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Abstract. The spider diagram logic forms a fragment of constraint di-
agram logic and is designed to be primarily used as a diagrammatic soft-
ware specification tool. Our interest is in using the logical basis of spider
diagrams and the existing known equivalences between certain logics,
formal language theory classes and some automata to inform the de-
velopment of diagrammatic logic. Such developments could have many
advantages, one of which would be aiding software engineers who are
familiar with formal languages and automata to more intuitively un-
derstand diagrammatic logics. In this paper we consider relationships
between spider diagrams of order (an extension of spider diagrams) and
the star-free subset of regular languages. We extend the concept of the
language of a spider diagram to encompass languages over arbitrary al-
phabets. Furthermore, the product of spider diagrams is introduced. This
operator is the diagrammatic analogue of language concatenation. We es-
tablish that star-free languages are definable by spider diagrams of order
equipped with the product operator and, based on this relationship, spi-
der diagrams of order are as expressive as first order monadic logic of
order.

1 Introduction

Regular languages are defined by Type-3 grammars [3]. They are the least
expressive class of phrase structured grammars of the well-known Chomsky-
Schützenberger hierarchy. Work by Büchi [2], amongst others, provides a logical
characterisation of regular languages. The study of regular languages, finite au-
tomata and associated algebraic formalisms is one of the oldest branches of com-
puter science. In contrast diagrammatic logics are relatively new. Their formal
consideration can arguably be dated to the work of Barwise and Etchemendy [1],
Shin [15], and Hammer [9] which in turn builds on the work of Euler [7] and
Venn [19]. Spider diagrams [8] are a more recently defined forming a fragment of
constraint diagrams [12]. Our interest is in the relationship between an extension
of spider diagrams called spider diagrams of order and regular languages. This
paper builds on our previous work [4, 5] and provides a proof that star-free reg-
ular languages are definable in spider diagrams of order, when augmented with
a product operator. Star-free languages may be described by regular expressions
without the use of the Kleene star, a fact from which the name of the language



class derives [13]. For example, the language a∗ over the alphabet Σ = {a, b} is
star free as it may be written as the star-free expression ∅b∅ i.e. the complement
of the set of all words containing a ‘b’. The expression ∅ is the complement of
the empty set of words and may be read as the set of all words over Σ, denoted
Σ∗. The language (aa)∗ over the same alphabet is not star-free [14].

Of most interest to us is the Straubing-Thérin hierarchy (STH), which is one
of three infinite hierarchies within the class of star-free languages. The other
two are the dot-depth hierarchy and the group hierarchy. All three hierarchies
are recursively constructed from a base case at their respective level 0. Level
1
2 of each hierarchy is the polynomial closure of level 0, an operation which is
explained in section 5. Each of the fractional levels 1

2 , 1+ 1
2 , 2+ 1

2 , . . . are similarly
formed. Level 1 of each hierarchy is the finite boolean closure of level 1

2 under
the operations and ∩, or ∪ and complement .̄ In general, whole numbered levels
1, 2, 3, . . . are the finite boolean closure of the half level beneath them [13].

The study of the relationship between spider diagrams of order and regular
languages provides a novel view of both subjects. We show, in this paper, that
the logic of spider diagram of order describes which correspond to well-known
subsets of star-free languages. We have previously shown that spider diagrams
(without order) describe (sub)sets of regular languages that are incomparable
with well-known hierarchies such as the Straubin-Thérin or dot-depth hierar-
chies [5]. Conversely regular languages have helped to inform the development
of spider diagrams. Our introduction of the product operator is motivated by
previous results from the theory of formal languages [18]. By furthering the study
of the relationship between diagrammatic logic and formal language theory we
hope to “import” well-known results.

This paper presents an overview of the syntax and semantics of spider di-
agrams of order in section 2. In section 3 we define the language of a spider
diagram of order, generalising work in [5]. The product of spider diagrams is in-
troduced in section 4. The central result of this paper, that all star-free regular
languages are definable in spider diagrams of order, is presented in section 5.

2 Syntax and semantics of spider diagrams of order

This section provides an overview of the syntax and semantics of spider diagrams
of order, originally presented in [5] which in turn extends [11].

The diagrams within rectangular boxes labelled d1 and d2 in figure 1 are
unitary spider diagrams of order. Such diagrams, like the Euler diagrams they
are based on, are wholly contained within a rectangular box. Each unitary spider
diagram of order consists of contours and spiders. Contours are simple closed
curves. The spider diagram d1 contains two labelled contours, P and Q. The
diagram also contains three minimal regions, called zones. There is one zone
inside the contour P , another inside the contour Q and the other zone is outside
both contours P and Q. The unitary spider diagram d2 contains four zones.
One zone is outside both contours P and Q, another is inside the contour P but
outside the contour Q, yet another is inside the contour Q but inside the contour



Fig. 1. A spider diagram of order.

P . The final zone is inside both contours and, in this example, is a shaded zone.
Each zone in a unitary diagram d can be can be described by a two-way partition
of d’s contour labels.

In d1, the zone inside P but outside Q and contains a vertex of one spider ;
spiders are trees whose vertices, called feet, are placed in zones. In general, any
given spider may contain both ordered feet (those of the form Ê, Ë, Ì, . . .) and
unordered feet (those of the form •). In d1, there is a single three footed spider
labelled s1 and two bi-footed spiders labelled s2 and s3. Spider diagrams can
also contain shading, as in d2.

Definition 1. We define C to be a finite set of all contour labels used in spider
diagrams. A zone is defined to be a pair, (in, out), of finite disjoint subsets of C.
The set “in” contains the labels of the contours that the zone is inside whereas
“out” contains the labels of the contours that the zone is outside. The set of all
zones is denoted Z. A region of a diagram is a set of zones.

The entire diagram in figure 1 is a compound spider diagram of order. It
depicts the conjunction of statements made by its unitary components d1 and
d2, denoted by the ∧ symbol between the rectangular boxes. A ∨ symbol between
boxes signifies disjunction between statements whereas a horizontal bar above a
rectangle denotes negation.

The semantics of unitary spider diagrams of order are model based. In essence,
contours represent sets and spiders represent the existence of elements. A model
for a diagram is an assignment of sets to contour labels that ensures various
conditions hold; these conditions are encapsulated by the semantics predicate
defined below. To begin our formalisation of models, we start by defining spider
feet and subsequently we define spiders. When we formalise the semantics, it is
useful to have access to the region in which a spider is placed, called its habitat.

Definition 2. A spider foot is an element of the set (Z+ ∪ {•})× Z and the
set of all feet is denoted F . A spider, s, is a set of feet together with a number:
s ∈ Z+ × (PF − {∅}) and the set of all spiders is denoted S. The habitat of
a spider s = (n, p) is the region habitat(s) = {z : ∃k (k, z) ∈ p}. A spider foot
(n, z) ∈ F where n ∈ Z+ has rank n.

Spiders are numbered because unitary diagrams can contain many spiders
with the same foot set; essentially, we view a unitary diagram as containing a
bag of spiders.



Definition 3. A unitary spider diagram of order is a quadruple
d = 〈C,Z, ShZ, SI〉 where

C = C(d) ⊆ C is a set of contour labels,
Z = Z(d) ⊆ {(a,C(d)− a) : a ⊆ C(d)} is a set of zones,
ShZ = ShZ(d) ⊆ Z(d) is a set of shaded zones,
SI = SI(d) ( S is a finite set of spider identifiers such that

for all (n1, p1), (n2, p2) ∈ SI(d),

(p1 = p2 =⇒ n1 = n2) ∧ habitat(n1, p1) ⊆ Z(d).

The symbol ⊥ is also a unitary spider diagram. We define

C(⊥) = Z(⊥) = ShZ(⊥) = SI(⊥) = ∅.

If d1 and d2 are spider diagrams of order then (d1 ∧ d2), (d1 ∨ d2) and ¬d1 are
compound spider diagrams of order.

It is useful to identify the set of spiders present in a diagram, which is implicit
in the spider identifier set and to be able to arbitrarily select feet of spiders. For
example, when defining the semantics, each spider, s, represents an element
and the feet place a disjunction of constraints on that element; thus to identify
whether an interpretation (see below) is a model for a unitary diagram there
needs to be a choice of foot for which s satisfies the constraint imposed.

Definition 4. The set of spiders in unitary diagram d is defined to be

S(d) = {(i, p) : ∃(n, p) ∈ SI(d) 1 ≤ i ≤ n}.

Let FootSelect : S(d)→ F be a function. If, for all (n, p) ∈ S(d), FootSelect(s) ∈
p then FootSelect is called a foot selection function for d.

It is also useful to identify which zones could be present in a unitary diagram,
given the label set, but are not present; semantically, missing zones provide
information.

Definition 5. Given a unitary diagram, d, a zone (in, out) is said to be missing
if it is in the set {(in, C−in) : in ⊆ C}−Z(d) with the set of such zones denoted
MZ(d). If d has no missing zones then d is in Venn form [11].

Definition 6. An interpretation is a triple (U, Ψ,<) where U is a universal
set and Ψ : C → PU is a function that assigns a subset of U to each contour
label and < is an irreflexive, antisymmetric and transitive relation on U . The
function Ψ can be extended to interpret zones and sets of regions as follows:

1. each zone, (a, b) ∈ Z, represents the set
⋂
l∈a

Ψ(l) ∩
⋂
l∈b

Ψ(l) and

2. each region, r ∈ PZ, represents the set which is the union of the sets repre-
sented by r’s constituent zones.



For brevity, we will continue to write Ψ : C → PU but assume that the domain
of Ψ includes the zones and regions also. Given an interpretation we wish to
know whether it is a model for a diagram; in other words, when the information
provided by the interpretation agrees with the intended meaning of the diagram.
Informally, an interpretation is a model for unitary diagram d (6=⊥) whenever

1. all of the zones which are missing represent the empty set,
2. all of the regions represent sets whose cardinality is at least the number of

spiders placed entirely within that region and
3. all of the entirely shaded regions represent sets whose cardinality is at most

the number of spiders with a foot in that region.
4. the elements represented by the spiders obey the ordering imposed on them

by the rank of the spiders’ feet.

We now make this notion precise.

Definition 7. Let I = (U, Ψ,<) be an interpretation and let d ( 6=⊥) be a unitary
spider diagram of order. Then I is a model for d if and only if the following
conditions hold.

1. The missing zones condition
⋃

z∈MZ(d)

Ψ(z) = ∅.

2. The function extension condition There exists an extension of Ψ to
spiders, Ψ : C ∪ S(d) → PU which ensures the following further conditions
hold.
(a) The habitats condition All spiders represent elements (strictly, sin-

gleton sets) in the sets represented by their habitats:

∀s ∈ S(d)Ψ(s) ⊆ Ψ(habitat(s)) ∧ |Ψ(s)| = 1.

(b) The distinct spiders condition Distinct spiders denote distinct ele-
ments:

∀s1, s2 ∈ S(d) : Ψ(s1) = Ψ(s2) =⇒ s1 = s2.

(c) The shading condition Shaded regions represent sets containing ele-
ments denoted by spiders:

Ψ(ShZ(d)) ⊆
⋃

s∈S(d)

Ψ(s).

(d) The order condition The ordering information provided by the spiders
agrees with that provided by <: there exists a foot selection function,
FootSelect : S(d)→ F , for d such that
– for all s ∈ S(d), FootSelect(s) = (n, z) implies Ψ(s) ⊆ Ψ(z)
– for all s1, s2 ∈ S(d) with FootSelect(s1) = (n1, z1) and FootSelect(s2) =

(n2, z2), if x < y where Ψ(s1) = {x} and Ψ(s2) = {y} then either
n1 = n2 or n1 = • or n2 = • or n1 < n2.



If Ψ : C ∪ S(d)→ PU ensures that the above conditions are satisfied then Ψ is a
valid extension to spiders for d. A foot selection function, FootSelect : S(d)→
F , that ensures the above conditions are satisfied is also called valid. If d =⊥
then the interpretation is not a model for d.

For compound diagrams, the definition of a model extends in the obvious
inductive way.

3 The language of a spider diagram of order

A language is a set of words over a finite alphabet, typically denoted Σ. In order
to discuss the language of a spider diagram of order we associate an alphabet
with the contours that may appear in a diagram. A function is fixed mapping
elements of C to sets of letters from the finite alphabet Σ. The use of this function
allows us to consider the language of a diagram over an arbitrary alphabet.
Previous work [5] considered a much more restricted set of alphabets. In the
examples in figure 2 we assume C = {P,Q} and we assign the alphabet Σ =
{a, b, c, d} via a function called lettermap in the manner depicted in figure 2(a)
i.e. lettermap(P ) = {b, c} and lettermap(Q) = {c, d}. It is important to note
that the lower-case letters in figure 2(a) are not syntactic elements of spider
diagrams of order. The depicted lettermap assignment satisfies the following
defintion:

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example unitary spider diagrams of order.

Definition 8. The function lettermap : C → PΣ is a fixed assignment of
contour labels to sets of letters. The function lettermap is extended to assign
letters to zones as follows:



1. Each zone,(in, out), maps to the set of letters inside the set of included con-
tours but outside the set of excluded contours

lettermap(in, out) =
⋂

c∈in

lettermap(c) ∩
⋂

c∈out

(Σ − lettermap(c)) and,

2. any zone, (in, out), for which in ∪ out = C is assigned at most one letter,
this ensures that the spider diagram logic is capable of distinguishing each
letter

if in ∪ out = C then |lettermap(in, out)| ≤ 1.

Let a be a letter in Σ. Then zone(a) = (inLabels(a), outLabels(a)) where we
define

– inLabels(a) = {c ∈ C : a ∈ lettermap(c)} and
– outLabels(a) = {c ∈ C : a 6∈ lettermap(c)}.

We now have a relationship between the spider diagram logic over the labels
in C and the alphabet Σ, therefore we may now discuss the language of the
diagram. Figure 2(a) places no restrictions on the words of the language. This
is because it contains no missing zones, no shading and no spiders. As such, the
language of this diagram is the set of all words over the alphabet i.e. namely Σ∗.
Figure 2(b) prevents words from containing a ‘c’ character. The words “abd”,
“aaaa” and “dbab” are in the language of the diagram, however unlike the words
“c” and “abcd”. Words in the language of the diagram are said to correspond to
that diagram and the set of all such words is the corresponding language. Figure
2(c) asserts that words must contain a ‘b’ character and an ‘a’ character because
of the presence of spiders. Words in the language of this diagram have a minimum
length of two characters. The words “ab”, “ba” and “aaabcd” are elements of
the language. The word “acdd” is not, and neither is the word “cdbcd”.

In figure 2(d) there are several restrictions placed on words in the language
of the diagram. The first restriction imposed by the left-most spider is that the
word must contain at least one ‘b’ character. This is because the spider asserts
that the set represented by the zone ({P}, {Q}) is non-empty, thus any words
corresponding to the diagram must contain at least one character specified by the
previously given lettermap function. Further conditions are imposed by the right-
most two-footed spider and the shaded zone. The right-most spider provides
disjunctive information. In language terms it states that words corresponding to
the diagram must contain either a ‘c’ or a ‘d’. The shading indicates an upper
bound on the number of ‘c’ letters in words of the language of the diagram.
The final constraint is that a letter ‘b’ must occur before a letter ‘d’ if ‘d’ is a
letter chosen based on the right-most spider. This is due to the explicit ordering
prescribed by the spider feet. Thus the language of the diagram in figure 2(d)
may be described by the regular expression

(a|b|d)∗b(a|b|d)∗d(a|b|d)∗ ∪ (a|b|d)∗b(a|b|d)∗c(a|b|d)∗ ∪ (a|b|d)∗c(a|b|d)∗b(a|b|d)∗.

The words of this language contain one ‘b’, at most one ‘c’ and if there is no ‘c’
then ‘b’ must occur before a ‘d’. The diagram in figure 2(e) intuitively places



an upper-bound on all letters appearing in words of the corresponding language,
the corresponding language is the set containing the empty word, {λ}.

Finally, consider the diagram in figure 2(f). The labels in this diagram are
drawn from the set C, although its label set contains only P . The models that
satisfy the diagram in figure 2(a) also satisfy the diagram in figure 2(f). Similarly,
the language that corresponds to the diagram in figure 2(a) also corresponds to
the diagram in figure 2(f) due to the depicted assignment of letters to zones
i.e. lettermap(P ) = {b, c} and lettermap(Q) = {c, d}. In general, semantically
equivalent diagrams have the same language under any lettermap function.

In order to define how an interpretation models a word it is useful to treat a
word as an array.

Definition 9. Let w be a word of some language. Array(w) is a set of pairs
(a, i) where each i is a position in word w and a is the letter at position i.

For example, consider the word w = ab then Array(w) = {(a, 1), (b, 2)}.
The interpretation I = (U, Ψ,<) is a model for word w = ab given

lettermap(P ) = {a} and lettermap(Q) = {b} where

U = {1, 2},
Ψ(P ) = {1}, Ψ(Q) = {2},
<= {(1, 2)}.

I models w as a bijection exists between U and the letters in w, namely {1 7→
a, 2 7→ b}, which respects the order relation <. Furthermore, the bijection and Ψ
are in agreement on the assignment of letter sets to the interpretation of contours
and zones. The following definition generalises the concept of a model of a word.

Definition 10. Interpretation I = (U, Ψ,<) is a model for a word w if there
exists a bijection, f , between Array(w) and U such that

1. the order of the letters in w is respected by <

∀(ai, j), (ak, l) ∈ Array(w) : f(ai, j) < f(ak, l)⇒ j < l, and

2. the element in U chosen for the letter ai is in a set represented by the zone
that partitions C and contains ai

∀(ai, j) ∈ Array(w) : f(ai, j) ∈
⋂

P∈inLabels(ai)

Ψ(P ) ∩
⋂

Q∈outLabels(ai)

Ψ(Q).

We may now define the language of a spider diagram of order.

Definition 11. The language of a diagram, D, denoted L(D), is defined to
be the set of words that are modelled by at least one interpretation that models
D.

Lemma 1. The following properties hold for spider diagrams:

– The language of the disjunction of two diagrams is the union of languages
of the components: L(D1 ∨D2) = L(D1) ∪ L(D2).



– Similarly, the language of the conjunction of two diagrams is the intersection
of the components: L(D1 ∧D2) = L(D1) ∩ L(D2).

– The language of the negation of a diagram is the set complement of the
language of the diagram with respect to the universe Σ∗, formally: L(¬D1) =
Σ∗ − L(D1) = L(D1).

4 The product of spider diagrams

(a) (b)

(c)

Fig. 3. Two unitary spider diagrams of order and their product.

The languages corresponding to the diagrams in figures 3(a) and 3(b) are aba
and b∗ (star-free ∅a∅) over Σ = {a, b} respectively. The language aba(b)∗ is the
concatenation of words from the language b∗ and the word aba. It too is star-free
and may be written as aba∅a∅. Words in this language include any word which be-
gins with the subword ‘aba’ followed zero or more ‘b’ characters eg: “aba”, “abab”
and “ababb”. The spider diagram of order which defines the language abab∗ does
not follow the intuitive structure concatenating the language aba with the lan-
guage b∗. The language abab∗ is be defined by a spider diagram of order which
is the conjunction of three unitary diagrams defining the languages b∗ab∗ab∗,
((a|b)∗a(a|b)∗b(a|b)∗b(a|b)∗a(a|b)∗) and ((a|b)∗b(a|b)∗a(a|b)∗a(a|b)∗). We show
how diagrams define languages, such as these three, below. Furthermore, we
strongly conjecture that there are star-free regular languages that do not corre-
spond to any spider diagram of order.

To remove this expressiveness limitation we introduce the product of spider
diagrams of order denoted C as depicted in figure 3(c). We first extend the
syntax of spider diagrams of order to include C as a boolean operation.



Definition 12. A diagram is a spider diagram of order if it

– is a unitary spider diagram of order,
– is of the form (D1 �D2) where D1 and D2 are spider diagrams of order and
� ∈ {∨,∧,C}, or

– is of the form (¬D1) where D1 is a spider diagram of order.

In order to extend the semantics of spider diagrams of order we recall the fol-
lowing definition from [6].

Definition 13. The ordered sum of two interpretations m1 = (U1, Ψ1, <1)
and m2 = (U1, Ψ1, <1) denoted m1 C m2 where U1 and U2 are disjoint is the
interpretation m = (U, Ψ,<) such that

U = U1 ∪ U2,
Ψ(c) = Ψ1(c) ∪ Ψ2(c) for all c ∈ C,
<= <1 ∪ <2 ∪{(a, b) : a ∈ U1, b ∈ U2}.

The definition for the model of the product of diagrams follows from the
ordered sum of interpretations.

Definition 14. Let m be an interpretation. Then m is a model for D1 CD2 if
there exists interpretations m1 and m2 such that m = m1 Cm2 and m1 and m2

are models for D1 and D2 respectively.

Finally, we extend the properties of the language of a spider diagram (lemma 1)
to include

– The language of the newly introduced product of two diagrams is the con-
catenation of its components L(D1 / D2) = L(D1) · L(D2).

The key insight underlying this is that the elements of a model of the compond
diagram will be the disjoint union of elements for models of the constituent di-
agrams, with all the elements of the first being less than all the elements of the
second under the ordering of the compound model. So, the word denoted by
the compound diagram will be the concatenation of the words denoted by the
individual diagrams. We may now see that the language corresponding to the
diagram in figure 3(c) is abab∗. We now have a complete picture of the syntax
and semantics of spider diagrams of order augmented with a product opera-
tor. Furthermore we have seen that the product of diagrams is a diagrammatic
analogue of language catenation.

5 Comparing classes of regular languages and spider
diagrams

In this section we prove that all star-free regular languages are definable us-
ing spider diagrams of order. We prove this by induction on the levels of the
Straubing-Thérin hierarchy. Level 0 is our base case, it contains the langauges
{} and Σ∗. We assume that any language at level n of the STH is definable in



spider diagrams of order. As the STH has whole numbered levels 0, 1, 2, . . . and
half levels 0 + 1

2 , 1 + 1
2 , 2 + 1

2 our proof shows that languages at level n+ 1
2 and

n+ 1 are definable in spider diagrams of order. We also pay particular attention
to the structure of diagrams which define languages at level 1

2 and level 1 as these
sets of languages are the well-known shuffle-ideal [10] and piecewise-testable [17]
classes respectively.

Lemma 2. The languages at level 0 of the Straubing-Thérin hierarchy are de-
finable in spider diagrams of order.

Proof. Let L be a language at level 0 of the STH. Then, by definition, L is
either {} or Σ∗. Considering the diagram d1 in figure 4 it can be shown that
letterzone({}, {}) = Σ so the language of the diagram d1 is Σ∗, which is one
element of level 0. Given any lettermap function L(⊥) = {} where ⊥ is a unitary
spider diagram of order, which is the other element of level 0.

Fig. 4. Unitary spider diagram of order to which Σ∗ corresponds.

We denote the unshaded diagram that contains no spiders or contours to which
the language Σ∗ corresponds by the symbol �.

Fig. 5. The language {bd} as a spider diagram of order.

The following lemma shows that the diagram in figure 5 may be constructed
such that only the word “bd” corresponds to it. Due to the nature of the con-
structed diagram the lettermap function maps zones of the diagram to singleton
sets or the empty set. In order to construct the diagram we examine the first



letter of the word and place a spider with single foot of rank 1 in the zone that
lettermap states it is contained in. We repeat this exercise for the second letter
however, this time, placing a spider with single foot of rank 2.

Lemma 3. Any language containing a single word is definable by a unitary
spider diagram of order.

Proof. Let L be a set over alphabet Σ containing exactly one word w of length n
and let index(w, i) be a function returning the ith character of word w. Further-
more, let d be a unitary spider diagram of order in Venn form where all contours
from C are present all of the zones in d are shaded. As the diagram contains
all contours and has no missing zones then, as a consequence of definition 8,
lettermap must assign each zone to a singleton set containing a letter or the
empty set.

For each ith position of the word in L we place a single-footed spider in d
with a foot of rank i in the zone zone({index(w, i)}).

We denote a fully shaded diagram, as constructed in the above lemma, with
corresponding single word language {w} by the symbol ��w.

Corollary 1. Any arbitrary finite set of words of finite length is definable by a
spider diagram of order.

Proof. Let L be an arbitrary finite set of finite length words {w1, w2, . . . , wn}
over an alphabet Σ. By lemma 3 we may create a diagram ��wi

for each wi ∈ L.
The finite disjunction of these diagrams ��w1 ∨ ��w2 ∨ . . . ∨ ��wn

is the diagram
to which L corresponds.

Languages at fractional levels of the STH are the polynomial closure of lan-
guages at the integer level beneath them.

Definition 15. The polynomial closure of a set of languages S is finite union
of languages of the form

L0a1L1 . . . Ln−1anLn

where each Li ∈ S and aj ∈ Σ.

We now consider the form of diagrams that define the class of shuffle-ideal
languages.

Lemma 4. The languages at level 1
2 of the Straubing-Thérin hierarchy (the class

of shuffle-ideal languages) are definable by spider diagrams of order.

Proof. Let L be a language at level 1
2 of the STH. Languages at level 1

2 are
the polynomial closure of languages at level 0 [13]. The polynomial closure of
level 0 results in languages of the form Σ∗a1Σ

∗ . . . Σ∗anΣ
∗ [10]. By lemma 3

we may construct a diagram ��ai
to which the language {ai} corresponds. Fur-

thermore, by lemma 2 we may construct a diagram � to which the language Σ∗

corresponds. Therefore, L corresponds to finite disjunctions of diagrams of the
form

�C��a1 C�C��a2 . . .�C��an C�.



Lemma 4 may be developed into a more succinct characterisation.

Theorem 1. The set of shuffle-ideal languages are definable by spider diagrams
of order where each diagram is unshaded and the only binary connectives used
are ∨ and C.

Proof. Let D be a diagram from lemma 4 to which a shuffle-ideal language
corresponds. Then D is a finite disjunction of diagrams of the form

�C��a1 C�C��a2 . . .�C��an
C�.

The diagram D′ is semantically equivalent to D, where D′ is a finite disjunction
of diagrams of the form

�C��a1 C�C�C��a2 C� . . .C�C��an−1 C�C�C��an
C�.

In D′ each diagram ��ai
is proceeded by a diagram � and is followed by �.

The diagram ��ai+1 is proceeded by a diagram � which is not the diagram that
follows ��ai . In language terms we are stating that the language

Σ∗a1Σ
∗a2Σ

∗ . . . Σ∗anΣ
∗

is equivalent to the language

Σ∗a1Σ
∗Σ∗a2Σ

∗ . . . Σ∗an−1Σ
∗Σ∗anΣ

∗.

Each �C��ai
C�may be collapsed into a single diagram �ai

where �ai
is ��ai

in Venn form with the shading removed from all zones. The language Σ∗aiΣ
∗

corresponds to the diagram �ai
. Therefore D is equivalent to finite disjunctions

of diagrams of the form
�a1 C�a2 C . . .C�an

where each �ai is unitary and contains no missing or shaded zones.

Lemma 5. The languages at level 1 of the Straubing-Thérin hierarchy are de-
finable by spider diagrams of order.

Proof. Languages at level 1 are formed by taking boolean combinations of lan-
guages at level 1

2 . The boolean operators ∪ and ¯ over languages at level 1
2 are

semantically equivalent to ∨ and ¬ over the diagrams to which the languages at
level 1

2 correspond.

Given the example of a star-free language ab∗ and the example of the regular
but not star-free language (aa)∗ over alphabet Σ = {a, b} presented in the
Introduction, a reader may see how a spider diagram may be constructed such
that its corresponding language is ab∗. The language ab∗ may be written as the
star-free expression a∅a∅ or the diagram ��aC (¬(�C��aC�)) (by theorem 1 a
more succinct diagram may be derived). It may also be seen that it is impossible
to construct a spider diagram of order to express (aa)∗. We now provide a lower
bound on the class of languages definable by spider-diagrams of order



Theorem 2. All star-free languages are definable by spider diagrams of order.

Proof. From [18] we know that the Straubung-Thérin hierarchy, in the limit,
contains all and only the star-free languages. We therefore prove the theorem
inductively where lemma 2 is the base case. It is assumed that languages at level
n of the Straubing-Thérin hierarchy to correspond to spider diagrams of order.
We prove that languages at level n+ 1

2 and languages at level n+ 1 correspond
to spider diagrams of order.

Let L be a language, over Σ, at level n+ 1
2 . Then L is the polynomial closure

of level n i.e. finite unions of languages of the form

L0a1L1a2 . . . an−1Ln−1anLn

where each ai ∈ Σ and the languages Lj are the languages at level n. We may
take the diagram Dj to which language Lj corresponds and create a diagram
��ai (by lemma 3) to which the language {ai} corresponds. Then diagrams to
which languages at level n+ 1

2 correspond are finite disjunctions of diagrams of
the form

D0 C��a1 CD1 C��a2 C . . .C��an−1 CDn−1 C��an CDn.

Let L now be a language at level n+ 1 of the STH. Languages at level n+ 1
are the finite boolean closure (over union and complement) of languages at level
n+ 1

2 . Therefore L corresponds to a diagram in the finite boolean closure (over
∨ and ¬) of diagrams to which languages at level n+ 1

2 correspond.

From [16] we know that spider diagrams without order are expressively equiv-
alent to monadic first order with equality, denoted MFoL[=]. Our extension to
spider diagrams adds an order relation to the semantic models. Thus, an alter-
native statement of the theorem 2 may be made in terms of first order logic.

Theorem 3. Spider diagrams of order are at least as expressive as logical sen-
tences in monadic first order logic equipped with an order relation MFoL[<].

Proof. We recall from [18] that star-free regular languages are definable inMFoL[<
] and the result that languages are definable in MFoL[<] iff they are star-free.
We have shown that all star-free languages correspond to spider diagrams of
order when considered over the connectives ∨,∧,¬ and the newly introduced C.
Therefore, spider diagrams of order are at least as expressive as MFoL[<].

Given the established relationship between spider diagrams of order, star-
free regular languages and monadic first order logic over structures containing
an order relation we may now establish the expressive power of spider diagrams
of order.

Theorem 4. Spider diagrams of order are expressively equivalent to monadic
first order logic of order.



6 Conclusion

In this paper we have introduced a product operation on spider diagrams of
order. This operation is a spider diagram analogue of language concatenation.
We have further shown that spider diagrams of order, when augmented with this
product operation, are as expressive as monadic first order logic of order. This
increase in expressiveness was suggested by previous work in [5]. Our intention
now is to further the results from [4] and develop an algorithm to construct a
minimal finite state automaton given a spider diagram of order. Such an algo-
rithm will answer questions concerning the succinctness of description afforded
by spider diagrams of order when compared to finite automata.
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