Skip to main content

A Mesh Optimization Algorithm to Decrease the Maximum Error in Finite Element Computations

  • Conference paper

Abstract

We present a mesh optimization algorithm for adaptively improving the finite element interpolation of a function of interest. The algorithm minimizes an objective function by swapping edges and moving nodes. Numerical experiments are performed on model problems. The results illustrate that the mesh optimization algorithm can reduce the W 1, ∞  semi-norm of the interpolation error. For these examples, the L 2, L  ∞ , and H 1 norms decreased also.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Adaptive generation of quasi-optimal tetrahedral meshes. East-West J. Numer. Math. 7(4), 223–244 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Alauzet, F., Frey, P.: Estimation d’erreur géométrique et métriques anisotropes pour l’adaptation de maillage. Partie II: exemples d’applications. Technical Report 4789, INRIA (2003)

    Google Scholar 

  3. Apel, T., Berzins, M., Jimack, P., Kunert, G., Plaks, A., Tsukerman, I., Walkley, M.: Mesh shape and anisotropic elements: Theory and practice. In: The Mathematics of Finite Elements and Applications X, pp. 367–376. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  4. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. BAMG, Bidimensional anisotropic mesh generator, http://pauillac.inria.fr/cdrom/www/bamg/eng.htm

  6. Bank, R., Smith, R.: Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34, 979–997 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bank, R., Xu, J.: Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J. Numer. Anal. 41, 2313–2332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buscaglia, G., Dari, E.: Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Engng. 40, 4119–4136 (1997)

    Article  MATH  Google Scholar 

  9. Cao, W.: On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle. SIAM J. Numer. Anal. 43, 19–40 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, L.: Mesh smoothing schemes based on optimal Delaunay triangulations. In: Proceedings of 13th International Meshing Roundtable (2004)

    Google Scholar 

  11. Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Math. Comp. 76, 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Courty, F., Leservoisier, D., George, P.L., Dervieux, A.: Continuous metric and mesh adaptation. Appl. Numer. Math. 56, 117–145 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. D’Azevedo, E., Simpson, R.: On optimal interpolation triangle incidences. SIAM J. Sci. Comput. 10, 1063–1075 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dompierre, J., Vallet, M.G., Bourgault, Y., Fortin, M., Habashi, W.: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver independent CFD. Part III: unstructured meshes 39, 675–702 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Felippa, C.: Optimization of finite element grids by direct energy search. Appl. Math. Modelling 1, 93–96 (1976)

    Article  MATH  Google Scholar 

  16. Field, D.: Qualitative measures for initial meshes. Int. J. Numer. Meth. Engng. 47, 887–906 (2000)

    Article  MATH  Google Scholar 

  17. Fletcher, R.: Practical methods of optimization. Wiley, Chichester (1987)

    MATH  Google Scholar 

  18. Frey, P., Alauzet, F.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg. 194, 5068–5082 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hager, W., Zhang, H.: Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32, 113–137 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hetmaniuk, U., Knupp, P.: Mesh optimization algorithms to decrease the linear interpolation error. SAND Report (2008)

    Google Scholar 

  21. Huang, W.: Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1, 276–310 (2006)

    Google Scholar 

  22. Jimack, P., Mahmood, R., Walkley, M., Berzins, M.: A multilevel approach for obtaining locally optimal finite element meshes. Advances in Engineering Software 33, 403–415 (2002)

    Article  MATH  Google Scholar 

  23. Lagüe, J.F.: Optimisation de maillage basée sur une erreur locale d’interpolation. PhD thesis, Université de Paris VI (2006)

    Google Scholar 

  24. Mesquite, Mesh quality improvement toolkit, http://www.cs.sandia.gov/optimization/knupp/Mesquite.html

  25. Remacle, J.F., Li, X., Shephard, M., Flaherty, J.: Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int. J. Numer. Meth. Engng. 62, 899–923 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rippa, S.: Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Anal. 29, 257–270 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Roe, P., Nishikawa, H.: Adaptive grid generation by minimizing residuals. Int. J. Numer. Meth. Fluids 40, 121–136 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tourigny, Y., Hülsemann, F.: A new moving mesh algorithm for the finite element solution of variational problems. SIAM J. Numer. Anal. 35, 1416–1438 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tourigny, Y.: The optimisation of the mesh in first-order systems least-squares methods. J. Sci. Comput. 24, 219–245 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vallet, M.G., Manole, C., Dompierre, J., Dufour, S., Guibault, F.: Numerical comparison of some Hessian recovery techniques. Int. J. Numer. Meth. Engng. 72, 987–1007 (2007)

    Article  MathSciNet  Google Scholar 

  31. Walkley, M., Jimack, P., Berzins, M.: Anisotropic adaptivity for the finite element solutions of three-dimensional convection-dominated problems. Int. J. Numer. Meth. Fluids 40, 551–559 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hetmaniuk, U., Knupp, P. (2008). A Mesh Optimization Algorithm to Decrease the Maximum Error in Finite Element Computations. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics