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Abstract

We study here the dynamics (and stability) of ProbabilisticPopulation Protocols, via the differential
equations approach. We provide a quite general model and we show that it includes the model of Angluin
et. al. [1], in the case of very large populations. For the general model we give a sufficient condition for
stability that can be checked in polynomial time. We also study two interesting subcases: (a) protocols
whose specifications (in our terms) are configuration independent. We show that they are always stable
and that their eventual subpopulation percentages are actually a Markov Chain stationary distribution.
(b) protocols that have dynamics resembling virus spread. We show that their dynamics are actually
similar to the well-known Replicator Dynamics of Evolutionary Games. We also provide a sufficient
condition for stability in this case.

1 Introduction

In the near future, it is reasonable to expect that new types of systems will appear, designed or emerged, of
massive scale, expansive and permeating their environment, of very heterogeneous nature, and operating in
a constantly changing networked environment. Such systemsare expected to operate even beyond the com-
plete understanding and control of their designers, developers, and users. Although they will be perpetually
adapting to a constantly changing environment, they will have to meet their clearly-defined objectives and
provide guarantees about certain aspects of their own behavior.

We expect that most such systems will have the form of a very large society of networked artefacts.
Each such artefact will be unimpressive: small, with limited sensing, signal processing, and communication
capabilities, and usually of limited energy. Yet by cooperation, they will be organized in large societies
to accomplish tasks that are difficult or beyond the capabilities of todays conventional centralized systems.
These systems or societies should have particular ways to achieve an appropriate level of organization and
integration. This organization should be achieved seamlessly and with appropriate levels of flexibility, in
order to be able to achieve their global goals and objectives.

Angluin et al. [1, 2] introduced the notion of a computation by a population protocol to model such
distributed systems in which individual agents are extremely limited and can be represented as finite state
machines. In their model, finite-state, and complex behavior of the system as a whole emerges from the
rules governing pairwise interaction of the agents. The computation is carried out by a collection of agents,
each of which receives a piece of the input. These agents movearound and information can be exchanged
between two agents whenever they come into contact with eachother. The goal is to ensure that every agent
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can eventually output the value that is to be computed (assuming a fairness condition on the sequence of
interactions that occur).

In [1] they also proposed a natural probabilistic variationof the standard population protocol model,
in which finite-state agents interact in pairs under the control of an adversary scheduler. In this variant,
interactions that occurs between pairs of agents are chosenuniformly at random. We call the protocols of [1]
by the term “Probabilistic Population Protocols” (PPP). In [3] they presented fast algorithms for performing
computations in this variation and showed how to use the notion of a leader in order to efficiently compute
semilinear predicates and in order to simulate efficiently LOGSPACE Turing Machines. [4] studied the
acquisition and propagation of knowledge in the probabilistic model of random interactions between all
paris in a population (conjugating automata).

In this work we characterize the dynamics of population protocols by examining the rate of growth of
the states of the agents as the protocol evolves. We imagine here a continuoum of agents. By the law of large
numbers, one can model the undelrying aggregate stochasticprocess as a deterministic flow system. Our
main proposal here is to exploit the powerful tools of continuous nonlinear dynamics in order to examine
questions (such as stability) of such protocols.

We first provide a very general model for population protocolcontinuous dynamics. This model (Switch-
ing Population Protocols –SPP) includes the probabilistic population protocols (PPP) of [1] as a special
case, when the population is infinite and the time is continuous.

We show a sufficient condition for stability ofSPP that can be checked inpolynomial time. We also
examine two subclasses ofSPP:

• The Markovian Population Protocols(MPP). In these protocols, theirspecifications are configura-
tion independent. In this very practical case, we show thatMPP arealways stableand theirunique
population mix at stability is exacly the steady-state distribution of aMarkov Chain.

• TheLinear Viral Protocols(LVP). They are probabilistic protocols motivated by the “random pairing”
of [1]. However, agents review their current state at a higher rate when they have weak “immunity”.
We view this as a general model for the dynamics of viruses spread in the population. We show that
LVP are equivalent to the well-known “Replicator Dynamics” of Evolutionary Game Theory, and thus
to the well-known Lotka-Volterra dynamics. We also give a sufficient condition for stability ofLVP,
based on Potentials.

2 The General Model (Switching Probabilistic Protocols –SPP)

The network is modeled as a complete graphG where vertices represent nodes and edges represent commu-
nication links between nodes. We use the lettern to denote|V |, the number of nodes in the network. Each
node is capable of executing an “agent” (or process) which consists of the following components:

• K, a finite set of states. We use the letterk to denote|K|.

• X, a nonempty subset ofK, known as the inital states or start states.

We consider a large population ofn agents. Letq ∈ K be a state of the agent and letnq the number of
agents that are on the given statep. Then the total population size isn =

∑k
i=1 ni. The proportion of agents

that are at stateq is xq =
nq

n
. We callxq thedensityof q. In the sequelq = qi, wherei ∈ {1, 2, . . . , k}.

A state assignment of a system is defined to be an assignment ofa state to each agent in the system.
A configurationC is a map from the population to states, giving the current state of every agent. The
population state then, at timet, can be described via a vector~x(t) = (x1(t), . . . , xk(t)). Herexi(t) =

ni

n
,

i = 1 . . . k.
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In the sequel we assume thatn → ∞. We are interested, thus, in the evolution of~x(t) as time goes on.
We use a different model (compared to [1]) for describing a protocolP . We imagine that all agents in the
population are infinitely lived and that they interact forever. Each agent sticks to some state inK for some
time interval, and now and thenreviewsher state. This depends on~x(t) and may result to a change of state
of the agent. Based on this concept, aswitching population protocolconsists of the following two basic
elements (specifications):

1. A specification of thetime rateat which agents in the population review their state. This rate may
depend on the current, “local”, performance of the agent’s state and also on the configuration~x(t).

2. A specification of theswitching probabilitiesof a reviewing agent. The probability that an agent,
currently in stateqi at a review time, willswitchto stateqj is in general a functionpij (~x(t)), where
pi (~x) = (pi1 (~x) , . . . , pik (~x)) is the resulting distribution over the setK of states in the protocol.

In a large, finite, populationn, we assume that the review times of an agent are the “birth times” of
a Poisson process of rateλi (~x). At each such time, the agenti selects a new state according topi (~x).
We assume that all such Poisson processes are independent. Then, the aggregate of review times in the
sub-population of agents in stateqi is itself a Poisson process of birth ratexiλi (~x). As in the probabilistic
model of [1] we assume that state switches are independent random variables accross agents. Then, the
rate of the (aggregate) Poisson process of switches from state qi to stateqj in the whole population is just
xi(t)λi (~x(t)) pij (~x(t)).

Whenn → ∞, we can model the aggregate stochastic processes as deterministic flows (see, e.g., [9,
11]). The outflow from stateqi is

∑

j 6=i xjλj (~x) pij (~x). Then, the rate of change ofxi(t) (i.e. dxi(t)
dt

or
ẋi(t)) is just

ẋi =
∑

j∈K

xjpji (~x)λj (~x) − λi (~x)xi (1)

for i = 1, . . . , k.
We assume here that bothλi (~x) andpij (~x) are Lipschitz continuous functions in an open domainΣ

containing the simplex∆ where

∆ =

{

(xi, . . . , xk) :
K
∑

i=1

xi = 1 , xi ≥ 0 , ∀i

}

By the theorem of Picard-Linderlöf (see, e.g., [6] for a proof), Eq. 1 has auniquesolution for any initial
state~x(0) in ∆ and such a solution trajectory~x(t) is continuousand never leaves∆.

2.1 SPP includes the probabilistic population protocols

We now show that our model of Switching Probabilistic Protocols (SPP) is more general than the model
of [1] in the sense that it can be used to define the Probabilistic Population Protocols (PPP). We do this by
showing the following:

Theorem 1 The continuous time dynamics ofPPP (whenn → ∞) are a special case of the dynamics of
SPP.

Proof. According to [1], the discrete-time dynamics of a Probabilistic Population Protocol (PPP) are given
by a finite set of rules,R of the form

(p, q) 7→ (p′, q′)

wherep, q, p′, q′ ∈ K (K = {q1, . . . , qk}) together with a setA of n agents and an (irreflexive) relation
E ⊆ A×A.
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Intruitively, a (u, v) ∈ E means thatu, v are able to interact. [1] assumes further thatE consists of all
ordered pairs of distinct elements fromA.

A population configurationin [1] is a mappingC : A 7→ K (K is the set of states). LetC andC ′ be
population configurations, andu, v be two distinct agents. [1] says thatC can go toC ′ in one discrete step
(denotedC e

7→ C ′) via anencountere = (u, v) if

(C(u), C(v)) 7→
(

C ′(u), C ′(v)
)

is a rule inR. This means that the stateC(u) of u switches toC ′(u) and alsoC(v) switches toC ′(v).
The execution of the system is defined to be a sequenceC0, C1, C2, . . . of configurations (whereC0 is

the initial configuration) such that for eachi, Ci 7→ Ci+1. An execution is fair if for anyCi andCj , such
thatCi 7→ Cj andCi occurs infinitely often in the execution,Cj also occurs infinitely often in the execution.

In the probabilistic version of the above, [1] further states thate (the ordered pair to interact) is chosen
at random, independently and uniformly from all ordered pairs corresponding to edgese in A×A ([1] calls
it the model of Conjugating Automata, inspired also by [4]).

Let us now assume thatn → ∞ and letxi = limn→∞
ni

n
be the population fraction at stateqi ∈ K at a

particular configurationC, at timet. Consider the ruleρ in R

(qr, qm) 7→ (qi, qj)

Without loss of generality we assume in the sequel thatr 6= m and i 6= j in such rulesρ in R. By the
uniformity and randomness, the probability that such ane, that follows from ruleρ, is selected (as the
encounter), is justxr(t)xm(t). LetAi be the set of all(r,m) that are the left part of a ruleρ:

(qr, qm) 7→ (qi, qj)

or (qr, qm) 7→ (qj , qi)

LetBi be the set of(r,m) that are the left part of a ruleρ′:

(qr, qm) 7→ (qr′ , qm′)

with r = i or m = i. Without loss of generality letr = i in ρ′. By considering a small interval∆t and
taking limits as∆t → 0, due to fairness we get∀i:

ẋi =
∑

(r,m)∈Ai

xr(t)xm(t) − xi(t)
∑

(i,m)∈Bi

xm(t) (2)

The above set of equations describe the continuous dynamicsof PPP.
Now, consider ourSPP dynamics and Eq. 1. Setλi (~x) =

∑

xm(t), with m ranging over all rules

(qr, qm) 7→ (qr′ , qm′)

with r = i, and all rules
(qm, qr) 7→ (qr′ , qm′)

with r = i (i.e., over all rules inBi).
Also, setpmi = pri = 0, if r,m do not belong in any tuple ofAi.
Finally set

pri =
1

λr

∑

m∈C(r,i)

xm(t)

whereC(r, i) is the set of indicesm in the second argument of the left part of rules inAi (i.e. (qr, qm) 7→
(qr′ , qm′) with r′ = i orm′ = i).
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Then our system of Eq. 1 (theSPP dynamics) becomes the system of Eq. 3 (thePPP dynamics). Thus
thePPP dynamics are a special case of theSPP dynamics in the continuous time setting. ⊓⊔

Here is an example of the reduction described above. Let the rulesR in PPP be

(q1, q2) 7→ (q3, q2)

(q3, q1) 7→ (q1, q2)

(q2, q3) 7→ (q2, q1)

This gives the continuousPPP dynamics:

ẋ1 = x1x3 + x2x3 − x1 (x2 + x3)

ẋ2 = x1x3 + x1x2 + x2x3 − x2 (x1 + x3)

ẋ3 = x1x2 − x3 (x1 + x2)

We then set

λ1 = x2 + x3

λ2 = x1 + x3

λ3 = x1 + x2

and
p21 =

x3

x1+x3
p11 =

x3

x2+x3
p31 = 0

p12 =
x3

x2+x3
p22 =

x1

x1+x3
p32 =

x2

x1+x2

p13 =
x2

x2+x3
p23 = p33 = 0

and this results in ourSPP dynamics, namely:

ẋ1 = x1λ1p11 + x2λ2p21 + x3λ3p31 − x1λ1

ẋ2 = x1λ1p12 + x2λ2p22 + x3λ3p32 − x2λ2

ẋ3 = x1λ1p13 + x2λ2p23 + x3λ3p33 − x3λ3

3 Stability of nonlinear dynamic systems: a sufficient condition for decid-
ability.

Let us consider a dynamic system

ẋi = fi (~x) , i = 1, . . . , k

that is, in fact, more general than Eq. 1.

Definition 1 (Fixed Points) Let ~x∗ be a solution of the system{fi (~x∗) = 0, i = 1, . . . , k} which we call a
fixed pointof the system.

By making a Taylor expansion around~x∗ we obtain a linear approximation to the dynamics:

ẋi =
∑

(

xj − x∗j

) dfi
dxj

(~x∗)
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Settingξi = xi − x∗i we get

ξ̇i =
∑

ξj
dfi
dxj

(~x∗)

which is a Linear System with a fixed point at the origin, i.e.,ξ̇ = Lξ where the matrixL hasconstant
componentsLij =

dfi
dxj

(~x∗). L is called the Jacobian Matrix. Then, by the theorem of [5] we have

Corollary 2 If the fixed point~x∗ is hyperbolic(i.e., all eigenvalues ofL∗ have a non-zero real part) then
the topology of the dynamics of the nonlinear system around~x∗ is the same as the topology of a~x∗ in the
Linear system.

In fact, let each eigenvalue ofL beφ = a+ iω.

Corollary 3 Let a 6= 0, ∀φ eigenvalues ofL. Then

(a) If a < 0, ∀φ then~x(t) approaches the fixed point~x∗ ast → ∞.

(b) If there exists aφ with a > 0 then~x(t) divergesfrom the fixed point~x∗ along the direction of the
corresponding eigenvector. That is, the fixed point~x∗ is unstable.

Thus we get our main result of the system:

Theorem 4 If all fixed points~x∗ of our population dynamics of Eq. 1 are hyperbolic, then wecan decide
stability of the population protocol, aroundx∗, in polynomial timein the description of the protocol.

Corollary 5 If all fixed points ofPPP are hyperbolic, then the stability ofPPP can be decided in polyno-
mial time.

4 Switching Population Protocols with specifications independent of the con-
figuration

We now consider the special case of Eq. 1 whereλi (~x) = λi ∀i and wherepij (~x) = pij (specifications
independent of the configuration~x(t)). Then the basic system of Eq. 1 of the dynamics of the population
becomes:

ẋi =
∑

j∈K

xjλjpji − λixi i = 1 . . . k (3)

We call such protocols by the term “Markovian Population Protocols” (MPP).
Let qij = λipij for all i, j, wheni 6= j and whenj = i let qii = λi(pii − 1). Then Eq. 3 in fact becomes

dxi(t)

dt
= qiixi(t) +

∑

j 6=i

qkixk(t) (4)

Note that
∑

i∈K xi(t) = 1. But this is, in fact, the basic equation of the limiting-state probabilities of a
Markov Chain ofk states withqij being the (continuous time) rates of change (see, e.g., [8],pp. 53–55).

When allλij, i 6= j are non zero then the Markov Chain of Eq. 4 is irreducible and homogeneous. Then
the limits limt→∞ xi(t) always exist and are independent of the initial state. The limiting distribution is
givenuniquelyas the solution of the following equations:

qjjxj +
∑

k 6=j

qkjxk = 0

So, we get our second major result:
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Theorem 6 (Markovian Population Protocols –MPP) Let the specifications{λj , pij} independent of the
configuration~x(t). Let alsoλjpij 6= 0, ∀i, j wherei 6= j. Then the Population Protocol isstable. It always
has a limitinguniqueconfiguration{xi i = 1 . . . k} independent of the initial configuration~x(0), which is
exactly thesteady-state distributionof anergodic, homogeneous Markov Chain ofk states.

5 A special case of Random pairing population protocols
(Linear Viral Protocols – LVP)

Now, let us assume that all reviewing agents adopt the state of “the first man they meet in the street”. This is
clearly the case when the reviewing agent draws a pairing agent at random from the population (according
to the uniform probability distribution across agents) andadopts the state of the so sampled agent. This
is similar to the case of the protocols of [1] where the rules are (qi, qk) 7→ (qm, qr) with r,m ∈ {i, j}.
Formally then

pij (~x) = xj ∀i, j ∈ K, ∀x(t)

Now Eq. 4 becomes
ẋi =

∑

j∈K

xjxiλj(x) − λi(x)xi

i.e.

ẋi =





∑

j∈K

xjλj(x)− λi(x)



 · xi (5)

We now propose a “linear” model in order to capture the immunity that an agent has against other agents
in the population. We postulate that agents immunity dependon their states. One can imagine immunity to
be a measure of the degree of protection of agents when they interact. So, when an agent in stateqi interacts
with an agent in stateqj we measure the immunity of the(qi, qj) pair by an integeraij and we require here
thataij = aji. It is then natural to assume that agents in stateqi will wish to review their state more often
when their immunity is low. In particular we assume here thatany agent in stateqi has a review rateλi (~x)
that is linearly decreasingin the average immunity of the agent in stateqi. This is the simplest possible
model. the formal definitions follow:

Definition 2 (Immunity of a state) LetA = {aij} be a symmetric matrix of integers. The immunity of an
agent in stateqi is ti (~x) = ai1x1 + . . .+ aikxk.

Definition 3 (Average immunity of a population protocol, in a particular configuration) LetA be a sym-
metric matrix of integers. The average immunity of the population, in configuration{xi}, is: t (~x) =
∑

i∈K xiti (~x).

Definition 4 (Linear Viral Protocols – LVP) The Linear Viral Protocols are switching population proto-
cols with review rates of agents

λi (~x) = γ − δti (~x)

whereγ, δ ∈ ℜ, δ > 0 and alsoγ/δ ≥ ti (~x), ∀~x+∆, ∀i.

Now Eq. 5 becomes
ẋi = δ (ti (~x)− t (~x))xi (6)

Note, now, that this equation is a constant rescaling of the popular “replicator dynamics” of Evolutionary
Game Theory (see, e.g., [10]).
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Definition 5 The general Lotka-Volterra equation fork types of a population is of the form

ẋi = xi



ri +
k
∑

j=1

aijxj



 i = 1 . . . k

whereri, aij are constant.

By the equivalence of the Replicator Dynamics with the Lotka-Volterra systems we then get:

Theorem 7 The dynamics of the linear viral protocols areequivalentto the Lotka-Volterra dynamics.

We can then give an alternative sufficient condition for the (asymptotic) stability of the Linear Viral Proto-
cols.

Theorem 8 Let x∗ be a fixed point of Eq. 6, i.e.,ti (~x) = t (~x) is satisfied for~x = ~x∗. If
∑k

i=1 x
∗
i ti (~x) >

t (~x) for any~x in a region around~x∗, then~x∗ is asymptotically stable.

In order to prove our theorem, we first consider the relative entropy of~x and~x∗ as

E(x) = −
k
∑

i=1

x∗i ln

(

xi
x∗i

)

(7)

ClearlyE(x∗) = 0. Then we need to prove the following claim:

Claim 9 E(x) ≥ E(x∗), ∀~x

Proof. From Jensen’s inequality it folds:

exp (f(x)) ≥ f(expx)

whereexp() is the expectation,x a random variable andf a convex function. Thus Eq. 7 becomes

E(x) ≥ − ln

(

k
∑

i=1

x∗i
xi
x∗i

)

≥ − ln

(

k
∑

i=1

xi

)

= − ln 1 = 0

⊓⊔

Proof. Based on Claim 9 we can prove Theorem 8 as follows:

dE (~x(t))

dt
=

k
∑

i=1

dE

dxi
ẋi

= −
k
∑

i=1

x∗i
xi

ẋi

= −
k
∑

i=1

δ (ti (~x)− t (~x))x∗i (due to Eq. 6)

= −δ

[

k
∑

i=1

~x∗ (ti(x)− t (~x))

]

< 0 by assumption

Thus, in a region around~x∗, dE
dt

< 0. ThenE is a (strict) Lyapounov function (see, e.g., [7], pp. 18–19)and
thus~x∗ is stable asymptotically. ⊓⊔
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6 Conclusions

Thepopulation protocolmodel of Angluin et. al. [1] consists of a (large) populationof finite-stateagents
that interact in pairs. Each interaction updates the state of both participants according to a transition function
based on the pair of the participants’ previous states. A natural probabilistic model, proposed in [1], assumes
each interaction to occur between a pair of agents chosen uniformly at random. We call the protocols of
[1] by the term “Probabilistic Population Protocols” (PPP). [4] studied the acquisition and propagation of
knowledge in the probabilistic model of random interactions between all paris in a population (conjugating
automata). Curiously, the differential equation approachfor such protocols was not proposed till now.

We imagine here a continuoum of agents. By the law of large numbers, one can model the underly-
ing aggregate stochastic process as a deterministic flow system. Our main proposal here is to exploit the
powerful tools of continuous nonlinear dynamics in order toexamine questions (such as stability) of such
protocols.

We have extended the class of [1] by defining a general model of“Switching Population Protocols”
(SPP). We then examined stability for this general model and two important subclasses. Our main point is
that one can study stability and population dynamics of protocols, via nonlinear differential equations that
describe quite accurately the (discrete) population protocol dynamics when the population is very large. The
“differential equations” approach was indicated in the past for the analysis of evolution of algorithms with
Random Inputs, by [9, 11]. Our approach provides a sufficientcondition for stability ofPPP of [1] that can
be checked in polynomial time. It also gives a more general way to specifypopulation protocols, that reveals
interesting classes.
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