
Literal Projection for First-Order Logic

Christoph Wernhard

Universität Koblenz-Landau
wernhard@uni-koblenz.de

Abstract. The computation of literal projection generalizes predicate
quantifier elimination by permitting, so to speak, quantifying upon an
arbitrary sets of ground literals, instead of just (all ground literals with)
a given predicate symbol. Literal projection allows, for example, to ex-
press predicate quantification upon a predicate just in positive or neg-
ative polarity. Occurrences of the predicate in literals with the comple-
mentary polarity are then considered as unquantified predicate symbols.
We present a formalization of literal projection and related concepts,
such as literal forgetting, for first-order logic with a Herbrand semantics,
which makes these notions easy to access, since they are expressed there
by means of straightforward relationships between sets of literals. With
this formalization, we show properties of literal projection which hold for
formulas that are free of certain links, pairs of literals with complemen-
tary instances, each in a different conjunct of a conjunction, both in the
scope of a universal first-order quantifier, or one in a subformula and the
other in its context formula. These properties can justify the application
of methods that construct formulas without such links to the computa-
tion of literal projection. Some tableau methods and direct methods for
second-order quantifier elimination can be understood in this way.

1 Introduction

Predicate quantifier elimination has a large variety of applications in knowledge
processing, which continue to become apparent since the early nineties until
very recently [1–8]. This is sometimes not obvious, because operations such as
the computation of uniform interpolants, forgetting and projection are in fact
variants of predicate quantifier elimination. In parallel to discovering applica-
tions, the development of methods that perform predicate quantifier elimina-
tion in first-order and related logics has been of continued interest since the
early nineties [1, 3, 9, 8]. In recent years also predicate quantifier elimination in
propositional logic became a subject of research, driven largely by advances in
SAT-solving [4, 5, 10–12].

In this paper we focus on literal projection, which generalizes predicate quan-
tification by permitting, so to speak, quantifying upon an arbitrary set of ground
literals, instead of just (all ground literals with) a given predicate symbol. Lit-
eral projection allows, for example, to express predicate quantification upon a
predicate just in positive or negative polarity. Eliminating such a quantifier from
a formula in negation normal form results in a formula that might still contain

the quantified predicate, but only in literals whose polarity is complementary
to the quantified one. The result of wrapping a formula into such an existen-
tial quantifier, followed by eliminating it, has – among the formulas that do not
contain the quantified predicate in the quantified polarity – exactly the same
theorems as the original formula. The result can be considered as an extract
of the original formula, where knowledge about the quantified predicate in the
quantified polarity is “forgotten”, but all other knowledge is retained. A look
over the 40000 theorems in the Mizar mathematical library, the largest collec-
tion of formalized mathematical knowledge, indicates the order of magnitude of
the role of asymmetric polarity in actual knowledge bases: In 98.2 percent of the
theorems, at least one predicate symbol occurs only in a single polarity. In 66.9
percent, no predicate symbol occurs in both polarities. On average, 88.9 percent
of the predicate symbols in the signature of a theorem occur in the theorem only
in a single polarity.1

Literal forgetting, a variant of literal projection, has been formalized for
propositional logic in [11]. We generalize this formalization to first-order logic
with Herbrand interpretations. A new formulation of the characterization in [11]
facilitates the formal access to literal projection and related notions, which then
can be expressed by means of straightforward relationships between sets of liter-
als. With this formalization, we show some properties of literal projection which
hold for formulas that are free of certain links, pairs of literals with complemen-
tary instances, each in a different conjunct of a conjunction, both in the scope
of a universal first-order quantifier, or one in a subformula and the other in its
context formula. These properties can justify the application of methods that
construct formulas without such links to predicate quantifier elimination, or,
more generally, to the computation of literal projection. Some tableau construc-
tion procedures and direct methods [8] for second-order quantifier elimination
can be understood in this way.

The structure of the paper is as follows: In Sect. 2 the semantic framework
with the characterization of literal projection is defined and illustrated by some
examples. Further related concepts are defined in Sect. 3, in particular a formal
account of the set of literals “about which a formula expresses something.” In
Sect. 4 basic properties of literal projection are summarized, properties that
relate to linklessness and conjunction are developed, and their application to
computation methods is outlined. A further property that relates to linklessness
between a subformula and its context is discussed in Sect. 5. In the conclusion,
applications of literal projection in knowledge-based systems are suggested.

A short version of this paper has been published as [14].

1 These statistics have been obtained with the MPTP 0.2 translation of the Mizar
library [13]. About 1000 theorems which have just equality as predicate or translate
to true have not been considered. Predicates that are only implicit in the original
Mizar syntax (modes, attributes and aggregates), as well as predicate occurrences in
set abstractions and type specifiers, have been taken into account.

2 Semantic Framework, Projection and Forgetting

Notation. We write the positive (negative) literal with atom A as +A (−A).
We understand a first-order formula as in negation normal form, constructed
from literals, truth value constants >,⊥, binary connectives ∧,∨, and quantifiers
∀,∃. Implication →, negation ¬ and dropping the sign of positive literals are
understood as meta-level notation with respect to this syntax. We assume a
fixed first-order signature with at least one constant symbol. The sets of all
ground terms and all ground atoms, with respect to this signature, are denoted
by GTERMS and GATOMS. Variables are x, y, z, also with subscripts. To avoid
clumsy handling of quantifier scopes, we assume that in a formula all occurrences
of the same variable are either free or are bound by an occurrence of a quantifier,
and that no two quantifier occurrences bind occurrences of the same variable.

The Projection Operator and Literal Scopes. A formula in general is like
a first-order formula, but in its construction a further operator, project(F, S),
is permitted, where F is a formula and S specifies a set of ground literals. We
call a set of ground literals in the role as argument to project a literal scope. The
formula project(F, S) is called the literal projection of F onto S. Literal projection
generalizes existential second-order quantification. It is further discussed below.

Interpretations. We characterize the semantics with a notational variant of
the framework of Herbrand interpretations: An interpretation is a pair 〈I, β〉,
where I is a structure, that is, a set of ground literals that contains for all
ground atoms A exactly one of +A or −A, and β is a variable assignment, that
is, a mapping of the set of variables into GTERMS.

Satisfaction Relation. The satisfaction relation between interpretations 〈I, β〉
and formulas is defined by the clauses in Tab. 1, where L matches a literal,
F, F1, F2 match a formula, and S matches a literal scope specifier. Two opera-
tions are defined on variable assignments β : If F is a formula, then Fβ denotes F
with all variables replaced by their image in β. If x is a variable and t a ground
term, then β tx is the variable assignment that maps x to t and all other variables
to the same values as β.

The semantic definition of literal projection in Tab. 1 gives a formal account
of the following more intuitive characterization: An interpretation 〈I, β〉 satisfies
project(F, S) if and only if there is a structure J such that 〈J, β〉 satisfies F
and I can be obtained from J by replacing literals that are not in S with their
complements. This includes the special case I = J , where no literals are replaced.

Entailment and equivalence can be straightforwardly defined in terms of the
satisfaction relation: A formula F1 entails a formula F2, in symbols F1 |= F2,
if and only if for all interpretations 〈I, β〉 it holds that if 〈I, β〉 |= F1 then
〈I, β〉 |= F2. A formula F1 is equivalent to a formula F2, in symbols F1 ≡ F2, if
and only if F1 |= F2 and F2 |= F1.

Table 1. The Satisfaction Relation with the Semantic Definition of Literal Projection

〈I, β〉 |= >
〈I, β〉 6|= ⊥
〈I, β〉 |= L iffdef Lβ ∈ I
〈I, β〉 |= F1 ∧ F2 iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2

〈I, β〉 |= F1 ∨ F2 iffdef 〈I, β〉 |= F1 or 〈I, β〉 |= F2

〈I, β〉 |= ∀x F iffdef for all t ∈ GTERMS it holds that 〈I, β t
x 〉 |= F

〈I, β〉 |= ∃x F iffdef there exists a t ∈ GTERMS such that 〈I, β t
x 〉 |= F

〈I, β〉 |= project(F, S) iffdef there exists a structure J such that
〈J, β〉 |= F and J ∩ S ⊆ I

Relation to Conventional Model Theory. Literal sets as components of
interpretations permit the straightforward definition of the semantics of lit-
eral projection given in the last clause in Tab. 1. The set of literals I of an
interpretation 〈I, β〉 is called “structure”, since it can be considered as repre-
sentation of a structure in the conventional sense used in model theory: The
domain is the set of ground terms. Function symbols f with arity n ≥ 0 are
mapped to functions f ′ such that for all ground terms t1, ..., tn it holds that
f ′(t1, ..., tn) = f(t1, ..., tn). Predicate symbols p with arity n ≥ 0 are mapped to
{〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}. Moreover, an interpretation 〈I, β〉 represents
a conventional second-order interpretation [15] (if predicate variables are con-
sidered as distinguished predicate symbols): The structure in the conventional
sense corresponds to I, as described above, except that mappings of predicate
variables are omitted. The assignment is β, extended such that all predicate
variables p are mapped to {〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}.

Some More Notation. If L is a literal, S is a literal scope, I is an inter-
pretation, F is a formula, x is a variable, and t is a term, then: L̃ denotes the
complement of L; S̃ def= {L̃ | L ∈ S}; S def= GLITS − S; S is called consistent
if it does not contain a literal and its complement; I[L] def= (I − {L̃}) ∪ {L};
I[S] def= (I − S̃) ∪ S; F{x 7→ t} is F with all occurrences of x replaced by t.

Literal Forgetting. In some applications it is natural to consider projection
onto all literals with exception of those in a given set. The concept of forgetting
allows to express this conveniently: The literal forgetting in F about S, in symbols
forget(F, S), is defined by forget(F, S) def= project(F, S).

Formulation Variants of Literal Projection and Forgetting. The phrase
J ∩ S ⊆ I in the semantic definition of literal projection (Tab. 1) can be ex-
pressed in a variety of equivalent formulations, shown as (P1)–(P5) in Tab. 2.
Adaptions of these formulations to literal forgetting are shown as (F1)–(F5). The
two characterizations of literal forgetting in [11, Prop. 14] correspond to (F4)
and (F5).2

2 Seemingly there is a bug in [11, Prop. 14]: the second characterization should prob-
ably be Mod(Σ) ∪ {ω | Force(ω, l) |= Σ} instead of just {ω | Force(ω, l) |= Σ}.

Table 2. Formulation Variants of Literal Projection and Forgetting

(P1) J ∩ S ⊆ I.

(P2) J ⊆ I ∪ S.

(P3) I ∩ eS ⊆ J .
(P4) There exists a literal scope S′

such that S′ ∩ S = ∅ and J = I[S′].
(P5) There exists a literal scope S′

such that S′ ∩ eS = ∅ and I = J [S′].

(F1) J ∩ S ⊆ I.
(F2) J ⊆ I ∪ S.

(F3) I ⊆ J ∪ eS.
(F4) There exists a literal scope S′

such that S′ ⊆ S and J = I[S′].
(F5) There exists a literal scope S′

such that S′ ⊆ eS and I = J [S′]

Atom Projection and Forgetting. In the special case where the literal scope
S is equal to S̃, we speak of atom projection and atom forgetting. The condition
J ∩S ⊆ I in the semantic definition of project is then equivalent to I∩S = J ∩S.
Existential second-order quantification can be expressed in terms of atom forget-
ting: ∃p F corresponds to forget(F, {L | L is a ground literal with predicate p}).

By the way, at least for propositional logic, it is also possible to define literal
forgetting in terms of atom forgetting, since for propositional formulas F and
ground literals L it holds that forget(F, {L}) ≡ (forget(L∧F, {L, L̃})∨ (L̃∧F)).

Example 1 (Forgetting a Negative Literal). Let F def= ((p→ q)∧ (q → r))
and S def= {+p,−p,+q,+r,−r}. We now illustrate that project(F, S) ≡ ((p →
q) ∧ (p → r)). It is not hard to see that the models of F are exactly those
interpretations whose structures are a superset of at least one of M1, ...,M4,
defined as shown in Tab. 3.(i). Thus the equations in Tab. 3.(ii) hold. By the
semantic definition of literal projection, project(F, S) is a formula whose models
are exactly the interpretations which are a superset of at least one of the Mi∩S,
for i ∈ {1, ..., 4}. It is easy to see that this condition on interpretations, being
a superset of at least one of the Mi ∩ S, is equivalent to being a superset of
M ′1 or M ′2, defined as in Tab. 3.(iii). It is not hard to see that the models of
((p→ q) ∧ (p→ r)) are exactly the interpretations that satisfy this condition.

Example 2 (Forgetting a Positive Literal). Let F be defined as in Examp. 1
and S def= {+p,−p,−q,+r,−r}. Thus, S is as in Examp. 1, except that it contains q
negatively instead of positively. Analogously to Examp. 1, it can be shown that
project(F, S) ≡ ((p → r) ∧ (q → r)), where, if M1, ...,M4 are defined as in
Examp. 1, the equations in Tab. 3.(iv) hold.

Table 3. Examples of Literal Projection

(i) M1
def= {+p,+q,+r},

M2
def= {−p,+q,+r},

M3
def= {−p,−q,+r},

M4
def= {−p,−q,−r}.

(ii) M1 ∩ S = {+p,+q,+r},
M2 ∩ S = {−p,+q,+r},
M3 ∩ S = {−p,+r},
M4 ∩ S = {−p,−r}.

(iii) M ′
1

def= {+p,+q,+r},
M ′

2
def= {−p}.

(iv) M1 ∩ S = {+p,+r},
M2 ∩ S = {−p,+r},
M3 ∩ S = {−p,−q,+r},
M4 ∩ S = {−p,−q,−r}.

(v) M1 ∩ S = {+p,+r},
M2 ∩ S = {−p,+r},
M3 ∩ S = {−p,+r},
M4 ∩ S = {−p,−r}.

Example 3 (Forgetting an Atom). Let F be defined as in Examp. 1 and
S def= {+p,−p,+r,−r}. Thus, S is as in Examp. 1 and 2, except that it does not
contain a literal with atom q. Analogously to Examp. 1, it can be shown that
project(F, S) ≡ (p → r), where, if M1, ...,M4 are defined as in Examp. 1, the
equations in Tab. 3.(v) hold.

3 Essential Literal Base and Related Concepts

Literal Base and Essential Literal Base. The signature, that is, the set of
predicate and function symbols, of a knowledge base hints the objects, concepts
and relations about which it expresses “knowledge”. But the signature might be
too large: For example the formula KB = (p ∨ (q ∧ ¬q)) is clearly equivalent
to p. Thus KB does express something about p but not about q, although q is
in its signature. One might argue that in practice such redundancies might be
avoided by carefully engineering knowledge bases. But such redundancies may
also arise by combining knowledge bases that are free of them. For example
conjoining (q → p) with (¬q → p) results in an equivalent to KB, which, as we
have seen, does not express anything about q, although each of the conjuncts
expresses something about q. We call the set of ground literals “about which a
formula expresses something” its essential literal base, made precise in Def. 2.
The essential literal base of KB, for example, is {p}.

Definition 1 (Literal Base). The literal base of a formula F, in symbols L(F),
is the set of ground instances of literals in F .

Definition 2 (Essential Literal Base). The essential literal base of a for-
mula F, in symbols LE(F), is defined as LE(F) def= {L | L is a ground literal and
there exist an interpretation 〈I, β〉 such that 〈I, β〉 |= F and 〈I[L̃], β〉 6|= F}.

The essential literal base of a formula is a subset of its literal base. The essential
literal base is independent of syntactic properties: equivalent formulas have the
same essential literal base.3

Switching Values Outside the [Essential] Literal Base. Proposition 1
below states a property of literal bases that is useful to prove further properties:
From a given model of a formula another model can be obtained by switching
only literals not in the literal base of the formula. The precondition S∩L(F) = ∅
is equivalent to S̃∩L̃(F) = ∅. This suggests a second way to read the proposition:
another model can be obtained by switching literals in a way such that none of
the new values is complementary to an element of the literal base.

3 For propositional formulas, literal base and essential literal base are defined in [11],
called the sets of literals on which a formula is syntactically (semantically, resp.)
Lit-dependent.

Proposition 1. If 〈I, β〉 is an interpretation, F is a formula and S is a con-
sistent set of ground literals such that 〈I, β〉 |= F and S ∩ L(F) = ∅, then
〈I[S̃], β〉 |= F.

The analog to Prop. 1 for the essential literal base can be shown for first-order
formulas which do not contain existential quantifiers. For such formulas F, inter-
pretations 〈I, β〉, and consistent sets of ground literals S, it can be proven that
if 〈I, β〉 |= F and 〈I[S], β〉 6|= F, then there exists a finite set S′ ⊆ S such that
〈I[S′], β〉 6|= F. From this property, the analog to Prop. 1 for the essential literal
base can be derived. Since this analog is useful to prove properties of projection,
we give formulas that satisfy it a name, E-formulas:

Definition 3 (E-Formula). A formula F is called E-formula if and only if
for all interpretations 〈I, β〉 and consistent sets of ground literals S such that
〈I, β〉 |= F and S ∩ LE(F) = ∅ it holds that 〈I[S̃], β〉 |= F.

As indicated above, first-order formulas without existential quantifier – including
propositional formulas and first-order clausal formulas – are E-formulas. Being
an E-formula is a property that just depends on the semantics of a formula, that
is, an equivalent to an E-formula is also an E-formula.

4 Properties of Projection

Basic Properties. Based on the semantic definition of project, it is not hard
to prove properties of projection as displayed in Tab. 4 and 5. They hold for
all formulas F, F1, F2, E-formulas E, literals L, and literal scopes S, S1, S2. The
properties in Tab. 5 strengthen properties in Tab. 4, but apply only to E-formulas.

Projection is “semantically determined”, in the sense that projections of
equivalent formulas onto the same scope are equivalent (Tab. 4.iii). The pro-
jection of a formula onto its literal base is equivalent to the original formula
(Tab. 4.vii). The essential literal base of a projection is a subset of the projec-
tion scope and also a subset of the essential literal base of the projection formula
(Tab. 4.xii,xiii). Only the intersection of the given scope with the literal base
of the argument formula is relevant for projection and forgetting (Tab. 4.xv,
xvi). Property Tab. 4.xvii is behind many applications of predicate quantifier
elimination and its variants: A formula Query is entailed by a formula KB if
and only if it is entailed by the projection of KB onto the literal base of Query.
Properties Tab. 4.xviii–xxiii show relationships of projection with other logic
operators.

Conjunction and Linklessness. While projection distributes straightfor-
wardly over disjunction and existential first-order quantification (Tab. 4.xx, xxii),
only one direction of the corresponding equivalences holds for conjunction and
universal first-order quantification (Tab. 4.xxi, xxiii). The precondition of the
following theorem is sufficient for the converse of property Tab. 4.xxi. The es-
sential part of its proof is deferred to Lemma 1 below. The theorem is based

Table 4. Properties of Projection

(i) F |= project(F, S)
(ii) if F1 |= F2, then project(F1, S) |= project(F2, S)

(iii) if F1 ≡ F2, then project(F1, S) ≡ project(F2, S)
(iv) if S1 ⊇ S2, then project(F, S1) |= project(F, S2)
(v) project(project(F, S1), S2) ≡ project(F, S1 ∩ S2)

(vi) F1 |= project(F2, S) if and only if project(F1, S) |= project(F2, S)
(vii) project(F,L(F)) ≡ F

(viii) project(F,GLITS) ≡ F
(ix) project(>, S) ≡ >
(x) project(⊥, S) ≡ ⊥

(xi) F is satisfiable if and only if project(F, S) is satisfiable
(xii) LE(project(F, S)) ⊆ S

(xiii) LE(project(F, S)) ⊆ LE(F)
(xiv) if project(F, S) |= F, then LE(F) ⊆ S
(xv) project(F, S) ≡ project(F,L(F) ∩ S)

(xvi) forget(F, S) ≡ forget(F,L(F) ∩ S)
(xvii) F1 |= F2 if and only if project(F1,L(F2)) |= F2

(xviii) if no instance of L is in S, then project(L, S) ≡ >
(xix) if all instances of L are in S, then project(L, S) ≡ L
(xx) project(F1 ∨ F2, S) ≡ project(F1, S) ∨ project(F2, S)

(xxi) project(F1 ∧ F2, S) |= project(F1, S) ∧ project(F2, S)
(xxii) project(∃xF, S) ≡ ∃x project(F, S)
(xxiii) project(∀xF, S) |= ∀x project(F, S)

Table 5. Properties of Projection for E-Formulas

(i) project(E,LE(E)) ≡ E (strengthens Tab. 4.vii)
(ii) LE(E) ⊆ S if and only if project(E,S) ≡ E (strengthens Tab. 4.xiv)

(iii) project(E,S) ≡ project(E,LE(E) ∩ S) (strengthens Tab. 4.xv)
(iv) forget(E,S) ≡ forget(E,LE(E) ∩ S) (strengthens Tab. 4.xvi)
(v) F |= E if and only if project(F,LE(E)) |= E (strengthens Tab. 4.xvii)

on the relation linkless outside, which applies to a pair of formulas and a lit-
eral scope if all ground atoms “involved in links” between the formulas (that is,
are the atoms of complementary ground instances of two literals, one in each
component of the pair) are contained in the literal scope, positively as well as
negatively. For example, the pair of formulas 〈p ∨ q, ¬p ∨ q〉 is linkless outside
the literal scope {+p,−p}. The relation is symmetric with respect to the pair
components. Its formal definition is:

Definition 4 (Linkless Pair of Formulas). A pair of formulas 〈F1, F2〉 is

called linkless outside a literal scope S if and only if L(F1) ∩ L̃(F2) ⊆ S ∩ S̃. In
the case where S = ∅, we also just say that 〈F1, F2〉 is linkless.

Theorem 1 (Projection and Linkless Conjunction). If F1, F2 are for-
mulas and S is a literal scope such that 〈F1, F2〉 is linkless outside S, then
project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S).

Proof. The case where F1 = F2 is trivial. Assume F1 6= F2. Left-to-right is stated
as Tab. 4.xxi. Right to left follows from Lemma 1 below, with Φ = {F1, F2}, along
with the semantic definitions of projection and conjunction (Tab. 1). ut

Applications of Theorem 1. Boolean quantifier elimination is generalized by
propositional projection computation, that is, computing for a propositional for-
mula with the projection operator an equivalent formula without the projection
operator. Theorem 1 can be applied to justify methods for this task. They take
as input a formula project(F, S), where F is a propositional formula in negation
normal form, and proceed as follows:

1. Compute a formula F ′ which is equivalent to F and has the property that
for all conjunctive subformulas (F1 ∧ F2) it holds that 〈F1, F2〉 is linkless
outside S.

2. Replace all literals in F ′ that are not in S by >. The obtained formula is
the result of projection computation.

Propositional formulas that satisfy the condition of step (1.) for the empty set
as S (and thus also for any other set of literals as S) are called linkless [10].
Subclasses of linkless formulas are DNNF [5] and DNF, if complementary literals
are not permitted in the same clause. Step (2.) is justified, since by property 4.xx
and Theorem 1 the project operator in project(F ′, S) can be distributed inwards,
immediately in front of literal subformulas, where its value is determined by
Tab. 4.xviii and xix. Regular tableaux, including semantic trees, whose nodes are
labeled with literals, either propositional, or with just non-rigid variables, can
be considered as representations of formulas – which are linkless. This is utilized
by propositional tableau- and DPLL-based knowledge compilation methods that
also perform Boolean quantifier elimination [10, 16, 12].

Another application of Theorem 1 is the justification of methods for proposi-
tional Lit-simplifying [11]. That is, computing for a given propositional formula
an equivalent formula containing only literals in the essential literal base, which
is assumed to be known. By Tab. 4.i, this task can be computed as described
above for projection computation: transforming to an equivalent formula where
all pairs of conjuncts are linkless outside the essential literal base, followed by
replacing the literals not in the essential base by >. There is also a dual alter-
native: From Tab. 4.i follows project(F,LE(F)) ≡ ¬project(¬F,LE(¬F)). Thus,
Lit-simplifying can also be performed by operating on ¬F instead of F, or, con-
sidered dually, by computing a formula that is equivalent to F and has the
property that for all disjunctive subformulas (F1 ∨ F2) it holds that 〈F1, F2〉 is
linkless outside the essential literal base of F (CNF formulas without tautolog-
ical clauses, for example, have this property). The literals not in the essential
base are then replaced by ⊥.4

4 In [11, Sect. 3.2] it is erroneously stated that Lit-simplifying of a propositional for-
mula in negation normal form (NNF) can be performed by (in our terminology)
substituting the literals which are not in the essential literal base with ⊥, and thus

Conjunction and Essential Linklessness. Theorem 2, which follows, strength-
ens Theorem 1 for E-formulas. In its precondition the property essentially linkless
outside (Def. 5) takes the place of the stronger linkless outside. That essentially
linkless outside is weaker follows from the fact that the essential literal base of a
formula is a subset of its literal base. Essentially linkless outside is in a further
respect different from linkless outside: it is independent of syntactic properties
– if 〈F1, F2〉 is essentially linkless outside S, and F ′1, F

′
2 are formulas such that

F ′1 ≡ F1 and F ′2 ≡ F2, then also 〈F ′1, F ′2〉 is essentially linkless outside S. This
follows, since equivalent formulas have the same essential literal base.

Definition 5 (Essentially Linkless Pair of Formulas). A pair of formu-
las 〈F1, F2〉 is called essentially linkless outside a literal scope S if and only if

LE(F1) ∩ L̃E(F2) ⊆ S ∩ S̃.

Example 4 (Essentially Linkless Pair of Formulas). Let S be the set of
literals {+p,−p}. Then 〈p ∨ (q ∧ ¬q), ¬p ∨ q〉 is not linkless outside S, but
essentially linkless outside S.

Theorem 2 (Projection and Essentially Linkless Conjunction). If F1, F2

are E-formulas and S is a literal scope such that 〈F1, F2〉 is essentially linkless
outside S, then project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S).

Proof. Can be shown in the same way as Theorem 1, but based on a variant of
Lemma 1, where Φ is a set of E-formulas, and linkless outside in (A1) is replaced
by essentially linkless outside. The varied lemma can be proven like the original
one, with LE in place of L and referring to Def. 3 instead of Prop. 1. ut

Universal Quantification and Linklessness. The same principles that per-
mit to push the projection operator inside conjunctions can be applied to univer-
sal quantification. We state it for linkless outside as precondition in the following
theorem.

Theorem 3 (Projection and Linkless Universal Quantification). If F is
a formula, x is a variable that occurs free or not at all in F, and S is a literal scope
such that for all t, u ∈ GTERMS where t 6= u it holds that 〈F{x 7→ t}, F{x 7→ u}〉
is linkless outside S, then project(∀xF, S) ≡ ∀x project(F, S).

Proof. The case where x does not occur in F is trivial. Assume x occurs free
in F . Left-to-right is stated as Tab. 4.xxiii. Right-to-left follows from Lemma 1
below, with Φ = {F{x 7→ t} | t ∈ GTERMS}, along with the semantic definitions
of projection and universal quantification (Tab. 1). ut

would be a polynomial operation. The statement is false: Let F def= (p∨¬p). Then F
is in NNF and LE(F) = ∅. Substituting in F the literals not in LE(F) with ⊥ yields
(⊥ ∨⊥), which is not equivalent to F .

The Lemma Underlying Theorems 1–3. We conclude this section by stating
the lemma underlying Theorems 1–3 and giving a proof sketch for it.

Lemma 1. If 〈I, β〉 is an interpretation, S is a literal scope, and Φ a set of
formulas such that

(A1) for all formulas F,G ∈ Φ such that F 6= G it holds that
〈Fβ,Gβ〉 is linkless outside S, and

(A2) for all formulas F ∈ Φ it holds that 〈I, β〉 |= project(F, S),

then there exists an interpretation 〈J, β〉 such that

(C1) for all formulas F ∈ Φ it holds that 〈J, β〉 |= F , and
(C2) J ∩ S ⊆ I.

Proof (Sketch – see [12, Theorems 2–4] for detailed proofs of similar properties).
Let 〈I, β〉, S, and Φ be as specified for the lemma, and assume that they satisfy
preconditions (A1) and (A2). For all F ∈ Φ let JF be a structure such that
〈JF , β〉 |= F and JF ∩ S ⊆ I. The existence of such JF follows from (A2)
and the semantic definition of project. We prove the lemma by showing the
construction of a structure J such that consequences (C1) and (C2) are satisfied.
The construction of J is based on two auxiliary sets of literals, L+A and L−A,
which are associated with each ground atom A:

L+A def=
⋃

+A ∈ JF , F∈Φ
L(Fβ), L−A def=

⋃
−A ∈ JF , F∈Φ

L(Fβ).

The structure J is then defined by:

If +A /∈ L+A and (−A ∈ L−A or −A ∈ I), then −A def
∈ J, else +A def

∈ J.

For all elements F of Φ let MF
def= JF ∩ J̃ . Then J = JF [M̃F]. It can be verified

that MF ∩ L(Fβ) = ∅. Since 〈JF , β〉 |= F, consequence (C1) then follows from
Prop. 1. It can be verified that J ⊆

⋃
F∈Φ JF ∪I. Consequence (C2) then follows

since JF ∩ S ⊆ I. ut

5 Unlinked Literal Occurrences

The following theorem uses the linkless outside property related to specific oc-
currences of literals in formulas. If a literal is “not linked” to its context within
a formula, then replacing the literal by > yields a formula whose projection is
equivalent to the projection of the original one. The idea is to use the equivalence
stated in the theorem as building block for methods to eliminate the projection
operator, although this remains largely future work. As a first approach, we show
below, with Prop. 2, that a restricted variant of the Ackermann lemma [17, 18],
the basis of several known methods for second-order quantifier elimination [3, 9,
8], can be modeled with the theorem.

Following the terminology of [19], if F is a formula with a subformula oc-
currence replaced by a hole, and G is a formula, then F [G] is F with the hole
replaced by G. At the same time F [G] indicates that the formula F contains an
occurrence of the subformula G.

Theorem 4 (Eliminating an Unlinked Literal Occurrence). If S is a
literal scope, L is a literal of which no instance is in S, and F [L] is a first-order
formula such that

(A1) for all subformulas (F1[L] ∧ F2) and (F2 ∧ F1[L]) of F [L] it holds that
〈L, F2〉 is linkless,5 and

(A2) for all subformulas (∀xF ′[L]) of F [L] and
t1, t2 ∈ GTERMS such that t1 6= t2 it holds that
〈L{x 7→ t1}, F ′[L]{x 7→ t2}〉 is linkless,

then
project(F [L], S) ≡ project(F [>], S).

Proof (Sketch). The left-to-right direction follows from Tab. 4.ii, since F [L] |=
F [>]. The right-to-left direction can be shown as follows: Let 〈I, β〉 be an inter-
pretation such that 〈I, β〉 |= project(F [>], S). By the definition of project, there
exists an interpretation 〈J, β〉 such that 〈J, β〉 |= F [>] and J ∩ S ⊆ I. We need
to show that 〈I, β〉 |= project(F [L], S), that is, that there exists an interpreta-
tion 〈K,β〉 such that 〈K,β〉 |= F [L] and K ∩ S ⊆ I. In case 〈J, β〉 |= F [L], we
have found in J a suitable K. The other case, where 〈J, β〉 6|= F [L], can be shown
by induction on first-order formulas F [L], where L is a literal, and F [L] satisfies
(A1) and (A2). Before stating the induction property, we need some more nota-
tion: If F,G are formulas and β is a variable assignment, then F (β ↓ G) denotes
F with those variables that are free in G replaced by their images in β. The in-
duction property is: If S is a literal scope such that no instance of L is in S and
〈J, β〉 is an interpretation such that 〈J, β〉 |= F [>] and 〈J, β〉 6|= F [L], then there
exists a set M of ground instances of L(β ↓ F [L]) such that 〈J [M], β〉 |= F [L].
The set of literals M is defined such that S ∩M = ∅, which allows to conclude
J [M] ∩ S ⊆ J ∩ S. If K = J [M], then from J ∩ S ⊆ I follows K ∩ S ⊆ I.

We sketch the base case for literals, and the induction steps for conjunction
and universal quantification. The remaining induction steps for disjunction and
existential quantification are straightforward to show. In the base case where
F [L] = L it holds that 〈J, β〉 6|= L. A suitable M is {Lβ}. The induction step for
F [L] = (F1[L] ∧ F2) can be shown as follows: From 〈J, β〉 |= (F1[>] ∧ F2) and
〈J, β〉 6|= (F1[L]∧F2) follows 〈J, β〉 6|= F1[L], hence by the induction assumption,
there exists a set M of instances of L(β ↓ F1[L]) such that 〈J [M], β〉 |= F1[L].
By condition (A1) it holds that L(F2) ∩ M̃ = ∅. From 〈J, β〉 |= F2, then by
Prop. 1 follows 〈J [M], β〉 |= F2.

The induction step for F [L] = (∀xF ′) can be shown as follows: From 〈J, β〉 |=
∀x F ′[>] follows that for all ground terms t it holds that 〈J, β tx 〉 |= F ′[>].
Let T be the set of ground terms t such that 〈J, β tx 〉 6|= F ′[L]. From 〈J, β〉 6|=
∀x F ′[L] follows that T is not empty. For all t ∈ T let Mt be a set of literals,
ground instances of L(β tx ↓ F ′[L]) such that 〈J [Mt], β

t
x 〉 |= F ′[L]. The existence

of these Mt follows from the induction assumption. Let M def=
⋃
t∈T Mt. The

induction conclusion 〈J [M], β〉 |= ∀xF ′[L] is implied by the fact that for all
5 By the precondition that no instance of L is in S, the linkless condition here and in

precondition (A2) is equivalent to linkless outside S.

ground terms t it holds that 〈J [M], β tx 〉 |= F ′[L], which can be shown as follows:
Let t be an element of T and s be an arbitrary ground term, different from t. By
(A2) it holds that ˜L(L{x 7→ t})∩L(F ′[L]{x 7→ s}) = ∅. Since Mt ⊆ L(F ′[L]{x 7→
t}), it follows that

M̃t ∩ L(F ′[L]{x 7→ s}) = ∅. (i)

If t ∈ T, then 〈J [Mt], β
t
x 〉 |= F ′[L], hence 〈J [Mt], β

t
x 〉 |= F ′[L]{x 7→ t}. From

Eq. (i) follows (M−Mt)∩L(F ′[L]{x 7→ t}) = ∅. By Prop. 1 follows 〈J [M], β tx 〉 |=
F ′[L]{x 7→ t}, hence 〈J [M], β tx 〉 |= F ′[L]. Else, if t /∈ T, from Eq. (i) follows
M ∩ L(F ′[L]{x 7→ t}) = ∅. From 〈J, β tx 〉 |= F ′[L] it can be concluded, similarly
as in the case where t ∈ T , with Prop. 1 that 〈J [M], β tx 〉 |= F ′[L]. ut

Application of Theorem 4. The Ackermann lemma states an equivalence of
formulas of a certain form and with a second-order quantifier to first-order for-
mulas. Proposition 2 can be used to prove a restricted variant of the Ackermann
lemma (the restriction is that the subformula which may contain multiple in-
stantiated occurrences of the quantified predicate is not permitted to contain the
existential first-order quantifier). The proposition statement shows that equiv-
alence with respect to the projection (expressed conveniently as forgetting) is
preserved by eliminating a single occurrence of a positive literal with predicate p.
The way the literal occurrence is eliminated is identical to the way in which ac-
cording to the Ackermann lemma all occurrences of literals with positive p are
eliminated. By iterated rewriting with the equivalence of Prop. 2, all positive
occurrences of p can be eliminated, permitting the negative occurrence finally to
be eliminated directly according to Theorem 4, followed by dropping the forget
operator. The result is then the same first-order formula that would be obtained
by a single rewriting step with the Ackermann lemma. Of course, as for the
Ackermann lemma, there is also a dual variant of Prop. 2 with polarities of the
occurrences of p switched, but we do not state this explicitly here.

We use additional notation: A sequence of terms t1, ..., tn is abbreviated by t.
If F is a formula, then F (t) denotes F with all occurrences of variables xi replaced
by term ti, for i ∈ {1, ..., n}.

Proposition 2 (Ackermann Lemma Step for Universal Formulas). Let p
be a n-ary predicate symbol, and F,G be first-order formulas such that p does not
occur in F and does occur in G only in positive literals, G has the form G[p(t)],
and G does not contain an existential quantifier. Then

(F1) forget((∀x ¬p(x) ∨ F (x)) ∧G[p(t)], P+) ≡
(F2) forget((∀x ¬p(x) ∨ F (x)) ∧G[F (t)], P+),

where P+ is the set of all positive ground literals with predicate p.

Proof. We first show the proof in broad lines, filling in details subsequently:
Assume ≈ is a “built-in” predicate symbol representing equality, that is, in-
terpretations satisfy the usual equality axioms with respect to ≈. Let x 6≈ t

abbreviate the formula (¬(x1 ≈ t1) ∨ ... ∨ ¬(xn ≈ tn)). Formula (F1) is equiva-
lent to the following formula (F1′), since the formula arguments in both forget
expressions are equivalent.

(F1′) forget(∀x (p(x) ∧ F (x) ∧G[>]) ∨ (¬p(x) ∧G[x 6≈ t]), P+)

The leftmost literal p(x) in (F1′) meets the requirements on L in Theorem 4.
By that theorem (F1′) is equivalent to (F2′), which, again by equivalence of the
formula arguments in both forget expressions, is equivalent to (F2).

(F2′) forget(∀x (> ∧ F (x) ∧G[>]) ∨ (¬p(x) ∧G[x 6≈ t]), P+)

We now fill in the details of the proof by deriving the equivalences of the formula
arguments in the forget expressions. The following auxiliary equivalence holds
for all first-order formulas G[H(t)] that do not contain a variable from x:

(Aux) G[H(t)] ≡ (∀x H(x) ∨G[x 6≈ t]) ∧G[>].

A presupposition of equivalence (Aux) is that the subformula H is within G
not in the scope of an odd number of negation operators – which is trivially
ensured by our definition of first-order formula as constructed from literals.
Equivalence (Aux) can then be derived from well-known formula equivalences:
G[H(t)] ≡ G[∀x x 6≈ t ∨ H(x)] ≡ (∀x G[x 6≈ t ∨ H(x)]) ≡ (∀x (H(x) ∨ G[x 6≈
t ∨ ⊥]) ∧G[x 6≈ t ∨ >]) ≡ ((∀x H(x) ∨G[x 6≈ t]) ∧G[>]).

By expanding G[p(t)] according to (Aux), the formula argument of (F1) is
equivalent to (∀x (¬p(x) ∨ F (x)) ∧ (p(x) ∨ G[x 6≈ t]) ∧ G[>]). The formula
argument of (F1′) can be obtained from this formula, which has the form ∀x F ′,
by expanding according to the equivalence ∀xF ′ ≡ (∀x(p(x) ∧ F ′) ∨ (¬p(x) ∧
F ′)), followed by simplifying with well-known equivalences and the equivalence
(G[x 6≈ t] ∧G[>]) ≡ G[x 6≈ t]. Equivalence of the formula argument of (F2) to
that of (F2′) can be shown similarly: By expanding G[F (t)] according to (Aux),
the formula argument of (F2) is equivalent to (∀x (¬p(x)∨F (x))∧(F (x)∨G[x 6≈
t]) ∧ G[>]). The formula argument of (F2′) can be obtained from this formula
by simplifying with well-known equivalences and (G[x 6≈ t] ∧G[>]) ≡ G[x 6≈ t],
followed by inserting the truth value constant > into the leftmost conjunction.

ut

6 Conclusion

We expect that the consideration of polarity will play an important role in some
applications of predicate quantifier elimination – for example to compute knowl-
edge base extracts that just keep information about a predicate in one polarity
and thus suffice to answer queries containing the predicate just in this polarity, or
for knowledge base modularization, where it should be ensured that additions to
a knowledge base affect some predicate only in a certain polarity. We presented
a formalization that expresses polarity sensitive predicate quantification in an
easily accessible way by means of literal sets. It applies to first-order logic, and
thus should provide a basis also for other logics used in knowledge representation
that are more expressive than just propositional logic. We applied the formal-
ization to show some properties of literal projection which relate to methods

for predicate quantifier elimination. These properties already suffice as building
blocks to justify some methods that can in practice be used for predicate quan-
tifier elimination, and provide a basis to extend the successful applications of
projection computation in the context of propositional knowledge compilation
to more expressive logics. The investigation of further methods, especially for
non-propositional formulas, remains future work.

Acknowledgments. I am grateful to Renate A. Schmidt for valuable comments
and discussions on earlier versions of some of the material in the paper, and to
anonymous referees for helpful suggestions to improve the presentation.

References

1. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
In: KR’92. (1992) 425–435

2. Lin, F., Reiter, R.: Forget It! In: Working Notes, AAAI Fall Symposium on
Relevance. (1994) 154–159

3. Doherty, P., Lukaszewicz, W., Sza las, A.: Computing circumscription revisited: A
reduction algorithm. J. Autom. Reason. 18(3) (1997) 297–338

4. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: CAV 2002. (2002) 250–264

5. Darwiche, A.: Decomposable negation normal form. JACM 48(4) (2001) 608–647
6. Wernhard, C.: Semantic knowledge partitioning. In: JELIA 04. (2004) 552–564
7. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-

vative extensions in description logics. In: KR’06. (2006) 187–197
8. Gabbay, D.M., Schmidt, R.A., Sza las, A.: Second-Order Quantifier Elimination:

Foundations, Computational Aspects and Applications. CollegePublications (2008)
9. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-

pleteness in modal logic. I. the core algorithm SQEMA. Log. Meth. in Comp.
Science 2(1:5) (2006) 1–26

10. Murray, N.V., Rosenthal, E.: Tableaux, path dissolution and decomposable nega-
tion normal form for knowledge compilation. In: TABLEAUX 2003. (2003) 165–180

11. Lang, J., Liberatore, P., Marquis, P.: Propositional independence — formula-
variable independence and forgetting. JAIR 18 (2003) 391–443

12. Wernhard, C.: Automated Deduction for Projection Elimination. PhD thesis,
Universität Koblenz-Landau, Germany (2008). To appear.

13. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom.
Reason. 37(1-2) (2006) 21–43

14. Wernhard, C.: Literal projection for first-order logic. In: JELIA 08. (2008) 389–402
15. Ebbinghaus, H.D., Flum, J., Thomas, W.: Einführung in die mathematische Logik.

4th edn. Spektrum Akademischer Verlag, Heidelberg (1996)
16. Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation.

In: IJCAI-05. (2005) 156–162
17. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathemati-

schen Logik. Math. Annalen 110 (1935) 390–413
18. Szalas, A.: On the correspondence between modal and classical logic: An automated

approach. J. Log. Comput. 3(6) (1993) 605–620
19. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning.

Volume I. Elsevier Science (2001) 537–610

