing
on Software Quality," in Proceedings o f the Ninth International Symposium on
Software Reliability Engineering: IEEE Computer Society, 1998.

203 - 220

References

[206] Lammermann, F., Baresel, A., and Wegener, J., "Evaluating Evolutionary
Testability with Software-Measurements," in Genetic and Evolutionary
Computation - GECCO 2004: Genetic and Evolutionary Computation Conference.
Seattle,WA, USA: Springer, 2004.

[207] Lamont, M., "http://linux.wku.edu/~lamonml/ algor/sort/," 2006.
[208] Lapierre, S., Merlo, E., Savard, G., Antoniol, G., Fiutem, R., and Tonella, P.,

"Automatic Unit Test Data Generation Using Mixed-Integer Linear Programming
and Execution Trees," in Proceedings o f the IEEE International Conference on
Software Maintenance. Oxford, UK: IEEE Computer Society, 1999.

[209] Lee, G., Morris, J., Parker, K., Bundell, G. A., and Lam, P., "Using symbolic
execution to guide test generation," Software Testing, Verification and Reliability,
vol. 15, pp. 41-61, 2005.

[210] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J., "IPOG/IPOG-D:
efficient test generation for multi-waycombinatorial testing," Softw. Test. Verif.
Reliab., 2007.

[211] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J., 'TPOG: A General
Strategy for T-Way Software Testing," presented at 14th Annual IEEE Int'l Conf.
and Workshops on the Engineering of Computer-Based Systems (ECBS'07), 2007.

[212] Lei, Y. and Tai, K. C., "In-Parameter-Order: A Test Generation Strategy for
Pairwise Testing," in The 3rd IEEE International Symposium on High-Assurance
Systems Engineering: IEEE Computer Society, 1998.

[213] Leveson, N. G., Safeware: system safety and computers. New York: ACM Press,
1995.

[214] Lin, J.-C. and Yeh, P.-L., "Automatic test data generation for path testing using
GAs," Inf. Sci., vol. 131, pp. 47-64, 2001.

[215] Lindquist, T. E. and Jenkins, J. R., "Test-Case Generation with IOGen," IEEE
Softw., vol. 5, pp. 72-79, 1988.

[216] Liu, X., Liu, H., Wang, B., Chen, P., and Cai, X., "A unified fitness function
calculation rule for flag conditions to improve evolutionary testing," in Proceedings
o f the 20th IEEE/ACM international Conference on Automated software
engineering. Long Beach, CA, USA: ACM Press, 2005.

[217] London, R. L., "Software Reliability Through Proving Programs Correct,"
presented at Proc. IEEE Int. Symp. Fault-Tolerant Computing, 1971.

[218] Mahmood, A. and McCluskey, E. J., "Concurrent Error Detection Using Watchdog
Processors-A Survey," IEEE Trans. Comput., vol. 37, pp. 160-174, 1988.

[219] Malaiya, Y. K., "Antirandom testing: getting the most out of black-box testing,"
presented at Proceedings., Sixth International Symposium on Software Reliability
Engineering, 1995, Toulouse, France, 1995.

[220] Mandl, R., "Orthogonal LatinSsquares: an Application of Experiment Design to
Compiler Testing," Commun. ACM, vol. 28, pp. 1054-1058, 1985.

[221] McDermid, J., Galloway, A., Burton, S., Clark, J., Toyn, I., Nigel Tracey, N., and
Valentine, S., "Towards Industrially Applicable Formal Methods: Three Small
Steps, and One Giant Leap," in Proceedings o f the Second IEEE International
Conference on Formal Engineering Methods: IEEE Computer Society, 1998.

[222] McDermid, J. A. and Kelly, T. P., "Safety Critical Systems: Achievement and
Prediction," presented at 2nd SEAS DTC Technical Conference, Edinburgh, 2006.

204 - 220

http://linux.wku.edu/~lamonml/

References

[223] McDermid, J. A. and Rook, P., "Software development process models," in
Software Engineers Reference Book, J.A., M., Ed.: Butterworth Heinemann, 1991.

[224] McMinn, P., "Search-based software test data generation: a survey," Softw. Test.
Verif. Reliab., vol. 14, pp. 105-156, 2004.

[225] McMinn, P., Binkley, D., and Harmann, M., "Testability transformation for
efficient automated test data search in the presence of nesting," in Proceedings o f
the Third UK Testing Workshop (UKTest 2005). Sheffield, UK, 2005.

[226] McMinn, P. and Holcombe, M., "The state problem for evolutionary testing," in
Proc. Genetic and Evolutionary Computation Conf. 2003 (GECCO’03): Springer,
2003.

[227] McMinn, P. and Holcombe, M., "Hybridizing evolutionary testing with the
chaining approach," in Genetic and Evolutionary Computation - GECCO 2004:
Genetic and Evolutionary Computation Conference. Seattle, WA, USA: Springer,
2004.

[228] McMinn, P. and Holcombe, M., "Evolutionary testing of state-based programs," in
Proceedings o f the 2005 conference on Genetic and evolutionary computation.
Washington DC, USA: ACM Press, 2005.

[229] Memon, A., Porter, A., Yilmaz, C., Nagarajan, A., Schmidt, D., and Natarajan, B.,
"Skoll: Distributed Continuous Quality Assurance," presented at ICSE '04:
Proceedings of the 26th International Conference on Software Engineering,
Washington, DC, USA, 2004.

[230] Meudec, C., "ATGen: automatic test data generation using constraint logic
programming and symbolic execution," Software Testing, Verification and
Reliability, vol. 11, pp. 81-96, 2001.

[231] Michael, C. and McGraw, G., "Automated Software Test Data Generation for
Complex Programs," in Proceedings o f the 13th IEEE international conference on
Automated software engineering: IEEE Computer Society, 1998.

[232] Michael, C. C., McGraw, G., and Schatz, M. A., "Generating Software Test Data
by Evolution," IEEE Trans. Softw. Eng., vol. 27, pp. 1085-1110, 2001.

[233] Michael, C. C., McGraw, G. E., Schatz, M. A., and Walton, C. C., "Genetic
algorithms for dynamic test data generation," in Proceedings o f the 12th
international conference on Automated software engineering (formerly: KBSE):
IEEE Computer Society, 1997.

[234] Michalewicz, Z. and Fogel, D. B., How to solve it: modern heuristics. Berlin:
Springer-Verlag, 2002.

[235] Miller, W. and Spooner, D., "Automatic generation of floating-point test data,"
IEEE Trans. Softw. Eng., vol. 2, pp. 223- 226, 1976.

[236] Mueller, F. and Wegener, J., "A Comparison of Static Analysis and Evolutionary
Testing for the Verification of Timing Constraints," in Fourth IEEE Real Time
Technology and Applications Symp: IEEE, 1998.

[237] Myers, G. J., "A controlled experiment in program testing and code
walkthroughs/inspections," Commun. ACM, vol. 21, pp. 760-768, 1978.

[238] Myers, G. J., Art o f Software Testing: John Wiley & Sons, 1979.
[239] Nair, V. N., James, D. A., Ehrlich, W. K., and Zevallos, J., "A Statistical

Assessment of some Software Testing Strategies and Application of Experimental
Design Techniques," Statistica Sinica., vol. 8, pp. 165-184, 1998.

205 - 220

References

[240] Naur, P., "Programming by action clusters," BIT, vol. 9, pp. 250-258,1969.
[241] Neumann, P. G., Computer Related Risks. New York: The ACM Press, 2003.
[242] Nikolik, B. and Hamlet, D., "Solving constraints involving indexed variables,"

Portland State University, Portland 1997.
[243] Nilsson, R. and Henriksson, D., "Test case generation for flexible real-time control

systems," in Proceedings o f the Tenth IEEE In f I conf. on Emerging Technologies
and Factory Automation. Catania, Italy, 2005.

[244] Ntafos, S. C., "On Comparisons of Random, Partition, and Proportional Partition
Testing," IEEE Trans. Softw. Eng., vol. 27, pp. 949-960, 2001.

[245] Nurmela, K. J. and Ostergard, P. R. J., "Constructing covering designs by simulated
annealing," Helsinki University of Technology Digital Systems Laboratory Series
B No. 10, 1993.

[246] Offutt, A. J., "The coupling effect: fact or fiction.," SIGSOFT Softw. Eng. Notes,
vol. 14, pp. 131-140, 1989.

[247] Offutt, A. J., "Investigations of the Software Testing Coupling Effect," ACM Trans,
on Soft. Eng. and Methodology, vol. 1, pp. 5-20, 1992.

[248] Offutt, A. J., "A Practical System for Mutation Testing: Help for the Common
Programmer," presented at Proc. of the IEEE Int'l Test Conference on TEST: The
Next 25 Years, 1994.

[249] Offutt, A. J., "An Integrated automatic test data generation system," Journal o f
Systems Integration, vol. 1, pp. 391 - 409, 2003.

[250] Offutt, A. J., Jin, Z., and Pan, J., "The dynamic domain reduction procedure for test
data generation," Softw. Pract. Exper., vol. 29, pp. 167-193, 1999.

[251] Offutt, A. J. and King, K. N., "A Fortran 77 interpreter for mutation analysis," in
Papers o f the Symposium on Interpreters and interpretive techniques. St. Paul,
Minnesota, United States: ACM Press, 1987.

[252] Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., and Zapf, C., "An Experimental
Determination of Sufficient Mutant Operators," ACM Trans. Softw. Eng.
Methodol., vol. 5, pp. 99-118, 1996.

[253] Offutt, A. J. and Voas, J. M., "Subsumption of Condition Coverage Techniques by
Mutation Testing," Dept, of Information and Software Systems Engineering ,
George Mason Univ., Fairfax, Va. ISSE-TR-96-100, 1996.

[254] Offutt, J. and Seaman, E. J., "An Integrated automatic test data generation system,"
in Proceedings o f the Fifth Annual Conference on Systems Integrity, Software
Safety and Process Security (COMPASS '90). Gaithersburg, MD, USA, 1990.

[255] Offutt, J. A., Pan, J., and Voas, J. M., "Procedures for Reducing the Size of
Coverage Based Test Sets," presented at Twelfth Int. Conf. on Testing Computer
Software., Washington D.C., 1995.

[256] Ostrand, T. J. and Balcer, M. J., "The category-partition method for specifying and
generating functional tests," Commun. ACM, vol. 31, pp. 676-686, 1988.

[257] Ould, M. A., "Testing: a challenge to method and tool developers," Softw. Eng. J.,
vol. 6, pp. 59-64, 1991.

[258] Pan, J., Koopman, P., and Siewiorek, D., "A dimensionality model approach to
testing and improving software robustness," in Proceedings o f the IEEE Systems
Readiness Technology Conference, AUTOTESTCON '99. San Antonio, TX, USA:
IEEE, 1999.

206 - 220

References

[259] Parasoft," C++Test version 2.2," 2004.
[260] Pargas, R. P., Harrold, M. J., and Peck, R. R., "Test-data generation using genetic

algorithms," Software Testing, Verification and Reliability, vol. 9, pp. 263-282,
1999.

[261] Park, S. K. and Miller, K. W., "Random number generators: good ones are hard to
find," Commun. ACM, vol. 31, pp. 1192-1201, 1988.

[262] Pasquini, A., Crespo, A. N., and Matrella, P., "Sensitivity of reliability-growth
models to operational profile errors vs. testing accuracy," IEEE Transactions on
Reliability, vol. 29, pp. 531-540, 1996.

[263] Perkinson, W. B., "A methodology for designing and executing ISDN feature tests,
using automated test systems," in Proceedings o f IEEE Global Telecommunications
Conference, 1992 (GLOBECOM '92). Orlando, FL, USA: IEEE, 1992.

[264] Peterson, I., Fatal defect: chasing killer computer bugs. New York: Vintage Books,
1996.

[265] Piwowarski, P., Ohba, M., and Caruso, J., "Coverage measurement experience
during function test," in Proceedings o f the 15th international conference on
Software Engineering. Baltimore, Maryland, United States: IEEE Computer
Society Press, 1993.

[266] Pohlheim, Conrad, and Griep, "Evolutionary safety testing of embedded control
software by automatically generating compact test data sequences," in SAE World
Congress 2005: SAE, 2005.

[267] Press, W. H., Teukolsky, A. A., Vetterling, W. T., and Flannery, B. P., Numerical
recipes in C : the art o f scientific computing. Cambridge: Cambridge University
Press, 1992.

[268] Ramamoorthy, C. V., Ho, S. F., and Chen, W. T., "On the automated generation of
program test data," IEEE Trans. Softw. Eng., vol. 2, pp. 293-300, 1976.

[269] Reid, S. C., "An Empirical Analysis of Equivalence Partitioning, Boundary Value
Analysis and Random Testing," in Proceedings o f the 4th International Symposium
on Software Metrics: IEEE Computer Society, 1997.

[270] Reid, S. C., "Module testing techniques - which are the most effective? Results of a
retrospective analysis," in Proc. Eurostar97: 5th European Conf. on Software
Testing, 1997.

[271] Richardson, J. A. and Kuester, J. L., "Algorithm 454: the complex method for
constrained optimization [E4]," Commun. ACM, vol. 16, pp. 487-489, 1973.

[272] Roper, M., "Computer aided software testing using genetic algorithms," in Tenth
In f I Quality Week Conf. San Francisco, 1997.

[273] Rothermel, G., Harrold, M. J., Ostrin, J., and Hong, C., "An Empirical Study of the
Effects of Minimization on the Fault Detection Capabilities of Test Suites," in
Proceedings o f the International Conference on Software Maintenance: IEEE
Computer Society, 1998.

[274] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J., "Test Case Prioritization:
An Empirical Study," in Proceedings o f the IEEE International Conference on
Software Maintenance: IEEE Computer Society, 1999.

[275] Rothermel, G., Untch, R. J., and Chu, C., "Prioritizing Test Cases For Regression
Testing," IEEE Trans. Softw. Eng., vol. 27, pp. 929-948, 2001.

207 - 220

References

[276] Saikkonen, R., "Linux I/O port programming mini-HOWTO v3.0," vol. 2007,
2000.

[277] Schroeder, P. J., Bolaki, P., and Gopu, V., "Comparing the Fault Detection
Effectiveness of N-way and Random Test Suites," presented at ISESE '04:
Proceedings of the 2004 International Symposium on Empirical Software
Engineering, 2004.

[278] Schultz, A. C., Grefenstette, J. J., and De Jong, K. A., "Test and Evaluation by
Genetic Algorithms," IEEE Expert: Intelligent Systems and Their Applications, vol.
8, pp. 9-14, 1993.

[279] Schultz, A. C., Grefenstette, J. J., and De Jong, K. A., "Applying genetic algorithms
to the testing of intelligent controllers," in Proceedings o f Applying Machine
Learning in Practice (IMLC-95), 1995.

[280] Sherwood, G., "Effective Testing of Factor Combinations," presented at Third Int'l
Conf. Software Testing, Analysis and Review, Washington, DC, 1994.

[281] Sherwood, G. B., "Improving test case selection with constrained arrays," AT&T
Report Number e.g. SCE-04-15, 1990.

[282] Sherwood, G. B., "Improving test case selection with constrained arrays II," AT&T
Report Number e.g. SCE-04-15, 1990.

[283] Sherwood, G. B., "Tutorial - Constraints Example," vol. 2006: Testcover.com
2005.

[284] Shiba, T., Tsuchiya, T., and Kikuno, T., "Using Artificial Life Techniques to
Generate Test Cases for Combinatorial Testing," presented at Proc. 28th Int'l
Computer Software and Applicatios Conf (COMPSAC'04), 2004.

[285] Shooman, M. L., "Avionics Software Problem Occurrence Rates," presented at
Proc.7th International Symposium on Software Reliability Engineering (ISSRE
'96), White Plains, NY, 1996.

[286] Smith, B., Feather, M. S., and Muscettola, N., "Challenges and Methods in Testing
the Remote Agent Planner," presented at Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems, Breckenridge, CO., 2000.

[287] Smith, B., Millar, W., Tung, Y. W., Nayak, P., Gamble, E., and Clark, M.,
"Validation and Verification of the Remote Agent for Spacecraft Autonomy," in
Proceedings o f the 1999 IEEE Aerospace Conference, 1999.

[288] Sneed, H. M., "Data Coverage Measurement in Program Testing," in Proc. o f IEEE
Workshop on Software Testing. Banff, Canada: IEEE, 1986.

[289] Stacy, W. and MacMillan, J., "Cognitive bias in software engineering," Commun.
ACM, vol. 38, pp. 57-63, 1995.

[290] Stardom, J., "Metaheuristics and the search for covering and packing arrays," in
Dept. Mathematics, vol. MSc: Simson Fraser University, 2001.

[291] Stevens, B. and Mendelsohn, E., "Efficient software testing protocols," in
Proceedings o f the 1998 conference o f the Centre for Advanced Studies on
Collaborative research. Toronto, Ontario, Canada: IBM Press, 1998.

[292] Tai, K. C. and Lie, Y., "A Test Generation Strategy for Pairwise Testing," IEEE
Trans. Softw. Eng., vol. 28, pp. 109-111, 2002.

[293] Teasley, B., Leventhal, L. M., and Rohlman, D. S., "Positive Test Bias in Software
Testing By Professionals: What's Right and What's Wrong," presented at Emperical
Studies of Programmers: Fifth Workshop, Palo Alto, CA, 1993.

208 - 220

References

[294] Thevenod-Fosse, P., "From random testing of hardware to statistical testing of
software," in Proceedings o f 5th Annual European Computer Conference
(CompEuro'91) 'Advanced Computer Technology, Reliable Systems and
Applications'. Montreal, Que., Canada, 1991.

[295] Thevenod-Fosse, P. and Waeselynck, H., "STATEMATE applied to statistical
software testing," SIGSOFT Softw. Eng. Notes, vol. 18, pp. 99-109, 1993.

[296] Thevenod-Fosse, P., Waeselynck, H., and Crouzet, Y., "An experimental study on
software structural testing: deterministic versus random input generation," in Digest
o f Papers Twenty-First International Symposium on Fault-Tolerant Computing
(FTCS-21). Boston, Massachusetts, USA, 1991.

[297] Tichy, W. F., "Should Computer Scientists Experiment More?," Computer, vol. 31,
pp. 32-40, 1998.

[298] Tichy, W. F., Lukowicz, P., Prechelt, L., and Heinz, E. A., "Experimental
evaluation in computer science: a quantitative study," J. Syst. Softw., vol. 28, pp. 9-
18, 1995.

[299] Tracey, N., Clark, J., and Mander, K., "Automated program flaw finding using
simulated annealing," in Proceedings o f the 1998 ACM SIGSOFT international
symposium on Software testing and analysis. Clearwater Beach, Florida, United
States: ACM Press, 1998.

[300] Tracey, N., Clark, J., and Mander, K., "The way forward for unifying dynamic test-
case generation: The optimisation-based approach," in International Workshop on
Dependable Computing and Its Applications (DCIA), 1998.

[301] Tracey, N., Clark, J., Mander, K., and McDermid, J., "An Automated Framework
for Structural Test-Data Generation," in Proceedings o f the 13th IEEE international
conference on Automated software engineering: IEEE Computer Society, 1998.

[302] Tracey, N., Clark, J., Mander, K., and McDermid, J., "Automated test-data
generation for exception conditions," Softw. Pract. Exper., vol. 30, pp. 61-79, 2000.

[303] Tracey, N., Clark, J., McDermid, J., and Mander, K., "A search-based automated
test-data generation framework for safety-critical systems," in Systems engineering
for business process change: new directions: Springer-Verlag New York, Inc.,
2002, pp. 174-213.

[304] Tsoukalas, M. Z., Duran, J. W., and Ntafos, S. C., "On some reliability estimation
problems in random and partition testing," IEEE Trans. Softw. Eng., vol. 19, pp.
687-697,1993.

[305] Tung, Y.-W. and Aldiwan, W. S., "Automating test case generation for the new
generation mission software system," in Aerospace Conference Proceedings. Big
Sky, MT, USA: IEEE, 2000.

[306] Untch, R. H., Offutt, A. J., and Harrold, M. J., "Mutation analysis using mutant
schemata," presented at Proceedings of the 1993 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA '93), Cambridge,
Massachusetts, 1993.

[307] Valentine, R., "Cruise Control," in Automotive Electronics Handbook, Second
Edition, R.K., J., Ed. New York: McGraw-Hill, 1999.

[308] Vinter, J., Hannius, O., Norlander, T., Peter Folkesson, P., and Karlsson, J.,
"Experimental Dependability Evaluation of a Fail-Bounded Jet Engine Control

209 - 220

References

System for Unmanned Aerial Vehicles," presented at International Conference on
Dependable Systems and Networks (DSN'05), 2005.

[309] Voas, J. M. and McGraw, G., Software Fault Injection: Inoculating programs
Against Errors. New York: John Wiley & Sons, 1998.

[310] Voges, U., Gmeiner, L., and von Mayrhauser, A., "SADAT - An Automated
Testing Tool," IEEE Trans. Softw. Eng., vol. 6, pp. 286-290, 1980.

[311] von Mayrhauser, A., Bai, A., Chen, T., Anderson, C., and Hajjar, A., "Fast
Antirandom (FAR) Test Generation," in The 3rd IEEE International Symposium on
High-Assurance Systems Engineering: IEEE Computer Society, 1998.

[312] Vouk, M., McAllister, D. F., and Tai, K. C., "An experimental evaluation of the
effectiveness of random testing of fault- tolerant software," in Association for
Computing Machinery and IEEE, Workshop on Software Testing. Banff, Canada:
ACM Press, 1986.

[313] Wallace, D. R. and Kuhn, D. R., "Failure Modes in medical device software: an
analysis of 15 years of recall data," International Journal o f Reliability, Quality
and Safety Engineering, vol. 8, pp. 351-371, 2001.

[314] Wallace, M. G., Novello, S., and Schimpf, J., "ECLiPSe : A Platform for Constraint
Logic-Programming," ICL Systems Journal, vol. 12, 1997.

[315] Watkins, A., Bemdt, D., Aebischer, K., Fisher, J., and Johnson, L., "Breeding
Software Test Cases for Complex Systems," in Proceedings o f the Proceedings o f
the 37th Annual Hawaii International Conference on System Sciences (HICSS'04) -
Track 9 - Volume 9: IEEE Computer Society, 2004.

[316] Watkins, A. and Hufnagel, E. M., "Evolutionary test data generation: a comparison
of fitness functions," Softw. Pract. Exper., vol. 36, pp. 95-116,2005.

[317] Watkins, A. L., "The automatic generation of test data using genetic algorithms," in
Proc 4th Software Quality Conf. Dundee, UK, 1995.

[318] Wegener, J., Baresel, A., and Sthamer, H., "Evolutionary test environment for
automatic structural testing," Information and Software Technology, vol. 43, pp.
841-854,2001.

[319] Wegener, J. and Biihler, O., "Evaluation of Different Fitness Functions for the
Evolutionary Testing of an Autonomous Parking System," in Genetic and
Evolutionary Computation - GECCO 2004: Genetic and Evolutionary
Computation Conference: Springer, 2004.

[320] Wegener, J. and Grochtmann, M., "Testing temporal correctness of real-time
systems by means of genetic algorithms," in Proceedings o f the 10th International
Software Quality Week, 1997.

[321] Wegener, J., Sthamer, H., Jones, B. F., and Eyres, D. E., "Testing real-time systems
using genetic algorithms," Software Quality Control, vol. 6, pp. 127-135, 1997.

[322] Weyuker, E., Goradia, T., and Singh, A., "Automatically Generating Test Data
from a Boolean Specification," IEEE Trans. Softw. Eng., vol. 20, pp. 353-363,
1994.

[323] Weyuker, E. J., "On testing non-testable programs," The Computer Journal, vol.
25, pp. 465-470, 1982.

[324] Weyuker, E. J., "The evaluation of program-based software test data adequacy
criteria," Commun. ACM, vol. 31, pp. 668-675, 1988.

210 - 220

References

[325] Weyuker, E. J. and Jeng, B., "Analyzing Partition Testing Strategies," IEEE Trans.
Softw. Eng., vol. 17, pp. 703-711, 1991.

[326] White, L. J. and Cohen, E. I., "A domain strategy for computer program testing,"
IEEE Trans. Softw. Eng., vol. 6, pp. 247-257, 1980.

[327] White, L. J. and Wiszniewski, B., "Complexity of testing iterated borders for
structural programs," in Proc. o f the 2nd IEEE Workshop on Software Testing,
Verification and Analysis. Banff, Canada: IEEE, 1988.

[328] White, L. J. and Wiszniewski, B., "Path testing of computer programs with loops
using a tool for simple loop patterns," Softw. Pract. Exper., vol. 21, pp. 1075-1102,
1991.

[329] Wichmann, B. A. and Hill, I. D., "Generating Good Pseudo-Random Numbers,"
Computational Statistics & Data Analysis, vol. 51, pp. 1614-1622, 2006.

[330] Williams, A. W., "Determination of Test Configurations for Pair-Wise Interaction
Coverage," in Proceedings o f the IFIP TC6/WG6.1 13th International Conference
on Testing Communicating Systems: Tools and Techniques’. Kluwer, B.V., 2000.

[331] Williams, A. W. and Probert, R. L., "A practical strategy for testing pair-wise
coverage of network interfaces," in Proceedings o f the The Seventh International
Symposium on Software Reliability Engineering (ISSRE '96): IEEE Computer
Society, 1996.

[332] Williams, A. W. and Probert, R. L., "A Measure for Component Interaction Test
Coverage," in Proceedings o f the ACS/IEEE International Conference on
Computer Systems and Applications: IEEE Computer Society, 2001.

[333] Williams, A. W. and Probert, R. L., "Formulation of the Interaction Test Coverage
Problem as an Integer Program," in Proceedings o f the IFIP 14th International
Conference on Testing Communicating Systems XIV: Kluwer, B.V., 2002.

[334] Wong, E. E., Horgan, J. R., London, S., and Mather, A. P., "Effect of test set size
and block coverage on the fault detection effectiveness," in Proceedings., 5th
International Symposium on Software Reliability Engineering. Monterey, CA,
USA: IEEE, 1994.

[335] Wong, W. E., Horgan, J. R., London, S., and Mathur, A. P., "Effect of Test Set
Minimization on Fault Detection Effectiveness," Software Practice and
Experience, vol. 28, pp. 347-369, 1998.

[336] Woodward, M. R., Hedley, D., and Hennel, M. A., "Experience with Path Analysis
and Testing of Programs," IEEE Trans. Softw. Eng., vol. 6, pp. 278-28, 1980.

[337] Wu, S. H., Malaiya, Y. K., and Jayasumana, A. P., "Antirandom vs. pseudorandom
testing," in Proceedings o f the International Conference on Computer Design:
VLSI in Computers and Processors (ICCD '98). Austin, TX, USA, 1998.

[338] Xie, T., Marinov, D., Schulte, W., and Notkin, D., "Symstra: A Framework for
Generating Object-Oriented Unit Tests Using Symbolic Execution," in Tools and
Algorithms for the Construction and Analysis o f Systems: 11th International
Conference, TACAS 2005, Held as Part o f the Joint European Conferences on
Theory and Practice o f Software, ETAPS 2005. Edinburgh, UK: Springer, 2005.

[339] Xu, B., Xu, L., Nie, C., Chu, W., and Chang, C. H., "Applying combinatorial
method to test browser compatibility," in Proceedings. Fifth International
Symposium on Multimedia Software Engineering. Boston, Massachusetts, USA:
IEEE, 2003.

211-220

References

[340] Yan, J. and Zhang, J., "Backtracking Algorithms and Search Heuristics to Generate
Test Suites for Combinatorial Testing," presented at Proc. 30th Annual Int'l
Computer Software and Applications Conf. (COMPSAC'06), 2006.

[341] Yilmaz, C., Cohen, M. B., and Porter, A., "Covering arrays for efficient fault
characterization in complex configuration spaces," in Proceedings o f the 2004
ACM SIGSOFT international symposium on Software testing and analysis. Boston,
Massachusetts, USA: ACM Press, 2004.

[342] Yin, H., "Antirandom Test Patterns Generation Tool," Computer Science
Department, Colorado State University CS-98-101,1996.

[343] Yin, H., Lebne-Dengel, Z., and Malaiya, Y. K., "Automatic Test Generation using
Checkpoint Encoding and Antirandom Testing," in Proceedings o f the Eighth
International Symposium on Software Reliability Engineering (ISSRE ’97): IEEE
Computer Society, 1997.

[344] Yu-Wen, T. and Aldiwan, W. S., "Automating test case generation for the new
generation mission software system," presented at Proc. IEEE Aerospace Conf.,
2000, 2000.

[345] Zhan, Y. and Clark, J. A., "Search-Based Mutation Testing for Simulink Models,"
presented at Proc. of the 2005 Conference on Genetic and Evolutionary
Computation, Washington DC, USA, 2005.

212 - 220

Appendix A

9. Appendix A - The Csaw Mutation Tool

9.1 Introduction

This appendix provides additional detail on the mutation tool, Csaw, that was written to

support the work reported in this thesis. Section 8.2 describes the mutations that are

provided by the tool. Section 8.3 compares the mutation operators provided by the Csaw

tool with those commonly used for FORTRAN and with an idealised set of mutation

operators for the C programming language.

9.2 Tool Capabilities

The capabilities of the Csaw tool are described in the following sections.

9.2.1 Operator Mutations

The tool can swap one operator for another e.g. '+' for and so on. It supports this for

arithmetic and logical operators, variable types etc. The substitutions that can be applied

are defined in tables and hence can be easily altered. Some operators are not substituted

e.g. and are not currently defined in the tables because mutants involving these

operators often result in code that cannot be compiled. Thus, the mutants are by definition

dead.

9.2.2 Variable Substitution

The tool will swap one variable name for another variable name e.g. if the variables i , j

and k are defined in a function then all instances of i will be swapped with j and k, all

instances of j with i and k, and so on. Variable substitution is done on scalar and array

types independently but other uses for names such as names of structures and members

within a structure are not distinguished.

213 - 220

Appendix A

9.2.3 Constant Substitution

All textual constants (e.g. from #define) are swapped for all other such defined constants

that the tool finds in the text of the function being mutated. The tool considers a constant

any text string that is not recognised as either a keyword or a variable.

9.2.4Decimal Constants

The tool will offset decimal constant values by plus or minus one. For example, a constant

of “10” will be converted to “both “9” and “11”. Floating point, double precision and

hexadecimal constant mutations have not currently been implemented. However, “holes”

have been left in the tool for them.

9.2.5 Array Index Mutation

Array indexes that use variables are mutated by appending either “+1” or “-1”, so

array [i] is converted to array ! i—13 and array [i+1] to produce off by one errors.

Note that variable substitution also affects array indexing.

9.2.6 Statement Removal

Each statement that ends in a 1 is deleted. However for this to work correctly a statement

must be on a single line because the Csaw tool operates on one line at a time.

9.2.7 Type Mutations

Unlike any other system the author knows of, this tool will mutate the type specifier of a

variable. That is, it will swap “unsigned int” for “int”, or “double” for “float” etc.

This capability has been introduced because the primary target for the tool in this work is

integer based real-time embedded code. Because of the limited amount of memory that this

type of system often has, it is common to use integers of the smallest possible size e.g.

using a char or unsigned char as an integer variable that only takes on a small number

of values. Like operator mutations, type mutations are defined in an extendable table. As

far as the author is aware, no other mutation tool has this capability.

214 - 220

Appendix A

9.3 Comparisons

9.3.1 FORTRAN Operators

The original set of FORTRAN mutation operators was developed by King and Offutt

[193] for the Mothra mutation system for FORTRAN. The set of mutation operators for

this system is given in Table 31. Operators fall into three classes as follows; Replacement

of Operand (RO) modifiers, Expression Modifiers (EM), and Statement Modifiers.

As one of the first mutation systems introduced, the operators have been extensively

studied and their properties better documented than other systems. For example, empirical

work has been performed to determine which operators are most effective in the sense that

test cases that kill mutants based on a given operator are also observed to kill mutants

based on other operators. The largest such study by Offutt et al. [252] identified five

operators that were deemed “necessary” as follows: absolute value insertion (ABS);

arithmetic operator replacement (AOR); logical connector replacement (LCR); relational

operator replacement (ROR); and unary operator insertion (UOI). Of these AOR, LCR and

ROR are implemented for operators and UOI is partly implemented.

Work has also been done on the theoretical properties of mutation operators compared

with other common criteria for measuring the effectiveness of a test set such as statement

and decision coverage [238]. Offutt et al. [253] have examined the operators that are

necessary to achieve various levels of coverage and found that they matched the necessary

operators as shown in Table 31.

215 - 220

Appendix A

Table 31. Summary of mutation operators for the FORTRAN programming language.

Operator Class Needed Csaw Subsumes (2)
AAR array reference for array

reference replacement
RO yes

ABS absolute value insertion EM yes no
ACR array reference for constant

replacement
RO no

AOR arithmetic operator
replacement

EM yes yes

ASR array reference for scalar
variable replacement

RO no

CAR constant for array reference
replacement

RO no

CNR comparable array name
replacement

RO yes

CRP constant replacement RO yes
CSR constant for scalar variable

replacement
RO no

DER DO statement end
replacement

SM no

DSA DATA statement
alterations

SM n/a

GLR GOTO label replacement SM no
LCR logical connector

replacement
EM yes yes decision

coverage
decision/condit
ion

ROR relational operator
replacement

EM yes yes condition
coverage
decision/condit
ion

RSR RETURN statement
replacement

SM no

SAN statement analysis
(replacement by TRAP)

SM no statement
coverage

SAR scalar variable for array
reference replacement

RO no

SCR scalar for constant
replacement

RO no

SDL statement deletion SM yes all defs
SRC source constant

replacement
RO yes

SVR scalar variable replacement OR yes
UOI unary operator insertion EM yes no

(1) Replaces each condition in each cecision with TRUE or FALSE

216 - 220

Appendix A

(2) Subsumes is on weak mutation not strong mutation

In addition to the coverage criteria defined by Myers, Offutt et al. [253] also examined

the all-defs requirement as defined by Frankl and Weyuker [126] and concluded that this

was achieved by the SDL operator. However, it is interesting to note that the all-uses and

all def-uses cases were not similarly examined, which leaves one to assume that these are

not subsumed by the mutation.

A comparison of the operators provided by Csaw with the FORTRAN necessary

operators shows a few weaknesses. The absolute value insertion (ABS) operator, for

example, is not implemented at all in Csaw. Given the way in which Csaw operates this is

not a trivial exercise because Csaw does not parse the code, it cannot distinguish an lvalue

from an rvalue.

The arithmetic operator replacement (AOR), however, is probably implemented

completely in that Csaw does attempt to replace each operator with the set of all other

operators that are valid at the same point. Similarly, the logical connector replacement

(LCR) replaces the operators with a full set of other valid operators. However, the

correspondence with the Mothra operators is not exact. Offutt et al. [253] state that “the

logical connector mutation operator (LCR), among other modifications, replaces each

decision in a program by TRUE and FALSE”. Again, Csaw does not do this as it does not

know what constitutes a decision.

The relational operator replacement (ROR) is also fully implemented, given the caveat

that it may not completely duplicate the FORTRAN operators as wholesale replacement of

clauses, as in the case of the LCR operator, is again not possible.

The statement analysis (SAN) operator has not been implemented but this could be

implemented using the same mechanism as the statement deletion operator (SDL), which is

fully implemented within the bounds of what Csaw can do.

The unary operator insertion (UOI) is likewise not implemented although experiments

have shown that doing so may be feasible a part of the variable name replacement code.

Other missing operators are discussed more completely below.

217-220

Appendix A

9.3.2Ideal C Mutation Operators

Agrawal et al. [5] produced a technical report on mutant operators for the C language. A

summary of those operators and how they compare with the operators that Csaw uses is

given in Table 32.

Table 32. Summary of C mutation operators and comparison with Csaw mutation tool.
Notes on equivalent Mothra mutation operates are included in the usage column.

Area Operat
or

Usage Csaw

Statement STRP trap on statement execution, replaces each
statement with code to cause a termination

no

STRI trap on if condition, replaces branch
predicate with code to cause termination

no

SSDL statement deletion implemented
SRSR return statement replacement no
SGLR goto label replacement no
SCRB continue replacement by break no
SBRC break replacement by continue no
SBRn break to nth enclosing level no
SCRn continue to nth enclosing level no
SWDD while replaced by do-while no
SDWD do-while replaced by while no
SMTT multiple trip trap, used to ensure that a loop

is executed more than once.
no

SMTC multiple trip continue, ensure that if a loop
executes n iteration on the n+1 it will not
execute the body.

no

SSOM sequence operator mutation, used to modify
effect of the comma operator

no

SMVB move closing brace up or down one line no
SSWM switch statement mutation, cause execution

to halt if a case is selected
no

Operators Obom binary operator mutation
(OAAN, Mothra AOR)
(OBBN, Mothra LCR)
(ORRN, Mothra ROR)

implemented

OUOR unary operator mutation implemented
OLNG
(UOI)

logical negation indirectly

OCNG logical context negation partly
OBNG bitwise negation indirectly
OIPM indirect operator precedence mutation no

218 - 220

Appendix A

Area O perat
or

Usage Csaw

OCOR cast operator replacement indirectly
Variables Varr mutate array references in expressions implemented

Vprr mutate pointer references in expressions partial
Vsrr scalar variable reference replacement implemented
Vtrr mutate structure references partial
VASM mutate subscripts in array references (multi

dimensional arrays)
no

VSCR mutate components of structure indirectly
VDTR variable domain traps, TRAP on negative,

zero and positive
(Mothra ABS)

no

VTWD twiddle mutations, mirror off by one errors
e.g. +/-1
(Mothra UOI)

partial

Constants CRCR required constant replacement no
CCCR constant for constant replacement partial
CCSR constant for scalar replacement no

The utility of some of the suggested operators is lower than for others. For example, the

SRSR operator (return statement replacement) is most effective if there are multiple return

statements as variable replacement operators will generally modify a statement of the form

return (xyz). Likewise, the goto replacement label operator SGLR is only useful if

the g o to is actually used. In the code used for this study, neither of these conditions were

met. That is, the functions used had a single return and the goto operator was not used.

Some operators are impossible for the Csaw tool set to implement. For example, the

SMVB operator normally operates over multiple lines so Csaw, which operates one line at

a time, cannot deal with this operator.

As shown in Table 32, some rules are “indirectly” implanted. This means that although

the exact mutation mechanism as suggested in [5] is not used, Csaw achieves a similar

effect via brute force. However, it should be noted that Csaw’s version might not have

exactly the same properties. For example, the Varr operator is type aware, i.e., it does not

substitute integer arrays for pointer arrays but Csaw will happily make this type of

substitution but because the compiler will catch many of these instances the net effect will

be almost the same. Another example is structure component replacement; Csaw achieves

219 - 220

Appendix A

nearly the same end as the ideal operator by using every possible variable it knows about.

The vast majority will not compile but this will still effectively sift them out and allows the

legal ones to pass though.

9.3.3 The Adequacy of Csaw

Given that the Csaw implementation of ideal mutation operators is incomplete, what effect

will this have on the results of the work presented?

Some operators will have no or minimal effect because the constructs that they mutate

are not presenting in the subject code. The best two examples of this are the mutation

operators for return statements and the goto operator. All the code examined in the work

here has a single return at the end of a function. Likewise none of the code examined uses

the goto operator so the absence of the operator will have no effect.

The absence of the FORTRAN statement analysis operator (SAN and STRP C operator)

is unfortunate but again should have minimal effects because the subject industrial code is

known to have test sets that achieve full statement and branch coverage. Therefore, the

effect of this operators absence should not unduly affect the results because we are

performing a direct comparison between the effectiveness of two different test sets. If one

set is known a priori to meet a criterion then a test set that is less effective should show

obvious differences in the mutation kill rate.

The same argument applies to the other operators that have been omitted or only partly

implemented. Thus, although Csaw may be considered to be flawed because it does not

implement all operators and does not ensure that coverage criteria such as statement and

branch coverage are meet, it is adequate for the purposes of this study.

In addition, having an incomplete mutation system does not seem to preclude it being

useful in practice. The Jumble mutation system for Java (Irvine et al. [178]) for example

excludes a large number of the possible operations from within some of the operator

classes59 to achieve a significant speed increase over what would otherwise be possible.

This was been done so that regular builds of complete systems and the associated unit

testing of mutants can be performed.

59 This point was made during presentations at the Mutation 2007 workshop.

220 - 220

