Skip to main content

Multiobjectivization by Decomposition of Scalar Cost Functions

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

The term ‘multiobjectivization’ refers to the casting of a single-objec-tive optimization problem as a multiobjective one, a transformation that can be achieved by the addition of supplementary objectives or by the decomposition of the original objective function. In this paper, we analyze how multiobjectivization by decomposition changes the fitness landscape of a given problem and affects search. We find that decomposition has only one possible effect: to introduce plateaus of incomparable solutions. Consequently, multiobjective hillclimbers using no archive ‘see’ a smaller (or at most equal) number of local optima on a transformed problem compared to hillclimbers on the original problem. When archived multiobjective hillclimbers are considered this effect may partly be reversed. Running time analyses conducted on four example functions demonstrate the (positive and negative) influence that both the multiobjectivization itself, and the use vs. non-use of an archive, can have on the performance of simple hillclimbers. In each case an exponential/polynomial divide is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 765–772. ACM Press, New York (2007)

    Chapter  Google Scholar 

  2. Forrest, S., Mitchell, M., Whitley, L.: Relative Building-Block Fitness and the Building-Block Hypothesis. In: Foundations of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  3. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolutionary Computation 7(2), 173–203 (1999)

    Article  Google Scholar 

  4. Hagerub, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 33, 305–308 (1989)

    Article  Google Scholar 

  5. Hanne, T.: On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research 117(3), 553–564 (1999)

    Article  MATH  Google Scholar 

  6. Jansen, T., Wegener, I.: Evolutionary algorithms — how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation 5(6), 589–599 (2001)

    Article  Google Scholar 

  7. Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Juels, A., Wattenberg, M.: Stochastic Hillclimbing as a Baseline Method for Evaluating Genetic Algorithms. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 8, pp. 430–436. MIT Press, Cambridge (1995)

    Google Scholar 

  9. Knowles, J.: Local-search and hybrid evolutionary algorithms for Pareto optimization. PhD thesis, University of Reading, UK (2002)

    Google Scholar 

  10. Knowles, J., Watson, R., Corne, D.: Reducing local optima in single-objective problems by multi-objectivization. In: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, pp. 269–283. Springer, Berlin (2001)

    Chapter  Google Scholar 

  11. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  12. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Natural Computing 5(3), 305–319 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., et al. (eds.) PPSN X 2008. LNCS, vol. 5199, pp. 82–91. Springer, Berlin (2008)

    Google Scholar 

  14. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms 3(4), 346–366 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Handl, J., Lovell, S.C., Knowles, J. (2008). Multiobjectivization by Decomposition of Scalar Cost Functions. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics