Skip to main content

Simple and Effective Variational Optimization of Surface and Volume Triangulations

  • Conference paper

Summary

Optimizing surface and volume triangulations is critical for advanced numerical simulations. We present a simple and effective variational approach for optimizing triangulated surface and volume meshes. Our method minimizes the differences between the actual elements and ideal reference elements by minimizing two energy functions based on conformal and isometric mappings. We derive simple, closed-form formulas for the values, gradients, and Hessians of these energy functions, which reveal important connections of our method with some well-known concepts and methods in mesh generation and surface parameterization. We then introduce a simple and efficient iterative algorithm for minimizing the energy functions, including a novel asynchronous step-size control scheme. We demonstrate the effectiveness of our method experimentally and compare it against Laplacian smoothing and other mesh optimization techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, N., Bern, M., Eppstein, D.: Optimal point placement for mesh smoothing. J. Algorithms 30, 302–322 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cutler, B., Dorsey, J., McMillan, L.: Simplification and improvement of tetrahedral models for simulation. In: Eurographics / ACM SIGGRAPH Symposium on Geometry Processing, pp. 93–102 (2004), http://people.csail.mit.edu/bmcutler/PROJECTS/SGP04/index.html

  3. Degener, P., Meseth, J., Klein, R.: An adaptable surface parameterization method. In: Proc. 12th Int. Meshing Roundtable, pp. 227–237 (2003)

    Google Scholar 

  4. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  5. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Google Scholar 

  6. Field, D.A.: Laplacian smoothing and Delaunay triangulation. Comm. Appl. Numer. Meth. 4, 709–712 (1988)

    Article  MATH  Google Scholar 

  7. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Freitag, L.A., Knupp, P.M.: Tetrahedral mesh improvement via optimization of the element condition number. Int. J. Numer. Meth. Engr. 53, 1377–1391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. Int. J. Numer. Meth. Engr. 49, 109–125 (2000)

    Article  MATH  Google Scholar 

  10. Freitag Diachin, L., Knupp, P.M., Munson, T., Shontz, S.: A comparison of two optimization methods for mesh quality improvement. Engrg. Comput. 22, 61–74 (2006)

    Article  Google Scholar 

  11. Frey, P., Borouchaki, H.: Geometric surface mesh optimization. Comput. Visual. Sci, 113–121 (1998)

    Google Scholar 

  12. Garimella, R.V., Shashkov, M.J., Knupp, P.M.: Triangular and quadrilateral surface mesh quality optimization using local parametrization. Comput. Meth. Appl. Mech. Engrg. 193, 913–928 (2004)

    Article  MATH  Google Scholar 

  13. Hansbo, P.: Generalized Laplacian smoothing of unstructured grids. Comm. Numer. Meth. Engrg. 11, 455–464 (1995)

    Article  MATH  Google Scholar 

  14. Hansen, G.A., Douglass, R.W., Zardecki, A.: Mesh Enhancement. Imperial College Press (2005)

    Google Scholar 

  15. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974); Reprinted in 135, 203–216 (1997)

    Article  Google Scholar 

  16. Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. In: Laurent, P.-J., Sablonniere, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 153–162 (2000)

    Google Scholar 

  17. Ivanenko, S.A.: Harmonic mappings. In: Thompson, J.F., Soni, B.K., Weatherill, N.P. (eds.) Handbook of Grid Generation. CRC, Boca Raton (1999)

    Google Scholar 

  18. Jiao, X.: Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 612–625 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Knupp, P.M.: Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part i: a framework for surface mesh optimization. Int. J. Numer. Meth. Engr. 48, 401–420 (2000)

    Article  MATH  Google Scholar 

  20. Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23, 193 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knupp, P.M., Robidoux, N.: A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms. SIAM J. Sci. Comput. 21, 20–29 (2000)

    Article  MathSciNet  Google Scholar 

  22. Kreyszig, E.: Differential Geometry. Dover (1991)

    Google Scholar 

  23. Munson, T.: Mesh shape-quality optimization using the inverse mean-ratio metric. Math. Program. Ser. A 110, 561–590 (2007)

    Article  MathSciNet  Google Scholar 

  24. Parthasarathy, V.N., Kodiyalam, S.: A constrained optimization approach to finite element mesh smoothing. Finite Elem. Anal. Des. 9, 309–320 (1991)

    Article  MATH  Google Scholar 

  25. Parthasarathy, V.N., Graichen, C.M., Af, A.F.H.: A comparison of tetrahedron quality measures. Finite Elem. Anal. Des. 15, 255–261 (1993)

    Article  Google Scholar 

  26. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exper. Math. 2, 15–36 (1993)

    MATH  MathSciNet  Google Scholar 

  27. Zhou, T., Shimada, K.: An angle-based approach to two-dimensional mesh smoothing. In: Proc. 9th Int. Meshing Roundtable, pp. 373–384 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiao, X., Wang, D., Zha, H. (2008). Simple and Effective Variational Optimization of Surface and Volume Triangulations. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics