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Abstract. This paper proposes an initial catalog of easy-to-state, relatively sim-
ple, and incrementally more and more challenging benchmark problems for the 
Verified Software Initiative.  These benchmarks support assessment of verifica-
tion tools and techniques to prove total correctness of functionality of sequential 
object-based and object-oriented software.  The problems are designed to help 
evaluate the state-of-the-art and the pace of progress toward verified software in 
the near term, and in this sense, they are just the beginning.  They will allow re-
searchers to illustrate and explain how proposed tools and techniques deal with 
known pitfalls and well-understood issues, as well as how they can be used to 
discover and attack new ones.  Unlike currently available benchmarks based on 
“real-world” software systems, the proposed challenge problems are expected 
to be amenable to “push-button” verification that leverages current technology. 

1   Introduction 

This, however, is my doctrine: whoever would learn to fly must first learn to 
stand and walk and run and climb and dance: one cannot fly into flying! 

— Friedrich Nietzsche, in Thus Spake Zarathustra, Third Part, 1884 

You can’t get to the moon by climbing a tree. 

— William F. Ogden, paraphrase of S.E. Dreyfus in Mind Over  
              Machine, p. 10, 1986 

As the two views above reveal, there are (at least) two kinds of ambitions: ones for 
which incremental gains gradually lead to their achievement, and ones for which no 
merely incremental gains can possibly lead to their achievement. 

Is it possible to reach incrementally the ultimate goal of the Verified Software Ini-
tiative (VSI), i.e., routine verification of practical software systems?  There are cer-
tainly paths that are doomed not to reach this target no matter how much incremental 
progress can be made.  For example, a proof system that is inherently not modular 
simply is not going to scale up to verification of practical software systems of the sort 
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the VSI needs to tackle—regardless of how much incremental progress is made on its 
details.  Yet history suggests that the lofty goals of the VSI, like similar goals in other 
disciplines, are more likely to be achieved by repeated acts of “standing on the shoul-
ders of giants” (and others) than by an ambitious tree-climber suddenly striking out in 
a space ship and flying to the moon. 

The benchmarks proposed in this paper, therefore, define strategically placed mile-
stones along a path toward the goal of verified software.  The spacing and nature of 
benchmarks to define these milestones have been designed to capture the anticipated in-
cremental nature of the community effort.  Two criteria have guided their development: 

• They should be similar enough that incremental progress toward the goal can be 
recognized—and explained to the community as simply as possible. 

• They should be designed especially for verification, so that progress in overcoming 
specific known barriers to achieving the goal can be readily demonstrated—and 
explained to the community as simply as possible. 

1.1   Contributions 

The primary contribution of this paper is its proposed set of eight purposefully de-
signed, incremental, early benchmarks for tools and techniques to prove total cor-
rectness of sequential object-based and object-oriented software.  These benchmarks 
come with a classification of the issues they raise for automated software verification 
and a methodology for reporting progress.  They are intended to precede (in diffi-
culty) and complement rather than replace earlier challenge problems (e.g., [1,2,3,4]); 
they certainly should not be seen as diminishing the significance of claimed solutions 
to those problems (e.g., [3,5,6]).  The proposed benchmarks differ from earlier chal-
lenge problems in key respects.  Most important, they are far simpler.  If a system 
cannot be used to verify the proposed benchmarks, it is unlikely to be powerful 
enough to verify software that operates an e-commerce site, or implements a file sys-
tem, or controls a non-trivial embedded device such as a heart pacemaker.  Put other-
wise, if a verification system is capable of solving complex real-world benchmarks, 
then there should be no problem applying it to these simpler benchmarks and using 
this opportunity to explain how the approach overcomes each of a number of known 
bumps in the road for software verification. 

The proposed benchmarks are also highly focused, so tools and techniques that are 
not intended to address every aspect of a real-world software system can still be ap-
plied and evaluated for some or all of these benchmarks.  This means that individuals 
or groups who are able to contribute a few pieces of the big puzzle are empowered to 
play.  Solutions to these benchmarks can become verified software in the VSI reposi-
tory.  Once several systems using different languages, approaches, etc., have been ap-
plied to a given benchmark, it will be easier for the community to evaluate their rela-
tive merits and eventually to design new tools and techniques that leverage the best 
attributes of different efforts. 

The above features also mean it is reasonable to hope for complete automation and 
“push-button” technology in benchmark solutions.  Once humans formalize the re-
quirements in a benchmark problem statement into specifications (supported as neces-
sary by new or extended mathematical theories), write code (annotated as necessary 
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with assertions expected by the proposed technique), and provide any other necessary 
inputs, no further human intervention should be needed to complete the verification.  
The result might be a simple “proved” or “not proved”, or in the latter case it might be 
reported in a form that simplifies debugging. 

1.2   Limitations 

There certainly are other benchmarks that would be appropriate for the territory cov-
ered by the ones proposed here.  We do not attempt to justify that these are the “best” 
ones, only that they are a decent starting point.  We do not even begin to suggest 
benchmarks that would help assess progress on other paths leading toward the VSI 
goal, or later benchmarks on this path: proving properties entailed by, but other than, 
total functionality correctness (e.g., absence of null dereferences); performance cor-
rectness (e.g., compliance with execution time or memory usage specifications); con-
currency issues; distributed systems issues; graphical user interface issues; meta-level 
issues such as soundness and relative completeness of proof systems; proofs in pro-
gramming language meta-theory [7]; and so on.  The proposed new benchmarks ven-
ture nowhere near the latter areas. 

There is not necessarily a total order among the issues that are raised by the pro-
posed benchmarks.  One might be able to solve a later benchmark problem before an 
earlier one.  The order shown is consistent with a natural partial order among the pri-
mary issues that we identify as important problems to be addressed by the proposed 
benchmarks.  In fact, some of these benchmarks have already been “solved”, though 
we do not cite such claims.  This is fine; the more different solutions the better, so the 
community can compare their pros and cons.  And if someone chooses to start from 
scratch rather than building on other work to attack some of these challenges, then 
there is relatively little risk of massive lost effort, but there might be potentially high 
payoff: all the proposed benchmarks are close to the beginning of the journey and 
might help illustrate new ideas that are not derived as variations on previous work. 

The rest of the paper is organized as follows.  Section 2 presents the benchmark 
problem requirements statements, identifies the major issues related to each, and lists 
some variations of each challenge that might be considered by those proposing solu-
tions.  Section 3 describes two possible solutions to one part of the simplest bench-
mark, so prospective benchmark solvers have a couple of examples of what we mean.  
Section 4 reviews and concludes. 

2   Benchmark Problems 

All the proposed benchmark problems require that tools and techniques purported to 
solve them should have the following features: 

• The proposed solution should include: 

o all formal specifications relevant to the benchmark problem requirements, 
including mathematical definitions, theories, and similar artifacts developed 
for and/or used in the specifications; 

o all code subjected to the verification process; 
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o all verification conditions (VCs) involved in the verification process; 
o descriptions of the verification system proof rules employed, tools used, 

and techniques applied. 

As some of this information may be unwieldy or impossible to include in an expo-
sition of acceptable length, a web site with details should be provided so readers 
and reviewers can check any details they deem important. (Section 3 contains links 
to such sites for the example solutions outlined there.) 

• The proposed solution should involve both an automatic proof of total correctness 
of a correct solution, and evidence that the tools and techniques can automatically 
detect that a “slightly” incorrect solution is incorrect.  Specifically, in addition to 
verified correct code, a benchmark solution should present a perturbed version of 
the code—which plausibly could have been written to meet the same specifica-
tion—along with a demonstration that a bug is found automatically.  For example, 
perhaps the proposed solution generates meaningful counterexamples as test cases 
that lead to failure for defective code.  This requirement also could be regarded as a 
kind of mutation test. 

• The proposed verification approach should be modular.  In other words, a proof 
that a program unit P implements a specification S should be based only on P, S, 
and the specifications of the program units that P depends on (not their implemen-
tations).  Moreover, the verification should need to be performed only once, not 
again for every context in which P is used for S. 

• Verified software from benchmark solutions should be submitted formally to the 
VSI repository [8]. 

2.1   Benchmark #1: Adding and Multiplying Numbers 

Problem Requirements: Verify an operation that adds two numbers by repeated in-
crementing.  Verify an operation that multiplies two numbers by repeated addition, 
using the first operation to do the addition.  Make one algorithm iterative, the other 
recursive. 

Issues: Addition is straightforward. It is a single operation and involves a single nu-
meric type: either integers or natural numbers, which may be a built-in type in the 
programming language or a user-defined abstract data type (ADT).  It also involves 
simple specifications, and presumably results in VCs from a decidable mathematical 
theory (Presburger arithmetic).  Multiplication explicitly adds the requirement for 
modularity for a program unit that is a single operation, i.e., procedural or functional 
abstraction, and enough richness that the underlying mathematics is undecidable.  
Since one operation involves iteration and the other recursion, loop invariants and 
termination both become concerns.  There are alternative algorithms for multiplica-
tion based on addition, e.g., the Egyptian algorithm [9] as well as the more obvious 
and familiar ones.  All the standard procedural programming constructs are likely to 
arise in these two pieces of code. 

Variations: Other operations on integers or natural numbers, e.g., computing powers 
and roots, involve similar issues and should illustrate similar verification capabilities. 
The programming type used for numbers may or may not be bounded. Numerical 
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problems of this kind that involve floating point numbers are very interesting as well, 
raising especially difficult issues about how to specify their behavior that do not arise 
with either bounded or unbounded integers or natural numbers. 

2.2   Benchmark #2: Binary Search in an Array 

Problem Requirements: Verify an operation that uses binary search to find a given 
entry in an array of entries that are in sorted order. 

Issues: Arrays are the traditional first “collection” type, which may be a built-in type 
in the programming language or an ADT. A mathematical theory sophisticated 
enough to handle the array specification is an additional complication [10].  Unless 
this theory contains special operators that hide them, quantifiers are involved in the 
specification; to simplify automated verification in the presence of existential quanti-
fiers, ghost (or adjunct) variables may be needed in the specification and/or imple-
mentation. This code also involves at least two types: the numerical index type and 
the array type, and possibly a separate entry type.  A recommended candidate for the 
incorrect version of the code is any close cousin of the Java binary search function 
whose defect was pointed out recently in a Google blog “after lying in wait for nine 
years or so” [11]. The numerical index type for the array must be considered bounded 
to manifest the defect in that code. 

Variations: An array may have fixed bounds, or they may be dynamically adjustable. 
If the type of the array elements is not fixed but rather is a parameter to the specifica-
tion(s) and code, then additional issues arise here, before benchmark #3 brings them 
front and center.  In particular, the actual entry type might be an ADT itself; the speci-
fication and computation of the ordering among entries and equality of entries be-
come interesting. 

2.3   Benchmark #3: Sorting a Queue 

Problem Requirements: Specify a user-defined FIFO queue ADT that is generic 
(i.e., parameterized by the type of entries in a queue).  Verify an operation that uses 
this component to sort the entries in a queue into some client-defined order. 

Issues: Dealing with a generic collection type is one new issue here. In addition, a 
mathematical theory suitable for specifying and verifying queue behavior may be 
needed—perhaps different than that used for arrays in benchmark #2 [12]. Parameter-
izing the sort operation to account for the specification and computation of the order-
ing among entries is central. Implementations that involve nested loops may require 
ghost variables to simplify writing loop invariants. 

Variations: Some variations that delay the inevitable generic type issues might keep 
the problem easier, while leaving it incrementally further along the path to the goal 
than benchmark #2. For example, even if the queue entries are a fixed type with a 
fixed ordering for sorting, the mathematical definitions and/or new theory to address 
even this simplified version of the benchmark might be troublesome. 
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2.4   Benchmark #4: Layered Implementation of a Map ADT 

Problem Requirements: Verify an implementation of a generic map ADT, where the 
data representation is layered on other built-in types and/or ADTs.  

Issues: This may be viewed as “recasting” benchmark #2 as an ADT.  The issues of 
proof of correctness of data representation [13] are now involved, including represen-
tation invariants and abstraction relations [14].  There are many versions of “map” 
behavior, including impoverished ones that obscure important issues.  The map de-
signed for this benchmark should be as useful to clients as, say, maps in the java.util 
package.  If any of the map operations involves relational behavior, a careful defini-
tion of correctness might be subtle. 

Variations: A simple data representation such as a queue with linear search as the 
primary algorithm is an obvious starting point.  There are many other data structures 
and algorithms with better performance that are more realistic (e.g., hash tables of 
various ilks, binary search trees with or without balancing).  Each of these alternatives 
might involve specifying other interesting ADTs as the basis for the data representa-
tion.  Additional issues might arise from this exercise. 

2.5   Benchmark #5: Linked-List Implementation of a Queue ADT 

Problem Requirements: Verify an implementation of the queue type specified for 
benchmark #3, using a linked data structure for the representation. 

Issues: Pointers/references may be either built-in types in the programming language 
or user-defined types. Specifications for their behavior, and verification of linked data 
structures that use them, raise many interesting questions [15,16,17].  Most obvious is 
that control of aliasing becomes an issue. If this is not addressed carefully, retaining 
modularity of verification might be difficult.   

Variations: A linked data structure might be encoded in an array with integer indices, 
so issues related to linked data structures are separated from issues related to lan-
guage-defined pointers/references as a way of introducing indirection. If memory is 
allocated dynamically, then memory might be assumed to be unbounded or bounded, 
the latter raising the specter of memory allocation that does not always succeed.  The 
queues themselves might be specified to be unbounded, or bounded in various ways 
(e.g., uniformly bounded so each queue has the same maximum length, or commun-
ally bounded so the sum of the lengths of all queues is bounded). 

2.6   Benchmark #6: Iterators 

Problem Requirements: Verify a client program that uses an iterator for some col-
lection type, as well as an implementation of the iterator. 

Issues: There are many proposed designs for iterators, each of which raises a number 
of interesting specification and verification issues that involve coupling between an 
underlying collection type and an iterator for it.  Specifying iterators (though not veri-
fying anything about them) was a challenge problem issued for the SAVCBS Work-
shop in 2006 [18,19]. 
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Variations: Iterators may be active or passive [20].  Each design has its own set of 
problems [21].  A passive iterator, where an operation is passed to the iterator and the 
iterator applies it to each entry, starts to raise issues similar to those involved in call-
backs.  None of the benchmarks proposed here deals with callbacks. 

2.7   Benchmark #7: Input/Output Streams 

Problem Requirements:  Specify simple input and output capabilities such as char-
acter input streams and output streams (with the flavor of C++ streams, for example).  
Verify an application program that uses them in conjunction with one of the compo-
nents from the earlier benchmarks. 

Issues: Technically, modeling input and output might involve concurrent processes 
operating alongside an application program.  It is far from clear this is the best way to 
view the situation, though, and the modeling and specification issues that arise could 
take a solution in any of a number of intriguing directions. 

Variations: A version of I/O streams involving “standard input and output” streams 
that can be redirected from/to files is one way to keep I/O in a program separate from 
the notion of a file system. A variation that includes the possibility of opening I/O 
streams to files by their filenames entails coupling with the file system, raising a host 
of issues related to persistent data.  Going this direction might involve connections 
with a challenge problem for the ABZ 2008 Conference, i.e., specification and verifi-
cation of the POSIX file-store interface of Unix [1]. A variation that allows I/O 
streams to serve as an interprocess communication mechanism raises yet other issues 
that lead into the full gamut of concurrency questions. 

2.8   Benchmark #8: An Integrated Application 

Problem Requirements: Verify an application program with a concisely stated set of 
requirements, where the particular solution relies on integration of at least a few of the 
previous benchmarks.  For example, verify an application program that does the fol-
lowing: Given input containing a series (in arbitrary order) of terms and their defini-
tions, output an HTML glossary that presents all the terms and their definitions, with 
(a) the terms in alphabetical order, and (b) a hyperlink from each term that occurs in 
any definition to that term’s location in the glossary. 

Issues: This benchmark adds the issues involved in composing a number of user-
defined types and operations. Code for a glossary generator, for instance, might use the 
sorting operation from benchmark #3, the map type from benchmark #4, I/O streams 
from benchmark #7, and perhaps others.  Modularity implies that implementations of 
all the components being integrated need not be verified, too, but of course they must 
be specified in order for modular verification of the application program to proceed. 

Variations: If the I/O stream specifications from benchmark #7 include access to the 
file system, then an interesting variation of the glossary generator requirements is to 
structure the glossary as a single index page plus a set of HTML pages, one per term, 
with hyperlinks between the pages. 
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3   Two Solutions to Part One of Benchmark #1 

Two solutions to the “addition by repeated incrementing” part of benchmark #1 are 
presented as guides to an appropriate level of detail for a proposed solution.  These 
solutions use syntactically slightly different, though semantically identical, dialects of 
the RESOLVE language [22,23,24]. The first solution is recursive and uses a VC 
generator under development at Clemson; the VCs are proved using the automated 
proof assistant Isabelle [25]. For variety, the second solution is iterative and uses a 
different set of tools under development at Ohio State to generate and prove the VCs.  
The benchmark requirement to show a “slightly” incorrect version is not illustrated 
here, but such code is available at the respective web sites mentioned below.  

3.1   Recursive Procedure for Addition by Repeated Incrementing 

For more details, see: 

http://www.cs.clemson.edu/~resolve/benchmarks 

Input Specification and Code for Verification: The specification and implementa-
tion of the Add_to operation are given with access to a specification of an Integer 
type and operations. Parameter modes, only updates and evaluates in this code, 
are specification constructs. The updates mode indicates the parameter may be 
modified in any way permitted by the ensures clause. The evaluates mode al-
lows an expression to be passed as the corresponding argument, i.e., it indicates a 
“value” parameter.  In an ensures clause, the prefix # for a formal parameter denotes 
the incoming value.  Recursive code is annotated with a progress metric using the 
keyword decreasing. 

Operation Add_to(updates i:Integer; evaluates j:Integer);
requires min_int <= i + j and i + j <= max_int and j >= 0;
ensures i = #i + j;

Procedure Add_to(updates i:Integer; evaluates j:Integer);
decreasing |j|;

Var z: Integer;
If (not Is_Zero(j)) then

Increment (i);
Decrement (j);
Add_to (i, j);

end;
end Add_to;

 

In RESOLVE, all types (including those built-in to most languages) are specified, 
used, and verified in a uniform way.  Integer is specified in Integer_Template 
shown below, where Z denotes mathematical integers; this is defined in a mathemati-
cal module Integer_Theory (not shown) along with mathematical notations such as 
0, + , and -. This specification defines two constants min_int and max_int.  
Every Integer variable is constrained to be within these bounds, and is initially 0.  
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Concept Integer_Template;
uses Integer_Theory, Std_Boolean_Fac;

Defines min_int: Z;
Defines max_int: Z;
Constraint min_int <= 0 and 0 < max_int;

Type Family Integer is modeled by Z;
exemplar i;
constraint min_int <= i and i <= max_int;
initialization ensures i = 0;

Operation Is_Zero(evaluates i: Integer): Boolean;
ensures Is_Zero = ( i = 0 );

Operation Increment(updates i: Integer);
requires i + 1 <= max_int;
ensures i = #i + 1;

Operation Decrement(updates i: Integer);
requires min_int <= i - 1;
ensures i = #i - 1;

�…
end Integer_Template;

 
 

Verification Conditions: VCs are generated using a tool that implements the proof 
rules described in [26,27].  Briefly, there is a VC for each state in the program where 
the next statement involves establishing a precondition for the next operation, a loop 
invariant or progress metric, or the postcondition for the operation being verified.  
The 8 VCs are shown below.  All variables are of type Z.  Each VC is independent of 
the others, and consists of a goal that needs to be proved (below the line) using sev-
eral hypotheses (above the line).  For example, VC 3 arises from the ordinal-valued 
decreasing clause to show termination. 

 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
((i + 1) <= max_int) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
(min_int <= (j - 1)) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
(|(j - 1)| < |j|) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
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(min_int <= ((i + 1) + (j - 1))) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
(((i + 1) + (j - 1)) <= max_int) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
((j - 1) >= 0) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and not(j = 0)))) 
_____________________________ 
((i + 1) + (j - 1)) = (i + j) 
 
(((min_int <= 0) and (0 < max_int)) and ((((min_int <= j) and (j <= 
max_int)) and (((min_int <= i) and (i <= max_int)) and (((min_int <= 
(i + j)) and ((i + j) <= max_int)) and (j >= 0)))) and (P_val = |j| 
and j = 0))) 
_____________________________ 
i = (i + j) 

 

Verification Results: Isabelle-friendly versions of the VCs are generated to provide 
proofs.  Proofs of all VCs are completed automatically by Isabelle with “apply force”. 

3.2   Iterative Procedure for Addition by Repeated Incrementing 

For more details, see: 
http://www.cse.ohio-state.edu/rsrg/benchmark-results/add-mult 

Input Specification and Code for Verification: The numbers in this version of the 
problem are unbounded natural numbers, which also are not built-in.  The parameter 
mode restores means there is no net change to the parameter’s value, i.e., it means 
implicit addition of a conjunct such as m = #m to the ensures clause.  

procedure Add (updates n: Natural, restores m: Natural)
ensures

n = #n + m

procedure Add (updates n: Natural, restores m: Natural)
variable k, z: Natural
loop

maintains n + m = #n + #m and k + m = #k + #m and
z = 0

decreases m
while not AreEqual (m, z) do

Increment (n)
Increment (k)
Decrement (m)

end loop
m :=: k

end Add
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contract UnboundedNaturalFacility

math subtype NATURALMODEL is integer
exemplar n
constraint n >= 0

type Natural is modeled by NATURALMODEL
exemplar n
initialization ensures n = 0

procedure Increment (updates n: Natural)
ensures n = #n + 1

procedure Decrement (updates n: Natural)
requires n > 0
ensures n = #n - 1

function AreEqual (restores m: Natural,
restores n: Natural): control

ensures AreEqual = (m = n)

function IsGreater (restores m: Natural,
restores n: Natural): control

ensures IsGreater = (m > n)

function Replica (restores n: Natural): Natural
ensures Replica = n

end UnboundedNaturalFacility  

The algorithm for addition is the obvious iterative one.  The only possibly unusual 
part of the code is the swap statement after the loop, which is a RESOLVE staple that 
replaces assignment as the built-in data movement operator. 

Verification Conditions: VCs are generated in a locally defined XML format, using 
a tool we have developed that implements the proof rules described in [28,29].  This 
XML is then translated into human-readable unicode format and into input for Isa-
belle [25], and also is piped directly into SplitDecision (see below). 

As in Section 3.1, there is a VC for each state in the program where the next state-
ment involves establishing a pre-condition for the next operation, a loop invariant or 
progress metric, or the post-condition for the operation being verified.  However, the 
proof rules in this version involve profligate use of mathematical variables: one for 
each program variable in each program state (between consecutive statements).  So, 
for example, xi stands for the value of program variable x in state i.  In order to relieve 
the burden of automatic case analysis by the back-end prover, the VC generator di-
vides each VC into cases based on the path structure of the code.  In addition, it does 
a number of simplifications that do not rely on knowledge of particular mathematical 
domains, but rather depend only on general logical properties (e.g., substitution of 
equals).  There are too many VCs to show here (12 total, the largest having 23 hy-
potheses before any simplification and 6 afterward); a representative VC is repro-
duced below both in a human-readable form and in the form generated for Isabelle.  
This VC is from state 5, just after the Decrement call inside the loop, and arises be-
cause we must show that (each clause of) the loop invariant holds at the end of the 
loop body. 
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Lemma #6 (state index: 5)

n0 0

m0 0

m2 0

n2 + m2 = n0 + m0

k2 + m2 = 0 + m0

m2 > 0

n2 + 1 + (m2 �– 1) = n0 + m0

lemma 6:
"[|

(n_0::int) >= 0 ;
(m_0::int) >= 0 ;
~(m_2::int) = 0 ;
(n_2::int) + m_2 = n_0 + m_0 ;
(k_2::int) + m_2 = 0 + m_0 ;
m_2 > 0

|]
==>

n_2 + 1 + (m_2 - 1) = n_0 + m_0"
apply (((simp only: simp_thms),clarify?)+)?
apply (force+)?
done  

 
Verification Results: SplitDecision is a simplifier we are developing that uses 
mathematical properties involving theories used in RESOLVE specifications to fur-
ther simplify VCs, based on knowledge of predicate calculus with equality and using 
special-purpose decision procedures we have designed for relevant fragments of the 
mathematical theories of integers and strings (so far). Proofs (simplifications all the 
way to “true”) of all the VCs for this problem are completed automatically and 
quickly by both Isabelle and SplitDecision. 

4   Discussion and Conclusions 

As others also have suggested, albeit without elaborating a set of benchmarks [30], it 
will be helpful to have several reachable milestones along the road to the VSI goal of 
routinely verifying real-world software systems.  In fact, one of the reviewers of this 
paper summarized the point very clearly: “A software verification system failing the 
benchmark suite can hardly be ready for proving the correctness of serious software.”  
The benchmarks and methodology proposed here for documenting incremental pro-
gress constitute a first step in defining specific milestones and capabilities. 

While we have focused on code verification in our sample solutions, it is clear that 
the benchmarks also could be used as suitable targets for illustrating issues in specifi-
cation, generating internal assertions, teaching formal verification, or for proving cer-
tain classes of verification conditions.  An important feature toward this end is that the 
proposed benchmarks are stated in terms of brief requirements statements.  Why not 
start with “reference formal specifications”?  The software community still does not 
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agree about how formal specifications should be written, or even about the design and 
intended behavior of the simplest components; if there is any doubt about this, com-
pare the JML [31] and RESOLVE/C++ [32] specifications for a stack component.  It 
is, therefore, unlikely that a verification system that is required by benchmark state-
ments to adopt someone else’s software designs and specifications would ever be 
tried—let alone succeed—on such benchmarks.  A similar conclusion applies to the 
programming language used for implementations.  While it will be exciting if and 
when the VSI effort ultimately succeeds in creating tools that can verify software that 
is not designed for verification, e.g., open-source software, we submit this is not the 
place to start.  The hope is that the proposed benchmarks will not appear daunting to 
those who claim to have automated verification systems for proving total correctness, 
and that this very feature will encourage everyone to participate and thereby facilitate 
comparisons among different approaches along many dimensions of the problem. 

We trust the VSI community also will find it an acceptable challenge to improve 
upon and augment this set of benchmarks to illustrate other important issues in rela-
tively simple and incremental ways.  For example, if there is widespread interest in 
moving in such directions, then those interested in exploring them should devise addi-
tional benchmarks—meeting the general requirements outlined at the beginning of 
Section 2—to address verification of open-source software, software specified in cer-
tain styles and languages, software written in specific commercial languages or with 
specific features, etc. 

Acknowledgments 

The authors appreciate the contributions of Jeremy Avigad, Harvey M. Friedman 
(whose decision procedure for strings with some restrictions is used in SplitDecision), 
Greg Kulczycki, Bill Ogden, and Anna Wolf.  This work is supported in part by the 
National Science Foundation under grants DMS-0701187 and DMS-0701260. 

References 

1. ABZ call for papers on the POSIX pilot project in the grand challenge (viewed April 27, 
2008), http://www.abz2008.org 

2. Pacemaker formal methods challenge (viewed April 27, 2008),  
  http://www.cas.mcmaster.ca/sqrl/pacemaker.htm 

3. Stepney, S., Cooper, D., Woodcock, J.: An electronic purse: specification, refinement, and 
proof. PRG Technical Monograph PRG-126 (2000), 231 pages (viewed April 27, 2008), 
http://web2.comlab.ox.ac.uk/oucl/publications/monos/prg-126.html 

4. Woodcock, J., Banach, R.: The verification grand challenge. Journal of Universal Com-
puter Science 13(5), 661–668 (2007) 

5. Schmitt, P.H., Tonin, I.: Verifying the Mondex case study. In: Fifth IEEE Intl. Conf. on 
Software Engineering and Formal Methods, pp. 47–58. IEEE, Los Alamitos (2007) 

6. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex electronic 
purses with KIV: from transactions to a security protocol. Formal Aspects of Comput-
ing 20(1), 41–59 (2007) 

 



 Incremental Benchmarks for Software Verification Tools and Techniques 97 

7. The POPLmark challenge (viewed April 27, 2008),  
 http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/ 
 index.php?title=The_POPLmark_Challenge  

8. Bicarregui, J.C., Hoare, C.A.R., Woodcock, J.C.P.: The verified software repository: a step 
towards the verifying compiler. Formal Aspects of Computing 18(2), 143–151 (2006) 

9. Ancient Egyptian multiplication (viewed April 27, 2008),  
  http://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication 

10. Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer, Heidelberg (2007) 
11. Bloch, J.: Extra, extra – read all about it: nearly all binary searches and mergesorts are 

broken (2006) (viewed 27 April 2008), http://googleresearch.blogspot. 
com/2006/06/extra-extra-read-all-about-it-nearly.html 

12. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for queues with integer con-
straints. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 225–237. 
Springer, Heidelberg (2005) 

13. Hoare, C.A.R.: Proof of correctness of data representations. Acta. Inf. 1(4), 271–281 
(1972) 

14. Sitaraman, M., Weide, B.W., Ogden, W.F.: On the practical need for abstraction relations 
to verify abstract data type representations. IEEE Transactions on Software Engineer-
ing 23(3), 157–170 (1997) 

15. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proc. 17th 
Annual IEEE Symp. on Logic in Computer Science, pp. 55–74. IEEE, Los Alamitos 
(2002) 

16. Kulczycki, G.: Direct Reasoning. Dept. of Computer Science, Ph.D. thesis, ClemsonUni-
versity, Clemson, SC (2004) 

17. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. 
In: ACM Conference on Programming Language Design and Implementation, pp. 349–
361. ACM Press, New York (2008) 

18. Challenge problem: iterator specification (viewed April 27, 2008), http://www. 
eecs.ucf.edu/~leavens/SAVCBS/2006/challenge.shtml 

19. Leavens, G., (ed.): SAVCBS 2006 Proceedings: Specification and Verification of Compo-
nent-Based Systems (viewed April 27, 2008), http://www.eecs.ucf.edu/ 
~leavens/SAVCBS/2006/SAVCBS06-proceedings.pdf 

20. Booch, G.: Software components with Ada. Benjamin Cummings, Redwood City, CA 
(1987) 

21. Weide, B.W., Edwards, S.H., Harms, D.E., Lamb, D.A.: Design and specification of itera-
tors using the swapping paradigm. IEEE Transactions on Software Engineering 20(8), 
631–643 (1994) 

22. Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M., Weide, B.W.: Specifying compo-
nents in RESOLVE. Software Engineering Notes 19(4), 29–39 (1994) 

23. Bucci, P., Hollingsworth, J.E., Krone, J., Weide, B.W.: Implementing components in 
RESOLVE. Software Engineering Notes 19(4), 40–52 (1994) 

24. Kulczycki, G., Sitaraman, M., Yasmin, N., Roche, K.: Formal specification. In: Encyc. of 
Computer Science and Engineering. John Wiley & Sons, Chichester (to appear, 2008) 

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order 
Logic. LNCS, vol. 2283. Springer, Heidelberg (2002) 

26. Krone, J.: The Role of Verification in Software Reusability. Ph.D. dissertation, Dept. of 
Comp. and Inf. Science, Ohio State Univ., Columbus, OH (1988) 

27. Harton, H., Krone, J., Sitaraman, M.: Formal program verification. In: Encyc. of Computer 
Science and Engineering. John Wiley & Sons, Chichester (to appear, 2008) 



98 B.W. Weide et al. 

28. Heym, W.D.: Computer Program Verification: Improvements for Human Reasoning. 
Ph.D. dissertation, Dept. of Comp. and Inf. Sci., Ohio State Univ., Columbus, OH (1995) 

29. Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W., Long, T.J., Bucci, P., Heym, 
W.D., Pike, S., Hollingsworth, J.E.: Reasoning about software-component behavior. In: 
Frakes, W.B. (ed.) ICSR 2000. LNCS, vol. 1844, pp. 266–283. Springer, Heidelberg 
(2000) 

30. Zhang, J.: Program verification in the small. In: Proc. First Asian Working Conf. on Veri-
fied Software, UNU/IIST Report #348, pp. 83–84 (2006) 

31. JML BoundedStackInterface (viewed July 15, 2008), http://www.eecs.ucf. 
edu/~leavens/JML-release/javadocs/org/jmlspecs/samples/ 
stacks/BoundedStackInterface.html  

32. RESOLVE/C++ Catalog, AT/Stack/Kernel.h (viewed July 15, 2008), http://www. 
cse.ohio-state.edu/sce/rcpp/RESOLVE_Catalog-HTML/AT/Stack/ 
Kernel.html 


	Incremental Benchmarks for Software Verification Tools and Techniques
	Introduction
	Contributions
	Limitations

	Benchmark Problems
	Benchmark #1: Adding and Multiplying Numbers
	Benchmark #2: Binary Search in an Array
	Benchmark #3: Sorting a Queue
	Benchmark #4: Layered Implementation of a Map ADT
	Benchmark #5: Linked-List Implementation of a Queue ADT
	Benchmark #6: Iterators
	Benchmark #7: Input/Output Streams
	Benchmark #8: An Integrated Application

	Two Solutions to Part One of Benchmark #1
	Recursive Procedure for Addition by Repeated Incrementing
	Iterative Procedure for Addition by Repeated Incrementing

	Discussion and Conclusions
	References


