Skip to main content

Preventing Premature Convergence in a Simple EDA Via Global Step Size Setting

  • Conference paper
Book cover Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

When a simple real-valued estimation of distribution algorithm (EDA) with Gaussian model and maximum likelihood estimation of parameters is used, it converges prematurely even on the slope of the fitness function. The simplest way of preventing premature convergence by multiplying the variance estimate by a constant factor k each generation is studied. Recent works have shown that when increasing the dimensionality of the search space, such an algorithm becomes very quickly unable to traverse the slope and focus to the optimum at the same time. In this paper it is shown that when isotropic distributions with Gaussian or Cauchy distributed norms are used, the simple constant setting of k is able to ensure a reasonable behaviour of the EDA on the slope and in the valley of the fitness function at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. GENA. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  2. Larrañaga, P., Lozano, J.A., Bengoetxea, E.: Estimation of distribution algorithms based on multivariate normal distributions and gaussian networks. Technical Report KZZA-IK-1-01, Dept. of Computer Science and Artificial Intelligence, University of Basque Country (2001)

    Google Scholar 

  3. Bosman, P.A.N., Thierens, D.: Expanding from discrete to continuous estimation of distribution algorithms: The IDEA. In: PPSN VI: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, London, UK, pp. 767–776. Springer, Heidelberg (2000)

    Google Scholar 

  4. Rudlof, S., Köppen, M.: Stochastic hill climbing by vectors of normal distributions. In: First Online Workshop on Soft Computing, Nagoya, Japan (1996)

    Google Scholar 

  5. Ahn, C.W., Ramakrishna, R.S., Goldberg, D.E.: Real-coded bayesian optimization algorithm: Bringing the strength of BOA into the continuous world. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E.K., Darwan, P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A.M. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 840–851. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Yuan, B., Gallagher, M.: On the importance of diversity maintenance in estimation of distribution algorithms. In: Beyer, H.G., O’Reilly, U.M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2005, vol. 1, pp. 719–726. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Ocenasek, J., Kern, S., Hansen, N., Koumoutsakos, P.: A mixed bayesian optimization algorithm with variance adaptation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 352–361. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Grahl, J., Minner, S., Rothlauf, F.: Behaviour of UMDAc with truncation selection on monotonous functions. In: IEEE Congress on Evolutionary Computation, CEC 2005, vol. 3, pp. 2553–2559 (2005)

    Google Scholar 

  9. Gonzales, C., Lozano, J., Larranaga, P.: Mathematical modelling of UMDAc algorithm with tournament selection. International Journal of Approximate Reasoning 31(3), 313–340 (2002)

    Article  MathSciNet  Google Scholar 

  10. Grahl, J., Bosman, P.A.N., Rothlauf, F.: The correlation-triggered adaptive variance scaling IDEA. In: Proceedings of the 8th annual conference on Genetic and Evolutionary Computation Conference - GECCO 2006, pp. 397–404. ACM Press, New York (2006)

    Google Scholar 

  11. Bosman, P.A.N., Grahl, J., Rothlauf, F.: SDR: A better trigger for adaptive variance scaling in normal EDAs. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, pp. 492–499. ACM Press, New York (2007)

    Chapter  Google Scholar 

  12. Yuan, B., Gallagher, M.: A mathematical modelling technique for the analysis of the dynamics of a simple continuous EDA. In: IEEE Congress on Evolutionary Computation, CEC 2006, Vancouver, Canada, pp. 1585–1591. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  13. Pošík, P.: Gaussian EDA and truncation selection: Setting limits for sustainable progress. In: IEEE SMC International Conference on Distributed Human-Machine Systems, DHMS 2008, Athens, Greece. IEEE, Los Alamitos (2008)

    Google Scholar 

  14. Pošík, P.: Truncation selection and gaussian EDA: Bounds for sustainable progress in high-dimensional spaces. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 525–534. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Beyer, H.G., Deb, K.: On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans. on Evol. Comp. 5(3), 250–270 (2001)

    Article  Google Scholar 

  16. Grahl, J., Bosman, P.A.N., Minner, S.: Convergence phases, variance trajectories, and runtime analysis of continuous EDAs. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 516–522. ACM Press, New York (2007)

    Google Scholar 

  17. Rudolph, G.: Local convergence rates of simple evolutionary algorithms with cauchy mutations. IEEE Transactions on Evolutionary Computation 1, 249–258 (1997)

    Article  Google Scholar 

  18. Obuchowicz, A.: Multidimensional mutations in evolutionary algorithms based on real-valued representation. Int. J. Systems Science 34(7), 469–483 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hansen, N., Gemperle, F., Auger, A., Koumoutsakos, P.: When do heavy-tail distributions help? In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 62–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pošík, P. (2008). Preventing Premature Convergence in a Simple EDA Via Global Step Size Setting. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics