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Abstract

We study here the dynamics (and stability) of ProbabiliBtpulation Protocols, via the differential
equations approach. We provide a quite general model anevethat it includes the model of Angluin
et. al. [1], in the case of very large populations. For theegalhmodel we give a sufficient condition for
stability that can be checked in polynomial time. We alsagtiwo interesting subcases: (a) protocols
whose specifications (in our terms) are configuration inddpat. We show that they are always stable
and that their eventual subpopulation percentages aralpctuMarkov Chain stationary distribution.
(b) protocols that have dynamics resembling virus spread.siw that their dynamics are actually
similar to the well-known Replicator Dynamics of Evolutamy Games. We also provide a sufficient
condition for stability in this case.

1 Introduction

In the near future, it is reasonable to expect that new typegstems will appear, designed or emerged, of
massive scale, expansive and permeating their environmoewery heterogeneous nature, and operating in
a constantly changing networked environment. Such systéeensxpected to operate even beyond the com-
plete understanding and control of their designers, deeety and users. Although they will be perpetually
adapting to a constantly changing environment, they wiliehi@ meet their clearly-defined objectives and
provide guarantees about certain aspects of their own ehav

We expect that most such systems will have the form of a vegelaociety of networked artefacts.
Each such artefact will be unimpressive: small, with lirditensing, signal processing, and communication
capabilities, and usually of limited energy. Yet by coopiers they will be organized in large societies
to accomplish tasks that are difficult or beyond the cap#sliof todays conventional centralized systems.
These systems or societies should have particular wayhtevecan appropriate level of organization and
integration. This organization should be achieved seatylesd with appropriate levels of flexibility, in
order to be able to achieve their global goals and objectives

Angluin et al. [1, 2] introduced the notion of a computation & population protocol to model such
distributed systems in which individual agents are extigrimnited and can be represented as finite state
machines. In their model, finite-state, and complex behmavidhe system as a whole emerges from the
rules governing pairwise interaction of the agents. Themdation is carried out by a collection of agents,
each of which receives a piece of the input. These agents arouad and information can be exchanged
between two agents whenever they come into contact with@thein. The goal is to ensure that every agent
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can eventually output the value that is to be computed (asgumfairness condition on the sequence of
interactions that occur).

In [1] they also proposed a natural probabilistic variat@rthe standard population protocol model,
in which finite-state agents interact in pairs under the robraf an adversary scheduler. In this variant,
interactions that occurs between pairs of agents are chwsfemmly at random. We call the protocols of [1]
by the term “Probabilistic Population Protocol®RFP). In [3] they presented fast algorithms for performing
computations in this variation and showed how to use thenaif a leader in order to efficiently compute
semilinear predicates and in order to simulate efficienfY@SPACE Turing Machines.[[4] studied the
acquisition and propagation of knowledge in the probafilimodel of random interactions between all
paris in a population (conjugating automata).

In this work we characterize the dynamics of population grols by examining the rate of growth of
the states of the agents as the protocol evolves. We imagmeealrcontinuoum of agents. By the law of large
numbers, one can model the undelrying aggregate stoclmstess as a deterministic flow system. Our
main proposal here is to exploit the powerful tools of camtins nonlinear dynamics in order to examine
guestions (such as stability) of such protocols.

We first provide a very general model for population prota@mitinuous dynamics. This model (Switch-
ing Population Protocols SPP) includes the probabilistic population protocoRRP) of [1] as a special
case, when the population is infinite and the time is contiisuo

We show a sufficient condition for stability &PP that can be checked polynomial time We also
examine two subclasses $PP:

e The Markovian Population Protocol$MPP). In these protocols, thespecifications are configura-
tion independentin this very practical case, we show thdPP arealways stableand theirunique
population mix at stability is exacly the steady-stateribstion of aMarkov Chain

e ThelLinear Viral Protocols(LVP). They are probabilistic protocols motivated by the “ramdaairing”
of [1]. However, agents review their current state at a highte when they have weak “immunity”.
We view this as a general model for the dynamics of virusesagpin the population. We show that
LVP are equivalent to the well-known “Replicator Dynamics” afdiitionary Game Theory, and thus
to the well-known Lotka-Volterra dynamics. We also give Hisient condition for stability ofLVP,
based on Potentials.

2 The General Model (Switching Probabilistic Protocols -SPP)

The network is modeled as a complete gréptvhere vertices represent nodes and edges represent commu-
nication links between nodes. We use the lett¢éo denote|V/|, the number of nodes in the network. Each
node is capable of executing an “agent” (or process) whicisists of the following components:

e K, afinite set of states. We use the lefteo denote K |.

e X, a nonempty subset df, known as the inital states or start states.

We consider a large population ofagents. Let; € K be a state of the agent and tefthe number of
agents that are on the given statel'hen the total population sizesis= Zle n;. The proportion of agents
that are at statgis z, = % We callz, thedensityof ¢. In the sequef = ¢;, wherei € {1,2,... k}.

A state assignment of a system is defined to be an assignmenstafe to each agent in the system.
A configurationC' is a map from the population to states, giving the currertesth every agent. The
population state then, at tintecan be described via a vectéft) = (z1(t),...,zx(t)). Herex;(t) = =%,
1=1...k.



In the sequel we assume that— oo. We are interested, thus, in the evolutionigf) as time goes on.
We use a different model (compared [to [1]) for describing @qwol P. We imagine that all agents in the
population are infinitely lived and that they interact fagevEach agent sticks to some statdsrfor some
time interval, and now and theeviewsher state. This depends @) and may result to a change of state
of the agent. Based on this conceptswaitching population protocotonsists of the following two basic
elements (specifications):

1. A specification of théime rateat which agents in the population review their state. Thie raay
depend on the current, “local’, performance of the aget&tesand also on the configurati@it).

2. A specification of theswitching probabilitiesof a reviewing agent. The probability that an agent,
currently in statey; at a review time, willswitchto stateg; is in general a functiom;; (Z(t)), where
pi (Z) = (pin (%), ..., pir (Z)) is the resulting distribution over the skt of states in the protocol.

In a large, finite, populatiom, we assume that the review times of an agent are the “birtbstirof
a Poisson process of ratg (¥). At each such time, the agehiselects a new state accordingto(¥).
We assume that all such Poisson processes are independet, the aggregate of review times in the
sub-population of agents in stajgis itself a Poisson process of birth ratg\; (). As in the probabilistic
model of [1] we assume that state switches are independedbma variables accross agents. Then, the
rate of the (aggregate) Poisson process of switches framgteo stateg; in the whole population is just
zi(t)Ai (Z(2)) pej (Z(1)).

Whenn — oo, we can model the aggregate stochastic processes as destimflows (see, e.g.. [9,
11]). The outflow from state; is 3°; ., z;\; (Z) pij (¥). Then, the rate of change af(t) (i.e. dxd;t(t) or
Z;(t)) is just

o= 0 apsi (B) A (T) — Ai (@) (1)

fori=1,... k.
We assume here that boMj () andp;; (¥) are Lipschitz continuous functions in an open domsin
containing the simplexXA where

K

A:{(mi,...,wk):zgnizl, wizO,Vz}

i=1

By the theorem of Picard-Linderlof (see, e.@l, [6] for agfiipEq.[d has ainiquesolution for any initial
statez’(0) in A and such a solution trajectof(t) is continuousand never leaveA.

2.1 SPP includes the probabilistic population protocols

We now show that our model of Switching Probabilistic ProtedSPP) is more general than the model
of [1] in the sense that it can be used to define the ProbabikRstpulation ProtocolsRPP). We do this by
showing the following:

Theorem 1 The continuous time dynamics 8PP (whenn — oo) are a special case of the dynamics of
SPP.

Proof. According to [1], the discrete-time dynamics of a Probahii Population ProtocoRPP) are given
by a finite set of rulesRk of the form

(p,q) = (')
wherep, q,p',¢ € K (K = {q1,...,q}) together with a sefl of n agents and an (irreflexive) relation
ECAxA.



Intruitively, a (u,v) € E means that,, v are able to interact! [1] assumes further thatonsists of all
ordered pairs of distinct elements frafn

A population configurationn [1] is a mappingC : A — K (K is the set of states). L&t andC’ be
population configurations, and v be two distinct agents[[1] says th@tcan go toC” in one discrete step
(denotedC % C") via anencountere = (u, v) if

(C(u), Cv)) = (C"(u), C'(v))

is a rule inR. This means that the staf&«) of u switches toC’(u) and alsaC'(v) switches taC’(v).

The execution of the system is defined to be a sequéc€, Co, . .. of configurations (wher€ is
the initial configuration) such that for ea¢hC; — C;y1. An execution is fair if for anyC; andC;, such
thatC; — C; andC; occurs infinitely often in the executiof,; also occurs infinitely often in the execution.

In the probabilistic version of the above] [1] further statieate (the ordered pair to interact) is chosen
at random, independently and uniformly from all orderedeaorresponding to edgesn A x A ([1] calls
it the model of Conjugating Automata, inspired also by [4]).

Let us now assume that— oc and letr; = lim,,,, “** be the population fraction at stajec K at a
particular configuratior®”, at timet. Consider the rule in R

(QTa Qm) = (Qi7 Qj)

Without loss of generality we assume in the sequel thet m andi # j in such rulesp in R. By the
uniformity and randomness, the probability that sucheathat follows from rulep, is selected (as the
encounter), is just,(t)x,,(t). Let A; be the set of al[r, m) that are the left part of a rule

(qT’7QTn) — (qHQJ)
or (g qm) — (g5,q)

Let B; be the set ofr, m) that are the left part of a rule:

(QM Qm) = (%“’7 Qm’)

with » = i or m = 4. Without loss of generality let = i in p’. By considering a small intervaht and
taking limits asAt¢ — 0, due to fairness we g&t:

gi= Y, w®rm(t) - zit) D wm(t) )

(r,m)EAi (i,m)EBi

The above set of equations describe the continuous dynariiRiBP.
Now, consider ouSPP dynamics and Eql1. Set (¥) = > z,,(¢), with m ranging over all rules

(QTa Qm) — (%"’7 Qm’)

with » = ¢, and all rules
(@m> @) = (@, @)

with » = i (i.e., over all rules inB;).
Also, setp,,; = pr; =0, if r,m do not belong in any tuple o;.
Finally set
1
Pri = )\_ Z .I'm(t)
" meC(r,i)
whereC(r, 1) is the set of indicesn in the second argument of the left part of rulesdin(i.e. (¢,, ¢m) —
(Gr, @) With ' =4 0rm/ = i).



Then our system of EQ] 1 (tH&PP dynamics) becomes the system of Eg. 3 @R®P dynamics). Thus
the PPP dynamics are a special case of 8ieP dynamics in the continuous time setting. O

Here is an example of the reduction described above. Leuthe R in PPP be

(11,92) = (g3,92)
(a3,q1) = (q1,92)
(a2,93) — (q2,q1)
This gives the continuouBPP dynamics:
1 = T1x3 + ToT3 — T3 (xz + x3)
To = T3 + T1To + Tokz — To (xl + x3)
1"3 = X192 — I3 ((ﬂl +x2)
We then set
Al = T9 + x3
Ay = x1 + x3
A3 = x1 + X9
and
P21 = 505 P = oin p31 =0
p12 = :B2T:v3 P22 = 551:3‘1-'53 P32 = xlTrz
P13 = 50, P23 = p3z =0
and this results in oUBPP dynamics, namely:
T1 = T1A1p11 + T2Aap21 + x3A3p31 — T
To = T1A1p12 + T2Aapao + T3A3p32 — T2
Tz = T1A1p13 + Talapaz + T3A3p33 — T3A3

3 Stability of nonlinear dynamic systems: a sufficient condion for decid-
ability.

Let us consider a dynamic system
2 = fi (Z), 1=1,...,k
that is, in fact, more general than Eq. 1.

Definition 1 (Fixed Points) Let z* be a solution of the systefy; (¥*) =0, i =1, ..., k} which we call a
fixed pointof the system.

By making a Taylor expansion aroutti we obtain a linear approximation to the dynamics:

X = Z (;L"j —azj) afi (Z)

d:L'j




Setting¢; = x; — =} we get
: dfi |
G = X 6g,, @)

which is a Linear System with a fixed point at the origin, i&= L& where the matrix, hasconstant
componentd.;; = jﬁj (z*). L is called the Jacobian Matrix. Then, by the theorem of [5] &eeh

Corollary 2 If the fixed pointz* is hyperbolic(i.e., all eigenvalues of.* have a non-zero real part) then
the topology of the dynamics of the nonlinear system aratinid the same as the topology ofF in the
Linear system.

In fact, let each eigenvalue éfbe¢ = a + iw.
Corollary 3 Leta # 0, V¢ eigenvalues of.. Then
(@) Ifa < 0,Vethenz(t) approaches the fixed poifit ast — oo.

(b) If there exists a with a > 0 thenZ(t) divergesfrom the fixed point?* along the direction of the
corresponding eigenvector. That is, the fixed paihts unstable.

Thus we get our main result of the system:

Theorem 4 If all fixed pointsZ* of our population dynamics of EQl 1 are hyperbolic, thencas decide
stability of the population protocol, aroung, in polynomial timan the description of the protocol.

Corollary 5 If all fixed points of PPP are hyperbolic, then the stability 8PP can be decided in polyno-
mial time.

4 Switching Population Protocols with specifications indepndent of the con-
figuration

We now consider the special case of Elg. 1 wherer) = \; Vi and wherep;; () = p;; (specifications
independent of the configuratiaf(t)). Then the basic system of Hg. 1 of the dynamics of the populat
becomes:
.fi = Z wj)\jpji — )\ixi i=1...k (3)
JEK
We call such protocols by the term “Markovian PopulationtBzols” (MPP).
Letg;; = \;p;; for all 4, j, wheni # j and whery =i let ¢;; = A\;(p;; — 1). Then EqLB in fact becomes
dx;(t
0 an(t) + Y awi(t) (4)
j#i

Note thatd ., x;(t) = 1. But this is, in fact, the basic equation of the limitingtstgrobabilities of a
Markov Chain ofk states withy;; being the (continuous time) rates of change (see, elgpp8H3-55).

When all);;, i # j are non zero then the Markov Chain of Ef. 4 is irreducible amddgeneous. Then
the limits lim;_, o, x;(¢) always exist and are independent of the initial state. Tinéilig distribution is
givenuniguelyas the solution of the following equations:

qjjTj + Z%ﬂk =0
Py

So, we get our second major result:



Theorem 6 (Markovian Population Protocols -MPP) Let the specification$);, p;; } independent of the
configurationz(t). Let also\;p;; # 0, Vi, j wherei # j. Then the Population Protocolssable It always
has a limitinguniqueconfiguration{z; i = 1...k} independent of the initial configuratia#(0), which is
exactly thesteady-state distributionf anergodic, homogeneous Markov Chainkoftates

5 A special case of Random pairing population protocols
(Linear Viral Protocols — LVP)

Now, let us assume that all reviewing agents adopt the statieeofirst man they meet in the street”. This is
clearly the case when the reviewing agent draws a pairingtagegandom from the population (according
to the uniform probability distribution across agents) ambpts the state of the so sampled agent. This
is similar to the case of the protocols of [1] where the rules(a;, gx) — (gm,qr) With r,m € {i, j}.
Formally then

Dij (f) =Zj Vi, j € K, Vw(t)

Now Eq.[4 becomes
fz’ = Z $JZ’Z>\J(Z’) — /\Z(x)azz

jeK

T; = (Z $j>\j($) — /\z($)) © Ly (5)
jEK
We now propose a “linear” model in order to capture the imriyuthiat an agent has against other agents
in the population. We postulate that agents immunity deentheir states. One can imagine immunity to
be a measure of the degree of protection of agents when tteraah So, when an agent in stagienteracts
with an agent in statg; we measure the immunity of the;, ¢;) pair by an integes;; and we require here
thata;; = aj;. Itis then natural to assume that agents in sjateill wish to review their state more often
when their immunity is low. In particular we assume here #rat agent in state; has a review ratg,; (¥)
that islinearly decreasingn the average immunity of the agent in state This is the simplest possible
model. the formal definitions follow:

Definition 2 (Immunity of a state) Let A = {a;;} be a symmetric matrix of integers. The immunity of an
agent in statey; ist; (f) = a1+ ...+ aikTk-

Definition 3 (Average immunity of a population protocol, in a particular configuration) LetA be asym-
metric matrix of integers. The average immunity of the pafporh, in configuration{z;}, is: t (&) =

>ick Titi (T).

Definition 4 (Linear Viral Protocols — LVP) The Linear Viral Protocols are switching population proto-
cols with review rates of agents
Ai (%) =y — ot; ()
wherey,d € R, 6 > 0 and alsoy/§ > t; (¥), VI + A, Vi.
Now Eq.[% becomes
x’i =9 (ti (f) —1 (f)) xX; (6)

Note, now, that this equation is a constant rescaling of tular “replicator dynamics” of Evolutionary
Game Theory (see, e.d., [10]).



Definition 5 The general Lotka-Volterra equation fértypes of a population is of the form

k
T, = X ri—i—Zaijxj i=1...k
j=1
wherer;, a;; are constant.

By the equivalence of the Replicator Dynamics with the Let#terra systems we then get:
Theorem 7 The dynamics of the linear viral protocols aguivalentto the Lotka-Volterra dynamics.

We can then give an alternative sufficient condition for they(ptotic) stability of the Linear Viral Proto-
cols.

Theorem 8 Let z* be a fixed point of EQ.16, i.et; (¥) = t (%) is satisfied forz = 7*. If Y%, zit; (Z) >
t (Z) for anyZ in a region around™, thenz* is asymptotically stable.

In order to prove our theorem, we first consider the relativeopy of * andx™ as
k .
E(r) = — fln | — 7
(#)= =3 aimn (w> ()
Clearly E(z*) = 0. Then we need to prove the following claim:

Clam9 E(z) > E(z*), V¥

Proof. From Jensen’s inequality it folds:

exp (f(x)) = f(expx)

whereexp() is the expectationy a random variable anfl a convex function. Thus Ef] 7 becomes

k k
E(x) > —In (fo%) > —1In <Zaj2> =—Inl1=0
i=1 ( i=1

Proof. Based on Clairh]9 we can prove Theorem 8 as follows:
dE (Z(t)) " dE
dt im dl’l
koo«
w,l .
i=1 i

k
= =Y 6@t (@) —t(@)2;  (dueto Eqlh)
i=1

k

= —0 Zf*(ti(x)—t(f))
=1

< 0 by assumption

Thus, in a region around*, Cf;l—’f < 0. ThenF is a (strict) Lyapounov function (see, e.ql, [7], pp- 18-48l

thusz™ is stable asymptotically. O



6 Conclusions

The population protocoimodel of Angluin et. al.[[1] consists of a (large) populatioifinite-stateagents
that interact in pairs. Each interaction updates the stdietb participants according to a transition function
based on the pair of the participants’ previous states. &rabprobabilistic model, proposed (A [1], assumes
each interaction to occur between a pair of agents chosdoromy at random. We call the protocols of
[1] by the term “Probabilistic Population Protocold?RP). [4] studied the acquisition and propagation of
knowledge in the probabilistic model of random interacsitmetween all paris in a population (conjugating
automata). Curiously, the differential equation apprdactsuch protocols was not proposed till now.

We imagine here a continuoum of agents. By the law of largebmus one can model the underly-
ing aggregate stochastic process as a deterministic floswraysOur main proposal here is to exploit the
powerful tools of continuous nonlinear dynamics in ordeexamine questions (such as stability) of such
protocols.

We have extended the class bf [1] by defining a general mod&bwitching Population Protocols”
(SPP). We then examined stability for this general model and twpadrtant subclasses. Our main point is
that one can study stability and population dynamics ofquais, via nonlinear differential equations that
describe quite accurately the (discrete) population paltdynamics when the population is very large. The
“differential equations” approach was indicated in thetpgasthe analysis of evolution of algorithms with
Random Inputs, by [9, 11]. Our approach provides a sufficiendition for stability ofPPP of [1] that can
be checked in polynomial time. It also gives a more genergltavapecifypopulation protocols, that reveals
interesting classes.
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