Skip to main content

Structural Support Vector Machine

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Abstract

Support Vector Machine (SVM) is one of the most popular classifiers in pattern recognition, which aims to find a hyperplane that can separate two classes of samples with the maximal margin. As a result, traditional SVM usually more focuses on the scatter between classes, but neglects the different data distributions within classes which are also vital for an optimal classifier in different real-world problems. Recently, using as much structure information hidden in a given dataset as possible to help improve the generalization ability of a classifier has yielded a class of effective large margin classifiers, typically as Structured Large Margin Machine (SLMM). SLMM is generally derived by optimizing a corresponding objective function using SOCP, and thus in contrast to SVM developed from optimizing a QP problem, it, though more effective in classification performance, has the following shortcomings: 1) large time complexity; 2) lack of sparsity of solution, and 3) poor scalability to the size of the dataset. In this paper, still following the above line of the research, we develop a novel algorithm, termed as Structural Support Vector Machine (SSVM), by directly embedding the structural information into the SVM objective function rather than using as the constraints into SLMM, in this way, we achieve: 1) to overcome the above three shortcomings; 2) empirically better than or comparable generalization to SLMM, and 3) theoretically and empirically better generalization than SVM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  3. Huang, K., Yang, H., King, I., Lyu, M.R.: Learning Large Margin Classifiers Locally and Globally. In: ICML (2004)

    Google Scholar 

  4. Yeung, D.S., Wang, D., Ng, W.W.Y., Tsang, E.C.C., Zhao, X.: Structured Large Margin Machines: Sensitive to Data Distributions. Machine Learning 68, 171–200 (2007)

    Article  Google Scholar 

  5. Lanckriet, G.R.G., Ghaoui, L.E., Bhattacharyya, C., Jordan, M.I.: A Robust Minimax Approach to Classfication. JMLR 3, 555–582 (2002)

    Article  Google Scholar 

  6. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  7. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. JMLR 3, 463–482 (2002)

    Article  MathSciNet  Google Scholar 

  8. Tsang, I.W., Kocsor, A., Kwok, J.T.: Simpler Core Vector Machines with Enclosing Balls. In: ICML (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xue, H., Chen, S., Yang, Q. (2008). Structural Support Vector Machine. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics