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Abstract. In the relay placement problem the input is a set of sensors
and a number r > 1, the communication range of a relay. In the one-tier
version of the problem the objective is to place a minimum number of re-
lays so that between every pair of sensors there is a path through sensors
and/or relays such that the consecutive vertices of the path are within
distance r if both vertices are relays and within distance 1 otherwise.
The two-tier version adds the restrictions that the path must go through
relays, and not through sensors. We present a 3.11-approximation algo-
rithm for the one-tier version and a PTAS for the two-tier version. We
also show that the one-tier version admits no PTAS, assuming P ## NP.

1 Introduction

A sensor network consists of a large number of low-cost autonomous devices,
called sensors. Communication between the sensors is performed by wireless
radio with very limited range, e.g., via the Bluetooth protocol. To make the
network connected, a number of additional devices, called relays, must be judi-
ciously placed within the sensor field. Relays are typically more advanced and
expensive than sensors. For instance, in addition to a Bluetooth chip, each relay
may be equipped with a WLAN transceiver, enabling communication between
distant relays. The problem we study in this paper is that of placing a minimum
number of relays to ensure the connectivity of a sensor network.

Two models of communication between sensors have been considered in the
literature [1-8]. In both models, a sensor and a relay can communicate if the
distance between them as at most 1, and two relays can communicate if the
distance between them is at most r, where » > 1 is a given number. The models
differ in whether direct communication between sensors is allowed. In the one-
tier model two sensors can communicate if the distance between them is at
most 1. In the two-tier model the sensors do not communicate at all, no matter
how close they are. In other words, in the two-tier model the sensors may only
link to relays, but not to other sensors.



Formally, the input to the relay placement problem is a set of n sensors, iden-
tified with their locations in the plane, and a number r > 1, the communication
range of a relay (w.l.o.g. the communication range of a sensor is 1). The objec-
tive in the one-tier relay placement is to place a minimum number of relays so
that between every pair of sensors there exists a path, through sensors and/or
relays, such that the consecutive vertices of the path are within distance r if
both vertices are relays, and within distance 1 otherwise. The objective in the
two-tier relay placement is to place a minimum number of relays so that between
every pair of sensors there exists a path through relays such that the consecutive
vertices of the path are within distance r if both vertices are relays, and within
distance 1 if one of the vertices is a sensor and the other is a relay (going directly
from a sensor to a sensor is forbidden).

Previous Work. The current best approximation ratio of 7 for one-tier relay
placement is due to Lloyd and Xue [5]. For the two-tier placement Lloyd and
Xue [5] gave a (5 4 €)-approximation algorithm for arbitrary r > 1; Srinivas et
al. [6] gave a (4 + ¢)-approximation for the case r > 2. See references in [5,6] for
earlier works.

Contributions. We present new results on approximability of replay placement:

— In Section 3 we give a simple O(nlogn)-time 6.73-approximation algorithm
for the one-tier version.

— In Section 4 we present a polynomial-time 3.11-approximation algorithm for
the one-tier version.

— In Section 5 we show that there is no PTAS for one-tier relay placement
(assuming that r is part of the input, and P # NP).

— In Section 6 we give a PTAS for two-tier relay placement.

Note that the number of relays in a solution may be exponential in the size of the
input (number of bits). Our algorithms produce a succinct representation of the
solution. The representation is given by a set of points and a set of line segments;
the relays are placed on each point and equally-spaced along each segment.

2 Blobs, Clouds, Stabs, Hubs, and Forests

In this section we introduce the notions, central to the description of our algo-
rithms for one-tier relay placement. We also provide lower bounds.

Blobs and Clouds. We write |zy| for the Euclidean distance between x and y.
Let V be a given set of sensors (points in the plane). We form a unit disk
graph § = (V, E) and a disk graph F = (V| F) where E = {{u,v} : |uv| < 1},
F = {{u,v} : |uv| < 2}; see Fig. 1.

A blob is defined to be the union of the unit disks centred at the sensors that
belong to one connected component of §. We use B to refer to a blob, and B for
the set of all blobs.
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Fig. 1. Dots are sensors in V, solid lines are edges in F and F', and dashed lines
are edges in F only. There are 5 blobs in B (one of them highlighted) and 2 clouds

C1,C5 € C. Arrows are stabs in Stab(B), small rectangles are hubs. The wide grey line
is the only edge in MStFN(C), which happens to be equal to MSFN(C) here.

Analogously, a cloud C' € € is the union of the unit disks centred at the
sensors that belong to the connected component of the graph F. The sensors in
a blob can communicate with each other without relays, while the ones in a cloud
might not, even though their disks may overlap. Each cloud C € € consists of
one or more blobs B € B; we use B¢ to denote the blobs that form the cloud C.

Stabs and Hubs. A stab is a relay with an infinite communication range
(r = 00). A hub is a relay without the ability to communicate with the other
relays. As we shall see, a solution to stab or hub placement can be used as the
first step towards a solution for relay placement.

If we are placing stabs, it is necessary and sufficient to have a stab in each
blob to ensure communication between all sensors (to avoid trivialities we assume
there is more than one blob). Thus, stab placement is equivalent to the set cover
problem: the universe is the blobs, and the subsets are sets of blobs that have a
point in common. We use Stab(B’) to denote the minimum set of stabs that stab
each blob in B’ C B. In the example in Fig. 1 arrows show an optimal solution
to the stab placement problem; 3 stabs are enough.

If we are placing hubs, it is necessary (assuming more than one blob in the
cloud), but not sufficient, to have a hub in each blob to ensure communication
between sensors within one cloud. In fact, hub placement can be interpreted as
a special case of the connected set cover problem [9,10]. In the example in Fig. 1
small rectangles show an optimal solution to the hub placement problem for the
cloud C' = C7; in this particular case, 2 stabs within the cloud C were sufficient
to “pierce” each blob in Bo, however, an additional hub is required to “stitch”
the blobs together. The next Lemma shows that in general there may be at most
as many additional hubs needed as there were stabs:

Lemma 1. Given a feasible solution S to stab placement on B, we can obtain
in polynomial time a feasible solution to hub placement on Be with 2|S|—1 hubs.

Proof. Let H be the graph, whose nodes are the sensors in the cloud C and the
stabs in .S, and whose edges connect two devices if either they are within dis-
tance 1 from each other or if both devices are stabs (i.e., there is an edge between
every pair of the stabs). Switch off communication between the stabs, thus turn-
ing them into hubs. Suppose that this breaks H into k£ connected components.
There must be a stab in each connected component. Thus, |S| > k.



If £ > 1, by the definition of a cloud, there must exist a point where a unit
disk covers at least two sensors from two different connected components of H.
Placing a hub at the point decreases the number of the connected components
by at least 1. Thus, after putting at most k£ — 1 additional hubs, all connected
components will merge into one.

Steiner Forests and Spanning Forests with Neighbourhoods. Let P
be a collection of planar subsets; call them neighbourhoods. (In Section 3 the
neighbourhoods will be the clouds, in Section 4 they will be “clusters” of clouds.)
For a plane graph G, let G» = (P, E(G)) be the graph whose vertices are the
neighbourhoods and two neighbourhoods Py, P, € P are adjacent whenever G
has a vertex in Pj, a vertex in P», and a path between the vertices.

The Minimum Steiner Forest with Neighbourhoods on P, denoted MStFN(P),
is a minimum-length plane graph G such that Gp = (P, E(G)) is connected. The
MStFN is a generalisation of the Steiner tree of a set of points. Note that MStFN
is slightly different from Steiner tree with neighbourhoods (see, e.g., [11]) in that
we are only counting the part of the graph outside P towards its length.

Consider a complete weighted graph whose vertices are the neighbourhoods
in P and whose edge weights are the shortest distances between them. A min-
imum spanning tree in the graph is called the Minimum Spanning Forest with
Neighbourhoods on P, denoted MSFN(P). A natural embedding of the edges of
the forest is by the straight-line segments that connect the corresponding neigh-
bourhoods; we will identify MSFN(?P) with the embedding. (As with MStFN, we
count the length of MSEFN only outside P.)

We denote by |[MStFN(P)| and |[MSEFN(P)| the total length of the edges of
the forests. It is known that [MSFN(P)| < (2/v/3)|MStFN(P)| for a point set
P, where 2/+/3 is the Steiner ratio [12]. The following lemma generalises this to
neighbourhoods.

Lemma 2. For any P, [IMSFN(P)| < (2/v/3)MStFN(P)|.

Proof. If P is erased, MStFN(P) falls off into a forest, each tree of which is
a minimum Steiner tree on its leaves; its length is within the Steiner ratio of
minimum spanning tree length.

Lower Bounds on the Number of Relays. Let R* be an optimal set of
relays. Let R be the communication graph on the relays R* alone, i.e., without
sensors taken into account; two relays are connected by an edge in R if and only
if they are within distance r from each other. Suppose that R is embedded in
the plane with vertices at relays and line segments joining communicating relays.
The embedding spans all clouds, for otherwise the sensors in a cloud would not
be connected to the others. Thus, in R there exists a forest R’, whose embedding
also spans all clouds. Let |R’| denote the total length of the edges in R'. By
definition of MStFN(C), we have |R’| > [MStFN(C)].

Let m, v, and k be the number of edges, vertices, and trees of R’. Since each
edge of R’ has length at most r, we have |R'| < mr = (v — k)r. Since v < |R*|,



since there must be a relay in every blob and every cloud, and since the clouds
are disjoint, it follows that

[R*| = [MStEN(C)[/r,  [R[ = [Stab(B)|,  [R"[ = |C]. (1)

3 A 6.73-Approximation for One-Tier Relay Placement

In this section we give a simple O(nlogn)-time 6.73-approximation algorithm
for relay placement. We first find an approximately optimal stab placement.
Then we turn a stab placement into a hub placement within each cloud. Then a
spanning tree on the clouds is found and “Steinerised”.

Finding an approximately optimal stab placement is a special case of the
set cover problem. The maximum number of blobs pierced by a single stab is 5.
Thus, in this case the greedy heuristic for the set cover has an approximation
ratioof 1 +1/2+1/34+1/4+41/5=137/60 [13, Thm. 35.4].

Based on this approximation, a feasible hub placement R within one cloud
C € C can be obtained by applying Lemma 1; for this set of hubs it holds that
|Rc| < 137|Stab(B¢)|/30 — 1. We can now interpret hubs R¢ as relays; if the
hubs make the cloud C' connected, surely it holds for relays.

Let R' = |J, Rc denote all relays placed this way. Since the blobs B¢ for
different C' do not intersect, [Stab(B)| = > |Stab(B¢)|, so

[R'] <3¢ |Rol < 3¢ (137|Stab(Be)/30] — 1) = 137[Stab(B)|/30 — [€].  (2)

Next, we find MSFN(C) and place another set of relays, R, along its edges.
Specifically, for each edge e of the forest, we place 2 relays at the endpoints of e,
and |[|e|/r] relays every r units starting from one of the endpoints. This ensures
that all clouds communicate with each other; thus R = R’ U R” is a feasible
solution. Since the number of edges in MSEFN(C) is |C| — 1,

[R"] =2(1C] = 1) + > lel/r] < 2|€] + [MSEN(C)|/r. (3)

We obtain |R| = |R'| +|R"| < (137/30 + 1 + 2//3)|R*| < 6.73| R*| from (1), (2),
(3) and Lemma 2.

We sketch here an O(n log n)-time implementation of the algorithm. From the
Delaunay triangulation (DT) of the sensors one can identify the blobs and the
clouds, and from the 5-order Voronoi diagram — the possible locations for the
stabs/hubs. Since each such location belongs to at most 5 blobs, our set cover
instance has linear size and can be solved in linear time [13, Problem 35.3-3].
Finally, MSFN(C) is a subgraph of DT and can be found in O(nlogn) time.

4 A 3.11-Approximation for One-Tier Relay Placement

In this section we first take care of clouds whose blobs can be stabbed with few
relays, and then find an approximation to the hub placement by greedily placing
the hubs themselves, without placing the stabs first, for the rest of the clouds. To-
gether with a refined analysis, this gives a polynomial-time 3.11-approximation
algorithm. We focus on nontrivial instances with more than one blob.



Overview. The basic steps of our algorithm are as follows:

Compute optimal stabbings for clouds which can be stabbed with few relays.
Connect the blobs in each of these clouds, using Lemma 1.

Greedily connect all blobs in each of the remaining clouds (“stitching”).
Greedily connect clouds into clusters, using 2 additional relays per cloud.
Connect the clusters by a spanning forest.

GUk L

Our algorithm constructs a set A, of “red” relays (for connecting blobs in a
cloud, i.e., relays added in steps 1-3), a set A, of “green” relays (two per cloud,
added in steps 4-5) and a set A, of “yellow” relays (outside of sensor range,
added in step 5). In the analysis, we compare an optimal solution R* to our
approximate one by subdividing the former into a set R} of “dark” relays that
are within reach of sensors, and into a set R of “light” relays that are outside
of sensor range. We compare |R}| with |A,| + |A4|, and |R;| with |A4,|, showing
in both cases that the ratio is less than 3.11.

Clouds with Few Stabs. For any constant k, it is straightforward to check in
polynomial time whether all blobs in a cloud C' € € can be stabbed with i < k
stabs. Using Lemma 1, we can connect all blobs in such a cloud with at most
2i — 1 red relays. We denote by C? the set of clouds where the minimum number
of stabs is 4, and by C** the set of clouds that need at least k stabs.

Stitching a Cloud from C**. We focus on one cloud C € C**. For a point y
in the plane, define B(y) = {B € B¢ : y € B} to be the set of blobs that contain
the point; obviously |B(y)| < 5 for any y. For a any subset of blobs T C B¢,
define $(T,y) = B(y) \ T to be the set of blobs not from T containing y, and
define V(7)) to be the set of sensors that form the blobs in 7.

Within C, we place a set of red relays A = {y; : j =1,2,...}, as follows:

1. Choose arbitrary By € B¢. Initialise j < 1, T; « {By}.
2. While T; # Be:

y; — argmax, {|8(T;,y)| : B(y) NT; # 0},
8; «— 8(Tj,y5)s Tjp1 < T;US8;, jej+ 1

By induction on j, after each iteration, there exists a path through sensors
and/or relays between any pair of sensors in V(7;). By the definition of a cloud,
there is a line segment of length at most 2 that connects V(7;) to V(B¢ '\ T;); the
midpoint of the segment is a location y with 8(7;,y) # 0. Thus each iteration
increases the size of T; by at least 1, the algorithm terminates in at most |B¢|—1
iterations, and |AY| < |B¢| — 1. The sets §; form a partition of Be \ {Bo}-

We can prove the following performance guarantee. (The proof is similar to
the analysis of greedy set cover; see the Appendix for details.)

Lemma 3. For each cloud C we have |[AS| < 37|R;NC|/12 — 1.



Green Relays and Cloud Clusters. At any stage of the algorithm, we say
that a set of clouds is interconnected if, with the current placement of relays, the
sensors in the clouds can communicate with each other. Now, when all clouds
have been stitched (so that the sensors within any one cloud can communicate),
we proceed to interconnecting the clouds. First we greedily form the collection of
cloud clusters (interconnected clouds) as follows. We start from assigning each
cloud to its own cluster. Whenever it is possible to interconnect two clusters by
placing one relay within each of the two clusters, we do so. These two relays are
coloured green. After it is no longer possible to interconnect 2 clusters by placing
just 2 relays, we repeatedly place 4 green relays wherever we can use them to
interconnect clouds from 3 different clusters. Finally, we repeat this for 6 green
relays which interconnect 4 clusters.

On average, we put 2 green relays every time the number of connected compo-
nents in the communication graph on sensors plus relays decreases by one. Thus,
the total number of green relays placed so far is twice the number of clouds that
have been interconnected into the clusters.

Interconnecting the Clusters. Now, when the sensors in each cloud and the
clouds in each cluster are interconnected, we interconnect the clusters by MSFN.
We find MSFEN on the clusters and place relays along edges of the forest just
as we did in the simple algorithm from the previous section. This time though
we assign colours to the relays. Specifically, for each edge e of the forest, we
place 2 green relays at the endpoints of e, and ||e|/r] yellow relays every r units
starting from one of the endpoints (and when we find MSFN, we minimise the
total number of yellow relays that we need). As with interconnecting clouds into
the clusters, when interconnecting the clusters we use 2 green relays each time
the number of connected components of the communication graph decreases by
one. Thus, overall, we use at most 2|C| green relays.

Analysis: Red and Green Relays. Recall that for i < k, € is the class
of clouds that require precisely i relays for stabbing, and €** is the class of
clouds that need at least k relays for stabbmg An optimal solution R* therefore
contains at least |Rj| > k|CFF| + ZZ h ' i|C!| dark relays (relays inside clouds,
i.e., relays within reach of sensors). Furthermore, |R; N C| > 1 for all C.

Our algorithm places at most 2i — 1 red relays per cloud in €%, and not more
than 37/12|R5 N C| — 1 red relays per cloud in C**. Including a total of 2|C|
green relays used for clouds interconnections, we get

1A+ 4, < ZCEW(W\R;MVB_1)+ZH( 2i — 1)|€7] + 2|€|
< 37(|Ry| — i€ /12 + @R+ S (20 + 1)|¢7)

< 37|R;|/12 + |C*F| < (3.084 + 1/k)|R|.

Analysis: Yellow Relays. As in the previous section, let R be the communi-
cation graph on the optimal set R* of relays (without sensors). In R there exists
a forest R’ which makes the clusters interconnected. Let R’ C R* be the relays



that are vertices of R’. We partition R’ into “black” relays R; = R’ N R, and
“white” relays R;, = R' N R; — those inside and outside the clusters.

Two black relays cannot be adjacent in R’: if they are in the same cluster,
the edge between them is redundant, if they are in different clusters, the dis-
tance between them must be larger than r as otherwise our algorithm would
have placed two green relays to interconnect the clusters into one. By a similar
reasoning, there cannot be a white relay adjacent to 3 or more black relays in
R’ and there cannot be a pair of adjacent white relays such that both of them
are adjacent to 2 black relays. Finally, the maximum degree of a white relay is 5.
Using these observations, we can prove the following lemma (see the Appendix).

Lemma 4. There is a spanning forest with neighbourhoods on cloud clusters
that requires at most (4/+/3 +4/5)|R:| < 3.11|R?)| yellow relays on its edges.

Then it follows that |A,| < 3.11|R} | < 3.11|Rj;|. This completes the proof that
the approximation ratio of our algorithm is less than 3.11.

5 Inapproximability of One-Tier Relay Placement

We have improved the best known approximation ratio for one-tier relay place-
ment from 7 to 3.11. A natural question to pose at this point is whether we could
make the approximation ratio as close to 1 as we wish. In this section, we show
that no PTAS exists, unless P = NP. We prove the following theorem.

Theorem 1. It is NP-hard to approzimate one-tier relay placement within fac-
tor 1+ 1/687.

We present a reduction from minimum vertex cover in bounded-degree graphs.
Let G = (V, E) be an instance of vertex cover; let A <5 be the maximum degree
of G. We construct an instance J of the relay placement problem as follows.

Fig. 2 illustrates the construction. Fig. 2a shows the verter gadget; we have
one such gadget for each vertex v € V. Fig. 2b shows the crossover gadget; we
have one such gadget for each edge e € E. Small dots are sensors in the relay
placement instance; each solid edge has length at most 1. White boxes are good
locations for relays; dashed lines show connections for relays in good locations.

We set 7 = 16(|V | + 1), and we choose |E| + 1 disks of diameter r such that
each pair of these disks is separated by a distance larger than |V|r but at most
poly(|V]). One of the disks is called S(0) and the rest are S(e) for e € E. All
vertex gadgets and one isolated sensor, called pg, are placed within disk S(0).
The crossover gadget for edge e is placed within disk S(e). There are noncrossing
paths of sensors that connect the crossover gadget e = {u,v} € E to the vertex
gadgets u and v; all such paths (tentacles) are separated by a distance at least
3. Good relay locations and py cannot be closer than 1 unit to a disk boundary.

Fig. 2c¢ is a schematic illustration of the overall construction in the case of
G = Kj; the figure is highly condensed in x direction. There are 11 disks. Disk
S(0) contains one isolated sensor and 5 vertex gadgets. Each disk S(e) contains
one crossover gadget. Outside these disks we have only parts of tentacles.
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Fig. 2. (a) Vertex gadget for v € V. (b) Crossover gadget for {v,u} € E. (c) Reduction
for K5. (d) Normalising a solution, step 1.

There are 4|E| + 1 blobs in J. The isolated sensor py forms one blob. For
each edge there are 4 blobs: two tentacles from vertex gadgets to the crossover
gadget, and two isolated sensors in the crossover gadget.

Theorem 1 now follows from the following two lemmata and inapproxima-
bility of vertex cover in graphs with maximum degree 4 [14, Thm. 3]; see the
Appendix for the full proofs.

Lemma 5. Let C' be a vertex cover of G. Then there is a feasible solution to
relay placement problem J with |C| + 2|E| 4+ 1 relays.

Lemma 6. Assume that there exists a feasible solution to relay placement prob-
lem J with k + 2|E| + 1 relays. Then G has a vertex cover of size at most k.

Remark 1. We remind that throughout this work we assume that radius r is part
of the problem instance. Our proof of Theorem 1 heavily relies on this fact; in our
reduction, r = O(|V]). It is an open question whether one-tier relay placement
admits a PTAS for a small, e.g., constant, r.

6 A PTAS for Two-Tier Relay Placement

In the previous sections we studied one-tier relay placement, in which the sensors
could communicate with each other, as well as with the relays. We gave a 3.11-
approximation algorithm, and showed that the problem admits no PTAS (for
general r). In this section we turn to the two-tier version, in which the sensors
cannot communicate with each other, but only with relays. We give a PTAS for
this version of the problem.

We first give a structural lemma showing that an optimal set of relays, R*,
can be replaced by a set of at most (1+4¢)|R*| relays that lie in a polynomial-size
set GG, or that lie along a straight segment joining two points of GG, with relays
spaced at distance r along the segment (except, possibly, the last relay of the



segment). Then, we utilise the m-guillotine structural theorem [15] to prove that
an optimal tree 7 having |R*| relays can be converted to a tree, Tj,, that is
m-guillotine, spans V, and utilises at most (1 + O(1/m))|R*| relays, where we
pick m = ©(1/e). A dynamic programming algorithm allows us to compute an
optimal (minimum-relay) tree among all m-guillotine spanning trees.

Edges of T are of two types: (i) “red” edges of length at most 1, which join
a sensor to a relay, and (ii) “blue” edges of length at most r, which join two
relays. The proof of the following lemma is in the Appendix.

Lemma 7. Given a set V of n sensors and any fized € > 0, one can compute,
in polynomial time, a set G of poly(n) candidate relay positions such that there
exists a Steiner tree T spanning V with the following properties: (i) the Steiner
points are points of G, or are spaced at distance r along a line segment joining
two points of G, (ii) each edge of T' that is incident to a sensor has length at
most 1, and all other edges have length at most r, and (iii) there are at most
(1 +¢)|R*| Steiner points in T.

Consider a set A of segments (edges) with endpoints among the set V' U G.
A window is a rectangle whose coordinates are among the z- and y-coordinates
of the points V U G. A cut is a horizontal or vertical line ¢, through a point
of V' UG, that intersects int(W), the interior of window W. The intersection,
N (ANint(W)), of a cut ¢ with A N int(W) consists of a discrete (possibly
empty) set of line segments (edges of A) and crossing points (where an edge of A
crosses £). Let the segment endpoints/crossing points be denoted by p1,...,pe,
in order along ¢. For a positive integer m, we define the m-span, o,,(¢), of ¢
(with respect to W) to be the empty set, if £ < 2(m —1), and to be the (possibly
zero-length) line segment p,,pe_m 1, otherwise. A cut £ is m-perfect with respect
to W if 0,,(¢) C A.

We say that a set A of edges is m-guillotine with respect to window W if either
(1) Anint(W) = 0; or (2) there exists an m-perfect cut, ¢, with respect to W,
such that A is m-guillotine with respect to windows WNH™ and W NH ™, where
H™, H™ are the closed halfplanes defined by ¢. We say that A is m-guillotine
if A is m-guillotine with respect to the axis-aligned bounding box of V. In the
Appendix we sketch the proof of the following lemma:

Lemma 8. Let T be an optimal two-tier Steiner spanning tree for V', having
|R*| relays (Steiner points). Then, for any positive integer m, there exists a
bounded edge length spanning tree T, for V whose blue edges (joining pairs of
relays, each of length < r) is m-guillotine, having at most (1 + &)|R*| relays,
each of which lies on a polynomial-size grid G.

Our PTAS uses dynamic programming to search for an optimal m-guillotine
bounded edge length spanning tree with Steiner points on the polynomial-size
grid G. A subproblem specifies a rectangle, a set of O(m) segments (with end-
points in ) crossing its boundary, at most 4 bridges (each with a regular pattern
of Steiner points Ri(A) U R2())), and a set of connections among boundary-
crossing segments that are required within the rectangle; the objective is to



build a minimum-relay m-guillotine spanning tree, spanning all sensors within
the rectangle, while obeying the connection pattern and the boundary conditions.
We defer the details to the full paper. In conclusion, we have sketched the proof
of the following main result:

Theorem 2. There is a PTAS for two-tier relay placement.

7 Discussion

In Section 3 we presented a simple O(n logn)-time 6.73-approximation algorithm
for the one-tier relay placement. If one is willing to spend more time finding
the approximation to the set cover, one may use the semi-local optimisation
framework of Duh and Furer [16], which provides an approximation ratio of
1+1/2+1/3+1/4+1/5—1/2 for the set cover with at most 5 elements per
set; hence we obtain a 5.73-approximation.

One can form a bipartite graph on the blobs and candidate stab locations
as follows. Pick a point within each maximal-depth cell of the arrangement of
the blobs (maximal w.r.t the blobs that contain the cell); call these points “red”.
Pick a point within each blob; call these points “blue”. Connect each blue point
to the red points contained in the blob, represented by the blue point. It is
possible to pick the points so that the bipartite graph on the points is planar.
Then the stab placement is equivalent to the Planar Red/Blue Dominating Set
Problem [17] — find fewest red vertices that dominate all blue ones. We believe
that the techniques of Baker [18] can be used to give a PTAS for the problem.
Combined with the simple algorithm in Section 3, this would result in a 4.16-
approximation for the relay placement.

A more involved geometric argument allows us to improve the analysis of
yellow relays in Section 4. We can bring the constant 3.11 in Lemma 4 down to
3, improving the approximation factor to 3.09. Combining this with the possible
PTAS for the Planar Red/Blue Dominating Set would yield an approximation
factor of 3 + €. We believe that a different, integrated method would be needed
for getting below 3: various steps in our estimates are tight with respect to 3.
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A Appendix

Proof of Lemma 3. For each B € B¢\ { By}, define the weight w(B) = 1/|§,],
where §; is the unique set for which B € 8;. We also set w(By) = 1. We have

Y pesw(B) = JAT|+ 1. (4)

Consider a relay z € Ry NC, and find the smallest £ with T, N B(z) # (), that
is, ¢ = 1 if By € B(z), and otherwise yy_; is the first relay that pierced a blob
from B(z). Partition the set B(z) into U(z) = T, N B(z) and V(z) = B(z) \ U(2).
Note that V(z) may be empty, e.g., if yp_1 = z.

First, we show that ZBEU(Z) w(B) < 1. We need to consider two cases. It
may happen that ¢ = 1, which means that By € B(z) and U(z) = {Bp}. Then
the total weight assigned to the blobs in U(z) is, by definition, 1. Otherwise £ > 1
and U(z) C Sy—1, implying w(B) = 1/]Se—1| < 1/|U(2)| for each B € U(z), and
the claim follows.

Second, we show that 3~ 5oy, w(B) < 1/[V(z)| +1/(|V(z)| = 1) +---+1/1.
At iterations j > ¢, the algorithm is able to consider placing the relay y; at
the location z. Therefore |S;| > |8(T;, z)|. Furthermore, 8(T;, z) \ 8(T;41,2) =
B(z) N8; =V(z) N§;. Whenever placing the relay y; makes [8(7}, 2)| decrease
by k, exactly k blobs of V(z) get connected to T;. Each of them is assigned the
weight w(C) < 1/[8(Tj,2)|. Thus, Y- pcy,yw(B) < ki/(ki+ka+ -+ k) +
ko/(ke + ks + -+ kpn) + -+ + kn/kn, where ki, ko, ..., k, are the number of
blobs from V(z) that are pierced at different iterations, ) . k; = |V(2)|. The
maximum value of the sum is attained when k; = ko = --- =k, = 1 (i.e., every
time |V(z)| is decreased by 1, and there are |V(z)| summands), and the claim
follows.

Finally, since |B(z)| < 5, and U(z) # 0, we have |V(z)| < 4. Thus,
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W(z) =YX peu w(B) + Xpeveyw(B) < 1+ 13Tt T (5)

The sets B(z), z € R; N C, form a cover of B¢. Therefore, from (4) and (5),

37, . c
BRINC| = ST W) > Y w(B) = |AS]+ 1. .
2€R5NC BeBc

Proof of Lemma 4. Let D be the set of cloud clusters. We partition R’ into
edge-disjoint trees induced by maximal connected subsets of white relays and
their adjacent black relays. It is enough to show that for each such tree 7" which
interconnects a subset of clusters D’ C D, there is a spanning forest on D’ such
that the number of yellow relays on its edges is at most 3.11 times the number of
white relays in T'. As no pair of black relays is adjacent in R’, these edge-disjoint
trees interconnect all clusters in D. The same holds for the spanning forests, and
the lemma follows.

Trees with only one white relay (and thus exactly two black relays) are trivial:
the spanning forest needs only one edge with one yellow relay (and one green in
each end). Therefore assume that 7" contains at least two white relays.



We introduce yet another colour. For each white relay with two black neigh-
bours, arbitrarily choose one of the black relays and change it into a “grey” relay.
Let w be the number of white relays, let b be the number of remaining black
relays, and let g be the number of grey relays in 7.

First, we clearly have b < w. Second, there is no grey—white-white-grey
path, each white relay is adjacent to another white relay, and the maximum
degree of a white relay is 5 (geometry). Therefore the ratio (b + g)/w is at
most 9/5. To see this, let ws be the number of white relays with a grey and a
black neighbour, let w; be the number of white relays with a black neighbour
but no grey neighbour, and let wy be the number of white relays without a
black neighbour. By degree bound, ws < 4wy + 5wy = 4wy + 5(w — we — wy);
therefore 5w > 6ws + wy. And we know that, w > wy + wq. Therefore (9/5)w >
(1/5)(6ws + w1) + (4/5)(we + wy) = (wg +w1) + wa = b+ g. (The worst case is
a star of 1 + 4 white relays, 5 black relays and 4 grey relays.)

Now consider the subtree induced by the black and white relays. It has fewer
than b + w edges, and the edge length is at most r. By Lemma 2, there is a
spanning forest on the black relays with total length less than (2/v/3)(b + w)r;
thus we need fewer than (2/v/3)(b + w) yellow relays on the edges.

Now each pair of black relays in 7' is connected. It is enough to connect
each grey relay to the nearest black relay: the distance is at most 2, and one
yellow relay is enough. In summary, the total number of yellow relays is less than
(2/V3)(b+w) +g < (2/vV3 —1)2w + (14/5)w = (4/V3 +4/5)w < 3.11lw. O

Proof of Lemma 5. For each v € C, place one relay at the good location of
the vertex gadget v. For each e € E, place two relays at the good locations of
the crossover gadget e. Place one relay at the isolated sensor pg. O

Proof of Lemma 6. If £ > |V|, then the claim is trivial: C' = V is a vertex
cover of size at most k. We therefore focus on the case k < |[V|.

Let R be a solution with k+ 2|E|+1 relays. We transform the solution into a
canonical form R’ of the same size and with the following additional constraints:
there is a subset C' C V such that at least one relay is placed at the good relay
location of each vertex gadget v € C'; two relays are placed at the good locations
of each crossover gadget; one relay is placed at pg; and there are no other relays.
If R’ is a feasible solution, then C' is a vertex cover of § with |C| < k.

Now we show how to construct the canonical form R’. We observe that there
are 2|E| + 1 isolated sensors in J: sensor py and two sensors for each crossover
gadget. In the feasible solution R, for each isolated sensor p, we can always
identify one relay within distance 1 from p (if there are several relays, pick one
arbitrarily). These relays are called bound relays. The remaining k < |V/| relays
are called free relays.

Step 1. Consider the communication graph formed by the sensors in J and
the relays R. Since each pair of disks S(i), i € {0} UFE, is separated by a distance
larger than |V|r, we know that there is no path that extends from one disk to
another and consists of at most k free relays (and possibly one bound relay in
each end). Therefore we can shift each connected set of relays so that it is located



within one disk (see Fig. 2d). While doing so, we do not break any relay-relay
links: all relays within the same disk can communicate with each other. We can
also maintain each relay—blob link intact.

Step 2. Now we have a clique formed by a set of relays within each disk S(7),
there are no other relays, and the network is connected. We move the bound
relay in S(0) so that it is located exactly on pg. For each e € E, we move the
bound relays in S(e) so that they are located exactly on the good relay locations.
Finally, any free relays in S(0) can be moved to a good relay location of a suitable
vertex gadget. These changes may introduce new relay—blob links but they do
not break any existing relay-blob or relay-relay links.

Step 3. What remains is that some disks S(e), e € E, may contain free relays.
Let x be one of these relays. If x can be removed without breaking connectivity,
we can move x to the good relay location of any vertex gadget. Otherwise x is
adjacent to exactly one blob of sensors, and removing it breaks the network into
two connected components: component A which contains pg, and component B.
Now we simply pick a vertex v € V such that the vertex gadget v contains
sensors from component B, and we move x to the good relay location of this
vertex gadget; this ensures connectivity between py and B. O

Proof of Theorem 1. Let A, A, B,C € N, with A <5 and C' > B. Assume
that there is a factor « =1+ (C — B)/(B + AA + 1) approximation algorithm
A for relay placement. We show how to use A to solve the following gap-vertez-
cover problem for some 0 < e < 1/2: given a graph § with An nodes and
maximum degree A, decide whether the minimum vertex cover of G is smaller
than (B + €)n or larger than (C' — €)n.

If n < 2, the claim is trivial. Otherwise we can choose a positive constant e
such that « —1 < (C — B —2¢)/(B+ e+ AA+ 1/n) for any n > 2. Construct
the relay placement instance J as described above.

If minimum vertex cover of G is smaller than (B + ¢€)n, then by Lemma 5, the
algorithm A returns a solution with at most b = a((B + ¢)n + 2|E| + 1) relays.
If minimum vertex cover of G is larger than (C' — €)n, then by Lemma 6, the
algorithm A returns a solution with at least ¢ = (C' — €)n + 2|E| + 1 relays. As
2|E| < AAn, we have c —b > (C—e)n +2|E|+1—-a((B+en+2/E|+1) >
(C—B—2—(a—1)(B+e+ AA+1/n))n > 0, which shows that we can solve
the gap-vertex-cover problem in polynomial time.

For A=4, A=152, B="78, C =79, and any 0 < € < 1/2, the gap-vertex-
cover problem is NP-hard [14, Thm. 3]. O

Proof of Lemma 7. (Sketch.) Fix a positive integer m = ©(1/e). Let T™* be
an optimal tree, with |R*| relays, spanning V.

We know that in 7™ each relay is of degree at most 5, and there are at most
n — 2 relays of degree 3, 4 or 5. Relays of degree 2 in T form relay-paths in T™*.
These relay-paths are potentially quite long (not bounded in terms of n = |V|).
We can assume, w.l.o.g., that relay-paths consist of relays placed along a straight
line segment, with relays evenly spaced at distance r along the segment (except
that the last spacing along the segment may be < ).



Let R be a maximal subset of degree-> 3 relays in T* such that every pair
of relays of R is separated by distance (within 7%) at least @(m). Let T C T*
be the minimal spanning tree of R within 7™; T interconnects nodes of R with
paths of @(m) relays. Consider the polynomial-size regular square grid of spacing
e - diam(V)/n within the bounding box of V; we define the set G to include
these grid points. Shifting the relays R to this grid adds Euclidean length at
most ¢ - diam(V') to T}; the total number of new relays needed to accommodate
this change is bounded by ¢ - diam(S)/r plus |R| — 1 (since an additional relay
may be needed on each interconnection path in T';, due to rounding Euclidean
lengths up to the nearest multiple of 7). Since the |R| — 1 interconnection paths
in T}, are each of length @(m), we see that |R| — 1 is a small fraction (O(1/m))
of the number of relays in T, so the total increase in the number of relays in
T* caused by this shifting is O(e - |R*]).

From the bounded degree property of T, we can show that there is a set E’
of O(|R*|/m) (blue) edges whose removal breaks T* into subtrees, each having
O(m) relays. We will (possibly) perturb the relays in each subtree, while not
increasing their number in each subtree and while keeping all red edges of length
at most 1 and blue edges of length at most r. This perturbation may, however,
increase slightly the lengths of the edges E’, causing us to have to add at most
one more relay per edge of E'; since |E'| = O(|R*|/m), this addition can be
afforded.

There are two types of subtrees: those consisting only of relays (Steiner
points), and those having at least one sensor. Consider first those having at
least one sensor. Then, we know that all relays of a subtree lie within distance
O(mr) of some sensor. The relay leaves of the subtree (at endpoints of edges in
E'’) can be rounded to a regular grid of spacing r/2 centred on any one sensor;
there are at most O(m?) such grid positions (per sensor), and rounding leaves
to a grid of resolution r/2 will allow all edges of E’ to be of length at most 2r,
so that at most |E’| new relays are needed. The grid G is defined to include
these grid positions. We now define an iterated circle arrangement as follows.
First, we construct circles of radii 1,1+ r, 1+ 2r,1 + 3r,...,1 + mr centred at
each sensor within the subtree and at each rounded leaf of the subtree. Then, in
iteration 2, centred at each vertex (where two circles cross) of this arrangement,
we construct circles of radii r, 2r, ..., mr. This continues for m iterations, result-
ing in an arrangement having a constant (function of m = ©(1/¢)) number of
vertices. Now, we claim that the vertices of the iterated circle arrangement is a
rich enough set of points that we can systematically perturb a subtree so that
all of its relays lie at the vertices. (A subtree is a linkage, with upper bound
constraints on link lengths; it has O(m) degrees of freedom, so we can apply
motion planning arguments to “pin” it.) We define the grid G to include the
vertices of the iterated circle arrangement.

For subtrees consisting only of relays, there are two subcases: subtrees that
are relay-paths (having only degree-2 relays), and all other subtrees. Subtrees
that are relay-paths can be handled directly; in fact, we can consider separately
the long relay-paths that consist of a maximal sequence of such subtrees, since



Fig. 3. Steiner points Ri(\) and R2(A) along an m-span A. Crossing blue edge pq is
replaced by a path in the radius-r disk graph.

they will join points of G with a straight segment of relays spaced at distance
r, once we round the subtrees that are not relay-paths. Thus, we consider a
subtree 7 consisting only of relays and having at least one relay, ¢, of degree
> 3. By adjusting the constants in the definition of the set R defined above, we
can assume that there is at least one member of R in subtree 7; thus, ¢ can
be assumed to be at a grid point, allowing us to proceed as in the case of the
subtree containing a sensor. O

Proof of Lemma 8. (Sketch.) The key lemma of [15] shows that the set of blue
edges can be converted to an m-guillotine set by adding m-spans whose total
length is at most v/2 /m times the length of the original blue edges. (Further, the
x- and y-coordinates of the cuts in the m-guillotine partition are from among the
points of the polynomial-size grid G.) This implies that the added m-spans have
total length O(r|R*|/m). Consider an m-span, A, that was added, of length |A|.
We claim that we can place O(|A|/r) Steiner points along A and modify the tree
T* so that no blue edges cross A\. We simply place O(|A|) Steiner (relay) points,
Ri(\), along A, at uniform spacing rv/3, and also place an additional O(|\|)
Steiner points, Ra(\), at the crossing points of radius-r circles centred at points
R;. See Fig. 3. (There is a technical issue that arises if A\ is very short, since
“rounding” up |A| introduces O(1) additional Steiner points on each m-span. If
|A| < ©(mr) then we show that O(m) blue edges cross \, so we can afford not to
add the m-span and instead specify in the dynamic programming subproblems
each of the O(m) blue edges crossing the cut. If |A\| > ©(mr), we can afford to
add O(1) Steiner points per m-span, charging them off to the length of the m-
spans.) Clearly, the radius-r disk graph of Ry(A) U R2()) is connected. Further,
the union of radius-r disks centred at Ry (\) U Ra(\) covers a strip of width 2r
centred on A. Thus, any blue edge pq of T™ that crosses A can be replaced by a
path of O(1) edges in the radius-r disk graph of {p, ¢} U R1(\) U R2(\), ensuring
that the connectivity of T* can be maintained using blue edges of length at most
r, with no blue edges crossing A. Thus, we have transformed 7™ into a Steiner
tree whose blue edges are m-guillotine, and we have done so by adding only
O(|R*|/m) new Steiner points and keeping all edges of length at most . 0



