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Abstract. Discrete time infinite horizon growth optimal investment in
stock markets with transactions costs is considered. The stock processes
are modelled by homogeneous Markov processes. Assuming that the dis-
tribution of the market process is known, we show two recursive invest-
ment strategies such that, in the long run, the growth rate on trajectories
(in "liminf" sense) is greater than or equal to the growth rate of any other
investment strategy with probability 1.

1 Introduction

The purpose of this paper is to investigate sequential investment strategies for
financial markets such that the strategies are allowed to use information collected
from the past of the market and determine, at the beginning of a trading period,
a portfolio, that is, a way to distribute their current capital among the available
assets. The goal of the investor is to maximize his wealth on the long run. If
there is no transaction cost and the price relatives form a stationary and ergodic
process the best strategy (called log-optimum strategy) can be constructed in
full knowledge of the distribution of the entire process, see Algoet and Cover [2].

Papers dealing with growth optimal investment with transaction costs in dis-
crete time setting are seldom. Cover and Iyengar [13] formulated the problem of
horse race markets, where in every market period one of the assets has positive
pay off and all the others pay nothing. Their model included proportional trans-
action costs and they used a long run expected average reward criterion. There
are results for more general markets as well. Iyengar [12] investigated growth
optimal investment with several assets assuming independent and identically
distributed (i.i.d.) sequence of asset returns. Bobryk and Stettner [4] considered
the case of portfolio selection with consumption, when there are two assets, a
bank account and a stock. Furthermore, long run expected discounted reward
and i.i.d asset returns were assumed. In the case of discrete time, the most far
reaching study was Schäfer [16] who considered the maximization of the long
run expected growth rate with several assets and proportional transaction costs,
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when the asset returns follow a stationary Markov process. In contrast to the
previous literature we assume only that the stock processes are modelled by ho-
mogeneous (there is no requirement regarding the initial distribution) Markov
processes. We extend the usual framework of analyzing expected growth rate
by showing two recursive investment strategies such that, in the long run, the
growth rate on trajectories is greater than or equal to the growth rate of any
other investment strategy with probability 1.

The rest of the paper is organized as follows. In Section 2 we introduce the
market model and describe the modelling of transaction costs. In Section 3 we
formulate the underlying Markov control problem, and Section 4 defines optimal
portfolio selection strategies. Following the Summary in Section 5, the proofs
are given in Section 6.

2 Mathematical Setup: Investment with Transaction Cost

Consider a market consisting of d assets. The evolution of the market in time
is represented by a sequence of market vectors s1, s2, . . . ∈ R

d
+, where si =

(s(1)
i , . . . , s

(d)
i ) such that the j-th component s

(j)
i of si denotes the price of the

j-th asset at the end of the i-th trading period. (s(j)
0 = 1.)

In order to apply the usual prediction techniques for time series analysis one
has to transform the sequence {si} into a more or less stationary sequence of

return vectors {xi} as follows: xi = (x(1)
i , . . . , x

(d)
i ) such that x

(j)
i = s

(j)
i

s
(j)
i−1

. Thus,

the j-th component x
(j)
i of the return vector xi denotes the amount obtained

after investing a unit capital in the j-th asset on the i-th trading period.
The investor is allowed to diversify his capital at the beginning of each trading

period according to a portfolio vectorb = (b(1), . . . b(d))T . The j-th component b(j)

of b denotes the proportion of the investor’s capital invested in asset j. Through-
out the paper we assume that the portfolio vector b has nonnegative components
with

∑d
j=1 b(j) = 1. The fact that

∑d
j=1 b(j) = 1 means that the investment strat-

egy is self financing and consumption of capital is excluded. The non-negativity
of the components of b means that short selling and buying stocks on margin are
not permitted. To make the analysis feasible, some simplifying assumptions are
used that need to be taken into account. We assume that assets are arbitrarily di-
visible and all assets are available in unbounded quantities at the current price at
any given trading period. We also assume that the behavior of the market is not
affected by the actions of the investor using the strategies under investigation.

For j ≤ i we abbreviate by xi
j the array of return vectors (xj , . . . ,xi). Denote

by Δd the simplex of all vectors b ∈ R
d
+ with nonnegative components summing

up to one. An investment strategy is a sequence B of functions

bi :
(
R

d
+

)i−1 → Δd , i = 1, 2, . . .

so that bi(xi−1
1 ) denotes the portfolio vector chosen by the investor on the i-

th trading period, upon observing the past behavior of the market. We write
b(xi−1

1 ) = bi(xi−1
1 ) to ease the notation.
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Let Sn denote the gross wealth at the end of trading period n, n = 0, 1, 2, · · · ,
where without loss of generality let the investor’s initial capital S0 be 1 dollar,
while Nn stands for the net wealth at the end of trading period n. Using the
above notations, for the trading period n, the net wealth Nn−1 can be invested
according to the portfolio bn, therefore the gross wealth Sn at the end of trading
period n is

Sn = Nn−1

d∑

j=1

b(j)
n x(j)

n = Nn−1 〈bn , xn〉 ,

where 〈· , ·〉 denotes inner product.
At the beginning of a new market day n+1, the investor sets up his new port-

folio, i.e. buys/sells stocks according to the actual portfolio vector bn+1. During
this rearrangement, he has to pay transaction cost, therefore at the beginning of a
new market day n+1 the net wealth Nn in the portfolio bn+1 is less than Sn. The
rate of proportional transaction costs (commission factors) levied on one asset
are denoted by 0 < cs < 1 and 0 < cp < 1, i.e., the sale of 1 dollar worth of asset
i nets only 1− cs dollars, and similarly we take into account the purchase of an
asset such that the purchase of 1 dollar’s worth of asset i costs an extra cp dollars.
We consider the special case when the rate of costs are constant over the assets.
Let’s calculate the transaction cost to be paid when select the portfolio bn+1.
Before rearranging the capitals, at the j-th asset there are b

(j)
n x

(j)
n Nn−1 dollars,

while after rearranging we need b
(j)
n+1Nn dollars. If b

(j)
n x

(j)
n Nn−1 ≥ b

(j)
n+1Nn then

we have to sell and cs

(
b
(j)
n x

(j)
n Nn−1 − b

(j)
n+1Nn

)
is the transaction cost at the

j-th asset is, otherwise we have to buy and cp

(
b
(j)
n+1Nn − b

(j)
n x

(j)
n Nn−1

)
is the

transaction cost at the j-th asset.
Let x+ denote the positive part of x. Thus, the gross wealth Sn decomposes

to the sum of the net wealth and cost the following - self-financing - way Sn =

Nn+cs

∑d
j=1

(
b
(j)
n x

(j)
n Nn−1 − b

(j)
n+1Nn

)+

+cp

∑d
j=1

(
b
(j)
n+1Nn − b

(j)
n x

(j)
n Nn−1

)+

.

Dividing both sides by Sn and introducing the ratio wn = Nn

Sn
, 0 < wn < 1,

we get

1 = wn + cs

d∑

j=1

(
b
(j)
n x

(j)
n

〈bn , xn〉 − b
(j)
n+1wn

)+

+ cp

d∑

j=1

(

b
(j)
n+1wn − b

(j)
n x

(j)
n

〈bn , xn〉

)+

.(1)

Remark 1. Equation (1) is used in the sequel. Examining this cost equation, it
turns out, that for arbitrary portfolio vectors bn, bn+1, and return vector xn

there exists a unique cost factor wn ∈ [0, 1), i.e. the portfolio is self financing. The
value of cost factor wn at day n is determined by portfolio vectors bn and bn+1

as well as by return vector xn, i.e. wn = w(bn,bn+1,xn), for some function w. If
we want to rearrange our portfolio substantially, then our net wealth decreases
more considerably, however, it remains positive. Note also, that the cost does not
restrict the set of new portfolio vectors, i.e., the optimization algorithm searches
for optimal vector bn+1 within the whole simplex Δd. The value of the cost
factor ranges between 1−cs

1+cp
≤ wn ≤ 1.
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Starting with an initial wealth S0 = 1 and w0 = 1, wealth Sn at the closing time
of the n-th market day becomes Sn = Nn−1〈bn , xn〉 = wn−1Sn−1〈bn , xn〉
=

∏n
i=1[w(bi−1,bi,xi−1) 〈bi , xi〉]. Introduce the notation

g(bi−1,bi,xi−1,xi) = log(w(bi−1,bi,xi−1) 〈bi , xi〉), (2)

then the average growth rate becomes

1
n

log Sn =
1
n

n∑

i=1

log(w(bi−1,bi,xi−1) 〈bi , xi〉) =
1
n

n∑

i=1

g(bi−1,bi,xi−1,xi).(3)

Our aim is to maximize this average growth rate.
In the sequel xi will be random variable and is denoted by Xi. Let’s use the

decomposition
1
n

log Sn = In + Jn, (4)

where In is 1
n

∑n
i=1(g(bi−1,bi,Xi−1,Xi) − E{g(bi−1,bi,Xi−1,Xi)|Xi−1

1 }) and
Jn = 1

n

∑n
i=1 E{g(bi−1,bi,Xi−1,Xi)|Xi−1

1 }. In is an average of martingale
differences. Under mild conditions on the support of the distribution of X,
g(bi−1,bi,Xi−1,Xi) is bounded, therefore In is an average of bounded mar-
tingale differences, which converges to 0 almost surely, since according to the
Chow Theorem (cf. Theorem 3.3.1 in Stout [18])

∑∞
i=1

E{g(bi−1,bi,Xi−1,Xi)
2}

i2 < ∞
implies that In → 0 almost surely. Thus, the asymptotic maximization of the
average growth rate 1

n log Sn is equivalent to the maximization of Jn.
If the market process {Xi} is a homogeneous and first order Markov process

then, for appropriate portfolio selection {bi}, we have that

E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 }

= E{log(w(bi−1,bi,Xi−1) 〈bi , Xi〉)|Xi−1
1 }

= log w(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |Xi−1
1 }

= log w(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |bi,Xi−1}
def= v(bi−1,bi,Xi−1),

therefore the maximization of the average growth rate 1
n log Sn is asymptotically

equivalent to the maximization of

Jn =
1
n

n∑

i=1

v(bi−1,bi,Xi−1). (5)

Remark 2. Without transaction cost, the fundamental limits, determined in Al-
goet and Cover [2] reveal that the so-called log-optimum portfolio B∗ = {b∗(·)} is
the best possible choice. More precisely, in trading period n let b∗(·) be such that
b∗

n(Xn−1
1 ) = arg maxb(·) E

{
log

〈
b(Xn−1

1 ) , Xn

〉∣
∣Xn−1

1

}
. If S∗

n = Sn(B∗) de-
notes the capital achieved by a log-optimum portfolio strategy B∗, after n trading
periods, then for any other investment strategy B with capital Sn = Sn(B) and
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for any stationary and ergodic return process {Xn}∞−∞, lim infn→∞ 1
n log S∗

n

Sn
≥

0 almost surely. Note that for first order Markovian return process b∗
n(Xn−1

1 ) =
b∗

n(Xn−1) = argmaxb(·) E { log 〈b(Xn−1) , Xn〉|Xn−1} .

Before introducing to optimal strategies we show to empirical suboptimal algo-
rithms with some experimental results.

Algorithm 1. For transaction cost, one may apply the portfolio b∗
n(Xn−1),

and after calculating the portfolio subtract the transaction cost. Let’s consider
it’s empirical counterpart in case of unknown market process. Apply the kernel
based log-optimal portfolio selection introduced by Györfi, Lugosi and Udina
[8] as follows: define an infinite array of experts B(�) = {b(�)(·)}, where � is a
positive integer. For fixed positive integer �, choose the radius r� > 0 such that
lim�→∞ r� = 0. Then, for n > 1, define the expert b(�) as follows. Put

b(�)
n = arg max

b∈Δd

∑

{i<n:‖xi−1−xn−1‖≤r�}
ln 〈b , xi〉 , (6)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where ‖ · ‖ denotes
the Euclidean norm. These experts are aggregated as follows: let {q�} be a prob-
ability distribution over the set of all positive integers �. Consider two types of
aggregations: By aggregating with the wealth the initial capital S0 = 1 is distrib-
uted among the expert according to the distribution {q�}, and the expert makes
the portfolio selection and pays for transaction cost individually. If Sn(B(�)) is
the capital accumulated by the elementary strategy B(�) the investor’s wealth
after period n, aggregations Sn =

∑
� q�Sn(B(�)). In the second case the ag-

gregated portfolio pays for transaction cost. Here Sn(B(�)) is again the capital
accumulated by the elementary strategy B(�) after n periods. Then, after pe-
riod n, the investor’s aggregated portfolio becomes bn =

�
� q�Sn−1(B

(�))b(�)
n�

� q�Sn−1(B(�))
.The

investor’s capital is Sn = Sn−1〈bn , xn〉w(bn−1,bn,xn−1), so the aggregated
portfolio pays for the transaction cost.

Algorithm 2. Our second suboptimal strategy is a one-step optimization as
follows: put b1 = {1/d, . . . , 1/d} and for i ≥ 1, bi+1 = arg maxb′ v(bi,b′,Xi).
Obviously, this portfolio has no global optimality property. Let’s consider its
empirical counterpart in case of unknown distribution. Put b1 = {1/d, . . . , 1/d}
and for n ≥ 1,

b(�)
n = arg max

b∈Δd

∑

{i<n:‖xi−1−xn−1‖≤r�}
(ln 〈b , xi〉 + lnw(bn−1,b,xn−1)) , (7)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These elementary
portfolios are mixed as in Algortihm1.

The investment strategies are tested on a data set containing 23 stocks and has
length 44 years - 11178 trading days ending in 2006 - achievable atwww.szit.bme.hu
/oti/portfolio. The proposed empirical portfolio selection algorithms use an in-
finite set of experts. In the experiment we selected L = 10. Choose {q�} = 1/L
over the experts in use, and the radius r2

� = 0.0001 · d · �, r2
� = 0.0002 · d +
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0.00002 · d · �, for � = 1, . . . , L . Table 1, [10] summarizes the average annual
yield achieved by each expert at the last period when investing one unit for the
kernel-based log-optimal portfolio. Experts are indexed by � = 1 . . . 10 in rows.
The second column contains the average annual yields of experts for kernel based
log-optimal portfolio if there is no transaction cost, and in this case the results of
the two aggregations are the same: 124%. The third and fourth columns contain
the average annual yields of experts for kernel based log-optimal portfolio if the
commission factor is c = 0.0015.

In the sequel we prove to optimal strategies in case of known distribution as
these algorithms were not optimal. The empirical optimal counterparts of them
are still missing.

3 The Related Markov Control Problem

The problem of optimal investment with proportional transaction costs has been
essentially formulated in continuous time only, in the classical articles Davis and
Norman [6], Taksar et al. [19] and Shreve and Soner [17], etc. Taksar, Klass and
Assaf [19] investigate optimal investment in a continuous time market with two
assets and with proportional transaction costs driven by a Wiener process and
using long run expected reward criteria. Akien, Sulem and Taksar [1] extend
these results to the case of several risky assets.

Most of the above mentioned papers use some kind of method from stochastic
optimal control theory. Without exception all the papers consider optimality in
expected reward. None of these papers give result on almost sure optimality.
In this paper we present two portfolio selection strategies, and for a Markovian
market we prove their almost sure optimality.

Discrete time portfolio optimization with transaction cost is a special case of the
general Markov control processes (MCP). A discrete time Markov control process

Table 1. The average annual yields of the individual experts and of the aggregations
with c = 0.0015

� c = 0 Algorithm 1 Algorithm 2
1 68% -6% 27%
2 87% 3% 38%
3 94% 7% 45%
4 94% 6% 49%
5 108% 14% 54%
6 118% 19% 60%
7 122% 21% 69%
8 128% 25% 73%
9 131% 27% 71%

10 131% 28% 72%
Aggregation with wealth 124% 24% 68%

Aggregation with portfolio 124% 29% 73%
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is defined by a five tuple (S, A, U(s), Q, r) (cf. [11]). S is a Borel space, called the
state space, the action space A is Borel, too, the space of admissible actions U(s)
is a Borel subset of A. Let the set K be {(s, a) : s ∈ S, a ∈ U(s)}. The transition
law is a stochastic kernel Q(.|s, a) on S given K, and r(s, a) is the reward function.

The evolution of the process is the following. Let St denote the the state at
time t, action At is chosen at that time. Let St = s and At = a , then the reward
is r(s, a), and the process moves to St+1 according to the kernel Q(.|s, a). A
control policy is a sequence π = {πn} of deterministic functions, which can also
be stochastic kernels on A given the past states and actions.

Two reward criteria are considered. The expected long run average reward for
π is defined by J(π) = lim infn→∞ 1

n

∑n−1
t=0 E

πr(St, At). The sample-path average
reward is defined as J(π) := lim infn→∞ 1

n

∑n−1
t=0 r(St, At). In the theory of MCP

most of the results correspond to expected long run average reward, while just
a few present result for the sample-path criterion. Such sample-path results can
be found in [3] for bounded rewards and in [20], [14] for unbounded rewards. For
Markov control processes, the main aim is to approach the maximum asymptotic
reward: J∗ = supπ J(π), which leads to a dynamic programming problem.

For portfolio optimization with transaction cost, we formulate the correspond-
ing Markov control problem. Assume that there exist 0 < a1 < 1 < a2 < ∞ such
that

Xi ∈ [a1, a2]
d
.

1. Let us define the state space as: S :=
{
(b,x)|b ∈ Δd,x ∈ [a1, a2]

d
}

.

2. The action space is A := Δd.
3. For the set of admissible actions we get U(b,x) := Δd.
4. The stochastic kernel is Q(d(b′,x′)|(b,x),b′) := P (dx′|x) := P{dX2 =
dx′|X1 =x} the transition probability distribution of the Markov market process,
describing the asset returns. Note, that this corresponds to the assumption, that
the market behaviour is not affected by the investor.
5. The reward function is: r((b,x),b′) = v(b,b′,x).
6. The sample-path average reward criterion is the following:
lim infn→∞ 1

n

∑n
t=1 r((bt−1,xt−1),bt) = lim infn→∞ 1

n

∑n
t=1 v(bt−1,bt,xt−1)

= lim infn→∞ Jn.

Remark 3. It should be noted that the methods of MCP literature, more pre-
cisely the theorems in [3], [20], [14] can’t be applied in our case. However, we
do use the formalism, the results on the existence of the solution of discounted
Bellman equations, and the basic idea of vanishing discount approach.

4 Optimal Portfolio Selection Algorithms

We introduce two optimal portfolio selection strategies. Let 0 < δ < 1 denote a
discount factor. We apply a kind of vanishing discount approach, formulated by
the discounted Bellman equation:

Fδ(b,x) = max
b′

{v(b,b′,x) + (1 − δ)E{Fδ(b′,X2) | X1 = x}} . (8)



Growth Optimal Investment with Transaction Costs 115

It can be shown that this discounted Bellman equation has a solution (cf.
Hernández-Lerma, Lasserie [11], Schäfer [16]).

Strategy 1. Our first portfolio selection strategy is the following put b∗
1 =

{1/d, . . . , 1/d} and

b∗
i+1 = arg max

b′

{
v(b∗

i ,b
′,Xi) + (1 − δi)E{Fδi(b

′
,Xi+1)|Xi}}, (9)

for 1 ≤ i, where 0 < δi < 1 is a discount factor such that δi ↓ 0.

Remark 4. A strategy similar to (9) was defined by Schäfer [16]. He introduces an
additional asset to settle the transaction costs when the portfolio is restructured.

Remark 5. A portfolio selection {bi} is called recursive if it has the form bi =
bi(xi−1

1 ) = bi(bi−1,xi−1). Obviously, the portfolio {b∗
i } is recursive. The re-

cursion in the definition of the portfolio {b∗
i } is not time invariant, i.e., it is a

non-stationary portfolio selection rule.

Now, we claim our result on the optimality of Strategy 1 with respect to a
sample-path average criterion:

Theorem 1. Assume

(i) that {Xi} is a homogeneous and first order Markov process,
(ii) and there exist 0 < a1 < 1 < a2 < ∞ such that a1 ≤ X(j) ≤ a2 for all

j = 1, . . . , d.

Choose the discount factor δi ↓ 0 such that (δi − δi+1)/δ2
i+1 → 0 as i → ∞,

and
∑∞

n=1
1

n2δ2
n

< ∞. Then, for Strategy 1, the portfolio {b∗
i } with capital S∗

n is
optimal in the sense that for any portfolio strategy {bi} with capital Sn,

lim inf
n→∞

(
1
n

log S∗
n − 1

n
log Sn

)

≥ 0 a.s.

Remark 6. lim infn→∞ E
{

1
n log S∗

n − 1
n log Sn

} ≥ 0, according to Theorem 4.2.1
in Schäfer [16], i.e., the portfolio {b∗

i } is optimal in expectation. Theorem 1
states that the portfolio strategy {b∗

i } is sample-path optimal, too, i.e., it is
optimal with probability one.

Remark 7. For the choice δi = i−ε, with ε < 1/2, the conditions of Theorem 1
are satisfied.

Remark 8. For the standard stock market problems, the condition (i) is satisfied
with a1 = 0.9 and a2 = 1.1, (cf.Fernholz [7]).

Strategy 2. Next, we introduce a portfolio with stationary (time invariant)
recursion such that this portfolio is a sample-path optimal policy, too. For any
integer 1 ≤ k, put b(k)

1 = {1/d, . . . , 1/d} and

b(k)
i+1 = argmax

b′

{
v(b(k)

i ,b′,Xi) + (1 − δk)E{Fδk
(b

′
,Xi+1)|Xi}}, (10)
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for 1 ≤ i. The portfolio B(k) = {b(k)
i } is called the portfolio of expert k with

capital Sn(B(k)). We combine the experts borrowing a current technique from
machine learning, the exponential weighing (cf. Cesa-Bianchi and Lugosi [5]).
Combine the experts as follows: let {qk} ≥ 0 be a probability distribution on 1 ≤
k and aggregate the experts with the wealth as described earlier by Algorithm1,
so S̃n(B̃) =

∑
k qkSn(B(k)).

Theorem 2. Assume (i) and (ii) of Theorem 1. Choose the discount factor
δi ↓ 0 as i → ∞. Then, for Strategy 2,

lim
n→∞

(
1
n

log S∗
n − 1

n
log S̃n

)

= 0 a.s.

5 Summary

We considered discrete time infinite horizon growth optimal investment with
several assets in stock markets with proportional transactions costs. The as-
set returns followed homogeneous Markov processes. Using techniques from dy-
namic programming and machine learning two recursive investment strategies
were shown, such that, in the long run, the growth rate on trajectories were
greater than or equal to the growth rate of any other investment strategy with
probability 1. An important direction of our future work is to construct an em-
pirical version of the second stationary rule, i.e., to get a data driven portfolio
selection (cf. Györfi et al.[8], Györfi and Schäfer [9]) when the distribution of the
market process is unknown.

6 Proofs

Proof of Theorem 1. Introduce the following notation: Fi(b,x) = Fδi(b,x).
We have to show that

lim inf
n→∞

1
n

n∑

i=1

(g(b∗
i ,b

∗
i+1,Xi,Xi+1) − g(bi,bi+1,Xi,Xi+1)) ≥ 0

a.s. Because of the martingale difference argument in Section 2, one has

lim inf
n→∞

1
n

n∑

i=1

(g(b∗
i ,b

∗
i+1,Xi,Xi+1) − g(bi,bi+1,Xi,Xi+1))

= lim inf
n→∞

1
n

n∑

i=1

(v(b∗
i ,b

∗
i+1,Xi) − v(bi,bi+1,Xi))

a.s. therefore we have to prove that

lim inf
n→∞

(
1
n

n∑

i=1

v(b∗
i ,b

∗
i+1,Xi) − 1

n

n∑

i=1

v(bi,bi+1,Xi)

)

≥ 0 (11)
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a.s. (9) implies that

Fi(b∗
i ,Xi) = v(b∗

i ,b
∗
i+1,Xi) + (1 − δi)E{Fi(b∗

i+1,Xi+1)|b∗
i+1,Xi}, (12)

while for any portfolio {bi},

Fi(bi,Xi) ≥ v(bi,bi+1,Xi) + (1 − δi)E{Fi(bi+1,Xi+1)|bi+1,Xi}. (13)

Because of (12) and (13), we get that 1
n

∑n
i=1 v(b∗

i ,b
∗
i+1,Xi)

=
1
n

n∑

i=1

(
Fi(b∗

i ,Xi) − (1 − δi)E{Fi(b∗
i+1,Xi+1)|b∗

i+1,Xi}
)

=
1
n

n∑

i=1

(
Fi(b∗

i ,Xi) − (1 − δi)E{Fi(b∗
i+1,Xi+1)|Xi

1}
)

and

1
n

n∑

i=1

v(bi,bi+1,Xi) ≤ 1
n

n∑

i=1

(Fi(bi,Xi) − (1 − δi)E{Fi(bi+1,Xi+1)|bi+1,Xi})

=
1
n

n∑

i=1

(
Fi(bi,Xi) − (1 − δi)E{Fi(bi+1,Xi+1)|Xi

1}
)
,

therefore

1
n

n∑

i=1

v(b∗
i ,b

∗
i+1,Xi) − 1

n

n∑

i=1

v(bi,bi+1,Xi)

≥ 1
n

n∑

i=1

(
Fi(b∗

i ,Xi) − (1 − δi)E{Fi(b∗
i+1,Xi+1)|Xi

1}
)

− 1
n

n∑

i=1

(
Fi(bi,Xi) − (1 − δi)E{Fi(bi+1,Xi+1)|Xi

1}
)
.

Apply the following identity

(1 − δi)E{Fi(bi+1,Xi+1)|Xi
1} − Fi(bi,Xi)

= E{Fi(bi+1,Xi+1)|Xi
1} − Fi(bi+1,Xi+1)

+ Fi(bi+1,Xi+1) − Fi(bi,Xi)
− δiE{Fi(bi+1,Xi+1)|Xi

1}
= ai + bi + ci.

Because of Fi(b,x) = maxb′ {v(b,b′,x) + (1 − δi)E(Fi(b′,Xi+1)|Xi = x), } we
have that ‖Fi‖∞ ≤ ‖v‖∞ + (1 − δi)‖Fi‖∞, therefore ‖Fi‖∞ ≤ ‖v‖∞

δi
(cf. Lemma

4.2.3 in Schäfer [16]). As {ai} is a sequence of martingale differences such that
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|ai| ≤ 2‖Fi‖∞ ≤ 2
δi
‖v‖∞, therefore, because of

∑
n

1
n2δ2

n
< ∞, the Chow Theo-

rem implies that 1
n

∑n
i=1 ai → 0 (14) a.s. (cf. Stout [18]).

Similarly to the bounding above, we have the equality

Fi(b,x) = max
b′

{v(b,b′,x) + (1 − δi)E(Fi(b′,Xi+1)|Xi = x)}

and the inequality

Fi+1(b,x) = max
b′′

{v(b,b′′,x) + (1 − δi+1)E(Fi+1(b′′,Xi+2)|Xi+1 = x)}
≥ v(b,b′,x) + (1 − δi+1)E(Fi+1(b′,Xi+1)|Xi = x)

with arbitrary b′. Taking difference

Fi(b,x) − Fi+1(b,x)
≤ max

b′
{(1 − δi)E(Fi(b′,Xi+1|Xi = x))

− (1 − δi+1)E(Fi+1(b′,Xi+1)|Xi = x))}
≤ (1 − δi)‖Fi − Fi+1‖∞ + (δi+1 − δi)max

b′
E(Fi+1(b′,Xi+1)|Xi = x)

≤ (1 − δi)‖Fi − Fi+1‖∞ + (δi+1 − δi)‖Fi+1‖∞.

So we have ‖Fi − Fi+1‖∞ ≤ δi−δi+1
δi

‖Fi+1‖∞. Using that ‖Fi+1‖∞ ≤ ‖v‖∞
δi+1

and

assumption on δi’s, we get that ‖Fi − Fi+1‖∞ ≤ ‖v‖∞ δi−δi+1

δ2
i

(cf. Lemma 4.2.3
in Schäfer [16]). Concerning {bi},

∣
∣
∣
∣
∣

1
n

n∑

i=1

bi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
n

n∑

i=1

(Fi(bi+1,Xi+1) − Fi(bi,Xi))

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1
n

n∑

i=1

(Fi(bi+1,Xi+1) − Fi+1(bi+1,Xi+1))

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
n

n∑

i=1

(Fi+1(bi+1,Xi+1) − Fi(bi,Xi))

∣
∣
∣
∣
∣

≤ 1
n

n∑

i=1

‖Fi − Fi+1‖∞ +
∣
∣
∣
∣
1
n

(Fn+1(bn+1,Xn+1) − F1(b1,X1))
∣
∣
∣
∣

≤ 1
n

n∑

i=1

‖Fi − Fi+1‖∞ +
‖Fn+1‖∞ + ‖F1‖∞

n

≤ ‖v‖∞ 1
n

n∑

i=1

|δi+1 − δi|
δ2
i+1

+ ‖v‖∞ 1/δn+1 + 1/δ1

n
→ 0 (14)

by conditions. Concerning the proof of (11) what is left to show that

lim sup
n→∞

1
n

n∑

i=1

δi(E{Fi(b∗
i+1,Xi+1)|Xi

1} − E{Fi(bi+1,Xi+1)|Xi
1}) ≤ 0
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a.s. The definition of Fi implies that

Fi(b∗
i+1,Xi+1) − Fi(bi+1,Xi+1)

= max
b′

{
v(b∗

i+1,b
′,Xi+1) + (1 − δi)E{Fi(b

′
,Xi+2)|Xi+1}

}

− max
b′′

{
v(bi+1,b′′,Xi+1) + (1 − δi)E{Fi(b′′,Xi+2)|Xi+1}

}

≤ max
b′

{
v(b∗

i+1,b
′,Xi+1) + (1 − δi)E{Fi(b

′
,Xi+2)|Xi+1}

−v(bi+1,b′,Xi+1) − (1 − δi)E{Fi(b′,Xi+2)|Xi+1}
}

≤ max
b′

{
v(b∗

i+1,b
′,Xi+1) − v(bi+1,b′,Xi+1)

}

≤ 2‖v‖∞,

therefore

1
n

n∑

i=1

δiE{Fi(b∗
i+1,Xi+1) − Fi(bi+1,Xi+1)|Xi

1} ≤ 2‖v‖∞
n

n∑

i=1

δi → 0. (15)

(6), (14) and (15) imply (11).

Proof of Theorem 2
Theorem 1 implies that lim infn→∞

(
1
n log S∗

n − 1
n log S̃n

)
≥ 0 a.s.. We have to

show that
lim inf
n→∞

(
1
n

log S̃n − 1
n

log S∗
n

)

≥ 0 (16)

a.s. By definition, 1
n log S̃n = 1

n log
∑∞

k=1 qkSn(B(k)) ≥ 1
n log supk qkSn(B(k)) =

supk

(
log qk

n + 1
n log Sn(B(k))

)
, therefore (16) follows from the following:

lim infn→∞
(

supk

(
log qk

n + 1
n

∑n
i=1 g(b(k)

i ,b(k)
i+1,Xi,Xi+1)

)

− 1
n

∑n
i=1 g(b∗

i ,b
∗
i+1,Xi,Xi+1)

)
≥ 0 a.s. which is equivalent to

lim inf
n→∞ sup

k

( log qk

n
+

1
n

n∑

i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

)
≥ 0 (17)

a.s. (10) implies that

Fk(b(k)
i ,Xi) = v(b(k)

i ,b(k)
i+1,Xi) + (1 − δk)E{Fk(b(k)

i+1,Xi+1)|b(k)
i+1,Xi}, (18)

while for any portfolio {bi},
Fk(bi,Xi) ≥ v(bi,bi+1,Xi) + (1 − δk)E{Fk(bi+1,Xi+1)|bi+1,Xi},

thus for the portfolio {b∗
i }

Fk(b∗
i ,Xi) ≥ v(b∗

i ,b
∗
i+1,Xi) + (1 − δk)E{Fk(b∗

i+1,Xi+1)|b∗
i+1,Xi}. (19)
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Because of (18) and (19), we get that 1
n

∑n
i=1 v(b∗

i ,b
∗
i+1,Xi) ≤

≤ 1
n

n∑

i=1

(
Fk(b∗

i ,Xi) − (1 − δk)E{Fk(b∗
i+1,Xi+1)|b∗

i+1,Xi}
)

=
1
n

n∑

i=1

(
Fk(b∗

i ,Xi) − (1 − δk)E{Fk(b∗
i+1,Xi+1)|Xi

1}
)

and 1
n

∑n
i=1 v(b(k)

i ,b(k)
i+1,Xi) =

=
1
n

n∑

i=1

(
Fk(b(k)

i ,Xi) − (1 − δk)E{Fk(b(k)
i+1,Xi+1)|b(k)

i+1,Xi}
)

=
1
n

n∑

i=1

(
Fk(b(k)

i ,Xi) − (1 − δk)E{Fk(b(k)
i+1,Xi+1)|Xi

1}
)

,

therefore

1
n

n∑

i=1

v(b(k)
i ,b(k)

i+1,Xi) − 1
n

n∑

i=1

v(b∗
i ,b

∗
i+1,Xi)

≥ 1
n

n∑

i=1

(
Fk(b(k)

i ,Xi) − (1 − δk)E{Fk(b(k)
i+1,Xi+1)|Xi

1}
)

− 1
n

n∑

i=1

(
Fk(b∗

i ,Xi) − (1 − δk)E{Fk(b∗
i+1,Xi+1)|Xi

1}
)
.

Apply the following identity

(1 − δk)E{Fk(bi+1,Xi+1)|Xi
1} − Fk(bi,Xi)

= E{Fk(bi+1,Xi+1)|Xi
1} − Fk(bi+1,Xi+1) + Fk(bi+1,Xi+1) − Fk(bi,Xi)

− δkE{Fk(bi+1,Xi+1)|Xi
1}

= ai + bi + ci.

Similarly to the proof of Theorem 1, the averages of ai’s and bi’s tend to zero
a.s., so concerning (17) we have that, with probability one,

lim inf
n→∞ sup

k

( log qk

n
+

1
n

n∑

i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

)

≥ sup
k

lim inf
n→∞

( log qk

n
+

1
n

n∑

i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

)

= sup
k

lim inf
n→∞

1
n

n∑

i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

= sup
k

lim inf
n→∞

δk

n

n∑

i=1

(E{Fk(b(k)
i+1,Xi+1)|Xi

1} − E{Fk(b∗
i+1,Xi+1)|Xi

1}).
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The problem left is to show that the last term is non negative a.s. Using the
definition of Fk

Fk(b(k)
i+1,Xi+1) − Fk(b∗

i+1,Xi+1)

= max
b′

{
v(b(k)

i+1,b
′,Xi+1) + (1 − δk)E{Fk(b

′
,Xi+2)|Xi+1}

}

− max
b′′

{
v(b∗

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}

= max
b′

min
b′′

{{
v(b(k)

i+1,b
′,Xi+1) + (1 − δk)E{Fk(b

′
,Xi+2)|Xi+1}

}

−{
v(b∗

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}}

≥ min
b′′

{{
v(b(k)

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}

−{
v(b∗

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}}

= min
b′′

{
v(b(k)

i+1,b
′′,Xi+1) − v(b∗

i+1,b
′′,Xi+1)

}

≥ −2‖v‖∞,

therefore

sup
k

lim inf
n→∞

δk

n

n∑

i=1

E{Fk(b(k)
i+1,Xi+1) − Fk(b∗

i+1,Xi+1)|Xi
1} ≥ sup

k
δk(−2‖v‖∞)

= 0

a.s., and (17) is proved.
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