Skip to main content

Robust Speaker Modeling Based on Constrained Nonnegative Tensor Factorization

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

  • 3036 Accesses

Abstract

Nonnegative tensor factorization is an extension of nonnegative matrix factorization(NMF) to a multilinear case, where nonnegative constraints are imposed on the PARAFAC/Tucker model. In this paper, to identify speaker from a noisy environment, we propose a new method based on PARAFAC model called constrained Nonnegative Tensor Factorization (cNTF). Speech signal is encoded as a general higher order tensor in order to learn the basis functions from multiple interrelated feature subspaces. We simulate a cochlear-like peripheral auditory stage which is motivated by the auditory perception mechanism of human being. A sparse speech feature representation is extracted by cNTF which is used for robust speaker modeling. Orthogonal and nonsmooth sparse control constraints are further imposed on the PARAFAC model in order to preserve the useful information of each feature subspace in the higher order tensor. Alternating projection algorithm is applied to obtain a stable solution. Experiments results demonstrate that our method can improve the recognition accuracy specifically in noise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabiner, L.R., Juang, B.: Fundamentals on Speech Recognition. Prentice Hall, New Jersey (1996)

    Google Scholar 

  2. Hermansky, H., Morgan, N.: RASTA Processing of Speech. IEEE Trans. Speech Audio Process 2, 578–589 (1994)

    Article  Google Scholar 

  3. Reynolds, D.A., Quatieri, T.F., Dunn, R.: Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing 10, 19–41 (2000)

    Article  Google Scholar 

  4. Reynolds, D.A.: Experimental Evaluation of Features for Robust Speaker Identification. IEEE Trans. Speech Audio Process 2, 639–643 (1994)

    Article  Google Scholar 

  5. Berouti, M., Schwartz, R., Makhoul, J., Beranek, B., Newman, I., Cambridge, M.A.: Enhancement of Speech Corrupted by Acoustic Noise. Acoustics, Speech, and Signal Processing. In: IEEE International Conference on ICASSP 1979, vol. 4, pp. 208–211 (1979)

    Google Scholar 

  6. Hermus, K., Wambacq, P., Van hamme, H.: A Review of Signal Subspace Speech Enhancement and Its Application to Noise Robust Speech Recognition. EURASIP Journal on Applied Signal Processing 1, 195–209 (2007)

    Google Scholar 

  7. Smith, E., Lewicki, M.S.: Efficient Auditory Coding. Nature 439, 978–982 (2006)

    Article  Google Scholar 

  8. Kim, T., Lee, S.Y.: Learning Self-organized Topology-preserving Complex Speech Features at Primary Auditory Cortex. Neurocomputing 65, 793–800 (2005)

    Article  MATH  Google Scholar 

  9. Cho, Y.C., Choi, S.: Nonnegative Features of Spectro-temporal Sounds for Classification. Pattern Recognition Letters 26, 1327–1336 (2005)

    Article  Google Scholar 

  10. Asari, H., Pearlmutter, B.A., Zador, A.M.: Sparse Representations for the Cocktail Party Problem. Journal of Neuroscience 26, 7477–7490 (2006)

    Article  Google Scholar 

  11. Carroll, J.D., Chang, J.J.: Analysis of Individual Differences in Multidimensional Scaling via An n-way Generalization of “Eckart-Young” Decomposition. Psychometrika 35, 283–319 (1970)

    Article  MATH  Google Scholar 

  12. Harshman, R.A.: Foundations of the PARAFAC Procedure: Models and Conditions for An “Explanatory” Multi-modal Factor Analysis. UCLA Working Papers in Phonetics 16, 1–84 (1970)

    Google Scholar 

  13. Bro, R.: PARAFAC: Tutorial and Applications. Chemometrics and Intelligent Laboratory Systems 38, 149–171 (1997)

    Article  Google Scholar 

  14. De Lathauwer, L., De Moor, B., Van de walle, J.: A Multilinear Singular Value Decomposition. SIAM Journal on Matrix Analysis and Applications 21, 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, Y.D., Choi, S.: Nonnegative Tucker Decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  16. Welling, M., Weber, M.: Positive Tensor Factorization. Pattern Recognition Letters 22, 1255–1261 (2001)

    Article  MATH  Google Scholar 

  17. Shashua, A., Hazan, T.: Non-negative Tensor Factorization with Applications to Statistics and Computer Vision. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 792–799 (2005)

    Google Scholar 

  18. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear independent components analysis, 2005. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 547–553 (2005)

    Google Scholar 

  19. Tao, D.C., Li, X.L., Wu, X.D., Maybank, S.J.: General Tensor Discriminant Analysis and Gabor Feature for Gait Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1700–1715 (2007)

    Article  Google Scholar 

  20. Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. Advances in Neural Information Processing Systems 13, 556–562 (2001)

    Google Scholar 

  21. Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.S.: Learning Spatially Localized, Parts-based Representation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–6 (2001)

    Google Scholar 

  22. Pascual-Montano, A., Carazo, J.M., Kochi, K., Lehmann, D., Pascual-Marqui, R.D.: Nonsmooth Nonnegative Matrix Factorization. IEEE Transactions on. Pattern Analysis and Machine Intelligence. 28, 403–415 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Q., Zhang, L., Shi, G. (2008). Robust Speaker Modeling Based on Constrained Nonnegative Tensor Factorization. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics