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Heterogeneous Coupled Evolution of
Software Languages

Sander Vermolen and Eelco Visser

Software Engineering Research Group
Delft University of Technology, The Netherlands

s.d.vermolen@tudelft.nl, visser@acm.org

Abstract. As most software artifacts, meta-models can evolve. Their evolution
requires conforming models to co-evolve along with them. Coupled evolution
supports this. Its applicability is not limited to the modeling domain. Other do-
mains are for example evolving grammars or database schemas. Existing ap-
proaches to coupled evolution focus on a single, homogeneous domain. They
solve the co-evolution problems locally and repeatedly. In this paper we present
a systematic, heterogeneous approach to coupled evolution. It provides an auto-
matically derived domain specific transformation language; a means of executing
transformations at the top level; a derivation of the coupled bottom level transfor-
mation; and it allows for generic abstractions from elementary transformations.
The feasibility of the architecture is evaluated by applying it to data model evo-
lution.

1 Introduction

Data models are an integral part of software development. They define the structure of
data that is processed by an application and the schema of a database. Running applica-
tions produce and store data that conforms to the data model.

Due to changing requirements or maintenance, data models need to evolve. This
process is known as format evolution [15]. As a consequence of evolution, stored data
no longer conforms to the evolved data model and can thereby become useless to the
evolved application. To continue using existing data, the data needs to be transformed
to reflect the evolution, which is an instance of coupled evolution.

Coupled evolution does not only apply to data transformation, but is a reoccurring
problem in computer science [14]. Models need to be transformed to reflect evolution
in their meta-models [7, 6, 23]. Programs need to be transformed when the program-
ming languages (or domain specific language) they have been written in evolves [18].
And a data model itself needs to be transformed to reflect evolution in the data model-
ing language (e.g. UML). We unify these scenarios by considering evolving software
languages and transformation of sentences in these languages.

Current approaches to support coupled evolution of software languages are homo-
geneous. They solve the problem in a specific domain. They repeatedly implement the
coupled evolution structure and solve problems common to coupled evolution locally.
Instead, we would like a systematic approach to realize heterogeneous coupled evolu-
tion for any scenario of software language evolution.
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User {
name :: string

}
Web {

admin :: set of User
topic :: string

}
Page {

content :: string
date :: date
author :: User
web :: Web

}

Fig. 1. Data model 1

User {
name :: string

}
Web {

admin :: set of Group
topic :: string

}
Page {

content :: string
date :: date
author :: User
web :: Web
topic :: string

}
Group {

name :: string
members :: set of User

}

Fig. 2. Data model 2

In this paper, we present two generalizations over coupled software language evolu-
tion scenarios and introduce the concept of heterogeneous coupled evolution. To enable
the generalization, we present an architecture to support heterogeneous coupled evolu-
tion of software languages. We have implemented a tool to support the architecture. It
generates a domain specific transformation language (DSTL) for an arbitrary software
language domain. It generates an interpreter of transformations defined in the DSTL.
And it supports generic abstraction from the basic transformations that are defined in
the DSTL. We illustrate the architecture and tool by elaborating their application to
coupled data model evolution.

The paper is structured as follows: In Section 2 we briefly introduce data model evo-
lution and its context. In Section 3 we elaborate on coupled data evolution by defining
data model transformations and deriving data transformations to reflect these. In Section
4 we generalize over the different scenarios of coupled software language evolution. In
Section 5, we discuss the architecture to support heterogenous coupled evolutions. Sec-
tion 6 discusses related work. Section 7 concludes.

2 Data Model Evolution

Data models describe the structure of data that is processed and stored by an application.
As example application we consider a Wiki. It consists of web pages, users to edit these
and webs, which are collections of pages that cover a similar topic. The corresponding
data model is shown in Figure 1.

Fig. 3. Data model changes

Changing requirements and maintenance
cause data models to evolve along with the
application they are set in, a process known as
format evolution [15]. Consider for example
the shift from a user-based to a group-based
access control security mechanism and the
addition of page topics. The new data model
to support these is shown in Figure 2.
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Since the Wiki is a running application during evolution, it has stored pages, users
and webs. Such data conforms to some version of the data model. To prevent the loss
of data when the data model changes, the data needs to be transformed to reflect these
changes. Figure 3 shows the process graphically. At the top level, we see two versions
of the data model. At the bottom level we see the stored data and the transformation
needed to reflect the data model change. The vertical lines indicate conformance. The
dashed arrow indicates the changes applied to the data model and is usually performed
manually by editing the data model. The transform arrow on the other hand requires
tools for database transformations, as it is usually too much of an effort to reenter all
data manually.

3 Coupled Data Evolution

When a data model evolves, stored data may no longer conform. In practice the data is
usually no longer usable. To continue to use the data, we need to reflect the data model
changes in a transformation of the stored data. Supporting a single data model change,
requires a significant effort. Supporting data model changes in an evolution process,
requires repeated data transformations. If these transformations are defined manually,
this becomes costly and holds back the development process.

Fig. 4. Coupled data evolution

Coupled data evolution automates the
data transformation process. It is based upon
the assumption that the data model transfor-
mation and the data transformation are re-
lated. The concept of coupled data evolution
is shown in Figure 4. Coupled evolution con-
sists of two components, which are repre-
sented by the two new arrows: (1) A defi-
nition of the data model transformation (the
evolve arrow) and (2) a mapping from data
model transformation to data transformation (the dashed arrow). The first needs to be
specified for each change of the data model, whereas the second is typically defined
once for our data models.

The questions that remain are: How to define the data model transformation and
how to derive a data transformation. In the literature we can find various approaches to
formalize both [15, 2, 4]. In this section, we take a closer look at the two, using the Wiki
data model as a running example. We introduce a language for defining data model
transformations and show a mapping that targets a broad set of databases.

3.1 Defining Data Model Transformations

We distinguish two methods to formalize transformations for coupled evolution [7]:
Specify the difference between the two versions of the data model or specify a trace
of elementary transformations defining how the new version is obtained from the old
version. Both have advantages and disadvantages. We choose the second because it
allows us to define the mapping, as we will see in the next section.
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Our data models are relatively basic. They consist of entities with a name and prop-
erties. Each property has a name and a type. Entities, properties, types and names are
the constructs of our data model. A fairly limited set of constructs. Consequently, the
number of elementary transformations we can perform on our model (on our constructs)
is fairly small. We identify:

– adding or removing entities
– changing the name of an entity
– adding or removing properties

– changing the name of a property
– substituting the type of a property
– substituting the type of a set

We define for example the addition of a new entity ”Group” as follows:

add Group {
name :: string
description :: string
members :: set of User }

Although the addition is in itself a valid transformation, in general the elementary ac-
tions above do not have sufficient meaning on their own. One cannot change the name
of an entity without knowing which entity is being referred and a substitution of a type
should not only specify the new type, but also the old type that is being replaced. The
transformations above are local and need a location to make them executable to a spe-
cific model.

The representation of a data model is tree-structured. The root node is the model
itself. Its direct children are entities, which have in turn properties as their children and
so on. We define a unique location in a data model by specifying a path from the root
node. For example: “Entity Group - Property members - Type” indicates the type of the
members collection in the Group entity that we have just added. In a similar way, we
define locations for our transformations using the APath [13] notation, which is based
on the XPath language [3]. APath expressions consist of a /-separated list of construct
names. The above would be written as:

Entity [Id="Group"] / Property [Id="members"] / Type

The [...]-part indicates a predicate on the node that is being evaluated. If we would
have written Entity/Property/Type, we would have got all types, of all properties,
of all entities. The predicates restrict this by only allowing those with the right id’s.

We define a transformation to be a combination of an APath and a local transfor-
mation. The two are separated by a ::-sign. As examples, we specify the removal of the
‘description’ property and the substitution of the type in a set:

Entity[Id="Group"] / Property[Id="description"] :: remove
Entity[Id="Web"] / Property[Id="admin"] / Type / Set / Type :: substitute with Group

We also need more complex transformations, such as copying properties over an
association, or merging entities. Although these can be modeled as separate transfor-
mations or transformation patterns [12], we recognize them to be similar to the already
defined transformations, with the addition of being able to use other data model ele-
ments as input. So copying the topic from a Web to all of its pages is similar to adding
a topic property to every page, with its web topic as a source:

Entity[Id="Page"] / Property :: add Web/Property[Id="topic"]

Heterogeneous Coupled Evolution of Software Languages SERG
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Elementary transformations are combined by sequential composition indicated by a
semi-colon. Figure 2 shows the result of applying the above transformations to the Wiki
data model in Figure 1.

3.2 Deriving Data Migrations

We have defined the data models and the data model transformation. The last step is
therefore to specify a ‘data model transformation’ to ‘data transformation’ mapping, as
indicated by the dashed arrow in Figure 4. The implementation of the mapping depends
on numerous factors, such as how the data is stored, what platform is available to ex-
ecute the data transformation on and the quantity of the data. The implementation is
therefore driven by the context. We have implemented the mapping using Stratego/XT
[21] and a data model to Java classes mapping from the WebDSL project [22]. It maps
the data model transformations as shown above to a data migration program in Java.
The migration program loads objects from a database, transforms them to conform to
the new data model and stores the new objects. It follows a so-called Extract-Transform-
Load (ETL) process.

The migration mainly uses two libraries, namely an object to relational mapping and
an object transformation library. The first library provides functionality for loading and
storing Java Objects in a relational database. The migration program is based upon the
Java Persistence API (JPA) [20], which provides an interface to accessing these types
of libraries. Consequently, any JPA compliant library is suitable. An example of such a
library is Hibernate [11]. The combination of JPA and for example Hibernate supports a
large number of database systems. The second library provides functionality for trans-
forming Java objects and managing these transformations. It supports transformations
such as adding attributes, changing attribute types and changing attribute names, but
due to Java restrictions, the set of transformations does not directly cover the elemen-
tary transformation set we have seen above. We have written the transformation library
specifically for the mapping, but it could also be used in different settings.

In the remainder of this section, we introduce the mapping using the examples we
have presented above. Although the mapping directly refers to the transformation li-
brary, we use a domain specific language (DSL) for the library to abstract away from
the underlying Java and JPA details. Nevertheless, the DSL can directly be mapped onto
executable Java code.

Basic concepts The group addition, introduces most of the basic concepts. It is mapped
to the following:

transform () to (Group) {
EmptyObject();
AddAttributeByValue("name", "Group Name");
AddAttributeByValue("description", "...");
AddAttributeByValue("members", null)

}

The transform directive defines a transformation as follows:

transform INPUT-TYPES to OUTPUT-TYPE
{ TRANSFORMATION-DEFINITION }

SERG Heterogeneous Coupled Evolution of Software Languages
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In the Group addition, INPUT-TYPES is empty and OUTPUT-TYPE is a Group. The trans-
formation itself starts with an empty object (an object with no attributes) and subse-
quently adds the various attributes of Group. The AddAttributeByValue directive
has the new attribute’s name as first parameter and the attribute’s value as second.

Similarly, the description removal is mapped to:

transform (Group) to (Group) {
DropAttribute("description")

}

Annotations In the data transformations above, we carelessly introduced values for
each of the attributes ("Group Name", "..." and null). These are required in a data
transformation, but unknown in the data model or data model transformation. Such
information can be considered to be a separate input of the mapping, yet at the same
time, storing it separately from the data model transformation would be impractical.

As a solution, we allow data model transformations to be annotated. When trans-
forming data models, these annotations can be ignored, but when looking at data trans-
formations, annotations provide the information we were missing. Instead of writing:

Entity[Id="User"] :: add age :: int

to add an attribute age, we therefore write:

Entity[Id="User"] :: add age :: int defaultValue(25)

Using a similar approach we specify the value of a newly added group.

Data-level computations Copying the topic property from a web to a page is done by
an attribute addition. The attribute addition by constant value we have seen above is
not sufficient. We need an attribute addition by computed value here. The computation
itself is a parameter to the attribute addition:

transform (Page) to (Page) {
AddAttribute("topic", getWeb().getTopic() )

}

In Java, the computation is represented by an anonymous class.
The substitution from the previous section indicates a type substitution. At the data

level this is reflected by a conversion to a value of the new (substituted) type. There
are various type substitutions that have a standard value conversion. Examples are int
to string, string to int, but also set of int to set of string. We have explicitly included the
conversions for these substitutions in our mapping.

The substitution from the previous section is a set of User to a set of Group substi-
tution. Such a substitution does not have a standard value conversion. To still be able
to execute the data transformation, the user is required to explicitly specify the desired
conversion by means of an annotation1. An example conversion would be to convert
our set of user to a set of singleton groups in which each group holds exactly one user.
This is mapped to:

1 Not by means of a parameter, as this computation only influences the data, not the data model.

Heterogeneous Coupled Evolution of Software Languages SERG

6 TUD-SERG-2008-028



transform (Web) to (Web) {
AttributeSetConversion("admin", new Group( getUser().getName(), { getUser() } ) )

}

Note that the name AttributeSetConversion indicates that the conversion (the sec-
ond parameter) is applied to each of the elements in the admin set, not to the set as a
whole, which would be the functionality of the AttributeConversion transforma-
tion.

Types Each of the above transformations refers to types. They have a set of source
types and a target type. Since the code above is directly mapped to Java, these should
represent actual Java types. The final step of the mapping is therefore to construct a
Java type base to support the transformations. To establish the type base, we use a Java
type generator from the WebDSL project, that takes a data model as input and produces
the corresponding Java classes as output. Without investigating the transformations, we
generate all types for the data model before transformation as well as all types in the data
model after transformation. The resulting types are stored in different Java packages to
prevent name clashes.

In addition to the source and target types, we also sometimes need types half-way
through the transformation (e.g. when using the attribute addition by computation).
These are generated when performing the mapping.

4 Heterogeneous Coupled Transformation

When data models evolve, conforming data needs to be transformed to reflect these
changes. Although a frequently reoccurring approach is to define data transformations
manually, it requires a significant effort and can hold back a development or mainte-
nance process. We have shown that it can be performed automatically. In this section
we step away from the detailed look on data model transformations and take a broader
look at the problem from a higher level of abstraction.

4.1 Horizontal Generalization

Recall Figure 4. It shows the outline of the coupled data evolution problem. We have
looked at Object Oriented data models describing data in a data base. If we would have
described our data by means of a database schema (e.g. SQL schema), we would have
an evolving database schema and data that has to be transformed to reflect these changes
[4, 2, 8], as shown in Figure 5. The problem of coupled data evolution therefore reoccurs
when using a different formalism for describing our data.

Similarly, we could use XML to store our data and DTD’s to describe it. Again our
DTDs evolve to satisfy changing requirements and our XML data needs to be trans-
formed to reflect these changes [15], as shown in Figure 6.

We also see the same problem reoccurring in different domains. When programming
languages evolve, the programs written in it have to be migrated to the new version of
the languages. The programs have to conform to the grammar of the programming
languages [18] (Figure 7). Similarly, when meta-models evolve, conforming models
need to be transformed to reflect the evolution [7, 24, 6, 23, 12, 9].
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Fig. 5. Schema evolution Fig. 6. DTD evolution

Fig. 7. Grammar evolution

Coupled evolution is a reoccurring phe-
nomenon. Naming conventions for the coupled
evolution problem vary in the different areas be-
tween co-evolution, two-level data transforma-
tions, coupled transformation and simply synchro-
nization or adaptation. But they effectively address
the same problem of coupled evolution. Lämmel
discusses this for a subset of the above in [14],
naming it the ubiquity of coupled transformation
problems. Identifying the coupled evolution problem in different domains is a form of
horizontal generalization.

4.2 Vertical Generalization

We introduced the data model language on the fly in the previous sections. We thereby
implicitly defined its syntax. The syntax is formalized by the grammar found in Fig-
ure 8. It is written in SDF [?] format. For simplicity, it only shows the context-free
production rules. The lexical syntax definitions and the start symbol (DataM) definition
have been left out. On the left-hand-side of each production rule the construction of the
specific sort is defined, on the right-hand-side the produced sort. Each of the rules are
annotated, which is indicated by the {...} text at the end of each rule. We ignore these
annotations for now.

Entity* -> DataM {cons("Model")}
Id "{" Prop* "}"-> Entity{cons("Entity")}
Id "::" Type -> Prop {cons("Prop")}
"int" -> Type {cons("Int")}
"bool" -> Type {cons("Bool")}
Id -> Type {}
"set of" Type -> Type {cons("Set")}
Name -> Id {cons("Id")}

Fig. 8. Data model grammar

As data conforms to a data model, data
models conform to the data model gram-
mar. The grammar describes the structure of
the data model and the data model describes
the structure of the data. The data model
grammar itself is rather limited. In future,
it may for example be useful to add support
for more attribute types, inheritance, or sup-
port for uniqueness of property values. So, in
practice, the grammar is far from fixed and is itself subject to expansion and modifica-
tion. No different from the data model scenario, if the grammar changes, data models
that originally conformed to it are invalidated and need to be migrated along with the
grammar. In other words, we have a second scenario of coupled evolution in the sin-
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Fig. 9. Vertical generalization Fig. 10. Software language evolution

gle context of data models. Figure 9 shows the extension with the additional evolution
scenario.

We cover another conformance level by saying that also the SDF syntax may be
subject to change, at which point, the grammar defined above has to be migrated along
with the changing SDF definition. From which we see that the same coupled software
transformation problem reoccurs over different conformance levels, which is a vertical
generalization of the problem. In MDA [19] terms the vertical generalization can be
phrased as coupled evolution on the levels M1-M0 (data model - data), M2-M1 (data
model grammar - data model), M3-M2 (SDF - data model grammar), or even higher if
M3 is not defined in itself.

To abstract away from a specific conformance level and from specific areas of appli-
cation, we will from now on use a generalized representation of the problem as shown
in Figure 10. In this generalized view, we see the common aspects of coupled software
language evolution:

– An evolving software language (M i)
– Software that is subject to transformation to reflect the evolving language (M i-1)
– A means to define software languages (M i+1)

For the case of data model evolution, we have automated the transformation process. To
do the same in the generic case, we need a way to formalize the evolution for an arbitrary
software language. Furthermore, we need a mapping from the language evolution to a
concrete transformation.

5 Generic Architecture

In this section we propose and outline a generic architecture for coupled software evo-
lution. Its goal is to reduce the manual effort involved in traditional coupled evolution.
Furthermore, it structures the evolution process, increases the transformation abstrac-
tion levels and allows for common problems to be solved once instead of repeatedly.

Traditional approaches to coupled evolution are usually based on architectures simi-
lar to the one in Figure 4. The generic solution is based on the generalized and extended
architecture displayed in Figure 11. The main component in the architecture is the def-
inition of the transformation language used to formalize the evolution (named DSTL).
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In earlier work, the transformation language is usually fixed and considered to be an
assumption of the approach. We assume it to be variable and consider it an artifact in
coupled evolution.

Fig. 11. Generic architecture

Although the transformation language stands
out most in the figure, the key concept of the ar-
chitecture lies in the added arrows. The dashed ar-
row denotes a transformation defined by the user.
The solid arrows denote automatic transformation,
these do not require human interaction.

Input to the architecture is a coupled evolu-
tion scenario as explained in the previous section
and a mapping from a top-level transformation
to a bottom-level transformation. The first should
come for free (either implicit or explicit), since it
is merely defining what is to be evolved. Without
it, the coupled evolution problem does not exist.
The second is also part of most domain-specific approaches and may to that respect be
reused in these specific domains.

The mapping, or dashed line in the figure, is defining a semantic link between the
two levels, which is by definition sufficient to allow for coupled evolution. Since it is
indirectly based upon M i+1, it is generic over any software (or model) being evolved
within the same domain. We therefore have fixed mappings for the domain of data
model evolution, or the domain of SDF evolution. In practice, the evolution scenario is
therefore the main input, varying most frequently.

Based upon the two inputs, the architecture provides a structured approach to soft-
ware language evolution, consisting of:

– Automatic derivation of a transformation language for each domain
– Automatic derivation of an interpreter for transformations in the transformation

language
– Automatic software migration along a specified transformation

In practice there is a non-obvious ordering in these items, different from the ordering
above. One needs the transformation language to define the mapping. Yet, since the
transformation language derivation is automatic, the ordering will not be a problem in
practice.

The following subsections focus on the aspects of the architecture individually.

5.1 Deriving Domain Specific Transformation Languages

The first and most central component of the architecture is a transformation language
specific to the M i+1 definition. We will refer to it as the Domain Specific Transforma-
tion Language (DSTL). The transformation language cannot be generic, as we cannot
construct a complete mapping from a generic language. Generic languages contain by
definition concepts that are not part of the domain2.

2 Having a partial mapping is similar to using an implicit domain specific language. The lan-
guage is defined by the domain of the mapping
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Many of the traditional transformation languages for coupled evolution define a
large set of elementary transformations and an extensive mapping. In contrast to this,
we focus on a transformation language that is as small as possible, but still covers all
transformations. This makes defining the mapping as easy as possible. Usability of the
language is achieved through abstractions. We have implemented the DSTL derivation
in Stratego/XT and assume M i+1 to have been defined in SDF. The DSTL syntax is
again defined in SDF.

Input to the derivation is M i+1, the software language grammar (in SDF). The
derivation produces elementary transformations from the production rules in the gram-
mar. It starts at the productions of the start symbol and traverses the grammar recur-
sively. We distinguish different types of production rules, for which different types of
elementary transformations are generated.

Lists The top-most production rule in the data model grammar (Figure 8) defines a data
model to be a list of entities:

Entity* -> DataM

In the transformation language, the list is reflected by two list operations, namely ad-
dition and removal of entities. The syntax for these transformations is defined by the
context-free productions:

"add" Entity -> Transformation
"remove" -> Transformation

In the same way, the addition and removal of properties are generated when consid-
ering the Entity production recursively. Furthermore, we generate transformations for
optional symbols in a similar way (these are set and unset transformations).

Lexical syntax When a symbol is defined to be lexical, it has no more productions and
can thus not be decomposed further. The recursion therefore stops and a transformation
is generated to substitute its value. An example of a lexical symbol is Name, for which
the following transformation is generated:

"substitute with" Name -> Transformation

Multiple productions The symbols that are considered above are either lexical, or pro-
duced by a single production. The Type symbol inside a property can be produced in
multiple ways ("int", "bool", "set of Type", or Id). Consequently, we must allow
it to be substituted by one of these:

"substitute with" Type -> Transformation

We import the original data model grammar into the DSTL definition to reuse the Type
symbol that was defined in the original grammar.

SERG Heterogeneous Coupled Evolution of Software Languages
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Type checking A software language defines groups of software elements. For data mod-
els we have entities, properties, ids, but also ids inside sets, or ids inside a property. The
local transformations defined above are only applicable to some of the element groups,
which make up the domain of a local transformation. For example, the addition of enti-
ties can only be applied to data models and the substitution of types only to properties
or sets.

We use APath expressions to indicate where a local transformation is to be applied.
Each APath expression results in certain groups of software elements. To make sure
a local transformation is applied within its domain, we need to verify that the APath
expression to which it is connected can only result in elements that are in the domain of
the local transformation, which is a form of type checking.

We have implemented type checking for any DSTL. It primarily consists of three
components: A generation of domains for each of the local transformations. A (generic)
type derivation for APath expressions and (generic) functionality that checks whether
the result of the APath will indeed fall inside the domain of the local transformation.
The type checking is complicated by the use of recursive productions: the set of int
should fall in the same group as the set inside set of set of int.

Larger grammars The presented data model grammar is small. We have used a much
larger data model grammar, which was developed as part of the WebDSL project. Al-
though the principles above can be applied to all the rules in a larger grammar, in prac-
tice, one does not want to be able to transform every group of software elements. In the
small grammar, we could for example leave out the type substitution within sets if we
would not be able to map it to a data transformation.

By means of annotations on the production rules of a grammar, the user can indicate
which rules (and thereby what symbols) should be transformed and which should not be
transformed. There are two possible annotations: A ‘transform’ annotation, which tells
the tool to generate transformations for a production rule and a ‘constant’ annotation,
which tells the tool to take the production rule into account by recursively generating
transformations for each of the symbols on the left-hand-side (in SDF), but not gener-
ating transformations for the production rule itself. No annotation on a rule means that
it is ignored during DSTL derivation.

5.2 Automated Transformation

The DSTL syntax we have defined allows us to write transformations. The next step is
to execute these transformations. For this purpose, we have defined an interpreter gen-
erator. Similar to the syntax generator, it takes the software language definition as input,
but instead produces an interpreter for the associated DSTL as output. The interpreter
mainly consists of:

– A mapping of the elementary DSTL transformations onto generic transformations
– A generic transformations library (build on top of Stratego/XT)
– Implementation of generic DSTL constructs such as composition and abstraction
– An APath evaluation library

Heterogeneous Coupled Evolution of Software Languages SERG
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The first is specific for the DSTL and therefore generated. It mainly consists of
production rules that denote the specific to generic mapping. These look like:

transform(|mmodel, path):
AddProperty(newValue) -> <addAtLocator(|path, newValue)> mmodel

The last three items are generic over all DSTLs, so defined once. Their definition is in
most ways straightforward and is therefore not discussed here.

6 Related Work

Coupled evolution plays a significant role in computer science and has been treated in
various areas. Earlier research has primarily focused on constructing coupled evolution
support for specific domains. We discuss related work in the most important domains
of coupled evolution: model evolution, domain specific language evolution and schema
evolution.

Coupled evolution for the meta modeling domain is introduced by Gruschko [7].
As is the case for most publications on coupled evolution for models, Gruschko models
evolution using small elementary transformation steps. A classification of these steps
is proposed: non-breaking changes, breaking and resolvable changes and breaking and
unresolvable changes. A classification, which is frequently reused in later work and is
also applicable to our work, yet not directly relevant to the proposed architecture. In
his paper, Gruschko also identifies different steps in coupled evolution, although these
steps are generic, they mainly consider what we have called ‘the mapping’ and are in
that sense only applicable to a subset of what has been discussed here. The only step,
which does not fall inside the scope of this mapping is a change detection, to determine
the evolution steps that have occurred between two given models. If automated, the
change detection may provide a useful addition to our work as it reduces the number of
required inputs. Yet existing change detections are usually specific to a certain domain
and are only applicable within these domains.

Wachsmuth [23] introduces a set of transformations specific to MOF [16] compli-
ant meta models. The set is very similar to the set of elementary transformations for
data models as we have introduced in Section 3.1 and which is derived automatically in
our approach. Different to the transformations we have derived is their distinction be-
tween two type changes, namely generalization and restriction, yet they do not provide
a specification on how these should be mapped to concrete types. Furthermore, they
have transformations to support changes to inheritance and inlining of classes. Both
concepts were not included in our input data model grammar and are therefore not re-
flected in the output. Wachsmuth proposes a mapping to model migrations implemented
in QVT [17].

Similar to Wachsmuth, Herrmannsdoerfer [10] considers coupled model evolution
based on small evolution steps. He focuses on the Eclipse Modeling Framework (EMF) [5],
in which ECore, the meta-meta model implements a subset of MOF. In his approach,
named COPE, Herrmannsdoerfer distinguishes two types of evolution steps: open and
closed coupled evolution. The first is what we have named the elementary transforma-
tions and the second are transformations based upon these. In contrast to other works,
this view does provide a way of abstracting from meta-model specific transformations.
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However, the derivation of the elementary transformations as well as the definition of
these transformations are left to the user. This does not only require additional effort, it
also prevents structured abstractions as are possible in our approach. Herrmannsdoerfer
provides a prototypical editor based on Eclipse.

In the area of domain specific languages, Pizka et al. discuss the evolution of DSLs.
They claim three obstacles in DSL development: (1) Stepwise bottom-up generalization
is required, which is a special case of the evolution we have been looking at. (2) DSLs
should be layered, which is specific to DSLs and not directly related to coupled evo-
lution. (3) Automated co-evolution is required for DSLs, which is what we generically
solve in our work. As we have seen in [23], Pizka’s work is focused on a single domain,
namely DSLs, it is limited to the discussion of a transformation definition and mapping
specific to this domain.

With respect to the data variants of coupled evolution (schema evolution) and the
related two-level data transformations, numerous approaches have been found to solve
these problems [15, 4, 2, 8, 1]. These mainly focus on the schema to data mapping, fre-
quently taking different types of complicating concepts into account, such as data re-
strictions and performance optimization. These are typically aspects that may also be
solved generically, such that they can be used in any domain. In current work, we have
not focused on this, but it may be interesting as future work.

7 Conclusion

In this paper, we presented two directions of generalizing coupled software language
evolution scenarios and introduced the concept of heterogeneous coupled evolution.
We presented an architecture to automate coupled evolution on an arbitrary software
domain (e.g. programming languages, modeling or data modeling). The architecture re-
quires as input: a coupled software evolution scenario and a mapping from software lan-
guage transformations to software transformations. The outputs are: Automatic deriva-
tion of a domain specific transformation language (DSTL) to formalize the software lan-
guage evolution; automatic derivation of an interpreter for transformations conforming
to the DSTL; and automatic software migration along the evolving software language.

Using Stratego/XT, we have implemented a coupled evolution tool to support the
architecture. It is based on software languages defined in SDF. We have succesfully ap-
plied the tool to the domain of data modeling in the web modeling language WebDSL [22],
where we have used it to create a tool for automatic database migration along an evolv-
ing data model, which targets a broad set of databases.
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14. R. Lämmel. Coupled Software Transformations (Extended Abstract). In First International
Workshop on Software Evolution Transformations, Nov. 2004.

15. R. Lämmel and W. Lohmann. Format Evolution. In Reverse Engineering for Information
Systems (RETIS 2001), volume 155 of books@ocg.at, pages 113–134. OCG, 2001.

16. Object Management Group (OMG). Meta Object Facility (MOF) Core Specification - Ver-
sion 2.0, January 2006.

17. Object Management Group (OMG). MOF QVT Final Adopted Specification, March 2007.
18. M. Pizka and E. Jurgens. Tool-supported multi-level language evolution. In E. N.
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