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Abstract
Online interval selection is a problem in which intervals arrive one by one, sorted by

their left endpoints. Each interval has a length and a non-negative weight associated with
it. The goal is to select a non-overlapping set of intervals with maximal total weight
and run them to completion. The decision regarding a possible selection of an arriving
interval must be done immediately upon its arrival. The interval may be preempted
later in favor of selecting an arriving overlapping interval, in which case the weight of the
preempted interval is lost. We follow Woeginger [10] and study the same models. The type
of instances we consider are C-benevolent instances, where the weight of an interval in
a monotonically increasing (convex) function of the length, and D-benevolent instances,
where the weight of an interval in a monotonically decreasing function of the length.
Some of our results can be extended to the case of unit length intervals with arbitrary
costs. We signi�cantly improve the previously known bounds on the performance of online
randomized algorithms for the problem, namely, we introduce a new algorithm for the D-
benevolent case and for unit intervals, which uses a parameter θ and has competitive ratio
of at most θ2 ln θ

(θ−1)2 . This value is equal to approximately 2.4554 for θ ≈ 3.513 being the
solution of the equation x−1 = 2 ln x. We further design a lower bound of 1+ln 2 ≈ 1.693
on the competitive ratio of any randomized algorithm. The lower bound is valid for any
C-benevolent instance, some D-benevolent functions and for unit intervals. We further
show a lower bound of 3

2 for a wider class of D-benevolent instances. This improves over
previously known lower bounds. We also design a barely random online algorithm for the
D-benevolent case and the case of unit intervals, which uses a single random bit, and has
a competitive ratio of 3.22745.

1 Introduction
We consider the following online problem. The input is a sequence of intervals arriving at
arbitrary times. We denote an interval by Ij = (rj , wj , pj), where rj ≥ 0 is its release time,
wj > 0 is its value, and pj > 0 is its length. Two such intervals Ij , Ik are said to be non-
overlapping if [rj , rj + pj) ∩ [rk, rk + pk) = ∅ (i.e., either rk ≥ rj + pj or rj ≥ rk + pk). The
goal of the problem is to select a maximum (total) weight subset of non-overlapping intervals.
The online algorithm is allowed to preempt an interval when a new interval arrives, but in
this case the weight of the preempted interval is lost. See [6, 7] for recent surveys on (o�ine
and online) interval selection problems.

We note that interval selection problems can be seen as scheduling problems, where inter-
vals are seen as jobs to be processed. The jobs must be run during a �xed interval in time, and

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.
†Department of Statistics, The Hebrew University, Jerusalem, Israel. levinas@mscc.huji.ac.il.

1



the left and right endpoints of an interval are its release time and completion time, respec-
tively. Kovalyov, Ng, and Cheng [7] describe the applications of interval scheduling problems
as follows. �These problems arise naturally in various real-life operations planning situations,
including the assignment of transports to loading/unloading terminals, work planning for per-
sonnel, computer wiring, bandwidth allocation of communication channels, printed circuit
board manufacturing, gene identi�cation, and examining computer memory structures�.

For an algorithm A, we denote its cost by A as well. The cost of an optimal o�ine
algorithm that knows the complete sequence of intervals is denoted by opt. Since the problem
is scalable, we consider the absolute competitive ratio criterion. The competitive ratio of A is
the in�mum R such that for any input, opt ≤ R · A. If A is randomized, the last inequality
is replaced by opt ≤ R · E(A). If the competitive ratio of an online algorithm is at most C
we say that it is C-competitive. If an algorithm has an unbounded competitive ratio, we say
that it is not competitive.

It is known [2, 10] that the general case of the problem de�ned above does not have a
competitive algorithm (in [10] this result was shown for deterministic algorithms, and in [2] it
was shown for randomized algorithms). These negative results motivate the search of special
cases that admit competitive algorithms. Note that the special case where all intervals have
unit weight was studied in [4, 3]. This case admits a deterministic online algorithm which
produces an optimal solution for any instance of the problem.

Woeginger [10] has further identi�ed three such special cases. The �rst one is called C-
benevolent in which wj = f(pj) (the weight of an interval depends only on its length), and f
satis�es the following conditions: f(0) = 0, f(p) > 0 for all p > 0, and f is (strictly) monoton-
ically increasing, continuous and convex function in (0,∞). Note that if we do not require
strict monotonicity, then the only type of functions this would add are constant functions.
This case is equivalent to the case of unit weights that is discussed above. The second case
is called D-benevolent where wj = f(pj) and f satis�es f(0) = 0, f(p) > 0 for all p > 0,
and f is a monotonically non-increasing function in (0,∞). The third case is called the unit
interval case is where pj = 1 for all j. For all these three cases he showed a (deterministic) 4-
competitive algorithm. In the C-benevolent case and in the unit interval case, he showed that
no deterministic algorithm can perform better (which holds for any C-benevolent function).
Moreover, for any D-benevolent function f , such that f is surjective onto R+

0 , he presented a
lower bound of 3 on the competitive ratio of any (deterministic) online algorithm, and showed
that there can be no lower bound on the competitive ratio that applies for any D-benevolent
function. He concluded his paper by raising the following open question, �We leave it as major
open problem whether randomization can help to construct heuristics for OSI with better
(randomized) worst case ratio� (where OSI is the name of this problem in his paper).

Since the publication of [10] there has been some progress in �nding the answer to this
last question. More precisely, there are later works designing better online algorithms for
some special cases, and better lower bounds for randomized online algorithms. We discuss
this related work next.

Seiden [9] presented an online algorithm for the C-benevolent case and the D-benevolent
case with competitive ratio of 2+

√
3 < 3.73206. This is still the best known upper bound for

the C-benevolent case. Seiden has raised the question of the existence of a lower bound (on
the performance of randomized algorithms) for these cases as his �rst open problem.

Miyazawa and Erlebach [8] considered the case of unit intervals. They designed a (random-
ized) 3-competitive algorithm for the special case where the sequence of arriving intervals has
monotonically non-decreasing weight, as a function of the arrival times. They also designed a
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lower bound of 5
4 on the competitive ratio of online randomized algorithm for each of the three

cases de�ned above (that is, it holds for unit intervals, for any C-benevolent function, and for
D-benevolent functions such that there exist a pair of values p1 and p2 where f(p2) = 2·f(p1)).

The last previous work is due to Fung, Poon and Zheng [5]. They considered the unit
interval case, and presented a randomized algorithm with competitive ratio of

√
5+5
2 ≈ 3.618

and a lower bound of 4
3 (which can be adapted for all C-benevolent and some D-benevolent

instances). This algorithm uses a single random bit. Fung et al. showed in [5] that such an
algorithm cannot have competitive ratio smaller than 2.

In this paper we signi�cantly improve most previous results by presenting a new ran-
domized algorithm for D-benevolent case and the unit interval case. This algorithm uses a
parameter θ and has a competitive ratio of at most θ2 ln θ

(θ−1)2
. This results in an upper bound

of approximately 2.4554 using θ ≈ 3.513 which is the solution of the equation x− 1 = 2 lnx.
This improves the upper bound 3.732 of Seiden [9] for the D-benevolent case, and the upper
bound 3.618 of Fung, Poon and Zheng [5] for unit intervals. We note that our upper bound
improves also the upper bound of [8] for the special case of unit intervals discussed in [8].
We show that a simpli�ed version of our randomized algorithm that uses a single random bit
has a competitive ratio of 51

√
17−107
32 ≈ 3.227 for the D-benevolent case and the case of unit

intervals. This result improves the current best algorithm which uses a single random bit for
the unit interval case [5].

We introduce an improved lower bound of 1 + ln 2 ≈ 1.6931 on the competitive ratio of
any randomized algorithm for all three cases, C-benevolent functions, D-benevolent functions
and unit length intervals. The lower bound is general in the sense that it is valid for any
C-benevolent function. We then show a lower bound of 3

2 for any D-benevolent function f
such that f is surjective onto (c,+∞) for some constant c ≥ 0. Our lower bounds improve
upon the previous lower bound 4

3 of [5].
Paper outline. We present the algorithm and its analysis in Section 2, and the lower
bound in Section 3. We conclude this paper in Section 4 by presenting some directions for
future research.

2 The algorithm
Let θ > 1 be a parameter to be de�ned later. We design the following randomized algorithm
Round. The algorithm picks a value τ ∈ (0, 1] uniformly at random. τ is used as a parameter
in a rounding scheme for the weights. From this point on (given the rounded weights), the
algorithm is deterministic (it is similar to the one of [10], only our inputs have a restricted set
of possible weights, due to the rounding). We de�ne the algorithm as a function of τ .

Upon arrival of a new interval Ij , we let w′j = max{θp+τ |θp+τ ≤ wj , p ∈ Z}. If the
algorithm is not processing an interval, then it starts the interval Ij . Otherwise, if it is
running an interval Is, such that w′s < w′j , Is is preempted and the algorithm starts Ij (due
to the rounding, in this case we actually have w′j ≥ θ · w′s). Otherwise, if rj + pj < rs + ps

(i.e., Ij can be completed before Is) and w′j = w′s, then Is is preempted, and the algorithm
starts Ij . Otherwise, the algorithm rejects Ij .

In this section, each time that we consider an optimal solution for some input (the original
input or a rounded input), we always assume that this is an optimal solution which minimizes
the total length of completed intervals, among all optimal solutions, if more than one optimal
solution exists.
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We follow [10] and note that when we analyze the worst case performance of Round,
we can restrict ourselves to input sequences such that the case where rj + pj < rs + ps and
w′j = w′s never occurs. If we are dealing with unit intervals, then a later coming interval also
ends later, so this condition can never hold for rj ≥ rs. Note that if several unit intervals
have the exact same start point, the algorithm selects one of them with a maximum rounded
weight, already by the �rst rule.

Finally, for the D-benevolent case, the swap may be done by Round if the rounded weights
of the two intervals are identical. We �rst show that the optimal solution considered here does
not select Is. Assume by contradiction that Is is selected by our optimal solution opt. Replace
Is by Ij in opt. This results in a feasible solution since Ij is contained in Is. Moreover,
wj ≥ ws, since Ij is shorter than Is, and we are considering a D-benevolent function. We
also have w′j = w′s, and thus the same claim holds for the optimal solution for the rounded
instance. We get a contradiction with the choice of an optimal solution of minimum total
length of intervals. Consider next a modi�ed instance where Is is replaced with an interval
I ′s, where its release time is rs, and its length is rj + pj − rs, that is, it ends at the same
point as Ij . Since this length is in the range [pj , ps], its rounded weight is identical to the one
of Ij and Is. Running the algorithm on the modi�ed instance will result in the same output
except for possibly the replacement of Ij by I ′s, in case that Ij was a part of the output of the
original instance. opt does not change as a result of the modi�cation by the same arguments
as above. Hence, the modi�ed instance results in a competitive ratio which is at least as high
as the competitive ratio of the original input. This modi�cation can be applied repeatedly
and thus for the sake of analysis, we assume that no such interval j exists.

We use the following notations. The bene�t of Round on an input σ and a value τ ∈ (0, 1],
using the rounded weights, is denoted by Roundτ (σ). The bene�t of an optimal o�ine
algorithm with the weights rounded according to the value τ , for the sequence σ is denoted
by optτ (σ). The bene�t of an optimal o�ine algorithm is denoted by opt(σ), and the
expected bene�t of Round (over all choices of τ) is denoted by Round(σ). We use Roundτ ,
optτ , opt and Round if the sequence σ is clear from the context. Our goal is to prove
Round ≥ (θ−1)2

θ2 ln θ
opt for every sequence σ. We prove a sequence of lemmas.

Lemma 1 Round ≥ E(Roundτ ), where E(Roundτ ) is the expected bene�t of Round on
the rounded weights, taken over all values of τ .

Proof. Since for every interval and every choice of τ , we have wj ≥ w′j , the inequality holds
for every value of τ separately, and thus also in expectation.

Given a speci�c value of τ , and a sequence σ, let J1, J2, . . . , Jm be a set of intervals
completed by Round. For a given interval Jt, let J1

t , J2
t . . . , Jpt

t be a maximal sequence of
intervals, such that J1

t is either the �rst interval ever started by Round, or the �rst interval
started after a completed interval, each interval in the sequence is preempted by the previous
interval, and Jpt

t = Jt is completed (pt − 1 is the number of intervals that are preempted by
Jt directly or indirectly).

Lemma 2 Consider either the D-benevolent case and the unit interval case, then θ
θ−1 ·E(Roundτ ) ≥

E(optτ ), where E(optτ ) is the expected bene�t of opt on the rounded weights, taken over
all values of τ .

Proof. We consider the subsequence of intervals that are completed by optτ , denoted by
A = {A1, . . . , Ak}. We may assume that without loss of generality, an optimal schedule only
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runs intervals to completion. We de�ne a mapping from A to the set {Ja
b |1 ≤ b ≤ m, 1 ≤ a ≤

pb}. An interval Aj is mapped to an interval Ja
b that is run by the algorithm at the time that

Aj is released, which is denoted by r′j . Speci�cally, we map Aj to Ja
b if r′j ∈ [ra

b , fa
b ) where ra

b

is the release time of Ja
b and fa

b is either the time that it is preempted or the time that it is
completed.

We show that the mapping is well de�ned and injective (but not necessarily bijective).
We clearly map every interval of optτ to at most one interval of Roundτ . Assume by
contradiction that there exists no interval run by Roundτ at the time that some interval Aj

is released. By the de�nition of the algorithm, it must start Aj , so Aj is mapped to itself. To
show that this is an injection, note that for the unit interval case fa

b − ra
b ≤ 1, thus optτ can

only start one interval during this time slot. For the D-benevolent case if there are two intervals
of optτ that start in the interval [ra

b , fa
b ) then the �rst such interval is (fully) contained in

[ra
b , fa

b ) and hence its rounded weight is not smaller than the one of Ja
b contradicting the fact

that Round did not process it, and hence also in this case optτ can only start one interval
during this time slot.

We now claim that no interval of optτ is mapped to an interval of Roundτ with smaller
rounded weight. The reason here is that by de�nition, Roundτ preempts an interval for an
interval of larger rounded weight. So an interval Aj is either mapped to itself, or to an interval
Ja

b that Roundτ could preempt in favor of running Aj .
We conclude that the bene�t of optτ is not larger than the total rounded weight of intervals

started by Roundτ . By the de�nition of the algorithm, we have for a sequence of intervals
J1

t , J2
t . . . , Jpt

t that the rounded weight of each interval is strictly smaller than the previous
interval, and hence it is actually smaller by a factor of at least θ. Thus

pt∑
j=1

w′j ≤ w′pt
· θ

θ−1 . We

get that optτ ≤ θ
θ−1Roundτ , hence this is true for the expected bene�ts as well.

Remark 3 We note that the proof of Lemma 2 does not hold for the C-benevolent case. This
is so because when we consider the C-benevolent case, it is no longer true that the de�ned
mapping is injective (as there might be an interval of optτ that is fully contained in Jpt

t ).

Lemma 4 For a given interval Ij with weight wj, we have θ ln θ
θ−1 · E(w′j) ≥ wj.

Proof. We denote by wτ
j the value w′j for a given choice of τ . Let p be an integer, and

0 < α ≤ 1 such that wj = θp+α. Then for τ ≤ α, wτ
j = θp+τ , and for τ > α, wτ

j = θp−1+τ ,

thus the expected pro�t from Ij over the choices of τ is
α∫
0

θp+τdτ +
1∫

α
θp−1+τdτ = 1

ln θ ·(
θp(θα − 1) + θp−1(θ − θα)

)
= wj(1− 1

θ ) 1
ln θ , and the claim follows.

Lemma 5 For the D-benevolent case and the unit interval case we have θ ln θ
θ−1 ·E(optτ ) ≥ opt.

Proof. We consider an optimal solution for the original weights. We de�ne by offτ a
solution with rounded weights according to τ , which has the same structure as opt with
respect to the set of completed intervals. Clearly, offτ ≤ optτ . Since the structure of all
solutions we consider here is the same, we can compute the expected pro�t from an interval
Ij that opt completes, in the solutions offτ . By Lemma 4, this expected pro�t satis�es
θ ln θ
θ−1 ·E(w′j) ≥ wj . Summing up the last inequalities for all j such that Ij is selected by opt,
we get E(offτ ) ≥ θ−1

θ ln θopt.
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Combining Lemmas 1, 2 and 5 we conclude that for the D-benevolent case and the unit
interval case

Round ≥ E(Roundτ ) ≥ θ − 1
θ

E(optτ ) ≥ (θ − 1)2

θ2 ln θ
opt.

The maximizer of the function (θ−1)2

θ2 ln θ
is θ ≈ 3.513 which is a root of the equation θ−1−2 ln θ =

0. The resulting competitive ratio of Round for this value of θ is approximately 2.4554.
Therefore, we conclude the following theorem.

Theorem 6 There is a randomized 2.4554-competitive algorithm for the D-benevolent case
and for the unit intervals case.

2.1 Barely random algorithms
In this section we study a simpli�ed version of the algorithm which requires the usage of a
single random bit. Such an algorithm (that uses a constant number of random bits) is called
barely random. The 3.618-competitive algorithm of [5] has this property and uses a single
random bit. Our analysis is valid only for the D-benevolent case and the unit interval case.

The algorithm acts the same as Round, only the choice of τ is done uniformly at random
on the set {1

2 , 1}. Lemmas 1 and 2 are still valid, since they hold for any �xed choice of τ .
Instead of Lemma 5 we prove the following lemma.

Lemma 7 2θ√
θ+1

· E(optτ ) ≥ opt.

Proof. We consider an optimal solution for the original weights. We de�ne by offτ a
solution with rounded weights according to τ , which has the same structure as opt regarding
the intervals that are completed. Clearly, offτ ≤ optτ . Since the structure of all solutions
we consider here is the same, we can compute the expected pro�t from an interval Ij that opt
completes, in the solutions offτ . Let p be an integer, and 0 ≤ α < 1 such that wj = θp+α.

Assume �rst that α ≥ 1
2 . If τ = 1

2 , then w′j = θp+ 1
2 , and otherwise w′j = θp. In the �rst

case w′j ≥ wj√
θ
and in the second case w′j ≥ wj

θ . Hence the expected value of w′j is at least
1
2 ·

wj√
θ

+ 1
2 ·

wj

θ .
Now assume that α < 1

2 . If τ = 1
2 , then w′j = θp− 1

2 , and otherwise w′j = θp. In the �rst
case w′j ≥ wj

θ and in the second case w′j ≥ wj√
θ
. Hence the expected value of w′j is at least

1
2 ·

wj√
θ

+ 1
2 ·

wj

θ in this case as well.
Summing up the inequalities for intervals Ij that are selected by opt, we get E(optτ ) ≥√

θ+1
2θ · opt.
Combining the inequalities of Lemmas 1, 2 and 7 we conclude that,

Round ≥ E(Roundτ ) ≥ θ − 1
θ

E(optτ ) ≥ θ − 1
θ

·
√

θ + 1
2θ

· opt.

The maximizer of the function θ−1
θ ·

√
θ+1
2θ is θ = 9−√17

2 ≈ 2.43845. The resulting competitive
ratio of the algorithm for this value of θ is approximately 51

√
17−107
32 ≈ 3.22745. Therefore, we

conclude the following theorem.

Theorem 8 There is a barely random algorithm that uses a single random bit with a compet-
itive ratio of 3.22745 for the D-benevolent case and the unit interval case.
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3 The lower bound
Our lower bound proofs follow Yao's principle [11] (see also Chapter 8.3.1 in [1]). Yao's
principle states that given a probability measure, de�ned over a set of input sequences, a
lower bound on the competitive ratio of any online algorithm (for a maximization problem)
is implied by a lower bound on the ratio between the expected value of an optimal solution
divided by the expected value of a deterministic algorithm (both expectations are taken with
respect to the probability distribution de�ned for the random choice of the input sequence).

We start by considering the unit interval case. Later we show how to modify our construc-
tion to the other cases.

To use Yao's principle we need to de�ne a probability measure over a set of input sequences.
Our constructions uses a notion of phases, where in our construction, we have up to N phases.
In each phase, the input has k intervals, where k and N are large numbers de�ned later. Our
probability measure will be de�ned using conditional probability.

The sequence starts by presenting k intervals of phase 1 where the j-th such interval is
denoted by Ij

1 , its starting time is j
k+1 and its weight is a1,j = 1

1
2
+ k−j

2(k−1)

. Then, with probability
1
2 the sequence stops, and for every j ∈ {1, 2, . . . , k−1}, the index j is chosen with probability

1
2(k−1) .

Assume that in phase i− 1 (for i = 2, . . . , N) we decided to continue by selecting index j,
and assume that the right endpoint of interval Ij

i−1 is bj and the right endpoint of interval Ij+1
i−1

is bj + εi,j where εi,j > 0 (the condition on the value εi,j clearly holds in the �rst phase, and
we keep an invariant throughout the construction, that no two intervals have the same right
endpoint), then in phase i we present k new intervals I1

i , . . . , Ik
i where Ij′

i has the starting
point bj + εi,j ·j′

k+1 and the weight ai,j′ = 2i−1 · 1
1
2
+ k−j′

2(k−1)

(note that the weights of the new

intervals are independent of j). Then, for i ≤ N − 1 with conditional probability of 1
2 we

stop the sequence after i phases (the conditional probability is conditioned on the event that
we actually reach phase i), and otherwise we pick an index j = 1, 2, . . . , k − 1 uniformly at
random, and continue to the next phase. For i = N , the sequence stops at phase N (with
conditional probability 1).

We note that the marginal probability of stopping the sequence at phase i is 1
2i for i =

1, 2, . . . , N − 1, and 1
2N−1 for i = N , and the marginal probability of reaching phase i is 1

2i−1

for all i. Thus the marginal probability of choosing an index j in a phase i is 1
2i(k−1)

.
We further note that if an online algorithm chooses interval Ij

i at phase i, and the sequence
continues to phase i + 1 with the index j′ such that j′ < j, then all new k intervals overlap
with Ij

i , and all have a weight that is not smaller. The interval I1
i+1 has at least the same

weight as Ij
i and it intersects with exactly the same set of future intervals as Ij

i . We get that
preempting Ij

i in favor of I1
i+1 does not reduce the goal function of the resulting solution with

respect to the possibility of keeping this interval, no matter if the sequence stops or continues
further afterwards. Thus it is always better to preempt interval Ij

i in favor of a new interval.
Therefore, an online algorithm gains weight from interval Ij

i of phase i in one of the following
events, either the sequence stops at phase i, or it continues to phase i + 1 and at this time
it picks an index j′ such that j′ ≥ j. This event happens with a marginal probability of

1
2i−1 ·

(
1
2 + k−j

2(k−1)

)
. Note that if we de�ne the weight of phase i to be the weight that the

online algorithm gains from intervals of phase i, if phase i exists, and if such a phase does not
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exist (i.e., the construction was stopped earlier) to be 0, then the expected weight of phase i is
exactly 1 (if i < N) independently of the action that the algorithm takes (i.e., independently
of which of the k intervals it selects. The additional expected weight of intervals of phase N is
at most 2N · 1

2N−1 = 2 (the maximum occurs when the interval with largest weight is selected).
Therefore, the total expected weight of the online algorithm is at most N + 1.

See Figure 1 for an example of the �rst three phases of a possible construction for k = 4.
The weights of intervals are written next to them. The index chosen in the �rst phase is 2,
and in the second phase, the index 3 is chosen.

We now lower bound the expected total weight of the optimal solution. For a phase i < N
such that the algorithm stops at this phase, the optimal solution picks the maximum weight
interval, which is Ik

i . This happens with a marginal probability of 1
2i , resulting an expected

weight of 1. For i = N the optimal solution again picks interval Ik
N resulting an additional

expected weight of 2. Consider phase i, where the sequence continues by selecting index j.
Then, the optimal solution picks interval Ij

i , since it is the most pro�table interval that does
not overlap with intervals of future phases. This event happens with a marginal probability
of 1

2i · 1
k−1 . Hence, by linearity of expectation the total expected weight (in all phases) of the

optimal solution is:

N−1∑

i=1


1 +

k−1∑

j=1

1
2i
· 1
k − 1

· 2i−1 · 1
1
2 + k−j

2(k−1)


 + 2

=
N−1∑

i=1


1 +

k−1∑

j=1

1
2(k − 1)

· 1
k−1+k−j
2(k−1)


 + 2 = N + 1 + (N − 1) ·

k−1∑

j=1

1
2k − j − 1

= N + 1 + (N − 1) ·
k−1∑

`=1

1
k + `− 1

= N + 1 + (N − 1) ·



2k−2∑

p=1

1
p
−

k−1∑

p=1

1
p


 .

When k is arbitrarily large the right hand side becomes approximately N + 1 + (N − 1) ·
(ln(2k− 2)− ln(k− 1)) = N + 1 + (N − 1) ln 2, and the ratio between the expected weight of
the optimal solution to the expected weight of the online algorithm tends to 1 + ln 2 ≈ 1.6931
as N goes to in�nity. Therefore, we established the following theorem.

Theorem 9 Any randomized online algorithm for the case of unit intervals has a competitive
ratio of at least 1 + ln 2.

Figure 1: An example of the lower bound construction with unit length intervals.
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We next note that one can easily change our lower bound construction to obtain similar
results for the C-benevolent and D-benevolent cases. To do so, we let δ > 0 be in�nitisimally
small positive value (more precisely we consider a series of counter-examples for di�erent values
of δ where the series of δ tends to zero, and we consider the limit of the lower bounds obtained
for these values of δ). Then, we change the length of an interval with weight wj in the above
construction to be 1 + δ · wj . For δ su�ciently small, this does not change the feasibility of
solutions. We now have a weight function f , that is de�ned by f(p) = p−1

δ . This function is
linearly increasing in p and convex, thus we conclude that this instance is C-benevolent. By
the above theorem, we conclude the result for the C-benevolent case. For D-benevolent case
we change the length of an interval with weight wj in the above construction to be 1− δ ·wj .
For su�ciently small δ, this does not change the feasibility of solutions (i.e., it does not allow
the algorithm to keep its selection of an interval Ij

i , if the index picked for the next phase is
smaller than j) . Since now we have a weight function f de�ned as f(p) = 1−p

δ that is linearly
decreasing in p, we conclude that this instance is D-benevolent. By the above theorem, we
conclude the result for the D-benevolent case. Therefore, we established the following theorem.

Theorem 10 There is no randomized algorithm that can be applied for any C-benevolent
instance or an algorithm that can be applied to any D-benevolent instance, that achieves a
competitive ratio smaller than 1 + ln 2.

The above result for C-benevolent instances shows that there is a C-benevolent function
f for which no online algorithm has a competitive ratio better than 1 + ln 2. We next show
that our construction actually holds not only for a speci�c function, but for all C-benevolent
functions. Consider such a function f . f is monotonically non-decreasing and hence once
we place two intervals Ij

i and Ij+1
i such that the left endpoint of Ij

i is smaller than the left
endpoint of Ij+1

i , then we can conclude that the right endpoint of Ij
i is smaller than the right

endpoint of Ij+1
i . The claim follows by noting that f is continuous and approaches in�nity

when its argument goes to in�nity, and hence for every non-negative weight, we can always �nd
an interval with this exact weight that is necessary for our construction. Hence, we conclude
the following.

Proposition 11 For any C-benevolent function f , there is no online algorithm with compet-
itive ratio smaller than 1 + ln 2.

A similar result for D-benevolent functions cannot hold as a function f that is f(0) = 0
and f(p) = 1 for all p > 0 is D-benevolent, and for this function the problem is exactly the
one solved optimally by the online algorithm of [4, 3] (a similar argument is given in [10] for
deterministic online algorithms). There is a wide class of D-benevolent functions whose range
is contained a bounded interval [a, b], and for these functions, a deterministic b

a -competitive
algorithm follows directly from the results of [4, 3], by treating all intervals as if they have
identical weights.

We next show how to get a lower bound of 3
2 on the competitive ratio of any algorithm

designed for any speci�c D-benevolent function, that satis�es some natural assumptions.
Assume that f is D-benevolent function that satis�es the additional property that f is

surjective onto (c,+∞) for some constant c ≥ 0. We �rst multiply the weight of all intervals
in our previous construction by c and we �x k = 2. Then, for every weight of an interval de�ned
by our construction there is a length that has this weight. Speci�cally, for a given value of N ,
we are interested in intervals having the weights c · 2i for 0 ≤ i ≤ N . Let `i = f−1(c · 2i).
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Let δ > 0 be a small value which satis�es δ < min
0≤i≤N

`i
2(i+2) . We next modify the starting

points of the intervals as follows. The construction is adapted in a way that the overlap
between the two intervals of phase i, I1

i and I2
i (if this phase is reached) is exactly 2iδ, and

the common overlap between the three intervals I1
i , I2

i and I2
i−1, for i ≥ 2, is exactly δ. The

speci�c construction is a follows. I1
1 is placed at time 0. I2

1 is placed such that the length
of the intersection between I1

1 and I2
1 is 2δ. Assume that the construction satis�es the above

conditions up to phase i− 1. Assume now that after phase i− 1 (for some i = 2, . . . , N) the
sequence continues to the next phase (and since k = 2, this can only mean that the index 1
is chosen), and assume that the right endpoint of interval I1

i−1 is bi and the right endpoint
of interval I2

i−1 is bi + εi. By the properties of the construction, the overlap between these
two intervals is 2(i − 1)δ and since `i−2 ≥ `i−1 > 2(i + 1)δ, we get εi > 4δ. Thus εi > 0. In
phase i, we present k = 2 new intervals I1

i , I2
i where I1

i has a starting point bi + δ and I2
i has

a starting point of bi + εi − δ. Since I2
i−1 and I1

i both have the same length `i−1, the overlap
between these two intervals is `i−1 − (2i − 1)δ > 3δ. We get that the left endpoint of I1

i is
smaller than the left endpoint of I2

i , and the overlap between them is (2i − 1)δ + δ = 2iδ.
Since `i > 2(i + 2)δ, the right endpoint of I2

i is strictly larger than the right endpoint of I1
i .

We conclude that the construction is correct. To calculate the value of the resulting lower
bound, technical di�culties require us to to set k = 2 and not k →∞. We have showed that
for every value of k the online algorithm has an expected weight of at most N + 1 and the
optimal solution has an expected weight of at least N + 1 + (N − 1) ·

k−1∑
j′=1

1
k+j′−1 that equals

(when k = 2) to N +1+ N−1
2 = 3N+1

2 , and when N goes to in�nity the resulting lower bound
tends to 3

2 . Hence, we established the following.

Theorem 12 For any f such that f is D-benevolent function and surjective onto (c, +∞) for
some constant c ≥ 0, there is no randomized online algorithm with competitive ratio smaller
than 3

2 .

4 Concluding remarks
We note that our upper bound holds also for proper interval graphs. To see this claim note
that these graphs are equivalent to unit interval graphs and the algorithm we presented acts
the same on a proper interval graph as it does not depend on the exact value of the coordinates
of the endpoints of the intervals, but only on the relative order of these endpoints.

Our lower bounds on the performance of randomized algorithms as well as the lower bounds
of Woeginger [10], indicate that for some D-benevolent functions f , the problem is signi�cantly
easier than the general one. The study of the exact boundaries of these easier instances is left
for future research.

Our randomized algorithm has a competitive ratio better than the previous results only
for the D-benevolent case and the unit interval case. Therefore, improving the upper bound
of Seiden [9] for the C-benevolent case is still left as a major open question. To understand
why our algorithm and its analysis fails to improve the result for the C-benevolent case, we
note that whereas for the D-benevolent case and the unit interval case setting τ = 1 (in a
deterministic way) results an alternative 4-competitive algorithm, this is not the case for the C-
benevolent case, where we can only show that such a deterministic algorithm is 6-competitive.
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Now, randomization in the selection of τ helps to reduce the resulting competitive ratio below
6 but not enough to get below the competitive ratio of [9] (or even below 4) for this case.

We considered only the three special cases which are the C-benevolent and D-benevolent
cases and the case of unit intervals, that were all studied by Woeginger [10]. Identifying other
special cases for which there exists a (constant) competitive algorithms is also left for future
research.
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