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Some sufficient conditions on an arbitrary class of

stochastic processes for the existence of a predictor.

Daniil Ryabko daniil@ryabko.net

INRIA Lille–Nord Europe, France

Abstract. We consider the problem of sequence prediction in a probabilistic set-

ting. Let there be given a class C of stochastic processes (probability measures

on the set of one-way infinite sequences). We are interested in the question of

what are the conditions on C under which there exists a predictor (also a stochas-

tic process) for which the predicted probabilities converge to the correct ones if

any of the processes in C is chosen to generate the data. We find some sufficient

conditions on C under which such a predictor exists. Some of the conditions are

asymptotic in nature, while others are based on the local (truncated to first obser-

vations) behaviour of the processes. The conditions lead to constructions of the

predictors. In some cases we also obtain rates of convergence that are optimal up

to an additive logarithmic term.

1 Introduction

Given a finite sequence x1, . . . , xn of observations xi ∈ X , where X is a finite set,

we want to predict what are the probabilities of observing xn+1 = x for each x ∈ X .

It is assumed that the sequence is generated by some unknown stochastic process µ,

a probability measure on the set of one-way infinite sequences X∞. The goal is to

have a predictor such that the difference between the predicted and correct probabilities

goes to zero (in some sense). In general this goal is impossible to achieve if nothing is

known about the measure µ generating the sequence. In other words, one cannot have a

predictor whose error goes to zero for any measure µ. However, if µ is known to belong

to a certain class C of measures some well-known results establish the existence of a

predictor.

In particular, the Laplace measure

ρL(xn+1 = a|x1, . . . , xn) =
#{i ≤ n : xi = a} + 1

n + |X |

predicts any Bernoulli i.i.d. process, that is, predicted probabilities converge to “true”

probabilities if the measure generating the sequence is a Bernoulli i.i.d. process. Based

on similar ideas a predictor can be constructed for the class of all k-order Markov mea-

sures, and, moreover, such predictors can be combined [11] to form a predictor for the

class of all stationary processes over X∞. As another example, one can construct a

predictor for any given countable class of measures, as shown by Solomonoff’s con-

struction of a predictor [16] for the class of all semi-computable measures.



Thus there are examples of classes of processes for which a predictor is known to

exist. These examples cover some cases interesting theoretically or important from the

application point of view. On the other hand, a trivial negative example is a class of all

deterministic sequences (that is, each measure in the class produces a certain sequence

of outcomes with probability 1) for which a predictor does not exist: for any predic-

tor there is a measure in the class (a deterministic sequence) on which the predicted

probabilities differ from the “true” ones by at least 1/2 on every step.

The question we are addressing in this work is: in general, for which classes C of

stochastic processes there exists a predictor that predicts every measure in the class?

Motivation. The importance of this question stems primarily from the fact that, in-

teresting as the studied cases are, their motivation originally comes either from specific

applications or from theoretical attractiveness of the corresponding assumptions. Since

new and new applications for the problem of sequence prediction constantly come to

existence, known theoretical models can be unsuitable for some of them. For example,

stationary processes may model well some physical phenomena but may be less suited

for analysis of DNA sequences. If one had a tool to check feasibility of different the-

oretical assumptions (that is, to check whether there is a predictor that predicts every

process satisfying these assumptions) one could use it to find a better model for each

specific application.

Prior work. Apart from the results on the examples of classes C mentioned above

(i.i.d., finite–memory, stationary, computable), this general question (at least for se-

quence prediction) has received little attention. A related question has been addressed

in [8]: Whether, given a class of measures C and a prior (“meta”-measure) λ over this

class of measures, the conditional probabilities of a Bayesian mixture of the class C
w.r.t. λ converge to the true µ-conditional probabilities (weakly merge, in terminology

of [8]) for λ-almost any measure µ in C. The answer found in [8] is a set of necessary

and sufficient conditions on the measure given by the mixture of the class C w.r.t. λ
under which prediction is possible. The major difference from the general question we

posed above is that we do not wish to assume that we have a measure on our class of

measures. For large (non-parametric) classes of measures it may not be intuitive which

measure over it is natural; rather, the question is whether a “natural” measure which can

be used for prediction exists.

Another related question is formulated as a question about two individual measures

rather than a class of measures and a predictor. Namely, one can ask under which con-

ditions one stochastic process predicts another. In [3] it was shown that if one measures

is absolutely continuous with respect to another, than the latter predicts the former (the

conditional probabilities converge in a very strong sense). In [13] a weaker form of

convergence of probabilities (in particular, convergence of expected average KL diver-

gence) is obtained under weaker assumptions.

Measuring prediction quality. As it was mentioned, we are interested in probabil-

ities of observing xn+1 = x, x ∈ X conditional on x1, . . . , xn. Such conditional prob-

abilities, if specified for every x1, . . . , xn also define a probability measure over X∞.

Thus a predictor (for a class of stochastic processes) is also a stochastic process. The

quality of prediction is measured as the discrepancy between the predicted and “true”

conditional probabilities. In this work we are mainly considering the Kullback-Leibler



divergence between conditional probabilities, averaged over time, which is either re-

quired to converge to zero in expectation over x1, . . . , xn (expectation being taken with

respect to the “true” measure generating the sequence), or with probability 1 (again

with respect to the measure generating the sequence). Thus, we are interested in the

conditions on a class C of measures, under which there exists a measure ρC such that

average KL divergence between ρ and µ conditional probabilities goes to zero for every

µ ∈ C, in µ-expectation or with µ-probability 1.

The results. In the present work we exhibit some sufficient conditions on the class

C under which this is possible; none of these conditions relies on parametrization of any

kind. The conditions presented are of two types: conditions on asymptotic behaviour of

measures in C, and on their local (restricted to first n observations) behaviour. Condi-

tions of the first type concern separability of C with respect to the expected average KL

divergence. We show that such separability is sufficient for the existence of a predictor.

The conditions of the second kind concern the “capacity” of the set Cn := {µn :
µ ∈ C} where µn is the measure µ restricted to the first n observations. Intuitively, if Cn

is small in some sense then prediction is possible. We measure the capacity in two ways.

The first way is to find the maximum probability given to each sequence x1, . . . , xn by

some measure in the class, and then take a sum over x1, . . . , xn. Denoting the obtained

quantity cn, one can show that it grows polynomially in n for some important classes

of processes, such as i.i.d. or Markov processes. We show that, in general, if cn grows

subexponentially then a predictor exists that predicts any measure in C in expected

average KL divergence. On the other hand, exponentially growing cn are not sufficient

for prediction. Under slightly stronger conditions on the speed of growth of cn, we also

establish the existence of a measure that predicts every process µ in C in average KL

divergence with µ-probability 1 (rather than in expectation).

A more refined way to measure the capacity of Cn is using a concept of channel

capacity from information theory, which was developed for a closely related problem

of finding optimal codes for a class of sources. We extend corresponding results from

information theory to show that sublinear growth of channel capacity is sufficient for

the existence of a predictor, in the sense of expected average divergence. Moreover, the

obtained bounds on the divergence are optimal up to an additive logarithmic term.

2 Preliminaries

We consider stochastic processes (probability measures) on the set of one-way infinite

sequences X∞ where X is a finite set (alphabet). In the examples we will often assume

X = {0, 1}. The symbol µ is reserved for the “true” measure generating the sequence.

We use Eν for expectation with respect to a measure ν and simply E for Eµ (expecta-

tion with respect to the “true” measure generating the sequence).

To measure the quality of prediction we will mainly use quantities which are based

on the Kullback-Leibler (KL) divergence. For two probability distributions ν1 and ν2

on a finite set X the KL divergence d(ν1, ν2) is defined as

d(ν1, ν2) =
∑

x∈X
ν1(x) log

ν1(x)

ν2(x)
. (1)



The quality of prediction can be measured as time-average KL divergence between

forecast and true probabilities. Thus for a sequence (x1, . . . , xn) ∈ Xn the average KL

divergence between µ and ρ is defined as

d̄n(µ, ρ, x1, . . . , xn) =
1

n

n
∑

t=1

dt(µ(·|x1, . . . , xt−1)ρ(·|x1, . . . , xt−1)), (2)

where µ(·|x1, . . . , xt−1) is the probability distribution of the tth member of the se-

quence conditional on x1, . . . , xt−1.

We say that ρ predicts µ in average KL divergence if

d̄n(µ, ρ|x1, . . . , xn) → 0 µ-a.s.,

and ρ predicts µ in expected average KL divergence if

Eµd̄n(µ, ρ|x1, . . . , xn) → 0.

We also define asymptotic expected KL divergence between measures µ1 and µ2 as

D(µ1, µ2) = lim sup
n→∞

Eµ1
d̄n(µ1, µ2|x1, . . . , xn−1).

We will often omit the argument x1, . . . , xn from our notation.

3 Main results

Asymptotic conditions. Call a class C of stochastic processes separable with respect

to (asymptotic expected KL divergence) D if there is a countable set M ⊂ C with the

following property: For every µ ∈ C and every ε > 0 there is µε ∈ M such that

D(µ, µε) ≤ ε.

Theorem 1. If C is separable with respect to D then there exists a measure ρ such that

ρ predicts every µ ∈ C in expected average KL divergence

Eµd̄n(µ, ρ, x1, . . . , xn) → 0

for every µ ∈ C.

Proof. Let wk, k ∈ N be a sequence of positive reals that sum to 1, e.g. wk = 2−k.

Since the set M is countable we can introduce µi, i ∈ N such that M = {µi : i ∈ N}.

Define the predictor ρ as ρ =
∑

i∈N
wiµi. We have to show that

lim
n→∞

Eµdn(µ, ρ) = 0

for every µ ∈ C. Fix any µ ∈ C and ε > 0. Find µk ∈ M such that D(µ, µk) ≤ ε.

Introduce the symbol E
t for µ-expectation over xt conditional on x1, . . . , xt−1. We



have

Eµd̄n(µ, ρ) =
1

n
E

n
∑

t=1

∑

xt∈X
µ(xt|x1, . . . , xt−1) log

µ(xt|x1, . . . , xt−1)

ρ(xt|x1, . . . , xt−1)

=
1

n

n
∑

t=1

EE
t log

µ(xt|x1, . . . , xt−1)

ρ(xt|x1, . . . , xt−1)
=

1

n
E log

n
∏

t=1

µ(xt|x1, . . . , xt−1)

ρ(xt|x1, . . . , xt−1)

=
1

n
E log

µ(x1, . . . , xn)

ρ(x1, . . . , xn)
≤

1

n
E log

µ(x1, . . . , xn)

wkµk(x1, . . . , xn)

=
log w−1

k

n
+

1

n
E log

µ(x1, . . . , xn)

µk(x1, . . . , xn)

=
log w−1

k

n
+ Eµd̄n(µ, µk),

from which we conclude that

lim sup
n→∞

Eµd̄n(µ, ρ) ≤ lim sup
n→∞

Eµd̄n(µ, µk) ≤ ε.

Since this holds for every ε, and since KL divergence is always non-negative, we get

the statement limn→∞ Eµd̄n(µ, ρ) = 0. ⊓⊔

Example: countable classes. A trivial but interesting example in which the condi-

tions of Theorem 1 are satisfied is when the class C itself is countable. A well-studied

case is when C is the class of all (semi-)computable measures ([16], see also [7]).

Example: i.i.d. Another simple example is given by the class CB of all Bernoulli

i.i.d. processes, with X = 0, 1, indexed by parameter p ∈ [0, 1]; that is, µp(xn = 0) = p
for all n independently of each other. In this case, it is easy to check that the subset of

all processes with rational parameters is dense in CB with respect to expected average

KL divergence, since d̄n(µp, µq) = d(µp, µq) and the latter is continuous in p and q.

Example: Finite-memory, stationary. The same holds for the class of stationary

finite memory processes: each process with memory k is parametrized by |X |k+1 pa-

rameters — the conditional probabilities of observing xk+1 = x ∈ X given x1, . . . , xk.

The set of processes with rational values of the parameters is dense with respect to the

expected average divergence. Since any stationary ergodic process can be arbitrary well

approximated (in the sense of asymptotic expected average KL divergence D(µ, ρ),
where lim sup actually becomes lim) by finite-memory processes, in particular by those

with rational parameters, we can conclude that the class of stationary ergodic sources is

separable with respect to expected average KL divergence. Thus, applying Theorem 1

we can obtain a different (though based on similar ideas) proof of the result of [11]

which says that there exists a predictor for the class of all stationary ergodic processes.

Conditions based on local behaviour of measures. Next we provide some suf-

ficient conditions for the existence of a predictor based on local characteristics of the

class of measures.

For a class C of stochastic processes and a sequence (x1, . . . , xn) ∈ Xn introduce

the coefficients

cx1,...,xn
(C) = sup

µ∈C
µ(x1, . . . , xn). (3)



Define also the normalizer

cn(C) =
∑

(x1,...,xn)∈Xn

cx1,...,xn
(C). (4)

A normalized maximum likelihood estimator λ is defined as

λC(x1, . . . , xn) =
1

cn(C)
cx1,...,xn

(C). (5)

For finite spaces (that is, for fixed n) normalized maximum likelihood estimators have

been studied in e.g. [15, 2], in the context of information theory. However, λC in general

do not define a stochastic process over X∞ (they are not consistent for different n); thus,

in particular, using average KL divergence for measuring prediction quality would not

make sense, since dn(µ(·|x1, . . . , xn−1), λ(·|x1, . . . , xn−1)) can be negative.

Yet, by taking an appropriate mixture, it is still possible to construct a predictor

(a stochastic process) based on λ that predicts the measures in the class not only in

expectation but also with probability 1.

Theorem 2. Suppose that a class C of stochastic processes is such that

log cn(C) = o(n). (6)

Then there exists a stochastic process ρ such that

Eµd̄n(µ, ρ, x1, . . . , xn) ≤
log cn(C)

n
+ O

(

log n

n

)

; (7)

in particular ρ predicts every µ ∈ C in expected average KL divergence. If the coeffi-

cients cn(C) are such that
∞
∑

n=1

log2 cn(C)

n2
< ∞ (8)

then there exists a stochastic process ρ that predicts every µ ∈ C in average KL diver-

gence (with µ-probability 1).

Proof. Let w :=
∑∞

k=1
1
k2 and let wk := 1

wk2 . Moreover, define a measure µk as

follows. On first k steps it is defined as λk, and for n > k it is outputs only zeros with

probability 1; so, µk(x1, . . . , xk) = λC(x1, . . . , xk) and µk(xn = 0) = 1 for n > k.

Finally, let ρ =
∑∞

k=1 wkµk. We will show that under the conditions of the theorem

ρ has the asserted predictive properties.

For the first statement, we have (similarly to the proof of Theorem 1)

Eµd̄n(µ, ρ) =
1

n
E log

µ(x1, . . . , xn)

ρ(x1, . . . , xn)
≤

1

n
E log

µ(x1, . . . , xn)

wnµn(x1, . . . , xn)

≤
1

n
log

cn(C)

wn
=

1

n
(log cn(C) + 2 log n + log w). (9)



In order to prove the second statement, we first introduce a short-hand notation x1..n

for x1, . . . , xn. Consider random variables

ln = log
µ(xn|x1..n−1)

ρ(xn|x1..n−1)

and

l̄n =
1

n

n
∑

t=1

lt.

Observe that dn = E
nln, so that the random variables mn := ln−dn form a martingale

difference sequence (that is, Enmn = 0) with respect to the standard filtration defined

by x1, . . . , xn, . . . . Let also m̄n = 1
n

∑n
t=1 mt. We will show that m̄n → 0 µ-a.s. and

l̄n → 0 µ-a.s. which implies d̄n → 0 µ-a.s.

Note that

l̄n =
1

n
log

µ(x1..n)

ρ(x1..n)
≤

log w−1
n cn(C)

n
→ 0.

Thus to show that l̄n goes to 0 we need to bound it from below. It is easy to see that nl̄n
is (µ-a.s.) bounded from below by a constant, since

ρ(x1..n)
µ(x1..n) is a positive µ-martingale

whose expectation is 1, and so it converges to a finite limit µ-a.s. by Doob’s submartin-

gale convergence theorem, see e.g. [14, p.508].

Next we will show that m̄n → 0 µ-a.s. We have

mn = log
µ(x1..n)

ρ(x1..n)
− log

µ(x1..n−1)

ρ(x1..n−1)
− E

n log
µ(x1..n)

ρ(x1..n)
+ E

n log
µ(x1..n−1)

ρ(x1..n−1)

= log
µ(x1..n)

ρ(x1..n)
− E

n log
µ(x1..n)

ρ(x1..n)
.

Let f(n) be some function monotonically increasing to infinity such that

∞
∑

n=1

(log w−1
n cn(C) + f(n))2

n2
< ∞ (10)

(e.g. choose f(n) = log n ). For a sequence of random variables λn define

(λn)+(f) =

{

λn if λn ≥ −f(n)
0 otherwise

and λ
−(f)
n = λn − λ

+(f)
n . Introduce also

m+
n =

(

log
µ(x1..n)

ρ(x1..n)

)+(f)

− E
n

(

log
µ(x1..n)

ρ(x1..n)

)+(f)

,

m−
n = mn−m+

n and the averages m̄+
n and m̄−

n . Observe that m+
n is a martingale differ-

ence sequence. Hence to establish the convergence m̄+
n → 0 we can use the martingale



strong law of large numbers [14, p.501], which states that, for a martingale difference

sequence γn, if E(nγ̄n)2 < ∞ and
∑∞

n=1 Eγ2
n/n2 < ∞ then γ̄n → 0 a.s. Indeed, for

m+
n the first condition is trivially satisfied (since the expectation in question is a finite

sum of finite numbers), and the second follows from the fact that

|m+
n | ≤ log w−1

n cn(C) + f(n)

and (10).

Furthermore, we have

m−
n =

(

log
µ(x1..n)

ρ(x1..n)

)−(f)

− E
n

(

log
µ(x1..n)

ρ(x1..n)

)−(f)

.

As it was mentioned before, log µ(x1..n)
ρ(x1..n) converges µ-a.s. either to (positive) infinity or

to a finite number. Hence
(

log
µ(x1..n)

ρ(x1..n)

)−(f)

is non-zero only a finite number of times, and so its average goes to zero. To see that

E
n
(

log µ(x1..n)
ρ(x1..n)

)−(f)

→ 0 we write

E
n+1

(

log
µ(x1..n+1)

ρ(x1..n+1)

)−(f)

=
∑

xn∈X
µ(xn+1|x1..n)

(

log
µ(x1..n)

ρ(x1..n)
+ log

µ(xn+1|x1..n)

ρ(xn+1|x1..n)

)−(f)

≥
∑

xn∈X
µ(xn+1|x1..n)

(

log
µ(x1..n)

ρ(x1..n)
+ log µ(xn+1|x1..n)

)−(f)

and note that the first term in brackets is bounded from below, and so for the sum in

brackets to be less than −f(n+1) (which is unbounded) the second term log µ(xn|x1..n)
has to go to −∞, but then the expectation goes to zero since limu→0 u log u = 0.

Thus we conclude that m̄−
n → 0 µ-a.s., which together with m̄+

n → 0 µ-a.s. implies

m̄n → 0 µ-a.s., which, finally, together with l̄n → 0 µ-a.s. implies d̄n → 0 µ-a.s. ⊓⊔

Example: finite-memory. To illustrate the applicability of the theorem we first con-

sider the class of Bernoulli i.i.d. processes CB over binary alphabet X = {0, 1}. It is

easy to see that for each x1, . . . , xn

sup
µ∈CB

µ(x1, . . . , xn) = pk(1 − p)n−k

where k = #{i ≤ n : xi = 0} is the number of 0s in x1, . . . , xn and p = k/n. For

the constants cn(C) we can get the bound cn(C) ≤ 1
n+1 . In general, for the class Ck of

processes with memory k over a finite space X we get polynomial cn(C) (see e.g. [13]).



Thus, with respect to the finite-memory processes, the conditions of Theorem 2

leave ample space for growth of cn(C): the condition (6) allows any subexponential

growth of cn(C) and the condition (8) allows for example cn(C) = 2−
√

n/logn.

Example: exponential coefficients are not sufficient. Observe that the condi-

tion (6) cannot be relaxed further, in the sense that exponential coefficients cn are not

sufficient for prediction. Indeed, for the class of all deterministic processes (that is, each

process from the class produces some fixed sequence of observations with probability

1) we have cn = 2n, while obviously for this class a predictor does not exist.

Optimal rates of convergence. A natural question that arises with respect to the

bound (7) is whether it is optimal (that is, whether it under the conditions formulated.

This question is closely related to the optimality of the normalized maximum likelihood

estimates used in the construction of the predictor. In general, since such estimates are

not optimal neither are the rates of convergence in (7). To obtain (close to) optimal rates

one has to consider a different measure of capacity.

To do so, we make the following connection to a problem in information theory.

For a class C of measures we are interested in a predictor that has small (or minimal)

worst-case (with respect to the class C) probability of error. Thus, we are interested in

the quantity

inf
ρ

sup
µ∈C

D(µ, ρ), (11)

where the infimum is taken over all stochastic processes ρ and D is the asymptotic ex-

pected average KL divergence. (In particular, we are interested in the conditions under

which the quantity in (11) equals zero.) This problem has been studied for the case

when the probability measures are over a finite set X , and D is replaced simply by the

KL divergence d between the measures. Thus, the problem is to find the probability

measure ρ (if it exists) on which the following minimax is attained

R(A) := inf
ρ

sup
µ∈A

d(µ, ρ). (12)

This problem is closely related to the problem of finding the best code for the class

of sources A, which was its original motivation. The normalized maximum likelihood

distribution considered above does not in general lead to the optimum solution for this

problem. The optimum solution is obtained through the result that relates the mini-

max (12) to the so-called channel capacity. For a set A of measures on a finite set X the

channel capacity of A is defined as

C(A) := sup
P

∑

µ

P (µ)d(µ, ρP ) (13)

where P ranges over all probability distributions over all finite subsets of A and ρP =
∑

µ P (µ)µ. It is shown in [10, 5] that C(A) = R(A), thus reducing the problem of

finding a minimax to an optimization problem. Moreover, Arimoto-Blahut algorithm

[1, 4] is used to approximate C(A) numerically and solve the optimization problem for

the important case when A is the convex hull of a finite set. For probability measures

over infinite spaces this result (R(A) = C(A)) was generalized in [6], but the diver-

gence between probability distributions is measured by KL divergence (and not average



KL divergence), which gives infinite R(A) for most of the cases interesting from the

sequence prediction point of view (e.g. for the class of Bernoulli i.i.d. processes).

However, truncating measures in a class C to the first n observations, we can use the

results about channel capacity to analyze the predictive properties of the class. More-

over, the rates of convergence that can be obtained along these lines are close to optimal.

Theorem 3. Let C be a class of measures over X∞ and Cn be the class of measures

from C restricted on Xn. There exists a measure ρ such that

Eµd̄n(µ, ρ, x1, . . . , xn) ≤
log Cn(C)

n
+ O

(

log n

n

)

. (14)

(in particular, if C(Cn)/n → 0 then ρ predicts every µ ∈ C in expected average KL

divergence). Moreover, for any measure ρ and every ε > 0 there exists µ ∈ C such that

Eµd̄n(µ, ρ, x1, . . . , xn) ≥
log Cn(C)

n
− ε.

Proof. As shown in [5], for each n there exists a sequence νn
k , k ∈ N of measures on

Xn such that

lim
k→∞

sup
µn∈Cn

d(µn, νn
k ) → C(Cn).

For each n ∈ N find an index kn such that

| sup
µn∈Cn

d(µn, νn
kn

) − C(Cn)| ≤ 1/n.

Define the measure ρn as follows. On first n symbols it coincides with νn
kn

and ρ(xm =

0) = 1 for m > n. Finally, set ρ =
∑∞

n=1 wnρn, where wk = 1
wn2 , w =

∑∞
n=1

1
n2 .

We have to show that Eµd̄n(µ, ρ) = 0 for every µ ∈ C. Indeed,

Eµd̄n(µ, ρ) =
1

n
Eµ log

µ(x1..n)

ρ(x1..n)

≤
log w−1

k

n
+

1

n
Eµ log

µ(x1..n)

ρn(x1..n)
≤

log w + 2 log n

n
+

1

n
d(µn, ρn)

≤ o(1) +
C(Cn)

n
+

1

n
= o(1). (15)

The second statement follows from the fact [10, 5] that C(Cn) = R(Cn) (cf. (12)).

⊓⊔

Thus if the channel capacity C(Cn) grows sublinearly a predictor can be constructed

for the class of processes C. In this case the problem of constructing the predictor is

reduced to finding the channel capacities for different n and finding the corresponding

measures on which it is attained or approached.

As an example we can mention, again, the class of all Bernoulli processes, whose

channel capacity C(Cn
B) is O(log n), see e.g. [9].

We also remark that the requirement of sublinear channel capacity cannot be re-

laxed, in the sense that linear channel capacity is not sufficient for prediction, since it is

the maximal possible capacity for a set of measures on Xn.



4 Discussion

As far as algorithmic realizability of the predictors proposed is concerned, we should

first note that when an input parameter of an “algorithm” is an arbitrary class of stochas-

tic processes, one can hardly talk about algorithms for real computers. Rather, the pre-

dictors constructed have to be regarded as reductions of the problem of finding a predic-

tor for a given class of stochastic processes to the conceptually much easier problems

of approximating certain suprema and infinite sums. Here an analogy can be made with

the classification problem. In certain cases the problem of finding a good classifier can

be reduced to the problem of finding a classifier from a given class that best fits the data

(minimizes empirical risk [17]). Conceptually this is a much simpler problem; however,

in some cases it can be intractable (see e.g. [12]). In general, for each particular class of

classifiers a separate algorithm should be constructed to find efficiently a classifier that

fits the data. Indeed, efficient solutions (such as support vector machines [17]) exist for

many important cases.

Returning to our problem, Theorem 1 states that if in a class C of measures there is a

countable dense subset M , then a predictor can be constructed whose average expected

error goes to zero. Moreover, such a predictor can be obtained as a weighted sum of

measures from M (with any positive weights that sum to 1). Thus the problem of finding

a predictor is reduced to two (simpler) problems: finding a dense subset and taking an

infinite sum. We can further show that in some cases the latter problem can be reduced

to a version of the former, that is, it is not necessary to take an infinite sum if one can

find a finite ε-net.

Proposition 1. Let a class C of stochastic processes be such that for some ε there exists

a subset Mε ⊂ C with the following property. For any µ ∈ C there exists µ′ ∈ Mε such

that D(µ, µ′) ≤ ε. Then for the measure

ρ =
∑

ν∈Mε

wνν,

where wν are any positive reals (that sum to 1), we have D(µ, ρ) ≤ ε for any µ ∈ C.

This statement can be proven in exactly the same way as Theorem 1.

The predictors constructed in the proofs of Theorems 2 and 3 also involve sum-

mation over an infinite set. However, in these cases it is immediately apparent from the

constructions of the predictors that for prediction on nth step it is sufficient to take sums

up to n, and the bounds on expected average divergence (7) and (14) still hold. Thus

the problem of finding a predictor is reduced to the problem of approximating a finite

number of suprema.

Namely, for the case of normalized maximum likelihood predictor of Theorem 2

the quantity (3) have to be evaluated for each n and each x1, . . . , xn. For the predictor

based on channel capacity one has to find the measure on which channel capacity (13)

is attained (possibly up to a certain εn) for each n. As it was mentioned, for the latter

problem one can use Arimoto-Blahut algorithm [1, 4] in the case when the set Cn is a

convex hull of a finite number of measures. We also have to note that the requirement

of convexity is not really a restriction since a predictor for a set of measures is also a



predictor for its convex hull, and so we can always consider convex hulls of classes of

predictors rather than classes themselves.

One more question we discuss is other possible ways of measuring the qual-

ity of prediction. In this paper we were considering KL divergence (1) averaged over

time (2), and have developed predictors on which this divergence tends to zero either in

expectation or with probability 1. Other possible ways of measuring divergence include

absolute distance

an(µ, ρ|x1..n−1) =
∑

x∈X
|µ(xn = x|x1..n−1) − ρ(xn = x|x1..n−1)|,

squared absolute distance

sn(µ, ρ|x1..n−1) =
∑

x∈X
(µ(xn = x|x1..n−1) − ρ(xn = x|x1..n−1))

2,

and Hellinger distance

hn(µ, ρ|x1..n−1) =
∑

x∈X

(
√

µ(xn = x|x1..n−1) −
√

ρ(xn = x|x1..n−1

)2
.

Analogously with the average KL divergence (2) we can define average absolute dis-

tance ān, average squared absolute distance s̄n and average Hellinger distance h̄n. Us-

ing Pinsker’s inequality a2
t ≤ 2dt one can easily show that all convergence results and

upper bounds stated in terms of KL divergence also hold for the measures of divergence

just introduced (see e.g. Lemma 1 of [13] for details).

Proposition 2. The statements concerning convergence and upper of Theorems 1, 2

and 3 hold true if average KL distance d̄n is replaced by either of the following: aver-

age absolute distance ān, average squared absolute distance s̄n and average Hellinger

distance h̄n.

Another interesting problem would be to investigate a stronger notion of predictive

quality: without averaging over time. For example, under which conditions on a class C
of measures there exist a predictor ρ for which

dn(µ, ρ|x1, . . . , xn−1)

goes to zero with µ probability 1 for every µ.

These questions, along with the problem of finding efficient algorithmic solutions

for cases of practical interest, constitute an agenda for further investigation.
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