
HAL Id: hal-00757192
https://hal.science/hal-00757192

Submitted on 26 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of Conformance relation for incremental
development of behavioural models

Hong-Viet Luong, Thomas Lambolais, Anne-Lise Courbis

To cite this version:
Hong-Viet Luong, Thomas Lambolais, Anne-Lise Courbis. Implementation of Conformance relation
for incremental development of behavioural models. 11th International Conference on Model Driven
Engineering Languages & Systems (MODELS), 2008, Toulouse, France. pp.356-370. �hal-00757192�

https://hal.science/hal-00757192
https://hal.archives-ouvertes.fr

Implementation of the Conformance Relation for

Incremental Development of Behavioural Models

Hong-Viet Luong, Thomas Lambolais, and Anne-Lise Courbis

Laboratoire LGI2P, École des Mines d’Alès

Site EERIE, Parc Scientifique Georges Besse

30 035 Nı̂mes cedex 1, France

{Hong-Viet.Luong,Thomas.Lambolais,Anne-Lise.Courbis}@ema.fr

Abstract. In this paper, we show how to implement the conformance relation on

transition systems. The computability of this relation relies on the composition

of two operators: the reduction relation whose computability has been proven

in our previous work, and the merge function of acceptance graphs associated

with transition systems under comparison. It is formally demonstrated, and illus-

trated through a case study whose analysis is performed by a JAVA prototype we

have developed. This research work is developed in order to be applied in a larger

context: our goal is to support modelers to develop UML state machine through

an incremental modelling method which is able to guarantee that model upgrad-

ing does not introduce inconsistencies. Hence, these works lead to a semantics

for the specialisation relation between UML State Machines.

1 Introduction

Our area of interest concerns the build-up of UML behavioural models (state machines)

according to an incremental approach. Such an approach is natural as it is based on a

widely held mental process, because on the one hand, specifying a complex system re-

quires a hierarchical and iterative approach, and on the other hand, initial specification

cannot be considered as complete and must be updated all along the modelling process.

The problem we address is to compare a model obtained at a given stage with mod-

els derived from previous stages: how is it possible to guarantee that updates do not

introduce inconsistencies and preserve already modelled functionalities?

Few works deal with this problem in the context of UML modelling, despite the fact

that the UML standard [1] is increasingly used in the industry. There are some UML

simulation frameworks supporting behavioural model observation, but such intuitive

and experience-based evaluations cannot be considered as systematic and reliable. Our

goal is therefore to develop formal comparison techniques and tools ensuring consis-

tency between behavioural models, taking into account the distinctive features of in-

cremental modelling. As this problem is not much addressed in the literature [2,3], our

first approach is to study tried and tested solutions of domains closely related to state

machine modelling. Solutions have been found in works dealing with Labelled Transi-

tion Systems (LTS) and precisely on conformance, extension and reduction relations as

well as may, must and testing preorders. We have demonstrated in a previous work [4]

K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 356–370, 2008.

c© Springer-Verlag Berlin Heidelberg 2008

Implementation of the Conformance Relation for Incremental Development 357

the extension and reduction relation computability. In this paper, we focus on the com-

putability of the conformance relation. We demonstrate that it can be implemented. The

proof is based on the composition of the reduction relation with a merge function ap-

plied on the acceptance graphs associated with the compared LTS. Applying this result

on UML state machines [5,6] is not trivial and requires a long-term analysis, especially

to deal with the complete standard. However, we illustrate the extension relation on a

case study modelled both in LTS and its corresponding simplified UML model.

The paper is organised in three parts. At first, we give an overview of the main re-

lations allowing LTS to be compared, and we give definitions useful to understand the

demonstration of our theorem. The second part focuses on the conformance computabil-

ity. For this purpose, we give the definition of acceptance graphs and their merging by

reformulating existing works. In part three, we present the JAVA demonstrator we have

developed to implement the conformance relation, and we give results obtained on a

case study. Lastly, we make a conclusion and present our future work.

2 Definitions and Analysis of Existing Relations

In this part, we give fundamental definitions about Labelled Transition Systems (LTS) [7]

and refusal sets [8] to understand the relations we have studied. We present the concept

of acceptance sets [9] and some associated results. Before defining these concepts, we

informally present existing relations allowing models to be compared at the different

stages of the modelling, which should lead us to consider the problem of implementing

the conformance relation.

2.1 State of the Art of Relations to Compare Behavioural Models

In the context of incremental development, existing relations defined to analyse and

compare LTSs are conf , red, ext [10,11], as well as may, must and testing pre-

orders [12].

The conformance relation has been formalised by Brinksma and Tretmans [8,11] to

represent the notion of conformance between implementations and specifications (or

between protocols and services) in telecommunication networks. Initial informal no-

tion was proposed by the ISO standard ISO 9646 [13]. This standard specifies a general

methodology for testing the conformance of products to OSI specifications which the

products are claimed to implement. Tretmans formal definition translates the property

stating that an implementation conforms to its specification, if any test that the specifi-

cation must accept, must also be accepted by the implementation. Stated otherwise, any

test that the implementation may refuse, may also be refused by the specification. These

notions of “must accept” and “may refuse” tests, or experiments, are very similar to

may and must preorders defined by Hennessy [9], except that Hennessy also takes into

account the case of divergent processes. Divergent processes are those able to perform

infinite internal transition sequences.

It appears that the conformance relation is not transitive. It is well suited to compare

implementations with their specifications, but not to be used in refinement sequences.

Combined with the notion of trace inclusion, it leads to extension and reduction rela-

tions. An extension guarantees the conformance relation with larger traces, whereas a

358 H.-V. Luong, T. Lambolais, and A.-L. Courbis

reduction does the same but with fewer traces. Extension and reduction relations are,

then, transitive relations. Moreover, for incremental construction of processes, the ex-

tension relation has the following interesting property:

S2 ext S1 ⇒ (∀I. I conf S2 ⇒ I conf S1) (1)

This is the desired property for refinement construction, S2 being a refinement of S1.

The ext relation is not the largest refinement relation [10], but it can be used for such

purposes. As far as we know, the computability of these relations had not been demon-

strated yet. Our first work has been to study a technique for implementing them. We

demonstrated through a theorem that red and ext can be implemented as simulations

between acceptance graphs [4].

The conformance relation and its variant (ioconf, ioco, . . .) have been used in test

generation and conformance testing tools [11]. However, no implementation of the con-

formance relation between LTS has ever been proposed. In section 3, we shall present

a result which enables us to propose an efficient implementation of this conformance

relation.

2.2 Formal Definitions of Conformance Relations

A LTS [7] is a graph consisting of states linked by labelled transitions. It models behav-

ioural specifications as well as implementations.

Definition 1 (Labelled Transition Systems). A LTS P = (S, Act,→, s0) is a tuple

consisting of:

– a non-empty finite set S of states;

– a set Act of actions;

– a transition relation →⊆ S × Act × S;

– an initial state s0 ∈ S.

Act = L ∪ {τ} where τ represents any internal, unobservable actions, and L is the set

of observable actions.

Before presenting the definitions of conformance relation, we give some usual

notations:

s
a
−→ s′ =def (s, a, s′) ∈→

s
a1···a2−−−−→ s′ =def ∃s0, . . . , sn. s = s0

a1−→ . . .
an−−→ sn = s′

s
a1···a2−−−−→ =def ∃s′. s

a1···an−−−−→ s′

s
ǫ

==⇒ s′ =def s = s′or s
τ ···τ
−−−→ s′

s
a

==⇒ s′ =def ∃s1, s2. s
ǫ

==⇒ s1

a
−→ s2

ǫ
==⇒ s′

s
a1···a2====⇒ s′ =def ∃s0, . . . , sn. s = s0

a1==⇒ . . .
an==⇒ sn = s′

s
σ

==⇒ =def ∃s′. s
σ

==⇒ s′

s after σ =def {s′ | s
σ

==⇒ s′}

Implementation of the Conformance Relation for Incremental Development 359

P after σ =def s0 after σ

Traces : Tr(P) =def {σ ∈ L∗ | s0

σ
==⇒}

Out(p) =def {a ∈ L | p
a
−→}

Out(p, σ) =def ∪
p′∈p after σ

Out(p′)

Out(P, σ) =def Out(s0, σ)

D(s, a) =def {s′ | s
a
−→ s′}

Definition 2 (Refusal set). Ref (P, σ), the refusal set of P after trace σ, is defined by:

Ref (P, σ) =def

{

X | ∃p ∈ P after σ. p 	
e

==⇒, ∀e ∈ X
}

The refusal set is a set Ref (P, σ) ⊂ P(L). If σ 	∈ Tr(P), Ref (P, σ) = Ø. The

conformance relation is defined in the following way:

Definition 3 (Conformance relation conf). Let P and Q be two LTS,

Q conf P if ∀σ ∈ Tr(P). Ref (Q, σ) ⊆ Ref (P, σ).

Extension and reduction are defined as extending or reducing traces, while preserving

the conformance.

Definition 4 (Reduction relation red). Let P and Q be two LTS,

Q red P if Tr(Q) ⊆ Tr(P) and Q conf P.

Definition 5 (Extension relation ext). Let P and Q be two LTS,

Q ext P if Tr(P) ⊆ Tr(Q) and Q conf P.

The relation conf is not a preorder relation: conf has not the transitivity property. But

red and ext are reflexive and transitive.

2.3 Acceptance Sets

In this section, we present a definition of acceptance sets and their relation with re-

fusal sets. This notion will be used in the next section to build up acceptance graphs

associated to LTS.

Definition 6 (Acceptance set). The acceptance set of P after σ is defined by:

Acc(P, σ) = {X | ∃p′ ∈ P after σ. X = Out(p′, ǫ)}

The acceptance set represents the “sets of possible actions” of a process after a trace.

Intuitively, the inclusion of acceptance set allows us to check whether a process is more

deterministic than another.

Definition 7 (Set of sets inclusion). Let A, B ⊆ 2Act. A ⊂⊂ B if:

∀S ∈ A. ∃S′ ∈ B. S′ ⊆ S.

The following theorem has been stated in [4].

Theorem 1. ∀σ ∈ Tr(Q). Acc(P, σ) ⊂⊂ Acc(Q, σ) ⇔ Ref (P, σ) ⊆ Ref (Q, σ).

360 H.-V. Luong, T. Lambolais, and A.-L. Courbis

3 The Conformance Relation Computability

In this section, we present the definition of merging acceptance graphs [14] and demon-

strate that the conf relation can be calculated through the merging acceptance graphs.

Let us recall the definition of acceptance graphs.

3.1 Acceptance Graphs

An acceptance graph is the deterministic transition system corresponding to a LTS,

where states are associated to their acceptance sets. Examples of acceptance graphs

automatically generated by our JAVA prototype from LTSs are given in section 4.2,

Figure 5.

Definition 8 (Acceptance graph). A(P) = 〈T, Act,→T , t0〉 of the LTS P is a tuple

where:

– T is the set of states. T = {Q ∈ 2S | Q = Qǫ};

– →T is the set of transitions;

– For t ∈ T , we define the acceptance set t.acc = {X | X = Out(q, ǫ) ∧ q ∈ t};

– For A ∈ t1.acc, a ∈ A ⇒ ∃t2 ∈ T such that t1
a
−→T t2;

– t0 = ({s0})
ǫ.

In this definition, the ǫ-closure is defined as follows:

Definition 9 (ǫ-closure). The ǫ-closure of a set of states Q is:

Qǫ = {p | ∃q ∈ Q. q
ǫ

==⇒ p}

This definition of acceptance graphs is similar to acceptance graphs of [12], except

that acceptance sets do not take into account divergence states. It is also similar to the

definition of acceptance graphs of Khendek [14], but Khendek uses a different definition

of acceptance sets which is:

Acc(P, σ) = {Out(P, σ) − X | X ∈ Ref (P, σ)}

= {X | ∃p′ ∈ P
σ

==⇒ . Out(p′) ⊆ X ⊆ Out(P, σ)}

The algorithm of acceptance graph construction introduced by [12] can be adapted to

the construction of acceptance graphs as defined in this paper.

3.2 Merging Acceptance Graphs

The definition of merging acceptance graphs is introduced by Khendek [14]. The merg-

ing operation is defined as follows:

Definition 10 (Merge). Let P and Q be two LTS, and A(P) and A(Q) their accep-

tance graphs:

A(P) = (T1, Act,→T1
, t10

)

A(Q) = (T2, Act,→T2
, t20

)

The merging graph of the two above acceptance graphs is defined as follows:

Merge(A(P),A(Q)) = (T3, Act,→T3
, 〈t10

, t20
〉)

Implementation of the Conformance Relation for Incremental Development 361

1. T3 = T1 × T2 ∪ T1 ∪ T2

2. For each state t3i
∈ T3,

if t3i
= 〈t1i

, t2j
〉 then t3i

.acc = {X1 ∪ X2 | X1 ∈ t1i
.acc ∧ X2 ∈ t2j

.acc},

if t3i
∈ Tx then t3i

.acc = txi
.acc where x = 1, 2.

3. For each 〈t1j
, t2k

〉 ∈ T3

– 〈t1j
, t2k

〉
a
−→T3

〈t1l
, t2m

〉 if t1j

a
−→T1

t1l
∧ t2k

a
−→T2

t2m

– 〈t1j
, t2k

〉
a
−→T3

〈t10
, t20

〉 if (t1j

a
−→T1

t10
∧ t2k

	
a
−→T2

) ∨

(t1j
	
a
−→T1

∧ t2k

a
−→T2

t20
)

– 〈t1j
, t2k

〉
a
−→T3

t1l
if t1j

a
−→T1

t10
, t1l

	= t10
∧ t2k

	
a
−→T2

– 〈t1j
, t2k

〉
a
−→T3

t2m
if t2k

a
−→T2

t2m
, t2m

	= t20
∧ t1j

	
a
−→T1

4. For each state txj
∈ T3 where x = 1, 2

– txj

a
−→T3

〈t10
, t20

〉 if txj

a
−→Tx

tx0

– txj
a
−→T3

txl
if txj

a
−→Tx

txl
, txl

	= tx0

The operation Merge has some interesting properties. It is commutative and associative.

Moreover, for any acceptance graph, there exists one LTS [14]. We write Merge(P, Q)
the LTS of Merge(A(P),A(Q)). The operation Merge guarantees the extension rela-

tion between the LTS of merging acceptance graphs and the initial LTS. In addition, the

merging graph is always the least common cyclic extension of two initial graphs.

Proposition 1. Let P , Q be two LTS.

1. Merge(P, Q) = Merge(Q, P)
2. Merge(P, Q) ext P ∧ Merge(P, Q) ext Q.

3.3 Demonstration of the Conformance Relation Computability

This section gives the demonstration of the conformance relation computability through

a reduction relation applied on the merging of acceptance graphs.

Theorem 2. Let P and Q be two LTS,

Q conf P ⇐⇒ Q red Merge(P, Q).

Proof.

1. Let us prove (⇒): Q conf P ⇒ Q red Merge(P, Q)

1.1. Merge(P, Q) ext Q ⇒ Tr(Q) ⊆ Tr(Merge(P, Q))

1.2. Following the definition of merging graphs:

∀σ ∈ Tr(Q) ∧ σ 	∈ Tr(P). Acc(Merge(P, Q), σ) = Acc(Q, σ)

⇒ ∀σ ∈ Tr(Q) ∧ σ 	∈ Tr(P). Acc(Q, σ) ⊂⊂ Acc(Merge(P, Q), σ) (2)

With definition 3 and theorem 1, from Q conf P we know that:

∀σ ∈ Tr(Q) ∩ Tr(P). Acc(Q, σ) ⊂⊂ Acc(P, σ),

Moreover, following definition 10:

∀σ ∈ Tr(Q) ∩ Tr(P).
Acc(Merge(P, Q)) = {X1 ∪ X2 | X1 ∈ Acc(P, σ) ∧ X2 ∈ Acc(Q, σ)}

362 H.-V. Luong, T. Lambolais, and A.-L. Courbis

It can be written as follows:

∀σ ∈ Tr(Q) ∩ Tr(P).

∀X2 ∈ Acc(Q, σ). ∃X ′ ∈ Acc(P, σ). X ′ ⊆ X2

⇒ ∀X2 ∈ Acc(Q, σ). ∃X ′ ∈ Acc(P, σ). X ′ ∪ X2 ⊆ X2

⇒ ∀X2 ∈ Acc(Q, σ). ∃X ∈ Acc(Merge(P, Q), σ), X = X ′ ∪ X2. X ⊆ X2

⇒ Acc(Q, σ) ⊂⊂ Acc(Merge(P, Q), σ) (3)

With (2) and (3), we have: ∀σ ∈ Tr(Q). Acc(Q, σ) ⊂⊂ Acc(Merge(P, Q), σ). So,

with condition Tr(Q) ⊆ Tr(Merge(P, Q)) proven in 1.1., we have:

Q conf P ⇒ Q red Merge(P, Q)

2. We prove (⇐): Q red Merge(P, Q) ⇒ Q conf P

Since conf = red ◦ ext, where ◦ is the composition between binary relations [10],

we have:

Q red Merge(P, Q) ∧ Merge(P, Q) ext P ⇒ Q conf P . �

In [4], we have demonstrated that

Q red P ⇐⇒ A(Q) ⊂≈ A(P),

where ⊂≈ is a simulation relation defined over acceptance graphs. Hence, theorem 2

leads to

Corollary 1. Let P and Q be two LTS,

Q conf P ⇐⇒ A(Q) ⊂≈ Merge(A(P),A(Q)).

This theorem and corollary allow us to implement the conformance relation between

LTS. The tool we have developed strictly follows this result: it computes first accep-

tance graphs, then Merge, and then checks whether the reduction is satisfied or not. An

example is presented in the next section.

4 Implementation and Results

This part gives an overview of the JAVA prototype we have developed to implement

the conformance relation. We present a case study modelling a phone and the different

models that may be set up during the incremental modelling approach. The confor-

mance relation is computed to compare an implementation with a given specification.

Intermediate steps and results of these computations are given to illustrate the applica-

tion of theorem 2.

The relations being demonstrated on LTS, computation is obviously performed on

LTS. Nevertheless, for every step of modelling, we present the UML state machine

associated with LTS for two reasons: using UML model is more widespread than LTS,

and this approach gives a quick outline of our future work consisting in applying results

of LTS comparison on UML models.

Implementation of the Conformance Relation for Incremental Development 363

Fig. 1. The class diagram of the prototype

4.1 Implementation of the Conformance Relation

The JAVA prototype we have developed follows the computation approach of theorem 2.

Consequently, the main implemented classes are LTS and AGraph (cf. Figure 1):

– LTS class implements a LTS as a set of states derived from the State class and transi-

tions derived from the Transition class. As demonstrated in [4], relations red and ext

have been implemented in terms of bisimulation (function isStrongSimulatedBy).

– AGraph class implements the acceptance graph associated with a LTS. It is itself a

LTS, the state of which belongs to the AState class defined as a subclass of State

class. The attribute states of the class AState defines the list of its associated states

in the LTS. This attribute allows the relationship between acceptance graph nodes

and LTS nodes to be established. Another fundamental attribute associated with a

AState node is acc which is its acceptance set defined has a set of sets of actions.

In order to follow theorem 2, the conformance relation (function conf) has been im-

plemented into three steps: build up of acceptance graphs associated with the reference

LTS (the specification) and the LTS under analysis (the implementation), their merging

into a new acceptance graph and at last, computation of the reduction relation between

the acceptance graph of the reference LTS and the merging acceptance graph.

The following sections point out the results obtained by the JAVA prototype and

present in details intermediate graphs automatically build up and analysed to demon-

strate the conformance.

4.2 Case 1: Modelling a Simple Phone in Two Steps

This case study illustrates how to check the conformance relation between a phone

and its specification defined from a user point of view. The phone is modelled to inter-

act with a user, and simulates network activities (such as incoming calls) like internal

treatments. A UML class diagram presenting phone classes and interfaces is shown

in Figure 2. The specification provided interface (class User actions) is composed of

364 H.-V. Luong, T. Lambolais, and A.-L. Courbis

Fig. 2. Phone classes, with provided and required interfaces

signals sent by users: hang up, pick up, dial and comm in (incoming communication).

The specification required interface (class User msg) is composed of signals sent by the

phone: error, busy, call and comm out.

The Phone is connected to a network. It uses and provides the same interfaces as

its specification, plus network interfaces. Its provided interface is composed of signals

sent by the network: connection received, incoming connection refused, incoming con-

nection acknowledge, disconnection received and communication received. Its required

interface is composed of signals sent to the network: connection request, outgoing con-

nection refused, outgoing connection acknowledge, disconnection request and commu-

nication sent.

In UML, we distinguish between actions and events. There is no such distinction

in LTS for which any transition label is an action. UML events can be signal events,

call events, time events, change events and complete events. If the behaviour has to be

observed according to a specific point of view, there is no simple means in UML to

hide some events and actions. We will consider that UML change events, time events

and complete events are internal. We also need to explicitly consider as internal some

actions and signal events. UML tags can be used for such purpose.

Figure 3.a represents a UML state machine SMPhoneSpec of the phone specification.

There are two functionalities: the user is called (right part of Figure 3.a) or the user is

calling (left part of Figure 3.a).

We have not yet fully formalised the UML transformation into LTS, nevertheless

main transformation rules can be expressed as follows:

– Change events, time events or complete events are modelled by the silent action τ ;

– Call events, signal events and actions are translated into LTS actions;

– Any UML transition labelled by event and action (event / action), is split into two

LTS transitions, separated by a state (s0

e
−→ s1

a
−→ s2), where e is an action label

which denotes the UML event, and a is an action label which denotes the UML

action; if the UML action is not visible, it may be translated into a simple transition

s0

e
−→ s1;

– Non visible UML signal events, call events, and actions are modelled by the LTS

internal action τ ;

Implementation of the Conformance Relation for Incremental Development 365

Fig. 3. (a) SM PhoneSpec , PhoneSpec state machine. (b) LTSPhoneSpec , associated LTS.

– UML activities inside states are considered like internal treatments and do not ap-

pear in LTS;

– UML hierarchical states are flattened and global transition from this state are dis-

tributed to every sub-states.

Note that the UML state machines we consider do not take into account signal or

method parameters, neither other variables. Hence, UML guards are not taken into ac-

count in corresponding LTS, and systematically lead to nondeterministic transitions.

In order to have legible LTS, actions are named by the first letters of UML labels.

UML signals which are both required and provided (such as comm in and comm out)

are translated into a single LTS action (com). Figure 3.b shows LTSPhoneSpec , the LTS

associated with the state machine SMPhoneSpec .

Let us consider the modelling of the phone state machine (Figure 4.a). Internal ac-

tivities of SMPhoneSpec are refined: new network incoming and outgoing signals are

used to build up new transitions or new sub-machines. For example, in the state Idle of

SMPhoneSpec , the listen network activity and the associated change event when(called),
which only aims at detecting incoming calls, is replaced in SMPhone by a transition

triggered by the incoming signal event conRec.

The question is to verify if there is a conformance relation between the phone and

its specification. It is automatically computed by our tool whose main intermediate

results are given in details in the following figures. The first step performed by the JAVA

prototype is to build up acceptance graphs associated with the two compared LTS and

their merge.

The second step consists in verifying the simulation relation between the acceptance

graph of LTSPhone (Figure 5) and the merge (Figure 6).

This relation is computed by the JAVA prototype by verifying the simulation rela-

tion between the two graphs and the inclusion of acceptance sets. More precisely, two

366 H.-V. Luong, T. Lambolais, and A.-L. Courbis

Fig. 4. (a) SM Phone , the state machine of Phone class. (b) LTSPhone , associated LTS.

AState Acceptance set

y0 {{ca, p}}

y1 {{ca, p}}

y2 {{com, h}, {d, h}, {h}, {com}}

y3 {{com, h}, {h}, {com}}

y4 {{ca, p}}

y5 {{d, h}}

y6 {{h}, {com, h}, {e}, {b},
{com, e, b, h}, {com, b, h}, {com}}

y7 {{h}}

Fig. 5. A(LTSPhone) graph and its acceptance sets

properties are automatically computed. The first one is that there exists, for each node

of A(LTSPhone), a node of A(Merge(LTSPhoneSpec,LTSPhone)) which simulates it.

The result of this first property is expressed by a set of pairs representing simulation re-

lationships. In this case, it is: {(y0, w0), (y1, w1), (y2, w3), (y3, w5), (y4, w6), (y5, w2),
(y6, w6), (y7, w7)}. The second property is that the acceptance set of each node of

A(LTSPhone) is included in the acceptance set of its associated node in A(Merge
(LTSPhoneSpec, LTSPhone)). This property is checked by analysing acceptance sets

given in tables of Figure 5 and Figure 6 for each pair belonging to the simulation re-

lation. The conformance relation is therefore verified and the phone is guaranteed to

conform to its specification.

Next section deals with an extended specification of the phone.

4.3 Case 2: Modelling a Phone with Double Call

We are interested in modelling a phone able to accept a second call while the user is on

the phone. The class DoubleCallSpec (Figure 7) is a specialisation of the PhoneSpec

Implementation of the Conformance Relation for Incremental Development 367

AState Acceptance set

w0 {{ca, p}}

w1 {{ca, p}}

w2 {{d, h}}

w3 {{d, h}, {h}, {com}, {com, h}, {d, com, h}}

w4 {{e, h}, {com, e}, {e}, {com}, {b},
{com, e, b, h}, {com, b}, {b, h}, {e, b},
{com, h}, {h}, {com, b, h}, {com, e, h}}

w5 {{h}, {com}, {com, h}}

w6 {{ca, p}}

w7 {{h}}

Fig. 6. A(Merge(LTSPhoneSpec, LTSPhone)) graph and its acceptance sets

class. It inherits PhoneSpec interfaces, and has its own required interface defining sig-

nals accepting or rejecting/stopping the second call. Figure 8.a represents the state ma-

chine of this new specification, called SMDoubleCallSpec . The difference with the first

specification is on state Connected since a call transition may occur on this state. Fig-

ure 8.b gives the corresponding LTS, named LTSDoubleCall , obtained by the same in-

formal transformation rules as in the previous case. The conformance relation between

the phone and the double call specification has been computed according to the same

steps as it has been shown in previous section.

Fig. 7. Double call specification class, with provided and required interfaces

Again, the conformance relation is guaranteed. Moreover, there is an extension rela-

tion between the double call specification and the initial specification. Next modelling

step consists in setting up the state machine of the implementation (DoubleCall) and

verifying its conformance with DoubleCallSpec. Since the extension relation is a refine-

ment relation (see property (1) in section 2.1), if DoubleCall conforms its specification,

then it surely conforms to the initial phone specification. These results are summarised

in Figure 9.

368 H.-V. Luong, T. Lambolais, and A.-L. Courbis

(a) SMDoubleCallSpec , state machine (b) LTSDoubleCallSpec, associated LTS

Fig. 8. Telephone with a second call

Fig. 9. Relations between phone specifications and their implementations

This case study shows two steps of the development of a state machine, with the sec-

ond step including a new functionality, at two levels of abstraction (specification and

implementation levels). The developed state machine is associated to a single class. Ex-

tensions of this class (specialisation or implementation) are then related to extensions

of the state machine. For larger systems, we could consider developing state machines

describing the behaviour of the whole system, and not only associated to a single class

of the system. This would correspond to a top-down approach. Then, at a further de-

velopment step, this would imply a decomposition of the whole state machine into sev-

eral parts, involving communication between these parts. This approach of refinement

through decomposition will constitute a research perspective. In the other direction, ac-

cording to a bottom-up approach, the development of several state machines associated

to different classes of the same system will lead us to consider the question of commu-

nication and resulting UML architecture involving these machines.

Implementation of the Conformance Relation for Incremental Development 369

5 Conclusion and Future Work

Currently, the development of behavioural models following an incremental approach

is hardly achievable. UML tools supporting state machines lack evaluation procedures,

which could allow users to develop models step by step, and modify (change or ex-

tend) them according to evaluation results. We believe that a pragmatic development

approach, such as ones adopted for program development, could be applied to behav-

ioural modelling. Such an approach follows a simple repetitive cycle: construction, eval-

uation, correction. The evaluation means that we propose rely on model comparison. In

previous works, we have presented how to compute extension and reduction relations

and point out the use of the former one to verify model refinement. However, it is not

adapted to verify, at the end of an incremental modelling process, if an implementation

conforms to a specification.

In this article, we propose an implementation technique for conformance evaluation.

The conformance relation defined over labelled transition systems, had never been im-

plemented before. The technique we propose is based on model transformations into

acceptance graphs and model merging. We have developed a tool which supports these

steps on LTS models. We have proposed informal translation rules from UML State

Machines to LTS. Hence, the conformance relation between LTS is a proposal for a

semantics of UML state machine specialisation relation.

Our short term objectives are to automate the UML translation into LTS and inte-

grate other state machine features such as concurrent sub-states and pseudo-states (e.g.

choice, join and history) in order to be able to compare a large representative panel

of state machines. We plan to integrate the extension and conformance relations into a

UML CASE tool supporting incremental modelling processes. A complementary area

of interest consists in comparing UML state machines with sequence diagram specifi-

cations. Such diagrams are largely used in first development steps. This will assist the

modeler from early specification steps to detailed behavioural models, taking into ac-

count several modelling diagrams. A promising area of investigation, complementary

to evaluation techniques, will consist in assisting the user during model construction

with development schemes and patterns which would have been proved to preserve

refinement or implementation relations.

References

1. OMG: Unified Modeling Language Specification. Object Management Group (2007)

2. Boiten, E., Bujorianu, M.: Exploring UML refinement through unification. In: Jürjens, J.,

Rumpe, B., France, R., Fernandez, E. (eds.) Critical Systems Development with UML -

Proceedings of the UML 2003 workshop. Number TUM-I0323, Technische Universität

München, pp. 47–62 (September 2003)

3. Beeck, M.V.D.: Behaviour specifications: Equivalence and refinement notions. Techreport

24/00-I, Universität Münster (November 2000)

4. Luong, H.V., Lambolais, T., Courbis, A.L.: Implementation of extension and reduction rela-

tions for incremental development of behavioural models. Technical Report RR-006-, EMA,

Laboratoire LGI2P, École des mines d’Al (2008)

370 H.-V. Luong, T. Lambolais, and A.-L. Courbis

5. Lambolais, T., Gout, O.: Using conformance relations to help the development of state-

machines. In: ISSRE 2004, International Symposium on Software Reliability Engineering

(November 2004)

6. Gout, O.: Développement incrémental de spécifications orientées objets. PhD thesis, École

de Mines d’Alès (2006)

7. Milner, R.: Communicating and Mobile Systems: The π Calculus. Cambridge University

Press, Cambridge (1999)

8. Brinksma, E., Scollo, G.: Formal Notions of Implementation and Conformance in LOTOS.

Technical Report INF-86-13, Dept. of Informatics, Twente University of Technology (1986)

9. Hennessy, M.: Algebraic theory of processes. The Foundations Of Computing. MIT Press,

Cambridge (1988) ISBN:0-262-08171-7

10. Leduc, G.: Conformance relation, associated equivalence, and minimum canonical tester in

lotos. In: PSTV XI. North-Holland, Amsterdam (1991)

11. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M., Mauw, S.

(eds.) CONCUR 1999. LNCS, vol. 1664. Springer, Heidelberg (1999)

12. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Formal

Aspects of Computing 3 (1992)

13. ISO/IEC 9646-1: Information technology – Open Systems Interconnection – Conformance

testing methodology and framework – Part 1: General concepts (1991)

14. Khendek, F., Bochmann, G.V.: Merging behavior specifications. Formal Methods in System

Design 6, 259–293 (1993)

	Introduction
	Definitions and Analysis of Existing Relations
	State of the Art of Relations to Compare Behavioural Models
	Formal Definitions of Conformance Relations
	Acceptance Sets

	The Conformance Relation Computability
	Acceptance Graphs
	Merging Acceptance Graphs
	Demonstration of the Conformance Relation Computability

	Implementation and Results
	Implementation of the Conformance Relation
	Case 1: Modelling a Simple Phone in Two Steps
	Case 2: Modelling a Phone with Double Call

	Conclusion and Future Work

