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Abstract. Increasingly, high-assurance applications rely on dynami-
cally adaptive systems (DASs) to respond to environmental changes,
while satisfying functional requirements and non-functional preferences.
Examples include critical infrastructure protection and transportation
systems. A DAS comprises a collection of (non-adaptive) target systems
(represented as UML models) and a set of adaptations that realize tran-
sitions among target systems. Two sources of uncertainty inherent to
DASs are: (1) predicting the future execution environment, and (2) us-
ing functional and non-functional trade-offs to respond to the changing
environment. To address this uncertainty, we are inspired by living or-
ganisms that are astonishingly adept at adapting to changing environ-
mental conditions using evolution. In this paper, we describe a digital
evolution-based approach to generating models that represent possible
target systems suitable for different environmental conditions, enabling
the developer to identify the functional and non-functional trade-offs be-
tween the models, and then assisting the developer in selecting target
systems for the DAS.

1 Introduction

Increasingly, high-assurance applications rely on dynamically adaptive systems
to react and respond to environmental changes, while continuing to meet func-
tional requirements and make non-functional trade-offs. Examples include criti-
cal infrastructure protection and transportation systems. In an effort to promote
separation of concerns, we consider a dynamically adaptive system (DAS) to com-
prise a collection of (non-adaptive) target systems and a set of adaptations that
realize transitions among target systems in response to environmental changes.
We use the term domain to refer to a specific set of environmental conditions
to be handled by a given target system (e.g., noisy network, sensor failure, and
low battery could all be true for one domain). Model-driven engineering, which
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successively refines models from analysis to design and then automatically gen-
erates code [1], can be leveraged to support rigorous development of a DAS by
modeling each of the target systems as a UML model (i.e., a class diagram and
a behavioral model comprising a set of interacting state diagrams) and adap-
tations as transitions among them. There are two key sources of uncertainty
inherent to applications warranting adaptation: (1) predicting the future execu-
tion environment, and (2) using the trade-offs in non-functional characteristics
and functional behavior to respond to the changing environmental conditions.
To address these uncertainty issues, we can learn from nature. Living organisms
are astonishingly adept at adapting to changing environmental conditions using
evolution. In this paper, we harness the power of evolution [2] to automatically
generate a suite of behavioral models that represent possible target systems
suitable for a variety of combinations of environmental conditions not explicitly
specified by the developer. We then automatically identify the non-functional
characteristics and latent functional properties (“corner properties” or implicit,
not required behavior) of the models, thereby assisting the developer in identify-
ing trade-offs between the models in order to select the models to use as target

systems.
Several architecture-based modeling approaches (e.g., [3-6]) capture the func-

tional properties and non-functional characteristics of a DAS in an architecture
model that is used at run time to adapt the system, e.g., by adding, removing, or
swapping a component. Although these approaches use a DAS to make trade-offs
between different system configurations that have differing functional properties
and non-functional characteristics, these system configurations must be modeled
manually and do not support code generation. Additionally, several approaches
are able to synthesize behavioral models from scenarios (e.g., [7-11]) and/or
from formally specified properties (e.g., [11-13]). Because these approaches were
designed for non-adaptive systems, they do not explicitly address changing ex-
ecution environments and do not assist the developer in making functional and
non-functional trade-offs.

This paper introduces an approach to MDE for a DAS that explicitly han-
dles unpredictable execution environments and supports trade-off analysis to
address the changing environmental conditions. First, to address the unknown
execution environment, we automatically generate a suite of models, where each
model satisfies the overall functional invariant, but has different functional and
non-functional behavior that makes it more suitable for a potentially unique
domain that was not explicitly specified. Next, to assist the developer in dis-
tinguishing the generated solutions and making informed trade-offs, we provide
an automated means to explicitly identify the non-functional characteristics and
latent behavior of the generated models. For example, our approach can be used
to discover that one model is more fault-tolerant and energy efficient, whereas,
another is more secure and resource intensive. The developer then selects the set
of generated models to use as target systems for the DAS.

We use digital evolution-based techniques to support this process by generat-
ing a suite of models that represent possible target systems. Digital evolution [14]
is a branch of evolutionary computation in which a population of self-replicating



computer programs (i.e., digital organisms) exists in a user-defined computa-
tional environment and is subject to mutations and natural selection. To gen-
erate models, we constructed AVIDA-MDE (AvIDA for Model Driven Engineer-
ing),! which enables digital organisms to generate UML models that represent
target system behavior. Mutations produce organisms that generate different
behavioral models. Natural selection gives rise to a population of organisms that
generate behavioral models that increasingly satisfy the functional system in-
variants with different behavioral characteristics that make it better suited for
handling a particular domain.

We illustrate our approach by applying it to GridStix, an adaptive flood
warning system [15]. The remainder of the paper is organized as follows. Sec-
tion 2 presents relevant background information. Then Section 3 introduces Grid-
Stix as our running example and presents our approach. Section 4 describes
AvIDA-MDE in detail. Section 5 describes results from applying AviDA-MDE
to GridStix. Section 6 discusses related work. Finally, in Section 7, we present
conclusions and discuss future work.

2 Background

In this section, we provide a brief overview of AVIDA [14] and describe a pre-
viously introduced model-driven engineering process for dynamically adaptive
systems [16] that we support with AvibA-MDE.

2.1 AVIDA

AviDA [14] is an evolutionary computation platform in which self-replicating
digital organisms evolve in a fashion with more parallels to natural evolution
than other forms of evolutionary computation (e.g., genetic algorithms and ge-
netic programming). Specifically, whereas other evolutionary computation ap-
proaches evaluate each individual in the population and explicitly select indi-
viduals to move to the next generation, the evolution of digital organisms is
more open-ended. The organisms are asynchronously evaluated; if an organism
exhibits desirable behavior, then the relative amount of resources that the organ-
ism receives is increased. Because the evaluation is not used to explicitly select
organisms to survive, poorly performing organisms may continue to exist in the
population and could eventually produce a novel solution. Until recently, AvIDA
has been used primarily to study biological evolution [14].

Figure 1 depicts an AVIDA population and the structure of an individual
organism. Each digital organism comprises a circular list of instructions (its
genome) that is executed atop its virtual CPU. The AVIDA instruction set is
designed so that random mutations will always yield a syntactically correct pro-
gram, albeit one that may not perform any meaningful computation. An AviDA
environment comprises a number of cells, where a cell is a compartment in which
an organism can live. Each cell can contain at most one organism, and the size
of an AVIDA population is bounded by the number of cells in the environment.

! AvIDA is a digital evolution platform used to study biological evolution [14].



Organisms are self-replicating, that is, the genome itself must contain the instruc-
tion to create an offspring. Random mutations are introduced during replication.
Mutation types include: replacing the instruction with a different one, inserting
an additional, random instruction into the offspring’s genome, and removing an
instruction from the offspring’s genome. For AVIDA-MDE, a mutation might
change the label on a state diagram transition. When an organism replicates, a
cell to contain the offspring is selected from the environment, and any previous
inhabitant of the target cell is replaced (killed and overwritten) by the offspring.
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Fig. 1. Elements of AVIDA platform

Developers use tasks to describe desirable organism behavior. For example,
we define a task that evaluates whether the generated behavioral models sat-
isfy functional properties (e.g., invariant safety-critical properties). Performing
a task increases an organism’s merit, which determines how many instructions
its virtual CPU is allowed to execute relative to the other organisms in the pop-
ulation. For example, an organism with a merit of 2 will, on average, execute
twice as many instructions as an organism with a merit of 1. Because the pop-
ulation has a fixed maximum size, to have the best chance of surviving in the
population, an organism must have as much merit as its peers. This competition
for survival ensures that, over time, the population comprises organisms that
increasingly satisfy more tasks.

2.2 Model-Driven Engineering for Dynamically Adaptive Systems

To provide context for our approach, we briefly describe the model-driven engi-
neering process (depicted in Figure 2) for constructing a DAS [16]. At the Goal
phase, the functional goals (e.g., Goal) of the dynamically adaptive system are
identified [16]. At the Requirements phase, the domains (D; and D;), i.e., environ-
mental conditions, and invariants (INV) of the DAS are identified. Additionally,
adaptations among these domains are captured as dotted-line arrows. At the De-
sign Models phase, design models (e.g., M;, M;, M;;, M;;) are constructed, where
M; and M; represent designs for target systems, and M;; and M;; are design
models capturing the behavior of the system during adaptation, where all of
the models satisfy the invariants (INV). Each of the design models has a set of
latent functional properties (e.g., LF;, LF;, LF;;) and non-functional characteris-
tics (e.g,. NF;, NF;, NF;;) that make it more suitable for a specific domain. At
the Implementation phase, code can be automatically generated from the design
models using code generators.
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Fig. 2. MDE Process for a DAS

In this paper, we describe an approach to generating design models, M;, of
target systems. Each design model M; should minimally satisfy INV, but it may
also exhibit non-functional characteristics (NF;) and latent functional properties
(LF;), all of which collectively make the behavior of M; particularly well-suited to
handle domain D;. As a means to address uncertainty in execution environments,
our approach also helps to discover additional domains based on viable, but not
previously specified combinations of environmental conditions.

3 Approach

To address uncertainty within the development of DASs, we propose a four step
process with corresponding digital evolution-based tool support. We illustrate
our approach using GridStix, an adaptive flood warning system [15].

3.1 Running Example: An Adaptive Flood Warning System

GridStix is an adaptive flood warning system deployed to monitor the River
Ribble in Yorkshire, England [15]. Floods are an increasing and costly problem
faced by the United Kingdom. The amount of damage caused by a flood is corre-
lated with both the depth of the water and the amount of time between the flood
prediction and the flood. GridStix is a light-weight grid-computing flood moni-
toring system that comprises a set of nodes (e.g, A-E and N). Figure 3 provides
an overview of GridStix and an elided portion of the corresponding object dia-
gram. For this case study, we generate models that represent the target systems
of one Node (N). A Node monitors the status of the river using its PressureSen-
sor (depth sensor) and DigiCamSensor (digital camera river flow speed sensor).
The node then queries an additional UpstreamNode (A) and uses the information
from the UpstreamNode and the depth and speed it sensed to make a prediction.
Lastly, the node transmits the prediction to a neighboring node (B, C, or D)
that forwards it to a gateway node (E) that is connected to a modem and is
responsible for sending the predictions off-site for additional processing. Three
potentially conflicting non-functional objectives of a node are: (1) energy effi-
ciency (EE) because a node has a limited power supply, (2) fault-tolerance (FT)
because a node is deployed remotely, and (3) prediction accuracy (AC) because a
node should avoid failures or false alarms. A node is able to adapt its behavior in
a number of different ways that affect its non-functional attributes. In this case



study, we enable a node to dynamically change its CPU speed, select a different
routing algorithm to transmit information, e.g., shortest path (N—B—C—D—E)
vs. fewest hop (N—D—E), and use a different physical network infrastructure to
transmit predictions (e.g., bluetooth, wireless, GPRS — General Packet Radio
Service, a packet-based wireless communication service).
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Fig. 3. GridStix Application

3.2 Process

Figure 4 provides a graphical depiction of our approach, where shading levels
indicate different combinations of functional properties and non-functional char-
acteristics. In the following, we provide additional detail about how the process
addresses uncertainty within the development of DASs.
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(1) Generate models (Mi) (2) Cluster by domain (Di) (3) Identify latent functional  (4) Select target
with non—functional using utility functions properties (LFi) system models for

characteristics (NFi). each domain.

Fig. 4. Approach overview

Step 1: Generate models with non-functional characteristics. The model
generation step addresses the uncertainty present in the unknown environment
of the DAS. Specifically, AVIDA-MDE generates a suite of models (e.g., M;), each
of which minimally satisfy the developer-specified invariants (INV), but may also
contain additional behavior that makes it suitable for domains that were not
explicitly provided. The developer provides the following inputs:

— UML Class/Object Diagram: The UML class/object diagram (e.g., a detailed
version of Figure 3 b.) describes the structure of the system including the classes,
attributes, operations, associations, and possible attribute values. This information
is used by AVIDA-MDE to construct state diagram elements.



— UML State Diagrams: For each class/object, the developer may optionally pro-
vide a state diagram describing existing behavior. In general, AVIDA-MDE can be
used to generate new state diagrams or extend existing state diagrams [17].

— Invariants: Invariant functional properties (INV) describe the desired behavior of
the generated models. For example, a GridStix functional property is “Globally, it
is always the case that if a node makes a prediction, then eventually the node will
transmit the prediction to one of its neighbors.”

— Scenarios: Scenarios describe the possibilities for target system behavior. To ac-
count for the uncertainty in the execution environment, the developer specifies a
set of required functional scenarios that must be supported by the generated mod-
els. Additionally, the developer specifies a set of non-functional based scenarios,
where each one of the non-functional based scenarios specifies a different way to
achieve the same functional objective (i.e., send prediction) with differing non-
functional characteristics (i.e., send prediction using GPRS). One scenario from
the non-functional based scenarios set must be supported by a generated model.
For example, Figure 5 depicts a set of two non-functional based scenarios and one
required scenario for the GridStix system. The two non-functional based scenarios
both set the CPU speed and query the PressureSensor. However, each scenario
sets the CPU speed to different values and thus affects both energy efficiency (i.e.,
running slower conserves battery power) and accuracy (i.e., running faster is more
accurate). The required scenario probes the DigiCamSensor.

:Node :PressureSensor :DigiCamSensor

Comments

Set CPU to 100 and query the
PressureSensor to obtain depth
measurement.

[1/getDepth()
setDepth()

Balanced: FT=0, EE=.5, AC=.5 CPUSpeed:=200

Set CPU to 200 and query the
PressureSensor to obtain depth

[l/getDepth()

Non—functional based scenario set

setDepth()
measurement.
3 g Required: FT=0, EE=0, AC=0 [I/getSpeed()
§ § Query the DigiCamSensor to setSpeed()
< 3 obtain speed measurement.

Fig. 5. GridStix Scenario Diagrams

At a high level, the use of non-functional based scenarios enable AVIDA-
MDE to generate innovative behavioral models that address previously unspec-
ified combinations of environmental conditions by integrating the behavior rep-
resented by all or parts of the non-functional based scenarios, required scenarios,
and some additional behavior in such a way that the invariants are satisfied.
Step 2: Cluster by domain using utility functions. To assist the developer
in leveraging non-functional trade-offs between the models to address changing
environmental conditions, we provide an automated means to cluster the gener-
ated models by a high-level description of the domains provided by the developer.
Moreover, our key insight is that for each known high-level domain, a developer



has a set of non-functional preferences that reflect their understanding of the
domain’s environmental conditions and can be used to identify a domain model
set, a set of models whose non-functional characteristics make it suitable for a
domain. For a given domain, D;, we capture the developer’s non-functional pref-
erences using a utility formula [18]. The domain model set for a given domain
comprises a set of models that maximize the utility function, but do so using
different trade-offs between non-functional characteristics.

For example, the GridStix developers previously identified three high-level
domains [15]: (1) normal conditions, (2) increased flow, and (3) flood. For the nor-
mal conditions, because the river is calm and a flood is unlikely, energy efficiency
may be more important than fault-tolerance or accuracy, as captured by the fol-
lowing utility formula: 0.6+EE + 0.2%x FT 4 0.2+« AC. Similarly, utility formulae
are specified for the increased flow and flood domains. These utility formulae are
used to cluster the generated models by domain. Models whose utility function
evaluation are below a given threshold do not reflect useful behavior, and hence
are not an element of any domain model set and are therefore discarded. The col-
oring in Figure 4 indicates the non-functional characteristic differences between
the models; as such, the models with lighter coloring are clustered in domain
model set D;, the models with moderate coloring are clustered for domain D,
and the models with darker coloring are clustered for domain Ds.

Step 3: Identify latent functional properties. Within a domain model set,
all of the models satisfy the invariants (INV), and their respective non-functional
characteristics (NF;) satisfy the developer’s utility function for the domain (D;).
To further distinguish the models within a domain model set, we provide an
automated approach to discovering their latent functional behavior (e.g., LF;).

AvIDA-MARPLE [19] is a digital-evolution based tool that we previously de-
veloped to discover latent temporal logic properties. Within AVIDA-MARPLE,
digital organisms generate properties by instantiating the five most commonly
occurring specification patterns [20] in the form of Linear Temporal Logic (LTL).
The pattern placeholders are instantiated with boolean propositions created us-
ing class attribute and operation information from the class diagram (specified
also as an input to AVIDA-MDE). During the AVIDA-MARPLE evolutionary pro-
cess, organism mutations produce different LTL properties that may be satisfied
by the UML model. Natural selection gives rise to a population of organisms
that produce increasingly more relevant properties, where relevancy can refer to
a type of property or the use of a specific attribute or operation. For the Grid-
Stix case study, we considered stronger properties more relevant because they
revealed more information about the model; here, stronger means those prop-
erties that made stronger claims, such as universality, or those that contained
conjunctive expressions. In essence, AVIDA-MARPLE discovers latent functional
properties that developers may not otherwise specify or even consider. These la-
tent functional properties may uncover unwanted behavior that could either be
used to refine the requirements for generation or disqualify a model from repre-
senting a target system. For easier readability, these latent functional properties
are presented to the developer in natural language [21].



Step 4: Select target system models for each domain. Using the non-
functional characteristics and the latent functional properties, the developer
identifies one or more models within each domain model set to use as a tar-
get system. This step has three parts. First, the developer eliminates models
that have unwanted latent functional behavior (LF;). Second, the developer in-
fers sub-domains, which are a fine-grained set of environmental conditions, from
the generated models; these combinations of environmental conditions were not
explicitly specified by the developer. While all of the generated models within a
domain model set satisfy the utility function, it is possible, that they do so with
significantly different parameter values. As such, a sub-domain is created for each
cluster of parameter values. For example, within the Flood conditions domain,
we identified two sub-domains that describe Node behavior when a neighboring
node is submerged and when it is not submerged. Therefore, the identification
of sub-domains addresses uncertainty in the execution environment by enabling
the developer to identify combinations of environmental conditions that may not
otherwise have been considered. In cases where there are no obvious sub-domains,
then we consider that domain to be a simple domain. Third, the developer selects
one model within each simple domain or sub-domain to use as a target system.
These selected models can be incorporated into the model-driven engineering
process for DASs as inspiration for a human created model, manually modified
and then used to generate code, or used to generated code directly.

4 Using Digital Evolution to Generate Models

AvIDA-MDE enables developers to generate innovative behavioral models for
target systems. Specifically, mutations produce behavioral models that develop-
ers might not otherwise discover, while natural selection pressures organisms to
generate models that meet developer requirements, i.e., invariants. This blend
of innovation and requirements satisfaction is especially pertinent for generat-
ing target systems that must respond to varying environmental conditions in
a resilient and robust fashion. In previous work [17], we developed a prelimi-
nary version of AVIDA-MDE to generate behavioral models, but did not address
non-functional model characteristics or look for latent properties to differentiate
models. In the following, we describe the three major ways in which we extended
the AVIDA platform to create AviDA-MDE.

Configuration. AvIDA-MDE accepts the four configuration inputs specified
by the developer, i.e., UML class diagram, UML state diagrams, invariants, and
scenarios. These inputs serve three purposes: (1) The invariants and scenarios
are requirements for the behavioral models. (2) The UML state diagrams de-
scribe existing behavior to be extended through generation. (3) The UML class
diagram and scenario diagram provide the alphabet from which state diagram
transitions are created. Specifically, for each scenario, the messages form a list
of transition labels. In addition, for each class, a list of triggers (operations),
a list of guards (expressions built using attributes), and a list of actions (the
operations of classes related to it via associations) are extracted. Because the
AviDA-MDE alphabet includes triggers, guards, and actions (described by the
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class diagram), organisms are able to generate additional and potentially more
interesting viable transitions, not otherwise considered by the developer.

New Instructions. To enable organisms to manipulate state diagrams, we
developed a new set of AVIDA instructions that are reusable across all DAS ap-
plications specified by the configuration step. Figure 6 describes the instructions
and their use. The selection instructions {1-3} use different strategies for select-
ing alphabet elements to use to create a transition. The internal representation
of an organism’s alphabet is lists of states, transition labels, triggers, guards, and
actions. Each list has an index that initially points to the first list element. (The
list of states has two indices — one for the origin state and one for the destination
state.) An organism selects an alphabet element by having the list index point to
it. Instruction {4} is used to add the transition described by the current origin
state, destination state, and transition label. Instruction {5} is used to add the
transition described by the current origin state, destination state, trigger, guard,
and action. Instructions {6-7} are used to add transitions in a loop.

No. |Name Instruction Use

{1} |next-{orig, dest, tl, |Move the index forward one list element.
tr, gu, act}

{2} |move-rel-{orig, dest, |Move the index forward a number of list elements.
tl, tr, gu, act}

{3} |move-abs-{orig, dest, |Move the index forward an absolute number of list

tl, tr, gu, act} elements from the beginning of the list.
{4} |addTransL Create a transition using the transition label.
{5} |addTransT Create a transition using a trigger, guard, and action.
{6} |start-loop Start creating a list of transitions that form loop.
{7} |end-loop Use the list of transition labels to create a loop.

Fig. 6. Avida-MDE Instructions Excerpted

New Tasks. We defined a set of tasks to reward AVIDA organisms for gen-
erating a behavioral model that meets the developer-specified invariants and
scenarios. Prior to replication, an organism and the model that it generates are
evaluated by the tasks. An organism that performs these tasks will have a better
chance of survival and will eventually dominate the population.

The scenario task (checkScenario) rewards an organism for generating a
model that supports key scenarios defined by the developer. For each scenario,
the developer must specify the messages between objects and may optionally
include a start state for each object and specify whether the scenario should it-
erate. The reward for a required scenario is the percentage of the execution path
supported by the state diagrams. Additionally, the reward for a non-functional
based scenarios set is the largest percentage of any of the scenarios in the set
supported by the state diagrams. For example, using the non-functional based
scenarios set in Figure 5, if an organism generated a behavioral model that sup-
ported 67% of the Energy Efficient scenario and 33% of the Balanced scenario,
then the reward for this non-functional based scenarios set would be 67% of the
reward value.
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A property task (checkProperty) rewards organisms that generate state dia-
grams that adhere to a formally specified property. These tasks constrain the
behavior of the interacting state diagrams. To enable AVIDA-MDE to determine
if the generated state diagrams satisfy a stated property, we extended AVIDA to
use external third party tools. Specifically, the checkSyntax task uses Hydra, an
existing UML formalization engine [22], to translate a UML model into Promela,
the specification language for the model checker Spin [23]. Next, the checkWit-
ness task uses Spin to verify that at least one execution path (i.e., a witness
trace) through the Promela model satisfies the functional property specified by
the developer in Linear Temporal Logic (LTL) [24]. Lastly, if the checkWitness for
a given property passes, then the checkProperty task uses Spin to verify that the
Promela specification satisfies the same functional property. Additional details
on the external and previously developed analysis process can be found in [22].

5 Case Study

In this section, we provide further details about applying our approach to Grid-
Stix and discuss our results. The objective of our case study is to generate target
systems that describe the behavior of the Node object as it interacts with its sen-
sors, queries an upstream node, makes a prediction regarding the state of the
river, and transmits information to a neighboring node.

Step 1: Generate models with non-functional characteristics. To use
AviDA-MDE to generate target systems for GridStix, we provided the following:

— A version of the UML Object diagram (in Figure 3 b.) including operations,
attributes, and possible attribute values to be used for the organism alphabet.

— Functional invariant(s): “Globally, it is always the case that if a node makes a
prediction, then eventually this prediction is transmitted to either its shortest path
neighbor or its fewest hop neighbor.” This invariant is checked by the checkSyntax,
checkWitness, and checkProperty tasks.

— State diagrams describe the behavior of all of the classes except Node. Because
our case study focuses on the behavior of Node, these other state diagrams will
not be extended by AviIDA-MDE.

— Three required functional scenarios describe: (1) querying the Node’s Digi-
Cam to monitor the speed of the river, (2) querying the depth sensed by the
UpstreamNode, and (3) querying the speed sensed by the UpstreamNode. Ad-
ditionally, we specified two sets of non-functional based scenarios. The first set
provides three computational speed alternatives (two of which are depicted in Fig-
ure 5). The second set provides six alternative ways to send data. The messages
defined by these scenarios were used as a portion of the organism alphabet. Ad-
ditionally, a checkScenario task was used to reward organisms for supporting the
scenarios.

Using these inputs, forty AvIDA-MDE experiments were run in parallel to
account for the stochastic nature of the evolutionary process. All of the exper-
iments ran for 10 hours on a high-performance computing center; we started
the experiments at the end of a work day and the results were available by the
beginning of the next work day. In total, 779 unique models were generated.
Step 2: Cluster by domain using utility functions. Next, to manage the
non-functional trade-offs, we partitioned the generated models into three domain
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model sets, one for each of the three high-level domains from the developer (i.e.,
normal conditions, increased flow, and flood). Specifically, we first specified a utility
function for each domain:
— Normal conditions utility = 0.6«EE + 0.2%xFT + 0.2«+AC. We prefer that the nodes
are energy efficient to preserve battery life.
— Increased flow utility = 0.33+EE + 0.34xFT + 0.33xAC. We prefer that the nodes
are a balance of fault-tolerant, accurate, and energy efficient.
— Flood utility = 0.2«EE + 0.0xFT + 0.8%*AC. We prefer that the nodes are accurate
because the conditions are critical.

We then selected models that maximize the respective utility formula of each
domain. Specifically, we selected 3 models from the normal conditions domain
model set, 2 models from the increased flow conditions domain model set, and 3
models from the flood conditions domain model set. These models will be further
evaluated to identify latent properties and possible sub-domains.

Step 3: Identify latent functional properties. Next, we used AVIDA-
MARPLE to identify the latent functional behavior of the 8 selected models.
For example, three of the discovered latent properties for one of the models in
the normal conditions domain model set are:

1. Globally, it is always the case that if Node.CPUSpeed < 100 holds, then Fewest-

HopNode.recetved == 0 eventually holds.

2. Globally, it is always the case that if Node.CPUSpeed > 200 holds, then Fewest-

HopNode.received == 1 eventually holds.

3. Globally, it is always the case that if FewestHopNode.sendPredictionUsingGPRS()

holds, then ShortestPathNode.received == 1 eventually holds.

These three properties together specify that the Node always sends its prediction
to the ShortestPathNode, but also sends its prediction to the FewestHopNode if the
CPUSpeed is greater than 200. This behavior implies that the Node is generally
energy efficient (sending to the ShortestPathNode), but also has some innate fault-
tolerance that is achieved by sending to the FewestHopNode only when the CPU
speed is running quickly.
Step 4: Select target system models for each domain. Using the la-
tent functional behavior identified as part of Step 3, we noted that 2 of the
8 models selected from the three domain model sets contained unwanted la-
tent behavior. Thus, we eliminated them. The two models in the Increased Flow
domain model set achieved the same utility value using similar non-functional
characteristics; neither had unwanted latent behavior. To minimize model com-
plexity, we selected the model with the fewest transitions. We repeated this
evaluation process for the Flood domain model set, which also had two similar
models. For the normal conditions domain model set, the two generated models
satisfied their utility function similarly, but with differing non-functional char-
acteristics. Specifically, based on the utility function parameters, we identified
two sub-domains, where one sub-domain was more energy efficient and the other
sub-domain was more fault-tolerant. The latent functional properties discovered
for these two models reaffirmed our identification of sub-domains and explained
why the models had differing non-functional characteristics. For example, the
latent functional properties for the normal conditions - fault-tolerant sub-domain
were previously described and indicate that it transmits predictions to both its
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shortest path and its fewest hop neighbor. Thus far, we have focused on func-
tional and non-functional properties to illustrate the differences between the
models generated by AvIDA-MDE to satisfy the same invariant requirements.
These differences are, in fact, due to both the different transitions (i.e., guards,
triggers, actions) that get generated for each diagram, as well as the different
topological structures of the diagrams (e.g., number of states, number of transi-
tions, the connectivity between states, etc.). For example, Figure 7 highlights the
amount of variation present in our generation process by depicting the varying
topologies of the four generated models selected as target systems

E—G—G—@i

Increased Flow Normal Conditions - Normal Conditions -
fault-tolerant energy efficient

Fig. 7. Generated Target Systems

6 Related Work

While there has been significant progress in synthesizing state diagrams from
scenarios and/or properties, to the best of our knowledge, our approach is the
only one to generate multiple solutions (in the form of models) for interacting ob-
jects, while considering functional properties and non-functional characteristics.
In general, scenario-based synthesis techniques [7—11] accept a set of scenarios
(i.e., a sequence diagrams) as input and produce a set of communicating state di-
agrams as output. The sequence diagram messages form the alphabet. Property
synthesis techniques establish a one-to-one mapping between a formally specified
property and a state diagram [12, 25, 26], where each state diagram represents
all possible behaviors that satisfy the property.

Our approach addresses the uncertainty present in the development of DASs
and thus differs from the synthesis approaches in three key ways: First, in ad-
dition to the alphabet formed by the scenario messages, AVIDA-MDE also uses
an evolving alphabet that is created by combining the triggers, guards, and ac-
tions inferred from the class diagram (described in Section 4). One ramification
of this alphabet is that AviIDA-MDE generates different transitions than those
generated from the alphabets of other approaches. As a result, the generated
behavioral model has the potential to be less intuitive and perhaps offer more
resiliency than those created with traditional techniques. Second, in contrast
to the synthesis approaches, AVIDA-MDE generates a suite of behavioral mod-
els that all satisfy the functional invariant, but have differing latent functional
properties and non-functional characteristics. Third, to assist the developer in
performing trade-off analysis, our approach clusters the models by non-functional
preferences for a domain, identifies the latent functional properties, and infers
sub-domains that identify unspecified combinations of environmental conditions.



7 Discussion

In this paper, we have presented an approach to addressing environmental un-
certainty with a digital-evolution based approach to generating models for the
development of a DAS. Next, we reflect upon our technique and provide sug-
gestions for using it as part of the development process. It is possible to scale
AvIDA-MDE to larger applications by increasing the length of the organism
genome, increasing the number of organisms in a population, or by increasing
the number of experiments run. Additionally, the performance of AvIDA-MDE is
dependent upon many factors including the size of the model, number of exper-
iments run, duration of experiments, and available computational resources. To
use our approach effectively, developers should focus on describing what the DAS
should do, rather than how the DAS should achieve this behavior. This strategy
enables AVIDA-MDE organisms to generate innovative models that comply with
developer requirements. However, determining the appropriate level of detail for
the developer-specified requirements is frequently an iterative process (as is the
case with traditional development techniques). If AvIDA-MDE generates too few
models, then the topology information as specified by the scenarios should be re-
laxed. However, if AVIDA-MARPLE discovers unwanted latent behavior common
to all of the generated models, then the invariant and/or scenario requirements
should be refined.

Numerous directions for future work are possible. One possibility is to ex-
plore how digital-evolution based techniques can be used to identify the quies-
cent states, or states within the target system from which the DAS can adapt
safely [27]. A second possibility is to enable organisms to instantiate design pat-
terns and thus potentially create more modular and extensible designs. Another
possibility is to use AVIDA-MDE to generate the adaptation logic (e.g., M;;, M;;)
that describes how the DAS transitions between target systems.
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