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Abstract. We propose an innovative cooperative co-evolutionary com-
putation framework, Dynamic Cooperative Coevolution (DCC), which
provides dynamic coupling of neighboring species for the fitness evalua-
tion of individuals. One feature of DCC is the utilization of local fitness to
achieve a global optimum, which makes it possible for co-evolutionary al-
gorithms to be applied in localized distributed environments, such as net-
work computing. This work is motivated by our interest in autonomous
sensor deployment, where a sensor can only communicate with those
within a limited range. Our experiments show that DCC is effective in
obtaining good solutions under such distributed and localized conditions.

1 Introduction

A wireless sensor network consists of a large number of sensor nodes distributed
over an area of interest. Such networks are capable of observing and sensing the
environment and sending the collected data to a data sink for further processing.
Sensors must be deployed before they can transmit data. The deployment of
static or mobile sensors, hence, is an important basis for sensor networking. A
good placement yields high utilization of the network resources.

Two metrics are frequently used to evaluate the quality of sensor placement.
The first one is sensing coverage, which is the area that the sensors in the network
can monitor collectively. The second one is energy consumption during the sensor
deployment. The energy cost in operating a sensor network includes moving
nodes, sensing events in the environment, and transferring information. The
lifetime of a sensor network is limited by the battery capacity of the nodes. In
many applications where the replacement of battery is impossible, minimizing
energy consumption during the sensors deployment is extremely important.

Autonomous sensor deployment has been studied using a variety of tech-
niques. Howard et al. [2] described an incremental algorithm which deployed one
sensor at a time. Each sensor node used the positions of previously deployed
nodes to determine its own position. Zou and Chakrabarty [13] proposed a vir-
tual force based algorithm to expand sensing coverage after the initial random
deployment. The sensor movements were determined by the combined attrac-
tive and repulsive forces and the movements were coordinated by a cluster head.



Wang et al. [9] focused on repairing coverage holes when calculating sensors tar-
get positions using three Voronoi diagram based deployment protocols, VEC,
VOR, and MiniMax. Chellappan et al. [1] proposed a flip-based algorithm to op-
timize both the coverage and the total number of flips. More recently, it has been
demonstrated that computational intelligence techniques, such as fuzzy logic [8]
and swarm intelligence [12] can be effective in sensor deployment.

In this paper, we propose DCC, a dynamic cooperative co-evolutionary frame-
work, for autonomous sensor deployment. The algorithm facilitates sensors to
construct partial network structures based on the local information exchanged
by sensors within their neighborhood, i.e. communication range. Step by step,
the global network structure is constructed to achieve the goal of sensing cover-

age maximization and energy consumption minimization. The paper is organized
as follows. We first give a brief background of cooperative co-evolutionary algo-
rithms in Section 2. In Section 3, the features of DCC are introduced, followed by
a detailed description in Section 4. Simulation studies are presented with results
analyzed in Section 5. Finally, we conclude this paper in Section 6.

2 Cooperative Co-evolutionary Algorithms
Cooperative co-evolutionary algorithm (CCEA) is a special evolutionary algo-
rithm proposed in [3, 7]. Unlike the traditional EA [6], which solves a problem
by searching the entire solution space, CCEA divides the problem into subprob-
lems and searches the sub-solution spaces simultaneously. Since the sub-solution
space is smaller, the algorithm may find better solutions faster.

In CCEA, multiple separate populations are created with their genotypic
representations having no functional overlapping. Each population represents a
different species and an individual therein represents a solution to the subprob-
lem. Only the individuals of the same species can mate to produce offspring.
However, the fitness of an individual is evaluated on the combination of its
genotype and the representative genotypes of all other species. Each population
evolves for a certain number of generations, which is equivalent to one ecosys-

tem generation. At the end of each ecosystem generation, one representative is
selected from each population and their genotypes are shared with other pop-
ulations for fitness evaluation. The high-level flow of CCEA is given in Fig. 1,
where Ri is the representative of species i.
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Fig. 1. A high-level view of CCEA.
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There are researchers investigating problem decomposition and the efficiency
of single-best collaboration during the evolution. Wiegand and colleagues [11]
argued that when a problem is divided in such a way that there exists contra-
dictory cross-population epistasis (inter-dependency), single-best collaboration
would not produce good solution. To address the inter-dependency issue, We-
icker and Weicker [10] proposed dynamically merging the species when inter-
dependency of variables in cross populations was detected. Kim and Ryu [5]
went farther by allowing not only merging but also splitting the species when
the inter-dependency no longer exist during the evolution. Our cooperative co-
evolutionary framework also provides dynamic division of species. The main
features of the framework are described in the following section.

3 Dynamic Cooperative Coevolution Framework

DCC is a completely localized distributed algorithm in that each population
only collaborates with populations within its neighborhood for fitness evaluation.
This is an essential requirement for distributed computing where every node in
the system only has a local view of the environment. Global broadcasting of
messages is possible but is considered infeasible due to the high computation
overhead required. To work with such constraints, the following mechanisms have
been developed so that co-evolutionary algorithms can be applied effectively in
localized and distributed environments, such as network computing. The DCC
framework is depicted in Fig. 2.

1. Flexible and dynamic problem division. Under distributed environ-
ments where the location of each node may change dynamically, the parti-
tioning of the problem (i.e. the sub-solution that each population evolves)
also changes. This is contrast to the CCEA where the solution each popu-
lation evolves is fixed throughout the execution of the algorithm. One con-
sequence of this dynamic problem division is that the populations that col-
laborate for fitness evaluation also change during the algorithm execution.

2. Energy efficient partial fitness evaluation. Because each population
can only assume the availability of local information within its proximity, the
fitness evaluation must tolerate the missing input from beyond the neighbor-
hood. This is a salient contrast to CCEA, where fitness cannot be evaluated
without the information from all other populations.

3. Two operation modes for effective and efficient evolutionary search.
In spirit, the first mode (mode I) is similar to the splitting species proposed
in [5] and the second mode (mode D) is similar to the merging species pro-
posed in [10]. If evolutionary search reaches a local optimum, merging species
helps escaping the local optimum and making the search more effective. If
evolutionary search reaches the basin of a global optimum after escaping a
local optimum, splitting species helps the search find the global optimum
faster. We developed a simple method to detect that a population might
have reached a local optimum by checking the existence of coverage holes
in the neighborhood. If one or more holes exist, operation is switched to
mode D for 1 ecosystem generation cycle. Alternating these two modes can
accelerate the search process while avoiding local optima.



4 Algorithm Design for Autonomous Sensor Deployment

We have implemented the DCC concept to solve the autonomous sensor de-
ployment problem1. DCC consists of 3 major stages: planning, computing, and
moving. A complete pass of the 3 steps is called an ecosystem cycle. In the
planning stage, a sensor first divides the problem and prescribes a search space
within its proximity in which it will find a target position and move to it at the
end of the current ecosystem cycle. In the computing stage, the sensor executes
a local EA within its search space to calculate the best target position using a
fitness calculated from local information. Finally it moves to the target position
in the moving stage. Once the movement is completed, the new search space for
each sensor is calculated. The sensor may switch its operation mode (described
in the following paragraph) if needed and then starts a new ecosystem cycle to
search for the next position that the sensor would move to next. This process
repeats many times until the specified number of ecosystem cycles is reached.
Fig. 3 gives the high-level flow of the implementation.
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Fig. 3. DCC flow chart

After the sensors are randomly distributed in the field initially, one local

population is used to evolve one sensor’s target position. Each local population
can be executed using one of two operation modes: mode I (Independent) evolves
only a sensor’s position and mode D (Dynamic) evolves the positions of a sensor
and its neighboring sensors. In the first case, the fitness of an individual is
evaluated on the combination of its genotype and the representative genotypes
from the neighboring sensor populations. In the latter case, the fitness of an
individual is evaluated on its own genotype, which contains the positions of a
sensor and its neighboring sensors. Regardless of the operation mode, the fitness
of an individual only covers a partial network of the entire sensor network.

Under mode I, the search space of a local population is two-dimensional: the
x, y location of a sensor. With each local population searching a 2-dimensional
space separately and simultaneously, the global sensor network can be obtained

1 The source code is located in http://www.cs.mun.ca/∼xingyan/ppsn/DCC.tar.gz.



reasonably fast. However, occasionally sensors may get stuck in a local optimum.
For example, in Fig. 4, S1, S2, . . . , S6 are 6 sensors used to cover an area, where
S4, S5 and S6 have identical location2. It is obvious that the sensing coverage
would increase if some sensors move to the left or the lower region of the field.
However, this would never happen because the current sensor locations give
the best coverage (the union of the sensing region of all sensors), based on the
neighboring sensor positions provided at the beginning of the ecosystem cycle.
In order to obtain locations that give a better coverage than the current ones do,
the neighboring sensors need to have different locations. Mode D provides this
flexibility by allowing both the locations of a sensor and its neighboring sensors
to evolve and helps the populations escape the local optimum.
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In mode D, the search space of a local population is multiple-dimensional:
the x, y locations of a sensor and its neighboring sensors. Unlike mode I where
the neighboring sensor locations that are used for fitness evaluation are fixed
throughout the ecosystem cycle, the neighboring sensor locations also evolve.
It models the potential local interactions and uses that to improve the local
estimate of fitness. Note that the evolved neighboring sensor positions are only
used for fitness evaluation. They have no impact on the neighboring sensors’ new
positions, which are only decided by the ”fittest” individual in the neighboring
sensor populations.

The implementation is based on the following assumptions: 1) each sensor
knows its own location. 2) a sufficient number of sensors are deployed so that
they can potentially cover the entire area. 3) each sensor has a sensing range, Rs,
a communication range, Rc, and Rc ≥ 3Rs. DCC algorithm executes a sequence
of ecosystem cycles, where each cycle consists of 3 steps: planning, computing,
and moving. We explain each step in the following sub-sections.

4.1 Planning: Problem Division

At the beginning of each ecosystem cycle, the entire deployment area is parti-
tioned based on the current sensor locations in the network: each sub-area is the
sensing region of a sensor, i.e. the circle of radius Rs centered at the position of
the sensor. A local evolutionary algorithm is executed for each sensor to locate
a new position within the region where the sensor will move to at the end of the
cycle. Under the assumption that Rc ≥ 3Rs, the new coverage of a sensor and its
non-neighboring sensors would never overlap no matter where they move to. For
example, in Fig. 5 node a has a communication range Rc = 3Rs and centered

2 We use a square area to indicate a sensor’s sensing region for simplicity.



at itself are three circles of radii Rs, 2Rs and 3Rs, denoted by C1, C2, and C3,
respectively. The search space restricts node a to move within C1, which implies
that its new coverage will be restricted to C2. For a non-neighboring node b,
which is out of C3, its sensing coverage will not overlap with the new coverage
of node a, no matter where it moves to within the range of its search space. This
restriction is important for the fitness evaluation described in Section 4.2.

For each local population, the individual with the highest fitness at the end
of each cycle is selected and the sensor position information is exchanged with
all its neighboring sensors (i.e., those within its communication range) popu-
lations through a reliable wireless communication channel. At the initial cycle
where individuals in the population were randomly generated, representatives
are selected randomly.

4.2 Computing: New Position Exploration

This section describes each component of the evolutionary algorithm.

Representation We used a fixed length array of n elements to represent the
genotype of an individual, where n is the total number of sensors in the net-
work. Each element i (i = 1, 2, . . . , n) is the position {xi, yi} of sensor i in the
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Fig. 6. The 2-chromosome genotype representation

deployment area (see top diagram of Fig. 6). Since a sensor only has position in-
formation of its neighboring sensors, the elements in the genotype corresponding
to non-neighboring sensors contain invalid values. To distinguish a neighboring
sensor from a non-neighboring one, a second non-evolvable chromosome of length
n is used (see bottom diagram of Fig. 6). There, a value 0 indicates that the
corresponding element in the first chromosome is a non-neighbor while 1 indi-
cates that it is a neighbor and ⋆ indicates the sensor itself. This 2-chromosome
genotype representation provides the flexibility to facilitate the dynamic prob-
lem division explained in Section 3. When a sensor is switched from being a
neighbor to a non-neighbor (or vice visa) for a particular sensor after movement,
an update of the second chromosome can reflect such change.

Fitness Evaluation The fitness of an individual (sensor position) is determined
by the total sensing coverage induced by the position and the travel distance
between this and the current position of the sensor. Assume the sensing region of
node i is Ai (i = 1, 2, . . . , n), each Ai is a subset of the entire deployment area U ,
i.e. the universe. For a given node, the sensing coverage is the union of its sensing
area and the sensing areas of its neighboring sensors. Let H = 〈h1, h2, . . . , hn〉
be the second chromosome of the sensor’s genotype. To calculate its coverage,
we define a companion vector H = 〈h1, h2, . . . , hn〉, where hi ∈ {∅, U}, for each



H. Specifically, hi = U if hi ∈ {1, ⋆} and hi = ∅ if hi = 0. Thus, the coverage
unioned over the neighborhood of a sensor is:

n
⋃

i=1

(

hi ∩ Ai

)

For an individual with sensor position which is d away from the current
position, its fitness F is:
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where w is a weight parameter to adjust the tradeoff between coverage and
movement. Although the fitness evaluation of DCC only uses local information
from its neighboring nodes, it will be shown (see Section 5) that the computed
fitness value is able to drive the evolutionary search to find target positions that
give good overall coverage and requires a small amount of energy consumption.

Selection and Genetic Operations Among a population of P individuals,
the |Q| fittest are selected as parents, denoted by Q, to reproduce the same
number of offspring Q′ via arithmetic crossover. The Q individuals are paired
based on their ranks: the first rank is paired with the second rank, the second
rank is paired with the third rank and so on. The arithmetic crossover takes the
average of the two parents’ gene values as the gene value of its offspring.

Out of P ∪ Q′, the |P | fittest individuals survive and are carried over to
the next generation. This process continues for g generations and the fittest
individual at the end is the target position where the sensor moves itself to.

4.3 Moving: Automatic Sensor Relocation

Once the new position of a sensor is determined, the sensor moves to that location
automatically using its actuation component. Then it broadcasts its new position
and prepares for the next cycle. In some network scenarios, the assumption
of Rc ≥ 3Rs can not be satisfied. In this case, the local coverage can not be
calculated precisely. To alleviate this situation, an additional broadcast of the
new location is necessary before the sensor starts to move to the new location.
Further, a limited-scope flooding could be used alternatively.

5 Experimental Analysis

We used the implemented DCC algorithm to simulate the autonomous sensor
deployment under various initial conditions: sensors are distributed uniformly
to three different sizes of field: 100 × 100m2 (small), 200 × 200m2 (medium)
and 300 × 300m2 (large). For the small size field, 10, 12, 14 and 16 sensors are
deployed; for the medium size field, 40, 50, 60 and 70 sensors are deployed; for
the large size field, 70, 80, 90 and 100 sensors are deployed. Table 1 summarizes
the parameter values used to carry out our simulation.

We use 3 metrics to evaluate the experimental results averaged over 30 runs:
moving distance, convergence time and sensing coverage. Moving distance is



Table 1. Simulation parameters

Parameter Setting Parameter Setting

Deployment area size U 1002, 2002, 3002(m2) Sensing range Rs 20m
No. of sensor nodes n Communication range Rc 60m
area 1002m2 10, 12, 14, 16; Population size |P | 10
area 2002m2 40, 50, 60, 70; No. of offspring |Q| 5
area 3002m2 70, 80, 90, 100 No. of runs 30
No. of eco cycles ge 30 No. of gen in each eco cycle g 5

the average distance that a sensor in the network has to travel from its initial
to final position. Convergence time is the number of ecosystem cycles it takes
for all sensor populations to converge, i.e. the best individual fitness stopped
improving. Sensing coverage is the percentage of the deployment field that is
covered by the deployed sensors. Also, to select a weight parameter (w) that
balances the evolutionary force toward solutions that give large coverage and
small moving distance, we conducted a preliminary study and chosen w = 1 [4].

5.1 Simulation Under Mode I Only

We study mode I performance under different network sizes (small, medium,
large) using a different number of sensors as that given in Table 1. Fig. 7 shows
that the global network coverage improves rapidly during the first few ecosystem
cycles and the populations converge around generation 7. Fig. 8 gives the global
network coverage and the moving distance over time for one run on a medium size
field. It shows that the coverage increases while the moving distance decreases as
the evolution progresses. The selected w (1) is able to balance the two conflicting
objectives and direct the evolutionary search to find a good solution.

When the best individual in all populations stopped improving, the 3 metrics
were evaluated (see Fig. 9). The general observation from these experiments is
that, as the sensor nodal density increases, so does the induced network coverage,
while the convergence time and moving distance decrease. This is reasonable as
a larger number of sensors in the network makes it easier to cover a wider area
of the deployed field under a smaller amount of time and moving distance.
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5.2 Simulation Under the Alternation of Mode I & D

To investigate the benefit of mode D in helping the populations escape local
optima and deliver better solutions, we carried out two sets of experiments:
one operated mode I only and the other alternated mode I & D with 5 and
1 ecosystem cycles intervals, i.e. 5 mode I cycles followed by 1 possible mode
D cycle. This alternation was selected because a population is not likely to
reach a local optimum during the first 5 cycles, hence should be operated under
mode I. At the end of the 5th cycle, the best individual in each population
is checked for coverage holes (an area that is not covered by any sensor in its
neighborhood). If there is any hole, the local GA is switched to mode D for 1 cycle
and switched back to mode I the following cycle, since mode I runs faster than
mode D (see Section 4). This check is carried out for each sensor population. The
average coverage of 30 runs and the numbers of runs achieving 100% coverage are
given in Table 2. Overall, both setups provide very good coverage. Nevertheless,
alternating mode I & D delivers a higher number of runs that produced 100%
coverage.

Table 2. Coverage Comparison Between Mode I and Mode I & D

Mode I Mode I & D

sensors coverage 100% cover coverage 100% cover

40 98.50% 0 99.33% 1

50 99.44% 0 99.88% 15

60 99.63% 0 99.98% 25

70 99.73% 0 99.99% 27

To validate our hypothesis that mode D improves performance by helping
the populations escape local optima, we conducted another experiment with
10 sensors initialized to locations that give a local optimum coverage (64%)
and deploying them to a medium size field. The simulation was carried out by
alternating 2 cycles of mode I followed by 1 possible cycle of mode D. The best
global fitness (see Fig. 10) shows that after 2 cycles of no fitness improvement, the
fitness declined after the execution of mode D, which is caused by a large moving
distance (see Fig. 11), indicating the sensor has escaped the local optimum. After
that, the global fitness starts to climb and eventually reaches 100% coverage.
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6 Conclusions

We have presented an innovative cooperative coevolutionary framework, DCC,
for optimization tasks in localized and distributed environments. By supporting
dynamic problem division, partial fitness evaluation and 2 operation modes, DCC
is shown to be effective in the autonomous sensor deployment task, where high
coverage and low energy consumption were achieved in a short period of time.
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