
A Lightweight Approach for Defining the Formal
Semantics of a Modeling Language

Pierre Kelsen and Qin Ma

Laboratory for Advanced Software Systems
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

{Pierre.Kelsen, Qin.Ma}@uni.lu

Abstract. To define the formal semantics of a modeling language, one
normally starts from the abstract syntax and then defines the static se-
mantics and dynamic semantics. Having a formal semantics is important
for reasoning about the language but also for building tools for the lan-
guage. In this paper we propose a novel approach for this task based
on the Alloy language. With the help of a concrete example language,
we contrast this approach with traditional methods based on formal lan-
guages, type checking, meta-modeling and operational semantics. Al-
though both Alloy and traditional techniques yield a formal semantics of
the language, the Alloy-based approach has two key advantages: a uni-
form notation, and immediate automatic analyzability using the Alloy
analyzer. Together with the simplicity of Alloy, our approach offers the
prospect of making formal definitions easier, hopefully paving the way
for a wider adoption of formal techniques in the definition of modeling
languages.

1 Introduction

To fully define a modeling language one needs to specify: (1) the abstract syn-
tax (the structure of its models), (2) the concrete syntax (the actual notation
presented to the user), (3) the static semantics (well-formedness rules for the
models), (4) the dynamic semantics (the meaning of a model). Ideally all these
elements of a modeling language are formally defined. By having a formal defini-
tion one can precisely reason about the language; by eliminating any ambiguities
inherent to informal descriptions such a formal specification is also a good start-
ing point for developing tool support.

Despite the widely recognized advantages of a formal description, modeling
languages are often introduced without a full formal definition. A good example
is the Unified Modeling Language [11]. This modeling language is the de facto
standard modeling language in software engineering. Nevertheless the semantics
of the UML is not fully formally defined. This complicates the development of
UML tools and compromises their interoperability [1].

This paper focuses on the formal definition of the semantics. The term “for-
mal semantics” in the title usually refers to the dynamic semantics only (see,

e.g., [13]). Because the dynamic semantics intimately relates to the abstract
syntax and the static semantics but is independent of the concrete syntax, we
study in this paper approaches for defining abstract syntax, static semantics
and dynamic semantics using a concrete example language. We first present two
traditional approaches for defining abstract syntax and static semantics based
on EBNF and type systems on one hand, and metamodeling on the other hand.
For dynamic semantics we present one traditional approach based on operational
semantics. We then propose a uniform approach for defining these aspects of a
modeling language based on Alloy ([4]). Besides having a single language for this
task, Alloy provides the additional benefit of providing automatic tool support
for checking the correctness of semantic specifications. Automatic analysis facil-
itates incremental development of complex semantic descriptions by uncovering
errors early. The term “lightweight” used in the title of the paper was chosen
because Alloy attempts to obtain the benefits of traditional formal methods at
lower cost [5].

We now discuss related work. We illustrate the Alloy-based approach for
defining the formal semantics by looking at a concrete language which is a subset
of the EP language, a declarative executable modeling language [6, 8]. The
same exercise was done for the full EP language and similar conclusions were
reached ([7]). We only present one traditional approach for specifying dynamic
semantics: operational semantics. For a fuller account of this approach the reader
is referred to [13]. Other approaches for specifying the dynamic semantics are
[10, 14]: denotational semantics (map models to denotations and reason in terms
of the denotations), axiomatic semantics (exploiting assertions about programs),
and hybrid approaches.

Although much effort has been dedicated to establishing firm theoretical
foundations for formal semantics during the last four decades, it is recognized
that there is still no universally accepted formal notation for semantic descrip-
tion [14]. More importantly formal semantics approaches currently have limited
practical use. Possible hindrances cited by Mosses (e.g., [9]) are readability and
lack of tool support, which we will address with the Alloy approach.

This rest of the paper is structured as follows: in the next section we present
the concrete modeling language that will be used as a running example for
the remainder of the paper. In section 3 we describe traditional approaches
for defining abstract syntax and static and dynamic semantics of the example
language. In section 4 we do the same exercise using Alloy. We then compare
in section 5 the Alloy-based approach with the traditional approaches. We close
with concluding remarks in the final section.

2 Example Language

The chosen EP subset is specified by the metamodel in Figure 1. An EP system
defines a set of models, each of which consists of a set of properties and a set
of events. EP models play a role similar to classes in an object-oriented system.
Instances of models exist at runtime, where the value assignment to their proper-

2

ties constitutes the state of the system, and events represent available operations
on these instances. For simplicity, we omit primitive types, i.e., types are models
and values are instances. Each valid system should have exactly one main model,
considered as the entry point of a system, in the sense that the initial state of
an EP system is acquired by creating an unique instance of it.

The novelty of the EP language is that behavior of events is modeled declara-
tively via event edges. Briefly, execution of an event on an instance can influence
the state of a system in two ways: it can either change the value of a property of
the instance using an impact edge, where the new value is evaluated from the ex-
pression associated with this edge; or trigger other events on some instances via
push edges, which then proceed in a similar fashion. A push edge is a directional
connection from a source event to a target event. It has a link property whose
value indicates on which instance the target event will be triggered. Because
each event can have parameters, the push edge specifies for each parameter in
the target event an expression that computes the value of this parameter. (We
omit details of the expression language in this paper because of the limited space;
in [8] we showed that OCL is a good candidate language.)

We close our informal description of the EP subset by
looking at an example of two instances “a” and “b” ex-
isting at runtime and belonging to some models in which
events and event edges are defined as in the graph to the
left. Instance “a” has an event “e” with no parameters,
and instance “b” has an event “e′” that takes two inte-

ger parameters. The triangle-headed solid arrow denotes the push edge between
events; the dashed arrow labeled “Link” specifies the link of the edge which is
basically a local property of “a” that points to “b”. In comparison, the square-
headed arrow between event “e′” and local property “p” denotes an impact edge,
labeled by expression x + y, i.e., the sum of the two parameters of the event.
In a nutshell, this example depicts the following event propagation and local
property modification: (1) Execution of “e” on “a” would trigger execution of
“e′” on “b” with the constant arguments 1 and 1; (2) this would in turn change
the value of “p” of “b” to the sum of the two arguments of “e′”, i.e., 2.

3 Traditional Approaches

3.1 Abstract syntax and static semantics

3.1.1 EP metamodel and OCL constraints Figure 1 defines the abstract
syntax of the chosen EP subset as a meta-model and the static semantics as
OCL [12] constraints. Four groups of well-formedness constraints are specified,
in addition to the inherent syntax restrictions designated by the class diagram,
such as compositions and multiplicities. For any valid system, the appointed
main model should be defined in the system, and for any valid event, the set of
feeding properties should all be defined in the model that also owns the event.
The sanity rules for impact and push edges in event definitions are a bit more

3

Fig. 1. EP subset meta-model with constraints in OCL

involved. The following constraints must be satisfied in order for an impact edge
to be valid: (1) the expression that specifies the new value of the impacted prop-
erty should only reference properties that feed the event and event parameters;
(2) the expression and the impacted property should have the same type; (3) the
impacted property and the event that owns the edge should both be owned by
the same model.

For a push edge to be valid, the following constraints are enforced: (1) the
expressions used to compute arguments of the target event should only reference
parameters of the source event or properties that feed the source event; (2) the
link of the edge should point to a property, whose type, which is a model, owns
the target event. (3) the sequence of arguments and the sequence of parameters
of the target event should have the same size and the same type, respectively.

3.1.2 EBNF syntax and typing rules Another way to formalize the ab-
stract syntax and the static semantics of the example language is to follow the
approach usually adopted in specifying formal languages, namely via EBNF
based syntax and type checking rules.

The EBNF based abstract syntax appears on top of Figure 2. Different from
the EP metamodel in which all syntax entities are referred to by direct refer-
ences, this approach is textual, i.e., references are via names. As a consequence,
we assume the following disjoint sets of names: variable names x ∈ X , where
self is a special variable denoting the recursive “self” reference; property names
p ∈ P; event names e ∈ E ; and model names m ∈ M. Moreover, we write XX
for a sequence of form XX1, . . . , XXk. An alternative notation is XXi 1≤i≤k, or sim-

4

EBNF abstract syntax:

Sys ::= Mdf EP systems

Mdf ::= model m {m p; Edf} Model definitions

Edf ::= p feed e(m x) {Edg} Event definitions

Edg ::= push Exp into e via p Push edges
impact p with Exp Impact edges

Typing environments:
Γ ::= ε | (x : m�p), Γ

Type checking rules:

TSystem
(` Mdfi :: ok) i∈I

Main is declared

Mdfi
i∈I declare distinct model names

` Mdfi
i∈I :: ok

TModel
(`(m,p)

Edfi :: ok) i∈I

p distinct

Edfi
i∈I declare distinct names

` model m {m p, Edfi
i∈I} :: ok

TEvent
p ⊆ q x distinct ((x : m) `(m,p)

Edgi :: ok) i∈I

`(m,q) p feed e(m x) {Edgi
i∈I} :: ok

TPushEdge
etype(ptype(m, p), e) = mi

i∈I (Γ ∪ (self : m�p) ` Expi :: mi)
i∈I

Γ `(m,p) push Expi
i∈I into e via p :: ok

TImpactEdge
Γ ∪ (self : m�p) ` Exp :: ptype(m, p)

Γ `(m,p) impact p with Exp :: ok

Auxiliary definitions:

EventTypeLookUp
model m {m1 p1; Edf} ∈ Sys

p2 feed e(m x) {Edg} ∈ Edf

etype(m, e) = m

PropertyTypeLookUp
model m {m1 p1,m

′ p′,m2 p2; Edf} ∈ Sys p′ ∈ p
ptype(m�p, p′) = m′

Fig. 2. EBNF abstract syntax, typing, and auxiliary functions

5

ply XXi i∈I where I stands for the set of possible subscripts. We abbreviate a
sequence of pairs as a pair of sequences, namely writing XX YY as shorthand for
XX1 YY1, . . . , XXk YYk. An empty sequence is denoted by ε.

Typing rules appear in the middle of Figure 2. The special type ok denotes
well-typedness. The typing environment Γ is a finite binding from variables to
types, in which the mask operation on models: m�p, allows us to control the
visibility of properties of model m in different circumstances. Putting a mask p
on m restricts only those properties of m appearing in p to be visible. A default
mask is P, which is usually omitted; it allows all properties to be visible.

Two auxiliary functions are used in typing rules, defined in the bottom of
Figure 2. Function etype(m, e) returns the sequence of types of the parameters of
event e as defined in model m, or otherwise returns ⊥, denoting an error during
type checking. Function ptype(m�p, p) returns the type of property p as defined
in model m if not masked (i.e. p ∈ p), or otherwise ⊥.

Typing rules in principle correspond to the OCL constraints discussed in
Section 3.1.1. For example, the first premise in rule TEvent corresponds to the
eventValidFeedsOn invariant of Event (see Figure 1). Moreover, the enforcement
of the three constraints discussed on page 4 for impact edges is distributed
across typing rules as follows: (1) the typing environment in which the expression
of the impact edge is typed consists of two parts: the first part is the event
parameters accumulated in the second premise of rule TEvent, and the second
part is the set of properties that feed the event, accumulated in the premise of rule
TImpactEdge. In other words, the only possible references from the expression
fall into these two categories; (2) the type of the expression is required to be the
same as the type of the impacted property p, as depicted by the premise of rule
TImpactEdge; (3) the ownership of model m to p is assured when computing
ptype(m, p), because otherwise ⊥ will be returned.

Similarly, the sanity constraints of PushEdge are all spelled out, too, across
the premises of rules TEvent and TPushEdge.

However, because of the textual nature of the approach, additional book-
keeping and name distinction premises are required, such as in rule TSystem

and TModel. But we also gain from the naming facility. For example, we spare
the systemMain invariant of System, because asking for a unique model defined
in the system with name Main suffices to assure its ownership thanks to name
scoping: in the scope of the system, name Main will always refers to the unique
model in the system with name Main.

3.2 Operational semantics

In this section we assume that the reader is familiar with operational seman-
tics [13]. A system configuration (Λ, s) is a pair of an evaluation environment
and a state. As defined on top of Figure 3, the state records the current set of
instances, and the environment, binding variables to values, tells how to access
these instances via variables. A value v ∈ V is either null denoting void, or an
identity id ∈ ID denoting an instance of a certain model. Instance identities are
distinct. In the state, an instance identity is bound with a pair (m,ϕm). The

6

Values, states, and substitutions:

States: s ::= ∅ | (id : (m,ϕm)), s
Values: v ::= null | id
Evaluations: ϕm : P → V
State substitutions: σ : ID × P → V
Substitution application:

sσ(id).m = s(id).m

sσ(id).ϕm(p) =

(
s(id).ϕm(p) σ(id, p) = ⊥
σ(id, p) otherwise

Evaluation environments:
Λ ::= ε | (x : v), Λ

Expression evaluation (partial):

Variable
Λ(x) = v

Λ � (x, s) ⇓ (v, ∅)

InstanceCreation
id fresh

Λ � (m :: create(), s) ⇓ (id, (id : (m,φm)))

PropertyCall
Λ � (Exp, s) ⇓ (id, s∆) (s ∪ s∆)(id).ϕm(p) = v

Λ � (Exp.p, s) ⇓ (v, s∆)

Edge evaluation:

EImpactEdge
Λ � (Exp, s) ⇓ (v1, s

1
∆) Λ � (self, s) ⇓ (v2, s

2
∆)

Λ � (impact p with Exp, s) ⇓ (((v2, p) : v1), s1∆ ∪ s2∆)

EPushEdge
Λ � ((self.p).e(Exp), s) ⇓ (σ, s∆)

Λ � (push Exp into e via p, s) ⇓ (σ, s∆)

Event call evaluation:

EventCall
Λ � (Exp, s) ⇓ (v, s∆)

Λ � (Exp, s) ⇓ (v, s∆)

v 6= null

p feed e(m x) {Edgi
i∈I} ∈ (s ∪ s∆)(v).m

(Λ ∪ (x : v) ∪ (self : v) � (Edgi, s ∪ s∆ ∪ s∆) ⇓ (σi, s
i
∆)) i∈I

Λ � (Exp.e(Exp), s) ⇓ (
U
i∈I σi, s∆ ∪ s∆ ∪ (

S
i∈I s

i
∆))

Event invocation reduction:

EventInvocationReduction
Λ � (Exp.e(Exp), s) ⇓ (σ, s∆)

(Λ, s)
Exp.e(Exp)
−→ (Λ, (s ∪ s∆)σ)

Fig. 3. Operational semantics

7

former denotes the model of the instance and the latter gives its evaluation. An
evaluation of an instance of model m, written ϕm, is a partial function from
properties to values where ∀p ∈ P, ϕm(p) = ⊥ (i.e. undefined) if and only if p is
not a property of m. For each model m, we assume a default evaluation for its
instances, denoted by φm, in which we associate null to all properties defined in
m. Given a state s and an instance id in it, we use s(id).m to denote the model
of the instance, and s(id).ϕm the corresponding evaluation. Finally, system state
substitution, denoted by σ, is a partial function from pairs of instance identities
and properties to values. For a given substitution σ, σ(id, p) = v means to change
the value of p of instance id into v, and σ(id, p) = ⊥ means to leave this value
unchanged. As a consequence, applying the substitution to a state s, written sσ,
returns a new state whose definition is also presented in Figure 3. Sometimes
(for instance in rule EImpactEdge of Figure 3), we specify a substitution by
directly listing the triples defined in it as: σ ::= ∅ | ((id, p) : v), σ.

Upon initialization, the system configuration, (Λ0, s0), has a unique instance
in s0 of identity id where s0(id).m = Main and s0(id).ϕm = φMain (the default
evaluation of the main model), and a unique binding (main : id) in Λ0. Interacting
with an EP system amounts to invoking some event on some instance accessible
from variable main and changing the system into a new configuration. The formal
reduction relation is given at the bottom of Figure 3. Note that the evaluation
environment Λ does not change after the reduction, because invoking an event
as by Exp.e(Exp) would not change the set of global variables nor their bindings.
However, the set of accessible instances from variable main may still evolve, for
instance by changing the value of the properties of the main instance.

Let us elaborate on the evaluation rules for event calls and edges. The judg-
ment Λ � (Exp.e(Exp), s) ⇓ (σ, s∆) means: calling event e under environment Λ
and in state s evaluates to a substitution σ and a set of new instances s∆ created
during the evaluation. In rule EventCall we first evaluate the callee Exp into a
value v 1, which should not be null in order for the calling to be meaningful, hence
is an instance identity. Then, the arguments Expi

i∈I are evaluated respectively.
We pick up the body of the called event from the definition of (s ∪ s∆)(v).m,
which effectively denotes the model of the callee, and evaluate the body, i.e. the
edges, in a new evaluation environment extended with the parameters all bound
to the just computed argument values, and self bound to the callee instance.

Evaluation judgments for edges take the form: Λ � (Edg, s) ⇓ (σ, s∆). In rule
EImpactEdge evaluating an impact edge would result in a substitution of form
((v2, p) : v1), which basically asks to change the value of the impacted property
p on instance denoted by self (i.e. v2) into the new value (i.e. v1) computed
from the expression Exp. By contrast, the result of evaluating a push edge (rule
EPushEdge) is derived from recursively calling the target event on the instance
denoted by the link property p of self within the same evaluation environment
and state.

1 Being out of the scope of the paper, expression evaluation rules are only partially
presented in Figure 3 to help readers understand the other parts.

8

The second part in the results of evaluations, namely s∆, keeps track of
the new instances that are created during the evaluations. As new instances
can only be created in create expressions (rule InstanceCreation), where we
have already required the freshness of identity, the accumulated s∆’s would never
conflict on identities, neither with each other nor with an instance in the original
state. Therefore, the plain set union operation suffices. By contrast, in order to
keep the dynamic semantics deterministic, namely at most one modification of
a property of an instance is called for during an event invocation, we use the
disjoint set union, denoted by], when collecting the substitutions along the
evaluation, to enforce disjoint domains.

Finally, in rule EventInvocationReduction, the accumulated substitutions
and new instances take effect by applying to the original state and reach a new
state: (s ∪ s∆)σ.

4 The Alloy Approach

4.1 Overview of Alloy

Alloy [4] is a language that expresses software abstractions precisely and suc-
cinctly. A system is modeled in Alloy using a set of types called signatures. Each
signature may have a number of fields. Constraints may be added as facts to
a system to express additional properties. In terms of rigor Alloy rivals tradi-
tional formal methods. Its novelty is the Alloy Analyzer, a tool that allows fully
automatic analysis of a system; it can expose flaws early and thus encourages
incremental development. Two types of analyses can be performed using the Al-
loy Analyzer: we can search for an instance (obtained by populating signatures
with elements) satisfying a predicate and we can look for a counterexample for
an assertion; both assertions and predicates are part of the Alloy model. Both
types of analyses rely on the small scope hypothesis ([4]): only a finite subspace
is searched based on the assumption that if there is an instance or a counterex-
ample there is one of small size.

In the remainder of this section we present the Alloy models representing the
syntax and semantics of the example language. To fully understand the models,
the reader needs to be familiar with the Alloy language. We will, however, com-
ment the models so that readers new to Alloy should still be able to understand
the salient features of this approach.

4.2 Abstract Syntax and Static Semantics

The Alloy model given below expresses both abstract syntax and static seman-
tics. We will explain it by comparing it to the metamodel of figure 1. Each of
the eight classes in the metamodel has a corresponding signature with a similar
name in the Alloy model. For instance, the System class is represented by the
EPSystem signature. Associations in the metamodel are usually represented by
fields of a signature: thus the field models in EPSystem corresponds to the aggre-
gation from the System class to the Model class in the metamodel. Multiplicities

9

on the association ends in the metamodel are normally expressed as constraints
in the Alloy model. For instance, the fact that each Model is contained in a
single System is expressed as the signature fact (i.e., a fact associated with each
element of a signature) {one s:EPSystem | this in s.models} in signature
EPModel. There are two signatures in the Alloy model that do not correspond
to classes of the metamodel: the Main signature expresses the fact that there is a
single distinguished model called Main: this is expressed in the metamodel by an
association from System to Model. The signature ParameterMapping expresses
the correspondence between parameters and expressions. This correspondence
is expressed in the metamodel by each event having an ordered sequence of pa-
rameters and each push edge having an ordered sequence of expressions, with
the assumption that these sequences are in one-to-one correspondence.

Note that we have chosen a single Alloy model to express both the abstract
syntax and static semantics of the example language since both structural prop-
erties and well-formedness rules are expressed by constraints in the Alloy model
and there is no natural separation between the two. We also note that the Alloy
Analyzer allows the graphical presentation of the meta-model specified by an
Alloy model such as the one below.

1 sig EPSystem {models: some EPModel} {one (models & Main)}

2 sig EPModel {properties: set Property, events: set Event}

3 {one s:EPSystem | this in s.models}

4 sig Main extends EPModel { }

5
6 sig Property { type: EPModel } {one m:EPModel | this in m.properties}

7 pred Property::sameModel[p:Property] {this.~properties=p.~properties}

8
9 sig Event {feedsOn: set Property, params: set Parameter,

10 edges: set PushEdge, impactEdges: set ImpactEdge}

11 fact { all e:Event | { e.feedsOn in (e.~events).properties

12 all g:e.edges|{e.sameModel[g.link] && g.link.type=g.into.~events

13 conformMapping[g.mappings, g.into.params]

14 all m:g.mappings | { m.expr.usesProps in e.feedsOn &&

15 m.expr.usesParams in e.params}

16 all c: e.impactEdges | { e.sameModel[c.impact] &&

17 c.expr.usesProps in e.feedsOn &&

18 c.expr.usesParams in e.params }

19 one m:EPModel | e in m.events }}}

20 pred Event::sameModel[p:Property] {this.~events = p.~properties}

21 pred Event::sameModel[e:Event] {this.~events = e.~events}

22
23 sig PushEdge {into:Event,link: Property,mappings:set ParameterMapping}

24 { one e:Event | this in e.edges }

25 fun PushEdge::paramExpr[p:Parameter]: Expression {

26 (p.(~param) & this.mappings).expr}

27 sig ImpactEdge {impact: Property,expr: Expression}

28 {expr.type =impact.type && one e:Event | this in e.impactEdges}

29
30 sig Parameter{type: EPModel} { one e:Event | this in e.params }

10

31 sig ParameterMapping {param: Parameter,expr: Expression}

32 { expr.type=param.type }

33 pred conformMapping(m:set ParameterMapping, x: set Parameter) {

34 # m = # x && m.param = x }

35
36 sig Expression { type: EPModel, usesProps: set Property,

37 usesParams: set Parameter }

4.3 Dynamic Semantics

To describe the dynamic semantics, we first introduce in the Alloy model below
the notion of state (State signature) and instance (EPInstance signature): we
note that an instance has a type (an EPModel) and assigns for each state to
each property at most one value. The neighbors field of EPInstance comprises all
instances referred to by a property of this instance in a given state. The value of
a property is either null or another instance; this is expressed in the Alloy model
by Value being an abstract signature (i.e., no element can have this type) and
EPInstance and NullValue being the only concrete subsignatures (i.e., subsets)
of Value. We abstract from the expression language using the ExpressionValue
signature, which gives the value (val field) of an expression (expr field), given the
values for the properties and parameters used by the expression (settings field).

The actual behavior of the system is specified in the step predicate. This pred-
icate expresses the fact that state s2 results from state s1 by triggering instance
event i. The instance event (signature InstanceEvent) contains the information
which event is triggered on which instance and what the parameter values are for
a given state. To compute the effect of the instance event, it suffices to consider
all instance events (including this one) that are direct or indirect successors of
this instance event via push edges. This is expressed by computing the reflexive
and transitive closure of the successor relation succ of signature InstanceEvent
for state s1. This closure is denoted by the scope variable in the step predicate
(line 54). We then consider all instances having an associated instance event in
the scope and restrict our attention to those instance events in the scope associ-
ated with each such instance: we denote this subset of the scope by the variable
iScope (line 55). To express the new state s2, we evaluate for each property that
is the target of an impact edge originating from an instance event in iScope the
expression associated with this edge (using the exprVal function) and state that
the value of this property in state s2 is equal to this value (lines 58-59). All prop-
erties not targeted by impact edges in iScope (lines 56-57) as well as properties
of instances not in the scope (lines 60-61) have the same value in s2 and s1.

1 open meta_small

2 open util/ordering[State] as SO -- ordered set of states

3 sig State { }

4 pred State::init { MainInstance::defaultVal[this] }

5 sig EPInstance extends Value {

6 type: EPModel,

7 neighbors: EPInstance -> State,

11

8 valuations: State -> Property -> Value }

9 { all s: State | {

10 this.reachable[s] => all p: type.properties|one this.val[p,s]

11 neighbors.s = {x: EPInstance | some p: type.properties |

12 s.valuations[p] = x } }}

13 fact { all s: State| all y: EPInstance | all ev:Event |

14 (y.reachable[s] && ev in y.type.events) =>

15 some i: InstanceEvent | (i.e =ev && i.x =y) }

16 fun EPInstance::val [p:Property,s:State]:Value{p.(this.valuations[s])}

17 pred EPInstance::defaultVal[s: State] {

18 all p: this.type.properties | this.val[p,s] = NullValue }

19 pred EPInstance::reachable[s: State]{

20 this in MainInstance.*(neighbors.s) }

21 one sig MainInstance extends EPInstance { }{type = Main}

22
23 abstract sig Value{}

24 sig NullValue extends Value { }

25 sig ExpressionValue {

26 expr: Expression,

27 setting: (Property + Parameter) -> lone Value,

28 val: Value }

29 { setting.Value & Property = expr.usesProps

30 setting.Value & Parameter = expr.usesParams }

31
32 sig InstanceEvent { e: Event, x: EPInstance,

33 v: State-> Parameter -> lone Value,

34 succ: InstanceEvent -> State }

35 { let exprs = e.impactEdges.expr + e.edges.mappings.expr |

36 all s: State | all ex:exprs | one exprVal[this,s,ex]

37 e.~events = x.type

38 all s: State | {s.v.Value = e.params &&

39 {all j: succ.s|some g: e.edges| j.successorOf[this,s,g]} &&

40 { all g: e.edges | let v = x.val[g.link,s]|

41 v != NullValue => some j: succ.s| j.successorOf[this,s,g]}}}

42 pred InstanceEvent::paramsOk[i:InstanceEvent, g: PushEdge, s:State] {

43 all p:i.e.params | let ex = g.paramExpr[p] |

44 p.(s.(i.v)) = exprVal[this, s, ex].val }

45 pred InstanceEvent::successorOf(i:InstanceEvent,s:State,g:PushEdge){

46 g in i.e.edges && this.paramsOk[i,g,s] &&

47 this.e = g.into && this.x = (i.x).val[g.link,s] }

48 fun InstanceEvent::exprVal[s: State,e: Expression]:ExpressionValue{

49 { ev:ExpressionValue| ev.expr = e &&

50 (all p: e.usesParams | ev.setting[p] = p.(s.(this.v))) &&

51 (all p: e.usesProps | ev.setting[p] = this.x.val[p,s]) }}

52
53 pred step[s1: State, i: InstanceEvent, s2: State] {

54 let scope = i.*(succ.s1) | {

55 all y: scope.x | let iScope = (y.~x) & scope | {

56 all p: y.type.properties| { p not in iScope.e.impactEdges.impact

57 => y.val[p,s2] = y.val[p,s1]}

12

58 all j: iScope | all g: j.e.impactEdges |

59 y.val[g.impact,s2] = exprVal[j,s1,g.expr].val }

60 all y: EPInstance-scope.x | all p: y.type.properties |

61 y.val[p,s2] = y.val[p,s1] }}

5 Discussion

We now compare traditional approaches presented in section 3 to the Alloy-based
approach described in the last section. Comparing approaches implies selecting a
set of criteria to base the comparison on. For this we need to first clarify the goal
of the comparison. As mentioned already in the introduction many modeling
languages are used without having a formal semantics. The main purpose of
writing this paper is to remedy this state of affairs. Therefore it makes sense to
look at those factors that have the greatest influence on the adoption of formal
techniques for defining the semantics of a modeling language.

We focus on two properties that have an influence on the adoption of a formal
notation (these have also been identified as key factors in the work of Mosses
(eg.,[9])): (1) complexity of the notation and (2) analyzability of semantic specifi-
cations. Let us start with the notational complexity. For the abstract syntax and
static semantics we saw two traditional approaches: EBNF and type checking on
one side, and metamodeling on the other side. While both EBNF and metamod-
eling provide a succinct description of the abstract syntax, the static semantics
description provided by the OCL constraints seems more accessible than the type
checking approach: the more mathematical flavor of the latter notation and its
higher density are probably an obstacle for a wide-spread adoption (see also [3])
in the modeling community, where this technique is less known. In our eyes both
metamodeling and the Alloy approach have a similar notational complexity. In
fact their close correspondence clearly comes out in the explanation of the Alloy
approach in subsection 4.2 in terms of the metamodel.

For the dynamic semantics we presented only two options: operational seman-
tics and the Alloy-based approach. We believe that that the difference between
these two approaches is similar to the difference between type checking and Alloy
for static semantics: the operational semantics has also a strong mathematical
flavor with a very compact notation relying on many special symbols, while an
Alloy model looks more like a module written in an object-oriented programming
language. This should ease the adoption of Alloy in the modeling community.

If we now look at abstract syntax, static semantics and dynamic semantics as
a whole, traditional approaches require at least two rather different notations,
e.g., metamodeling and operational semantics, to specify the language while
Alloy handles all three parts using a single notation. This is again points in
favor of Alloy.

By analyzability, the second factor we want to consider, we mean the pos-
sibility to analyze the correctness of the specification using an automatic tool.
Verifying the semantics of all but the most simple languages is a non-trivial task.
If no tool support is provided for checking a formal description, our confidence

13

in the correctness of the formal description is often not very strong. Immedi-
ate analyzability is also important if we want to support opportunistic design
of semantics specifications, which seems to be the preferred way for humans to
design complex objects (such as a formal semantics) [3].

For the traditional approaches some tool support is available: for instance
we can check the metamodel with constraints using the USE tool [2]. Check-
ing the operational semantics is usually done by proving manually or via proof
assistants that some properties hold, or by implementing its rules in code and
then testing or formally verifying the code. In addition to the drawback that
both manual proof and code implementation can be error-prone, the diversity
of the traditional approaches makes the effort of checking them automatically
definitely higher than with Alloy since the latter one comes out of the box with
a powerful tool, the Alloy analyzer.

Using this tool we can immediately check the correctness of the current (par-
tial) specification (within the limits of the finite scope hypothesis). In our own
experience this allowed us to find errors early in the writing of the formal se-
mantics. Here are concrete examples of how the Analyzer helped us to write
the formal specifications: first, the tool performed standard syntactic checks to
reveal, for instance, incorrect use of signatures (e.g., accessing a field that does
not exist in this signature); second, we checked the conformance of the static
semantics in Alloy to the meta-model by formulating the OCL constraints as as-
sertions in Alloy and looking for counterexamples using the Analyzer; third, we
checked the dynamic semantics by ”running” an example EP system (i.e., letting
the Analyzer generate an instance satisfying the step predicate) and observing
whether it ”behaved” as expected.

6 Conclusion

Defining the formal semantics of a modeling language is important for reasoning
about the language and for providing tool support (other arguments are given
in [14]). Current approaches to formalizing semantics are often difficult to use in
practice which may explain the introduction of many modeling languages that
lack a formal semantics description.

In this paper we have presented a novel approach for the definition of the
abstract syntax, the static semantics and the dynamic semantics of a modeling
language based on the Alloy language. Two key advantages of the Alloy-based
approach, which should be relevant for the applicability of the approach, are
the low complexity of the notation (partly due to the fact that we need to deal
with a single notation rather than several notation for the different aspects) and
automatic analyzability.

Alloy was developed as a lightweight approach for developing software ab-
stractions. It encourages incremental development of software models and reaps
some of the benefits of traditional formal methods at a lower cost. Based on our
experience documented in this paper we believe that the same features of Alloy
also apply in the area of formal model semantics, thus opening the prospect

14

of formal semantics becoming more accessible and more widely adopted in the
definition of modeling languages.

The use of Alloy for specifying the formal semantics was illustrated in this
paper on one concrete example. Future work should analyze for what type of
modeling languages the Alloy based approach works well. Competing formal ap-
proaches such as those based on abstract state machines or conditional rewriting
logic should also be compared with Alloy to examine the strength and weaknesses
of each approach for different classes of modeling languages.

References

1. M. Broy, M. Crane, J. Dingel, A. Hartman, B. Rumpe, and B. Selic. 2nd UML
2 semantics symposium: Formal semantics for UML. In Models in Software Engi-
neering: Workshops and Symposia at MoDELS 2006, pages 318–323. 2007.

2. M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification en-
vironment for validating UML and OCL. Sci. Comput. Program., 69(1-3):27–34,
2007.

3. T. R. G. Green. Cognitive dimensions of notations. In the Proceedings of 5th con-
ference of the British Computer Society, Human-Computer Interaction Specialist
Group on People and computers V, pages 443–460, 1989.

4. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

5. D. Jackson and J. Wing. Lightweight formal methods. IEEE Computer, 29(4):16–
30, 1996.

6. P. Kelsen. A declarative executable model for object-based systems based on
functional decomposition. In the Proceedings of the 1st International Conference
on Software and Data Technologies, pages 63–71, 2006.

7. P. Kelsen and Q. Ma. A formal definition of the EP language. Technical Re-
port TR-LASSY-08-03, Laboratory for Advanced Software Systems, University of
Luxembourg, May 2008.

8. P. Kelsen, E. Pulvermueller, and C. Glodt. Specifying executable platform-
independent models using OCL. In ECEASST, 2008(9).

9. P. D. Mosses. Theory and practice of action semantics. In the Proceedings of 21st
Int. Symp. on Mathematical Foundations of Computer Science, pages 37–61, 1996.

10. P. D. Mosses. The varieties of programming language semantics. In the Proceedings
of 4th International Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pages 165–190, 2001.

11. OMG. Unified modeling language superstructure specification 2.0, November 2005.
12. OMG. Object Constraint Language 2.0, May 2006.
13. G. Winskel. The formal semantics of programming languages: an introduction.

MIT Press, 1993.
14. Y. Zhang and B. Xu. A survey of semantic description frameworks for programming

languages. SIGPLAN Not., 39(3):14–30, 2004.

15

