Dynamically Delayed Postdictive Completeness and
Consistency in Learning

John Case and Timo K&tzing*
July 4, 2008

Abstract

In computational function learning in the limit, an algorithmic learner tries to find a program
for a computable function g given successively more values of g, each time outputting a conjectured
program for g. A learner is called postdictively complete iff all available data is correctly postdicted
by each conjecture.

Akama and Zeugmann presented, for each choice of natural number §, a relaxation to postdictive
completeness: each conjecture is required to postdict only all except the last § seen data points.

This paper extends this notion of delayed postdictive completeness from constant delays to dy-
namically computed delays. On the one hand, the delays can be different for different data points.
On the other hand, delays no longer need to be by a fixed finite number, but any type of computable
countdown is allowed, including, for example, countdown in a system of ordinal notations and in
other graphs disallowing computable infinitely descending counts.

We extend many of the theorems of Akama and Zeugmann and provide some feasible learnability
results. Regarding fairness in feasible learning, one needs to limit use of tricks that postpone output
hypotheses until there is enough time to “think” about them. We see, for polytime learning, postdictive
completeness (and delayed variants): 1. allows some but not all postponement tricks, and 2. there
is a surprisingly tight boundary, for polytime learning, between what postponement is allowed and
what is not. For ezample: 1. the set of polytime computable functions is polytime postdictively
completely learnable employing some postponement, but 2. the set of exptime computable functions,
while polytime learnable with a little more postponement, is not polytime postdictively completely
learnable! We have that, for w a notation for w, the set of exptime functions is polytime learnable with
w-delayed postdictive completeness. Also provided are generalizations to further, small constructive
limit ordinals.

1 Introduction

“Explanatory learning”, or Ex-learning for short, is a standard model of limit learning of computable
functions. In this model a learner is given successively longer initial segments of a target function.
For each initial segment of the target function, the learner gives an hypothesis. The learner is said to
successfully Ex-learn the target function iff the infinite sequence of hypotheses generated by the learner
on the initial segments of the target functions converges in the limit to a (single) correct program for the
target function [JORS99].

In some literature on limit learning this intuitively simple success criterion is used as a minimal require-
ment for success, and additional requirements are defined and examined. We call two such extra require-
ments postdictive completeness (the hypotheses correctly postdict the data seen so far) and postdictive
consistency (the hypotheses do not explicitly contradict the given data) [Bar74, BB75, Wie76, Wie78].!
There are Ex-learnable sets of functions that cannot be learned with the additional requirement of post-
dictive completeness or consistency.

*Student author.

IWe use the terminology postdictive completeness because the the hypotheses must completely postdict the data seen
to that point. We use the terminology postdictive consistency because the the hypotheses need only avoid ezplicit incon-
sistencies with the data seen to that point. Such an hypothesis may, then, on some input for which the data seen to that
point tells the answer, go undefined (i.e., go into an infinite loop) and, thereby, not explicitly contradict the known data. In
the literature on these requirements, except for [Ful88], what we call postdictively complete is called consistent, and what
we call postdictively consistent is called conformal.

Akama and Zeugmann [AZ07] presented success criteria that are a little less restrictive than postdic-
tively complete Ex-learning. Their criteria delay the requirement to postdict a given datum by a fixed
natural number ¢ of (not necessarily distinct) hypotheses output. For ordinary postdictive completeness,
if a learner h has seen so far, on a computable g input, g(0),...,g(n - 1), then h’s corresponding hy-
pothesis, p,, must correctly compute g(0),...,g(n - 1).2 For delay §, Akama and Zeugmann, require
only that, on ¢(0),...,g9(n —1), h’s later hypothesis, p,+s, must correctly compute g(0),...,g(n - 1).
Essentially, the delay 0 learner could, after seeing ¢(0),...,g(n—1), run a counter down from ¢ to 0 to
see which future hypothesis must correctly compute ¢g(0),...,g(n—1).

In the present paper we extend this notion of delayed postdictive completeness from constant delays
0 to dynamically computed delays. One of the ways we consider herein to do this involves counting down
from notations for constructive ordinals. We explain. Everyone knows how to use the natural numbers
for counting, including for counting down. Freivalds and Smith [FS93], as well as [ACJS04], employed
in learning theory notations for constructive ordinals [Rog67, § 11.7] as devices for algorithmic counting
down.

Theorems 4 and 5 in Section 3 provide strong justification for studying the herein ordinal countdown
variants of Postdictive Completeness.

Intuitively ordinals are representations of well-orderings. 0 represents the empty ordering, 1 represents
the ordering of 0 by itself, 2 the ordering 0 < 1, 3 the ordering 0 <1 <2, The ordinal w represents the
standard ordering of all of N. w + 1 represents, for example, the ordering of N consisting of the positive
integers in standard order followed by 0. The successor ordinals are those of the form « + 1 which have a
single element laid out after a copy of another ordinal a. w +w can be thought of as two copies of w laid
end to end — much bigger than w. w -3 represents three copies of w laid end to end. By contrast, 3-w
represents w copies of 3 — which is just w. We see, then, for ordinals, +,- are not commutative. w-w is w
copies of w laid out end to end. We can iterate this and define exponentiation for ordinals. Limit ordinals
are those, like w, w + w, w-w, and w*, which are not 0 and are not successor ordinals. All of them are
infinite. Importantly, the constructive ordinals are just those that have a program (called a notation) in
some system which specifies how to build them (lay them out end to end, so to speak).® Informally, here,
for example, is how to think of counting down from such a notation for w + w. One first computes some
estimate for a natural number to count down from and begins counting down from it; then, later, one can
revise once this estimate and subsequently count down some more from that. For counting down from a
notation for w +w + w = w- 3, one can revise the initial estimate twice. Since ordinal notations represent
well-orders, they do not permit infinitely long countdowns, neither algorithmic (we do finite, algorithmic
countdowns) nor non-algorithmic.

[SSV04] gives a further generalized notion of counting down. They consider certain partial orders
with no computable infinitely descending chains. In the present paper we consider arbitrary and also
computable graphs with no infinite, computable paths, and we algorithmically count “down” along their
paths. Theorem 4.11, in Section 4.2 below, gives a nice example of linearly ordered, computable such
graph which nonetheless has infinite paths (just not computable ones). We call our graphs in the present
paper, countdown graphs.

We make use of countdown graphs for delaying the requirement of postdictive completeness (respec-
tively, consistency) by requiring a learner to start an independent countdown for each datum g(i) seen
and to be postdictively complete (respectively, consistent) regarding g(i) as soon as the countdown for
g(4) terminates.?

Section 2 will introduce the notation and concepts used in this paper.

In the prior literature we also see further variants of postdictive completeness and consistency not
based on delay. For example, [CJSWO04] surveys with references these variants. Roughly, below, when
we attach R to the front of a name of a criterion requiring postdictive completeness or consistency, this
means that the associated learnability must be witnessed by a (total) computable learner as opposed
to just a partial computable learner (defined at least where it minimally needs to be); when we attach
a T to the front of a name of a criterion requiring postdictive completeness (respectively, consistency),
this means that the associated learnability must be witnessed by a (total) computable learner which is
postdictively complete (respectively, consistent) on all input functions regardless of whether the learner
actually learns them.

2Note that, for n = 0, the data seen is empty and the output hypothesis, po, is unconstrained.

3Technically, we count down from notations for constructive ordinals (instead of from the ordinals themselves) simply
because notations, being finite (programs), in principle, fit inside computers; whereas, at least infinite ordinals do not.

4Below we refer to a vector of such individual counts as a multicount.

Sections 3 and 4 present our results. All of our results in Section 3 provide information about poly-
nomial time learners. Furthermore, some of our results in Section 4.1 entail learnability with linear time
learners. These time bounds are uniform bounds on how much time it takes the learner to conjecture each
hypothesis in terms of the total size of the input data it can use for making this conjecture. Suppose for
discussion p is a polynomial time bound. Pitt [Pit89] notes that Ex-learning allows unfair postponement
tricks, i.e., a learner h can put off outputting significant conjectures based on data o until it has seen
a much larger sequence of data 7 so that p(|7|) is enough time for h to think about o as long as it
needs.” In this way the polytime restriction on each output does not, by itself, have the desirable effect
of constraining the total learning time. Pitt [Pit89] then lays out some additional constraints toward
avoiding “cheating” by such postponement tricks. He discusses in this regard what we are calling postdic-
tive completeness. He also considers further constraints since he wants to forbid enumeration techniques
[JORS99]. For our complexity-bounded results in Section 4.1 we get by with an extremely fair, restricted
kind of linear-time learner, we call transductive. A transductive learner has access only to its current
datum.

In Section 3 we see, from Theorems 3.5 and 3.6 and the proof of the first, that, for polytime learning,
postdictive completeness (and delayed variants): 1. allows some but not all postponement tricks, and 2.
there is a surprisingly tight boundary, for polytime learning, between what postponement is allowed and
what is not. For ezample: 1. the set of polytime computable functions is polytime postdictively completely
Ex-learnable (by a complexity-bounded enumeration technique) employing some postponement, but 2. the
set of exptime computable functions, while polytime Ex-learnable with a little more postponement, is
not polytime postdictively completely Ex-learnable! From Theorem 3.5, we see that, for w a notation
for w, the set of exptime functions is polytime Ex-learnable with w-delayed postdictive completeness.
Theorems 3.5 and 3.6 also provide generalizations to further, small constructive limit ordinals.

Section 4.1 shows how the different variants of our criteria relate in learning power. Our main theorem
in this section is Theorem 4.3. For ezample, it entails that there is a set of computable functions which
is postdictively consistently learnable (with no delays) by a transductive, linear time learner but is not
postdictively completely learnable with delays employing any countdown graph.

In Section 4.2, our main result, Theorem 4.14, entails (including with Corollaries) complete character-
izations of learning power in dependence on associated (computable) countdown graphs. Corollary 4.17
extends the finite hierarchy given in [AZ07] into the constructive transfinite.

Many of our proofs use recursion theorems and are a bit combinatorially difficult.

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]|. All unexplained general computability-
theoretic notions are from [Rog67].

Strings herein are finite and over the alphabet {0,1}. {0,1}* denotes the set of all such strings; ¢
denotes the empty string.

N denotes the set of natural numbers, {0,1,2,...}. We do not distinguish between natural numbers
and their dyadic representation as strings.5

For each w € {0,1}* and n € N, w™ denotes n copies of w concatenated end to end. For each string
w, we define size(w) to be the length of w. As we identify each natural number = with its dyadic
representation, for all n € N, size(n) denotes the length of the dyadic representation of n. For all strings
w, we define |w| to be max{1,size(w)}. 7

The symbols ¢, c,2,> respectively denote the subset, proper subset, superset and proper superset
relation between sets.

For sets A, B, we let AN B:={a€cA|a¢ B}, A:=N\A.

We sometimes denote a function f of n > 0 arguments z1,...,z, in lambda notation (as in Lisp) as
AZ1, .y X f(21, ..., 2,). For example, with ¢ € N; Az.c is the constantly ¢ function of one argument.

A function v is partial computable iff there is a Turing machine computing 1. R and P denote the
set of all (total) computable and partial computable functions N - N| respectively. If ¢ is not defined

5Pitt talks in this context of delaying tricks. We changed this terminology due to the clash with Akama and Zeugmann’s
terminology for delayed postdictive completeness.

6The dyadic representation of a natural number z := the z-th finite string over {0,1} in lexicographical order, where the
counting of strings starts with zero [RC94|. Hence, unlike with binary representation, lead zeros matter.

"This convention about |¢| = 1 helps with runtime considerations.

for some argument x, then we denote this fact by 1(x)1 and we say that ¢ on = diverges. The opposite
is denoted by ¥ (z)} and we say that ¢ on z converges.

We say that a partial function ¢ converges to p iff vz : ¢ (x)| = p.

[RC94, §3] describes an efficiently numerically named or coded® programming system for multi-tape
Turing machines (TMs) which compute the partial computable functions N — N. Herein we name this
system ¢. ¢, denotes the partial computable function computed by the TM-program with code number
p in the (-system, and @, denotes the partial computable runtime function of the TM-program with
code number p in the p-system. In the present paper, we employ a number of complexity bound results
from [RC94, §§ 3 & 4] regarding (¢, ®). These results will be clearly referenced as we use them.

Let

e LinPrograms:={e|eeN A 3¢, dVneN:®.(n) <c-|n|+d)};

e LinF := {¢, | € € LinPrograms};

e PolyPrograms:= {¢|e € N A Jp polynomial Vn e N: ®.(n) <p(|n|)}; and
e PF :={p. | e € PolyPrograms}.

For g € LinF we say that g is computable in linear time, for g € PF we say that g is computable in
polytime, or also, feasibly computable.’

We fix the 1-1 and onto pairing function (-,-) : Nx N - N from [RC94|, which is based on dyadic
bit-interleaving. Pairing and unpairing is computable in linear time. 7; and w9, respectively, denote the
unpairing into the left and right component of a given coded pair, respectively.

For all f,g € R we let (f,g) denote Xi.{f(i),g(%)).

Whenever we consider sequences of natural numbers as input to TMs, it is understood that the general
coding function (-,-) is used to (left-associatively) code the tuples into appropriate TM-input.

A finite sequence is a mapping with a finite initial segment of N as domain. & denotes the empty
sequence (and, also, the empty set). The set of all finite sequences of natural numbers is denoted by Seq.
For each finite sequence o, we will denote the first element, if any, of that sequence by ¢(0), the second,
if any, with o(1) and so on. #elets(c) denotes the length of a finite sequence o, that is, the size of its
domain.

We will consider infinite sequences s as functions with domain N, and denote them at position = € N
by s(z).

¢ denotes concatenation on sequences; the second argument may be an infinite sequence, the first may
not. We use infix notation when we use .

From now on, by convention, f, g and h with or without decoration range over (partial) functions
N - N, z,y with or without decorations range over N and o, 7 with or without decorations range over
finite sequences of natural numbers.

Following [LV97], we define for all 2 € N: T = 1#°1%(*) 0z, Using this notation we can define a function
(-)seq coding arbitrarily long finite sequences of natural numbers into N (represented dyadically) such that

(0)seq :=0(0)...0(#elets(o) — 1). (1)

For example the finite sequence (4,7,10)gecimar = (01,000,011)gyqdic is coded as
11001 1110000 1110011 (but without the spaces, which were added for ease of reading).'?

Note that, for all 0,7 : (00 T)seq = (0)seq{T)seq- Also note that, for all z € N, T is equal to the code of
the sequence of length 1 containing only z, and, for all n € N, Z" is equal to the code of the sequence of
length n, each element being x.

For any finite sequence o such that #elets(c) > 0, we let last(o) be the last element of ¢ and o~ be
o with its last element deleted.

Obviously, (-)seq is 1-1 [LVI7]. The set of all sequences is decidable in linear time. The time to
encode a sequence, that is, to compute Ak, vy, ..., 05.(v1, ..., Ug)seq 18 O(Ak, v1,.. ., Uk, Y% | [vg]). There-
fore, the size of the codeword is also linear in the size of the elements: Ak,v1,...,v5.[(v1,..., Uk)seq| I8
ONk, w1, vk S8 o) 1

8This numerical coding guarantees that many simple operations involving the coding run in linear time. This is by
contrast with historically more typical codings featuring prime powers and corresponding at least exponential costs to do
simple things.

9We are mostly not considering herein interesting polytime probabilistic or quantum computing variants of the deter-
ministic feasibility case.

101100111100001110011 is of course the dyadic representation of some number € N.

HFor these O-formulas, |e| = 1 helps.

Furthermore we have

Va :1 < size(Z); (2)
Vo :#elets(o) < [(0)seql; (3)
A0)seq-#elets(o) € LinF; 4)

(i), if i< ftelets(o);

. € LinF. (5)
0, otherwise,

X0)seqs @+ {

Henceforth, we will many times identify a finite sequence o with its code number (o)seq. However,
when we employ expressions such as o(x), o = f and ¢ c f, we consider o as a sequence, not as a number.

For a partial function g and ¢ € N, if Vj <4 : g(j){, then g[i] is defined to be the finite sequence
g(O)a'-'ag(i_ 1)

For every set of functions S ¢ R we define [S]={o|3geS:0cyg}.

By s-m-n, there is patch computable such that, for all o, e,

’ - [r@), it edon(o)
T atch(o,e)(T) = i
@p t h(s) Ve (x)7 otherWISe.

By [RC94, Theorem 3.13], there is patch, such that such that,
patch, € LinF, (7)

o(x), if x < #elets(o);

oV statChO(g)(x) B {0 otherwise

and
Yo : patchy (o) € LinPrograms. 9)

Some of our proofs will use Kleene’s Recursion Theorem (KRT) [Rog67, page 214, problem 11-4], a
variant of Roger’s recursion theorem, representing a form of individual self-reference.

In one case we will use a stronger theorem then KRT, namely we use the Operator Recursion Theorem
(ORT) [Cas74]. ORT is a form of infinitary self-reference. That is, ORT provides a means of forming
an infinite computable sequence of programs P(0), P(1),... such that each program P(i) knows all
programs in the sequence and its own index i. The function P can also be assumed monotone increasing
(hence, 1-1); this is referred to as padded ORT. For a thorough explanation of ORT see [Cas94]. ORT
generalizes Kleene’s Parametric Recursion Theorem (PKRT). PKRT provides a means of forming an
infinite computable sequence of programs P(0),P(1),... such that each program P(i) knows its own
program and its own index ¢, but does not necessarily know the other programs in the sequence.

A pre-order is a pair (A,<4) such that <4 is a transitive and reflexive binary relation on A.

2.1 Systems of Ordinal Notations

Church and Kleene introduced systems of ordinal notations. Our definition follows Rogers [Rog67, § 11.7].
A system of ordinal notations is a pair (N, <) and associated functions kar,par,qv € P and vy
mapping N into the set of all ordinals, such that

e NcN;

Vu,v e N iu<p v e vpy(u) <vpa(v);

For all u € N: wp(u) = 0 = kpy(u) = 0, vpa(u) is successor ordinal = kpa(u) = 1 and
vn(w) is limit ordinal = kar(u) = 2;

For all u e N: vp(u) is successor ordinal = vp(par(u)) = var(u) +1;

For all u € N': vpr(u) is limit ordinal = ¢, (,) is a monotonic increasing computable function such
that var o g, (u) converges to var(u)."

I2N.B. Kleene’s (O,<p) [Rog67] is technically not an example system of ordinal notations — since <o on all of O has
incomparable elements.

(W, <n) is called computably related iff <y is computable.

An ordinal « is called constructive iff it receives a notation in some system of ordinal notations.

For countdown in polynomial time, as required for Section 3, we use feasibly related feasible systems
of ordinal notations [CKPOT].

A system of ordinal notations N is called feasible iff

o kpr, pa and Au, 0.4, (4)(n) are computable in polytime;

e there are polytime computable functions +5 and -pr such that for all u,v € N, vpa(u +a v) =
v (u) + vpar(v) and var(u-ar v) = vpar(u) - var(v); and

e there are polytime computable functions -,,, Ixr and n such that, Vn e N:vp(ny,) = n, Iy (u) is
a notation for a limit ordinal and Yu e N : var(u) = va(In (u)) + nar(u). 3

N is called feasibly related iff <,r is feasibly decidable.

Note that for any constructive ordinal «, there is a computably related system of ordinal notations
which gives a notation to «a [Rog67]; furthermore, there is also a feasibly related feasible system of ordinal
notations giving a notation to « .

2.2 Computational Limit Learning

In this paper we consider several indexed families of learning criteria. We proceed somewhat abstractly
to avoid needless terminological repetitions.

For each C ¢ P and § ¢ R?, we say that the pair (C,0) is a learning criterion (for short, criterion).
The set C is called a learner admissibility restriction, and intuitively serves as a limitation on what
functions will be considered as learners. Typical learner admissibility restrictions are P, R, as well as
complexity classes. The predicate § is called a sequence acceptance criterion, intuitively restricting what
output-sequences by the learner are considered a successful learning of a given function. For he P,ge R
we say that h (C,d)-learns g iff h € C and (Ax.h(g[x]),g) € 5. For h € P,g € R, we call Ax.h(g[z])
the learning-sequence of h given g. Here’s an exzample 0, herein called Ex. Let Ex = {({(p,d),q) €
R? | p converges to some e A @, = q}. Intuitively, ((p,d),q) € Ex means that the learning-sequence
(p, d) successfully learns the function ¢ iff: for some i, p(3) is a correct program number for ¢, and this
hypothesized program number will never change after that point ¢. N.B. For this example, the learning-
sequence is a sequence of coded pairs and Ex completely disregards the second component d. Some other
sequence acceptance criteria below make use of d as an auxiliary output of the learner. In these cases,
d will code countdowns until some events of interest must happen. For h € P and S € R we say that h
(C,0)-learns S iff, for all g € S, h (C,d)-learns g. The set of (C,d)-learnable sets of computable functions
isCo:={ScR|3IheC:h(C,d)-learns S}. Instead of writing the pair (C,d), we will ambiguously write
CS5. We will omit C if C = P.1* One way to combine two sequence acceptance criteria ¢ and ¢’ is to
intersect them as sets. We write 66" for the intersection, and we present examples featuring countdowns
in the next section.

We can turn a given sequence acceptance criterion § into a learner admissibility restriction 76 by
admitting only those learners that obey § on all input: Td:={heP |VgeR: (A z.h(g[z]),g)€d}.

2.3 Dynamically Bounded Postdiction

The following two definitions formalize the intuitive discussion about countdown graphs as given above
in Section 1.

Definition 2.1. A graph is a pair (G,—), where G ¢ N and — is a binary relation on G. We will use
infix notation for —. For each graph (G,—), we say that 7 is a G-path iff #elets(7) > 0, Vi < #elets(7) :
7(i) € G and Vi < #elets(7) = 1:7(i) - 7(i + 1). For each graph G, let G denote the set of all G-paths.
(S,R) is a subgraph of (G,-), iff S ¢ G and R =— |(S x S). For all m,n € N, we write m -* n
(respectively, m —* n) iff there is a G-path 7 such that 7(0) = m, last(7) = n (respectively, additionally

13The tally argument, 07, in the first bullet just above, is used in place of n to provide sufficient computational complexity
resource for any uses of gar. N.B. In Section 3 of the present paper, we do not need to use the gars; we get by with employing
the feasibility of some of the other feasible functions: +ar, ‘ary«

14 Thus, every sequence acceptance criterion denotes at the same time a learning criterion and the set of learnable sets.
It will be clear from context which meaning is intended. An example: Ex, then, denotes sequence acceptance criterion Ex,
learning criterion (P, Ex) and set PEx of (P, Ex)-learnable sets.

#elets(7) > 1). We sometimes write G for (G,—). A graph (G,—) is said to be computable iff G and —
are computable. Note that a graph G is computable zﬁé is computable. For a graph (G,—) we sometimes
identify m € G with {n € G| m -»* n}. With every pre-order (A,<a) we associate the graph (A,>a),
where, for all a,be A, a>4 b iff (b<aa and afad).

Definition 2.2. A graph (G,—) is called a countdown graph, iff -3r e RVi e N:r(i) - r(i+1). Note
that if G is a countdown graph, then so is every subgraph of G. Let G and Geomp, respectively, denote the
set of all and all computable countdown-graphs, respectively.

Example countdown graphs can be obtained from systems of ordinal notations. Let (N,<x) be a
system of ordinal notations. Then, (N, <xr) is a pre-order without infinite descending chains, so the graph
associated with (NV,<y) is a countdown graph. If (N, <) is computably related, then the associated
graph will be computable.

In Theorem 4.11 below we give one example of a countdown graph not based on a system of ordinal
notations. Section 4.2 shows the impact of using these different kinds of countdown graphs for our
purposes described below.

Soon we define what postdictive consistency, respectively completeness, with respect to G € G means.
Intuitively, every learner is required to have two outputs: a hypothesis, and a countdown output. For
any learnee g € R, if the learner sees g[i], the countdown output will need to encode one countdown for
each j <i. As soon as the countdown for a given data item is over, the hypothesis has to be postdictively
consistent, respectively complete, for that data item. We will refer to the countdown output of a learner
as a multicount (as it represents more than one countdown). We refer to an learning-output of hypothesis
and multicount as a hypothesis-multicount.

Definition 2.3. The set of all multicountdown sequences is defined as
M := {0 € Seq | Vi < #elets(c) : (0(i) € Seq A #elets(a(i)) = i) }.1°

An example multicountdown sequence is o = ()seq, (3)seq> (2:3)seqs (1,2,2)seqs (0,1,2,1)seq,
(Ou 07 27 27 2>Seq7 <27 Ou 27 37]-7]->Seqa <07 07 27 77 07 07 5>Seq-
oo can be displayed as a matrix like this:

T

w =
W N N
NN =W

(10)

CU W N = O
_—N = O
NN OO Ot
= WhhoNn O
OO NN I

6)

In (10) each column is a multicount. For example, column z = 4 represents the multicount o((4) =
(0,1,2,1). Each row of (10) provides the successive values of a particular countdown. For example, each
row of (10) (without initial empty entries) is the n-th countdown of oy. As we will see below, for an
associated learnee g, the n-th row will be relevant to g(n).

Definition 2.4. For each o0 € M and n < #elets(c) - 1 we define
row(n,o) = (c(n+1)(n),...,o(#elets(c) = 1)(n))seq- (11)

For o as presented above in (10), we have, for example row(4, 0¢) = (2,1, 0)seq- Each row(n,o) is a
countdown.

We will consider a given countdown sequence 7 as terminated with respect to a given countdown
graph G € G, iff 7 ¢ G. We then say that “r has terminated” or “r has bottomed out”. For a given
multicountdown sequence we will define the set of all n such that the n-th countdown has (started and)
bottomed out just below.

50f course, o (i) € Seq means that the number o(4) is the code of a sequence.

Definition 2.5. For all o and all G € G, define
1a(0) = {n < #elets(o) | o ¢ M v row(n, o) ¢ G}. (12)

Furthermore, define 1.c(2) = Lo(@) and, for o # @, lg(o) = Lg(o) ~ La(07).16 We omit the subscript
G whenever no confusion can arise.

We pronounce L as “bottom” and 1 as “recent bottom”. For o € M, 1(0) is the set of all countdown
numbers where the countdown has terminated, while 1 (o) is the set of countdowns that have intuitively
“just now” terminated.

Let us, for example, consider the finite countdown graph G on {0, 1,2, 3} with the natural >-order on
N. For og depicted above in (10), we have 15(0p) ={0,1,2,3,6}. The example of rows n =4 and n =5
shows that reaching a minimal element (in this case 0) of G does not imply immediate termination of the
countdown. The example of rows n = 2 and n = 3 shows how countdowns terminate when not obeying
the graph relation. Note that the countdown for row n = 6 has terminated immediately when it started,
as it started with 5, and (5)seq is not a G-path. From rows n = 4 and n = 6 we see that the different
countdowns do not have to terminate in row order.

Next we define two families of sequence acceptance criteria, employing countdowns as described above.
The rest of the paper will be concerned with studying these criteria in various settings.

Definition 2.6. For G € G let, for all p,d,qeR,
e Pesa({p,d).q) == VaVn e La(d[z]) : opa) (n)l = p(a)(n) = q(n) and
e Pep((p,d), q) = YaVn e Lg(d[z]) : pp) (n)l = g(n).

For all ge R and h, f € P, we say that (h, f) works postdictively consistently (respectively, completely)
on g with G-delay iff ({(h, f),g) = (Mi.({(h(g[%]), f(g[i]))),9) € Pesg (respectively, Pcpg). We omit “with
G-delay”, if no confusion can arise.

For notational purposes, we define the following variants on row, 1 and 1.

Definition 2.7. For all Ge€ G, o €Seq, f € P and n < #elets(o), define

row(n, f,0) :=row(n, Ai < #elets(o). f(o[i])), (13)
La(f,0) = Lg(\i < #elets(a). f(o[i])), (14)
La(f,0) =Lg(Xi< #elets(a). f(o[i])). (15)

We omit the subscript G whenever no confusion can arise.

Note that, for all f € P, all o and all n < #elets(o),
row(n, f,0) = Ai < #elets(o) —n—1.f(o[i +n+1])(n). (16)

Also we have, for all G € G and all f € P such that V7 : (\i < #elets(7). f(7[i])) € M, for all o € Seq and
all n < #elets(o), B
nelg(f,o) = row(n, f,o)¢G. (17)

3 Complexity Results

For this section only, let N be a feasibly related feasible system of ordinal notations for at least the
ordinals < w?. Let w be a notation for w in N. For each n € N, n denotes a notation for n in A, such
that An.n is computable in polytime. We will assume for all constructive ordinals «,

Vn e N,u e N : (u is notation in A for a +n) = n < u.l? (18)

16Note that 15 (D) = Lg(D) = @.
17Specific systems of ordinal notations seen in the literature typically, perhaps always, satisfy (18).

Definition 3.1. Let exp denote the function Ax.2*. Furthermore, for all n, we write exp™ for the n-times
application of exp. In particular, exp’ denotes the identity. For all k let

Exp,Programs := {e|eeN A 3Ip polynomial ¥n e N: ®.(n) < exp®(p(|n|))};
EXPiF := {y.|e € Exp,Programs};
ExpPrograms := Exp,;Programs
EXPF := EXP,F

For g € PF we say that g is computable in polytime, or also, feasibly computable. Recall that we have,
by (3), Vo : #elets(o) < |o].

Definition 3.2. Let S, T be such that

if < t;
Vp.ate S(pa,) = | P2 0] <l (19)
0, otherwise;
1, if o, <|t;
Vpa,t: T(pat) = Y (@) <[t (20)
0, otherwise.
Lemma 3.3. There ezist linear time computable functions min and all, such that
if y is the least number < |m| such
Y, that:
VP, 2, Prin(p) (T, m) = Po(@)L #0 A Ve <y:gp(w,2) =0; (21)
ml+ 1, if ¥z < | (2, 2)d = 0;
1 otherwise;
1, if Vz < #elets(m) : @p(z,2)) #0;
] _ if Vz < Felets(m) : pp(x,2)l A
Vp,z,m: @all(p)(xa m) =40, Iz < #elets(m) . Spp(x, Z)l' =0; (22)
1, otherwise,
and, for all p € PolyPrograms, min(p),all(p) € PolyPrograms.
Proof. This follows from [RC94, Lemmas 3.15 & 3.16] and (3).]

Lemma 3.4. Regarding timebounded computability, we have the following.

e Helets is computable in polytime by (4).

e Equality checks, |log| and =~ are computable in linear time [RC94, Lemma 3.2/.

o \i.2F is computable in time O(k) [RC94, Lemma 3.2].

e Conditional definition is computable in a time polynomial in the runtimes of its defining programs
[RCI4, Lemma 3.14].

e Boolean combinations of predicates computable in polytime are computable in polytime [RC94,
Lemma 3.18].

e From [RC9Y, Corollary 3.7] S and T from (19) and (20) above are polytime computable.'®

e By (7), patchy is computable in polytime.

Theorem 3.5. (a) PF ¢ PFPcp Ex.
(b) EXPF ¢ PFPcp, Ex.

(¢) ¥n:EXP,F ¢ PFPcp,,, Ex.
Furthermore, each of (a), (b) and (c) is witnessed by a respective learner (h, f) such that range(h) <
PolyPrograms, ¢ ExpPrograms and ¢ Exp, Programs, respectively.

18N.B. S and T above are variants of the S and T featured in [RC94, Corollary 3.7].

Note that (a) and (b) are both special cases of (¢). We will prove (a) in detail and will then give a
sketch as to how this proof can be generalized to a proof of (c).
Proof of (a). This proof employs a complexity-bounded enumeration technique [JORS99].

By [RC94, Theorems 4.13(b) & 4.17] there is a linear time computable e such that PF = {¢,(;) | j € N}
and Vj € N: e(j) € PolyPrograms. Then, by Lemma 3.4, it is easy to see that there is h € PF such that'?

e(j) if there is a minimal j <|o|: V& < #elets(o) :
Vo h(o) = { 7 (T(e(j)z.0) A S(e(j),,0) = o(x)); (23)

patchy(o), otherwise.

To show that h converges on all g € PF: Let g € PF. Let jo be minimal such that ¢.(;,) = g- Let p
be a polynomial such that ¥z : ®.¢;,)(z) < p(|z|). We then have the following.

e V7 n,jo <n<|g[n]| (by (3)).

e V®nVj<jo:g[n] ¢_<pe(J) (as jo mlnlmal such that ¢,(j,) = 9)-

o We have V¥z : ®.(;y(2) < 2.2 Hence, Y™nVa < n : B (2)
venve <n:T(e(jo),z,g[n]); hence, also V*°nVz <n:S(e(jo),z,g[

n.2t Therefore, using (3),

<
Ds Pe(jo) () = g(z).

n])

By the three items above, we have V*n : h(g[n]) = e(jo). Let f = Ao.0. Obviously, (h, f) witnesses
PF ¢ PcpyEx. The furthermore clause follows from the choice of e and patch,,. 1 (For (a))

Proofsketch of (¢). Define

w-n—1+expl(k)-Felets(o), if #elets(o) < expt(k);

Vo,VEk < #elets(o) : fr(o) = (24)

‘1+exp™ 1 (k)-#elets(o), else if #elets(o) < exp™ ! (k);
w- Q +exp™(k)-#elets(o), otherwise.

We define f € PF by
Vo: f(U) = <f0(0)7 R f#elets(a)—l(U»Seq-

Theorem 3.6. (a) Vn e N: EXPF ¢ PFPcp,Ex.
(b) Yk,n e N: EXP, F ¢ PFPcp,,.,,,Ex.

Proof of (a). Suppose by way of contradiction otherwise as witnessed by n and (h, f). Note that
[EXPF] = Seq; thus, (h, f) € TPcp,, (see Remark 4.1 below).
Define g € R according to the following informal definition in stages. g, denotes g as defined until
before stage s.
go=¢
stage s=0 to oo
if h(gs0000") =h(gs)
then ge1=gso1lo 0”
else gsi1=gso00 0"

Claim 1: h does not converge on g.
We show the claim by showing Vs : h(gss1) # h(gs). As (h,f) € TPcp,,, we have for all s € N and
each j € {0,1}, Xi < n.f(gs o}oﬁi) is not a n-path, as there is no path of length n + 1 in n; hence,
Ph(gsojol™) (#elets(gs)) = -

If now h(gs ©000") = h(gs), then Phgesn) (Felets(gs)) = @y, 01007 (Felets(gs)) = 1 # 0 =
P(g.o000™) (Frelets(gs)) = pn(g,) (Felets(gs)); thus, h(gsi1) # h(gs).

If h(gs0000") % h(gs), then h(gei1) = h(gs 0000) # h(gs). O (ror Cramm 1)

19Recall that the properties of patch, are listed in (7-9).

20By [RC94, §2.5, (9)], there are a,b € N such that Vz : 2%l < a2+ b; thus, there is d > 0 such that ¥z : 2%l < d.z.
Clearly, V=z : p(|z|) < 2|’“| Thus, V°z : p(|z]) < z.

211et ng,n1 be such that Yz 2ng: o) () <z and Vo <ng : @,y (z) <n1. Then, for all n > max{ng,n1} and for all
x <n, we have (if <no) Pe(j,)(z) <n1 <n, and (otherwise) O ;y(z) <z <n.

10

Claim 2: g ¢ EXPF.

By the construction of g, we have Vs : g, € {0,1}*("*1). Hence, to compute g(z) for any given z, it
suffices to execute stages 0 through z of the above algorithm to get g,+1, from which g(x) can then be
extracted. Therefore, it suffices to show that, for all s, the stages 0 through s of the above algorithm can
be done with an appropriate timebound.

Let p be a polynomial upper-bounding the runtime of h such that Vz : z < p(x). For any stage s,
the time to execute stage s is in O(As.p(|gs 06n+1|) +(|gs])) = O(Ns.p(|gs| +n + 1)) =220(As.p(s- (n +
1)+n+1))=0(Xs.p(s)). Therefore, for all s, the time to execute all stages 0 to s is bounded above by
O(As.(s+1)-p(s)) € O(As.2°'UsD) for some polynomial p’.23 O (For CrAIM 2) O (ror (a))

Proof of (b). Suppose by way of contradiction otherwise as witnessed by (h, f) € PF. The proof requires
a different definition of g as follows.

go=¢
stage s=0 to oo .
loop until #elets(gs) € L(f,gs0000)

i=1+1)
loop until #elets(gs) € L(f,gs0100)
Jj=j+1

if h(geo000)=h(gs)
then g1 :gsoioﬁjl;
else Js+1 29306062'

Let p be a polynomial bounding the runtime of h and f, as well as deciders for S and <g. Let s be a
stage, set x := #elets(gs).
Claim: There is a polynomial p’ such that each loop will terminate after at most exp®(|p’(x)|) steps.

Proof. Let m € {0,1}. Clearly, fo(c om¢0") <g w-k. By runtime considerations and (18) we see

fao(gsomo0") <g w-(k—1)+exp(p(xs +n+1)); hence, for some polynomial p;, fI(aomoﬁexp(pl(xs))) <

fe(como 6n+ezp(p(m5+n+1))) <gs w-k—1. Inductively one can now see that there is a polynomial ps_1
such that

—exph?! _1(xs
fx(O'QmOO P (Pr-1()))<S w; (25)
65$Pk(Pk($S))).
[(For CrLAIM)

in particular, one can see that there is a polynomial p such that x € L(f,00m o

Using [RC94, Theorem 3.17], one can now see g € EXPy,1F. The rest of the proof is analogous to
the proof of (a). 1 (For (b))

4 General Results
Remark 4.1. Obviously, we have for all G € G and S € R such that [S] = Seq

S e RPcsgExuUPcsgEx = S € TPcsgEx; (26)
S e RPcpExuUPcpEx = S € TPcp Ex. (27)

The lemma just below encapsulates diagonalizations we employ in several proofs in the present section.

Lemma 4.2, Let C ¢ P. Let 6 € Oz such that 6 ¢ Ex. Let S ¢ R such that (Y(h,f) €
C | (h, f) 6-learns S)3tg,t; € PVe e N: IS, € R such that (i) and (i) just below hold.

(i) ([pe] €[Se] AN pe €R) = . €S; and

*20(lgs|) = O(#elets(gs))-
23Find k such that O(p) = O(Az.z*). By [RC94, §2.5, (9)], there are a,b such that = < a-2/*l + b. Thus, there is are
¢,d,c/,d’ such that Vo :p(z) <c-aF +d<c-(a-20 +b)k 4+ d < 2kl 4 @

11

(i) For all o € [S.], (iia)-(iie) just below hold.
(a) pe=0=
(to(e,a)d A t1(e, o)l A h(ooto(e, o)), Ah(o)])
(b) (to(e,0)l nti(e,0)l) = (to(e,0),t1(e,0) € Seq A #elets(to(e, o)), #elets(t1(e,0)) > 0).
(c) 0 Spenh(ooto(e,0))l +h(o)l=0coty(e,0)€[S.].
(d) o cp.nh(ooty(e,0))l=h(c) A ti(e,0)l = coti(e,0) € [Se].
(e) (to(e,0)l A ti(e,a)i A h(ooto(e,0))l =h(o) =h(ooti(e,0))) = Proot(e,0)) R
Then S ¢ C6.

Proof. Suppose, by way of contradiction otherwise. Suppose h € C witnesses S € Cd. For all j € {0,1}, let
t; be as found by (ii).

Define with KRT ¢ = ¢, so that g works according to the following informal definition in stages. For
each s, gs denotes the finite initial segment of g as defined just before the beginning of stage s.
go =0
stage s=0 to oo
let 79:=to(e,gs) and 71 :=t1(e,gs)
if h(gsTO) # h(gs)
define gs4+1 =¢gs ¢ To
otherwise
define g411 =gs© 71
goto stage s+1

For s e N and j € {0,1} we define

Tjs =to(e,gs). (28)

Claim 1: We have (29) and (30) just below.
VseN: (g, is defined A g, € [S.]). (29)
VseN: (151 A 79). (30)

Proof. We show the claim by induction on s with trivial base case. Let now s € N such that the claim
holds for s. By (iia) we have 7571] and 75*1|, as well as h(gs o 75) # h(gs) is a computable predicate. We
use (iic) and (iid) to see that gs41 is defined and gs41 € [Se]. [1 (rOrR CrAIM 1)

By Claim 1, all stages will be reached. Furthermore, by (iib), for all s, #elets(7g), #elets(77) > 0;
hence, g(¢) will be defined no later then after stage i. Thus,

geR. (31)
By (31), (i) and Claim 1, we now have g € S.

Claim 2: h does not converge on g.
Proof. We show that, for any stage s, there exist a y > #elets(gs) such that h(g[y +1]) # h(g[y]). Let s
be any stage.
Case 1: h(gs o 7§) # h(gs). Trivial.
Case 2: h(gs o 7§) =h(gs) and h(gs o 77) # h(gs). Trivial.
Case 3: h(gs o 7§) =h(gs) = h(gs o 77).
S, we have (h o g[xs]70, g[zs]m0), (h o glzs]m, g[zs]m) € [0]. By (iie), we have that ¢p(g,ors) # g. As
0 € Ex and h d-learns g € S, there is a y > #elets(gs) as required.
[1 (For CLAIM 2) [1 (rOrR LEMMA)

12

4.1 Results mostly not Comparing Graphs

The following theorem shows the relationship between the different learning criteria as defined in this
paper.

Theorem 4.3. We have the following.

VG € Geomp : TPcpgEx = TPcsgEx. (32)
RPcszEx (CEJ PcpEx) + @. (33)
€
RPcpyzEx (Cpg TPcpsEx) + @. (34)
€
PcpyEx gU RPcsqEx) + 2. (35)
GeGeomp

Furthermore, the separations (338) and (34) are witnessed by sets of functions such that the positive part
of the separation is witnessed by a (fair) learner computable in linear time working transductively.

Proof of (32). This proof of (32) above is an extension of Fulk’s proof of the G = @ case [Ful88]. Let
Ge gcomp-
“c” Clear.
“2” Let S € TPcsgEx as witnessed by (h, f) € TPcsg. Let R be a computable predicate such that, for
all p,p',n,7,t,

R(p,p',n,7,t) iff [p =h(r) A ner(f,7)A

V' <n:(n' e L(f,7) = (pp(n')l =7(n") in <t steps))].

By padded PKRT there is a 1-1 e € R such that

o(n), if nedom(o);

else if 3(ro,tp) =

w(r, t).R(e(c),h(c),n,7,t);
1 otherwise.

VO’, n: @e(d)(n) = ’To(n),

Let S be a partial computable predicate such that, for all p,p’,n, o,

S(p7p,’n70—) iﬁ. [p,:h(a-)/\at:R(p7p,7n7o—7t)
and with (79,%) = {7, t). R(p,p’,n, 7, t) (37)
we have o(n) = 19(n)].

Define h' such that, for all o,
ifo+a Anh(o)=h(c7) A

B (o) with o such that

B (o) = h(c™)=e(op): Ynel(f,o): (38)
S(h'(c7),h(00),n,0):
e(o), otherwise.

Claim 1: h' e R.
We prove Vo dog Vo 100 S0y So = h'(0)) =e(og) by induction on o, trivial for o = @. Let o and o be
given such that
Voy:00C01 S0 = h'(01)l =e(o0). (39)
Claim 1.1:
Vn:(37:5(e(00),h(00),n,T)| = true) = p(s)(n)!. (40)
Proof of Claim 1.1. Let n € N such that 37:5(e(0g),h(00),n, 7)) = true. By the definition of S, there
are now 7, such that R(e(oo),h(00),n,7,t). The definition of e(og) shows that pe(s,)(n)!.
[(For CraiM 1.1)

Claim 1.2:
Vn e J-(fv U_) : Spe(a'o)(n)i' (41)

13

Proof of Claim 1.2. Let n e L(f,07). If n < #elets(og), then, trivially, ¢, (s,)(n){. Suppose now n >
#elets(op). By choice of n and the definition of 1, there is then oy such that g c 0y c o0 and n el (f,01).
From (39) we have that in the definition of h'(c1) the first case holds. Thus, S(e(oo),h(00),n,01)) =
true. By (40) we have . (q,)(n)!.

[1 (For CrLAM 1.2)

Obviously, it suffices now to show the following claim.
Claim 1.3: For all neu(f,o),

(Vn' en(f,o):n’ <n= S(e(og),h(co),n’,0)l = true) = S(e(oo), h(og),n’,0)l. (42)

Proof of Claim 1.3. Let n ei(f,o) be such that the antecedent of (42) holds. Using (40) and (41) we
now have
vn' e L(f,0):n' <n= @) (n')] = o(n). (43)

We show S(e(og),h(00),n,0)). If we can show the second conjunct of S(...) to hold, then
the minimization in the third conjunct of S will also terminate. Hence, it remains to show
JFtR(e(og),h(o0),n,0,t). h(og) =h(c) and n € L(f,o) are clear, the remainder follows by (43).

[(For CrAM 1.3)] (For CrLAM 1)

Claim 2: (b, f) e TPcpg.
Let 0,00 € Seq be such that h'(¢) = e(og). Obviously, using induction, it now suffices to show Vn €
L(f,0) : Pe(ap)(n)) = a(n). Let nel(f,0). We have S(e(oo),h(00),n,0)| =true. From the definitions
of S and e(gg) We now see . (,)(n) = o(n), as both minimizations give the same result.

[(For CLAIM 2)

Claim 3: (h', f) witnesses S € TPcp-Ex.
Let g € S. There exists o) c g minimal such that Yo : 0, S0 cg= h(c) = h(o}) and @p(s,) = g-

We proceed by showing Yo : 0, c 0 c g = h'(0) = h'(0}). Let ¢ be such that o, c o c g. Obviously,
using induction, it suffices to show that h'(c) is defined according to the first case. Let o¢ be such that
h'(07) = e(op). Note that, by the second conjunct in the cases for (38) and because of the minimality of
oy, 0, € 0p; hence,

h(0) = h(}) = h(oo). (44)

Let neu(f,o). We show S(e(og),h(co),n,0). By (44), we have h(op) = h(c). As shown in the proof of
Claim 1, 3t: R(e(0¢), h(0p),n,0,t). Then the minimization in the definition of S(e(ag), h(og),n, o) will
terminate. Let (7o,t0) := u{7,t).R(e(09),h(00),n,7,t). By definition of R we have now h(ry) = h(og) =

(44)
h(o,); hence,
Ph(ro) (1) = Pn(oyy () = g(n);
therefore, ¢,(-,)(n)}, and, by postdictive consistency, 70(n) = @i (1n) = g(n) = o(n).
[] (FOrR CLAIM 3) [(For (32))

Proof of (33). Let S:={geR|(0¢(m10g),g) € PcszEx}. Obviously, S € LinFTdPcszEx ¢ RPcsyEx.
Let G € G. We set up to use Lemma 4.2. Suppose by way of contradiction & € PcpoEx, as witnessed by
(h, f). Define, for all ee N, S, := {ge R | Vi:m1(m1(g(i))) = e}. Note that [S.] is uniformly computable
in e. Define t € P by setting for all e, o,

tle,0) = plp,s).ocope[Sec] A (h(o)l % h(o o p)l each in < s steps).

Claim: Let e e N o € [S.], such that ¢. = 0. Then t(e,0)|.
Let, for each j € {0,1},

ng = ((6, 0)7])7
ij = pi > 0.#elets(o) € L(f,00 n;),
pj=ny.
Note that i; may not be defined and when defined not algorithmically extractable from e, o and j, as L¢g

not necessarily computable (since G is not necessarily computable). For all j € {0,1} and i € N we have

14

o on! €[S], as . = 03 thus, as (h, f) PcpgEx-learns S, (h, f)(o o n})|. Hence, for each j € {0,1}, i;

and p; are well defined. We have now

Ph(oopy) (Frelets(a))] = po(0) # p1(0) = Vn(oop,) (Felets(a));

thus, h(o o pg) # h(o ¢ p1) and t(e,o0)l. 1 (For CLAIM)
By setting to :=t1 :=t, we can now use Lemma 4.2 to show (33). [1 (For (33))

Proof of (84). ** Let S:={geR| (00 (m 0g),g9) € PcpyEx}. Obviously, S € LinFTdPcpyEx ¢
RPcpgzEx. Let G € G. We set up to use Lemma 4.2. Suppose by way of contradiction S € TPcpsEx as
witnessed by (h, f). Define, for all e e N, S, := {ge R | Vi:m1(m1(g(i))) = e}. Note that [S.] is uniformly
computable in e. Define ¢t € P by setting for all e, o,

t(e,0) = pup.cope[Sc]Ah(o) +h(oop).
Claim: Suppose e € N, o € Seq. Then t(e,0)|.
Let, for each j € {0,1},
ng = (<670>7j>5
ij = i > 0.#elets(o) € L(f,00 n;),

i
pji=mn.

Note that 7; may not be defined and when defined not algorithmically extractable from e, o and j, as L
not necessarily computable (since G is not necessarily computable). As (h, f) € TPcp, we have that,
for each j € {0,1}, i; and p; are defined and we have

Ph(oope) (Felets(a))) = po(0) # p1(0) = Pu(oop,) (Felets(a))l;

thus, h(o o pg) # h(o o p1); therefore, as o ¢ pg,0 o p1 € [S.], t(e,0)l. [(For CrAIM)

By setting tg := t; := ¢, we can now use Lemma 4.2 to show S ¢ TPcpsEx, a contradiction.

[] (ror (34))

Proof of (85). Let S :={geR | (00 An.(pyn)(0),0),9) € PcpyEx}. Obviously, S € PcpyEx. Let
G € Geomp. We set up to use Lemma 4.2. Suppose now, by way of contradiction, S € RPcsqEx, as
witnessed by

(h,f)eR. (45)

By padded ORT there is a 1-1 function P € R such that

L if d=0;
P = \d,j,e,0,n). = Lo (46)
Pj.eo(n) otherwise,
where ¢ and pj ., are defined just below.??
Vi,e,o:0(j,e,0) =pi>0.#elets(o) € L(f,0 0 pjeosli]) (47)
tch - 1]), ifh(o)=nh - 0,e,
Vev g, 1, T : Sppo,e,a(n)(x) = bate 0(0 R0 [n "]) ' (U) . (a Op07e7 [@e(¢ U)]) (48)
e, otherwise; and
Vn,zVi>0:p, . m)(z)=e (49)

24 An anonymous referee pointed out that (34) can easily be proven by showing that all sets in TPcpsEx can be reliably
learned, as it is known that not all reliably learnable sets are RPcpgEx-learnable [CJSW04]. We retain our original proof
of (34) herein, since it exercises, in a simple way, an application of Lemma 4.2.

25Recall that the properties of patch, are listed in (7-9).

15

Clearly, as P above is total, and by (46), we have that each function p; ., is total. Hence, by (45) and
(47) we have that ¢; is total. Therefore, by (48), for all j,e, 0, @, ., is total. For each j € {0,1}, define

tj(e,O') = pj,e,o[@l(j7e70-):|' (50)
By the discussion before (20) we have for all j,
tj eR. (51)

Let, forall e e N, S¢:= {g e R | Vn € N: pg(,,)(0) = e}. We apply Lemma 4.2 with C =R and ¢ = PcsgEx.
(i) is trivial. To show (ii), let e € N,o € [S.]. (a) follows from (45) and (51). The conclusion of (b) is
trivial from (50). (c) follows from (47), (48) and (50). (d) is trivial from (49). We show (e) by showing
the contrapositive: Suppose ¢,(s0r,) € R. Define, for each j € {0,1}, 7; :=t;(e,0). Note that, as P is 1-1,
we have 79(0) = po,e.o (0) # p1,e,6(0) =71(0). Then, by (47),

Ph(ooTo) (#elets(g)) = 7—0(0) 71 (O) = Soh(O'OTl)(#eletS(o-))‘

Thus, h(o ¢ 1) # h(o o7), which shows (iie). Lemma 4.2 gives now S ¢ RPcsgEx, a contradiction.

[(For (35))

Definition 4.4 (|Min76, BB75]). Given a set § <X, a function (h, f) € R is called F-reliable iff Vg € § :
Xi.h(g[i]) converges = Vi : @pgpi1) = 9. The set of all §-reliable functions is denoted by Relg.

e (h,f) is said to be reliable, iff (h,) € Relg.
e (h,f) is said to be monotonically reliable, iff (h, f) is reliable and h is monotone (that is, for all
oct:h(o)<h(r)).

Let pad : N> - N be a 1-1 computable function such that Ve,n ¢ N : ¢, = Ppad(e,n) Such that
Ve,n € N:pad(e,n) >n).

Lemma 4.5. Let (h, f) be reliable. Then there is a monotonically reliable h' such that Yo : [Vn <
#elets(o) : h(o[n])l] = ©no) = Phi(e). Furthermore, a program number for h' can be obtained construc-
tively from a program number for h.

Proof. Define

h(o), if o = &;
Vo:h'(o)={h(c7), if o + @ and h(c) =h(c™);
pad(h(o),h(c”)), otherwise.
1
Theorem 4.6. Let G €G. Then TPcpEx is closed under computably enumerable unions.
Our proof for Theorem 4.6 makes use of the notion of reliability [Min76, BB75].

Proof. Suppose, for each i € N, o

(h', f') witnesses S; € TPcpoEx, (52)

such that \i,o.(h'(c), f'(0)) is computable. It is easy to see that, for all i € N, (h’, f') is reliable. By
padding [Rog67] we can then assume without loss of generality (h‘, f!) is also monotonically reliable.
assume all k' to be monotonically reliable.

Define i,n,h*, f € R such that, for all o and for all k < #elets(o),

i(0) = pj < #elets(o).(h (o) = e mm ' (0)); (53)

| pm < #elets(o). (Vjlm < j < #elets(o)) :
n(o) = { i(0) = i(olj]); (54)
h* (o) = patch(a[n(o)], A7 (0)); (55)
£2(0) = (o). (56)

16

Intuitively, 7 defines which learner to use when seeing o. n defines the most recent number where i
changed the learner to use. (h*, f*°) is our learner for the union.

Claim 1: (h*, f=) works postdictively completely on all g € R.
Proof. Let o € Seq, let k€ L(f,0). Let ng :=n(o).

Case 1: k < nyg.

Then we have

@h“’(o’)(k) (5:5) cppatch(a[no],hi(”)(a))(k) k<:no U(k)

Case 2: k > ng.
Then we have
row(k, f*,)
i < #elets(o) — k. f(o[i + k]) (#elets(0))
) Ni < #elets(o) — k. f/OURD (00 + k]) (#elets(o)) (57)
Ni < #elets(o) = k. f1O) (o[i + k]) (Felets(o))

0

row(k, 17, o).

(16)

S
ot

(

k

v
Yo

(16)

Hence, we have

kel(f=0) = row(k, f<,0) ¢ G (58)
pe row(k, f),0) ¢ G (59)
- i(o)
b ke1(f"% o) (60)
5 ek =o(k) (61)
hag Phe(o) (k) = (k). (62)

[(For Cramm 1)

Claim 2: h* converges on all g € U; S; to a program number for g.

Proof. Let g € U;S;. Define M := {k | h* converges on g}, N := {k | h¥ converges on g to some pj €
N A (Vj:h? converges on g to some p; € N= p; <p;)}. Obviously, N # .

Claim 2.1: i converges on g to min(N).

Proof. Let p € N be such that A™»(V) converges on g to p. We have, for all k ¢ M, as h* is monotonically
reliable, V*°t : h*(g[t]) > p. Similarly, for all k € M ~ N we have V>t : h*(g[t]) > p. Furthermore,
Vk e NV=t:h*(g[t]) = p. O (FOrR CrAm 2.1)

Now we have that also n converges on g; hence (h*°, f*) converges on g. O (ror CrLaAM 2)

] (FOR THEOREM)

Theorem 4.7. We have

GUg PcsgEx c Ex. (63)
€

Furthermore, the separation is witnessed by a (fair) learner computable in linear time working transduc-
tively.

Proof. “c” is trivial.
“ Let S:={geR| (00 (m o0g),g) € Ex}. Obviously, S € LinFTdEx ¢ Ex. Suppose, by way of
contradiction, there are G € G and (h, f) € P such that (h, f) witnesses S € PcsgEx. Note that

[S] = Seq. (64)

Hence, (h, f) € R. We set up to use Lemma 4.2. Let, for all e, S, :={g e R | Vi: m1(m1(9(3))) = e}. [Se]
is uniformly computable in e. Define ¢ € P such that

Ve,o:t(e,0) =pur.(c o1 €[S:] A h(c) # h(coT)). (65)

17

Claim: For all e e N, € [S,.], t(e, o).
Proof. Suppose, by way of contradiction, there are e € N, o € [S,] such that ¢(e,o)t. Hence,

VriocoTe[8S.]= h(o)=h(corT). (66)

Obviously, there are 7,7’ such that oo 7,00 7" € [S.], #elets(a) € L(f,o07), #elets(o) € L(f,o¢7") and
7(0) #7'(0). Hence, as co1,0 07" € [S.] € [S], and (h, f) works postdictively consistently on S, we have
with (66), ©n (o) (F#elets(o))t. Let g € S, be an extension of o. By (66), h on g converges to h(c), which
is not a program number for g (as ¢(,) is not total), a contradiction. [(ror CraiM)

We apply Lemma, 4.2 with to:=t; :=¢, C =P and § = PcsgEx. Therefore, S ¢ PcsgEx, a contradic-
tion.] (FOR THEOREM)

4.2 Dependencies on the Countdown Graphs

Next we define a pre-order, <¢p, on G. We will see that <¢op characterizes relative learning-power in
dependence on countdown graphs.

Definition 4.8. For two graphs G,G’ we write G <¢p G’ (read: G is countdown reducible to G') iff
there is a k € R, such that

(i) for allye G: k(y) e G';
(ii) for all T o7 € G such that #elets() > 0, we have k(1) »g k(1 o 7).
Intuitively, £ maps any G-path into a vertex of G’.2% Clearly, <cp is a pre-order.
Proposition 4.9. Let G,G' €G. Let k€ R. The following are equivalent.
(a) G <cp G’ as witnessed by k;
(b) V1 eG: (X< #elets(r).k(r[i +1])) e G'.
Next we exhibit nice example countdown graphs and indicate how they compare by <¢p.
Definition 4.10. We will use the following computability-theoretic notions.

e A set AN is called semi-recursive iff (by a characterization by McLaughlin and Appel, cited in
[Joc68, Theorem 4.1(iii)]) A is an initial segment of some computable linear ordering of the natural
numbers.

e A set AcN is called immune iff A is infinite and does not contain a ce set [Rog67, § 8.2].

e A set A € N is called hyper-immune iff A is infinite and for the unique r € X strictly monotonic
increasing such that range(r) = A we have Vf € R3x € N: f(x) < r(x) [Rog67, § 9.5]. Note that
every hyper-immune set is immune [Rog67, § 9.5].

w denotes the order-type of the natural numbers ordered by <, w™! denotes the order-type of the
natural numbers ordered by >.

Theorem 4.11. There are a computable total ordering <r on N and a set A € N such that A is semi-
recursive, A and A are hyperimmune, hence immune, <g|a an initial segment of <g, <p|a is of order-type
w and <g|y is of order-type w™t. In particular, <g is of order-type w +w™" and there are no computable
infinitely descending chains with respect to <gr; hence, (N,>g) is a countdown graph.

Proof. By [Joc68, Theorem 5.2], there is a semi-recursive, hyper-immune set A, such that A is hyper-
immune. As A semi-recursive, there exists a computable total ordering <p on N such that A is an initial
segment of this ordering. As A (and A) are not computable, <g|4 does not have a maximal element, and
<g|5 does not have a minimal element. As A and A are both immune, we now have by [Cas76, Lemma
2], that <g|4 is of order-type w and <g| is of order-type w™".

Every infinitely descending chain is therefore a subset of A. As A is immune, these chains are not

computable.]

For the rest of this section, let <p be as in Theorem 4.11, and let R denote the countdown graph
(N7 >R) .

26Neither of mapping G vertices into G’ vertices nor mapping G paths into G’ paths will give us the same characterization
results that we have in Theorem 4.14 below.

18

Example 4.12. Let (N,<n), (N',<n7) be computably related systems of ordinal notations. Then we
have

(a) N <cp N' = N’ gives a notation to at least all the ordinals N gives a notation to;

(b) N <cp R < N gives a notation to all and only the ordinals <w-i+j for some i€ {0,1},7 € N; and

(¢) Rtcp N.

Proof. For all u € N, define M,, := {7|7 ¢ % is an N -path}. Clearly, for all u e N, M, # @.

Proof of (a). Suppose N <cp N’ as witnessed by k. Obviously, it suffices to show the following claim.
Claim: Yu e N VT € My, : vn(u) <vpe(k(T o).

Proof of Claim. We prove the claim by transfinite induction on var(u) for u € N. The base case is
trivial. Suppose u € N is such that vp-(u) > 0 and the claim holds for all v <y u. Let 7 € M,. For all
v <y U We now have

v (v) < va(k(Tomo)) <up(k(ro)). (67)
(I1H)

Thus,
vy (u) = sup (vp(v) +1) < vpar(k(70o@)).
(67)

VN U

O (For CLAIM) [1 (For (a))

Proof of (b). “=": Suppose N <cp R as witnessed by k € R. Suppose, by way of contradiction, N
gives a notation to all ordinals < w-2. Let w be a notation in S for w. It is straightforward that, for
all 7€ M, k(t ow) e A. We have that M = {77 | Vi < #elets(7) — 1 : 7(i + 1) is predecessor of 7(i) A
last(7) is a notation for a limit-ordinal} is a ce subset of M,. Hence, is a ce subset of A. As A is
immune, T is finite. Let n be the cardinality of T. Let 7 € M be a sequence of length n + 1. Hence,
{k(7[i+1])|i < n} is a subset of T of size n + 1, a contradiction.

“< Let i€ {0,1}, j € Nand NV systems of ordinal notations having notations for all and only the ordinals
<w-i+j. It is easy to see from the definition of a system of ordinal notations, that there is a computable
function f € R such that Vu e N': f(u) = (a,b) < vy (u) =w-a+b.

Let 7 be a finite sequence strictly increasing with respect to <g in A of length max(j,1). As N
computably related, there exists k£ € R such that

r(b), if f(7(#elets(7)—-1)) =(1,b) for some b € N;

VreN: k() := otherwise, with 7 = 79 ¢ ¥ ¢ 71, where 79 does not contain
po(#elets(r1)), any notation for a finite ordinal, f(v) = (0,b’) and po = pp €
R.#elets(p) =b" +1 A Vi<b :p(i) <g r(0).

L1 (For (b))

Proof of (¢). Suppose, by way of contradiction, otherwise, as witnessed by k. Let r be an infinite
decreasing sequence in <g. Then Xi.k(r[i+1]) is an infinite strictly decreasing sequence in A/, a contra-
diction.] (For (c))

We prove “=" of Theorem 4.14 below by using a specific set of self-learning functions S. Each g€ S
will give sufficient information as to how to learn it. Intuitively, in order to learn S by a learner in 7TPcpg
for some G € G, this information has to be checked for correctness before being output (and patched if
incorrect). In general, this validation may not be computable, but ce. S will in fact be defined to be the
set of all those g, that not only give sufficient information for learning it, but also give an upper bound
on the number of steps that a validation will require.

Next we define the walidation-predicate. The predicate takes the sequence o of input seen so far
and (computably) decides, whether it will be safe to output m (last(o)) as hypothesis-multicount, using
m2(last(o)) as an upper bound for the number of steps that a validation is attempted.

Definition 4.13. Let G € Geomp- Let Vg be the following predicate: For all o, Vg(o) iff o=@ or o+ @
and, with e := 71 (71 (last(c))), we have for each | < #elets(o): (row(l,mpomo0) € G or ¢ (1) = o(l) in <
mo(last(o)) steps).

19

Obviously, for G € Geomp, Vi is computable.
Theorem 4.14. Let G € Geomp, G' € G. We have
TPcpsEx c TPcpuEx < G <cp G'.

Proof. “<”: Suppose G <cp G’ as witnessed by k € R. Let S € TPcpsEx as witnessed by (h, f). We
now set f’ such that (h, f’) witnesses S € TPcp. Ex.

VoVl < #elets(o) : f{ (o)
Yo i ['(0)
“=": Suppose TPcpsEx ¢ TPcp Ex. Let

k(row(l, f,0));
(fé(O'), T f::%elets(cr)(o—)>'

S:={geR|[(00 (m109),9) e PepgEx A ¥nVg(g[n])}. (68)
Obviously, S € TPcpsEx; therefore, S € TPcp Ex. Let (h, f) be such that

(h, f) witnesses S € TPcp Ex. (69)
In particular, we have now
(h,f)eR. (70)
For each e € N, define
S.:={geS|Vi:m(mi(g(?))) =e}. (71)
Note that,
Ve:[S.] < [S] (72)

We set max (@) := 0. Define, for each j € {0,1}, e € N and o, 7 € Seq,

ri(e,0,7) = (i < #elets(7).((e, (T(i))#elew(g)”)’x<#1£112§§(0)(¢6(x)) + J))seqs (73)

Obviously, the i-th component of 7;(e,o,7) does not depend on any components of T besides the i-th.
Furthermore, note that for all j € {0,1}, eeN, g € [S.] and 7€ G,

(ccpenrjle,o,m)) =>0cor(e,0,7)¢€[Se]. (74)
if (j,7) is first number found in a dovetailing
rj(e,0,7), search such that j e {0,1}, 7€ G and

t(e,0) = h(c) = h(o orj(e,o,T)); (75)
1, if no such (j,7) is found.

Claim: (3eeNJo € [S.]: pe =0 A t(e,0)1) = G <cp G-
Proof. Suppose e € N and o € [S.] are such that

e =0 A t(e,o)t. (76)
Therefore, we have for all 7€ G and j € {0,1}, by 7,7’ # @, (73) and the first conjunct of (76),
ri(e,o,7)!. (77)
Note that we have now, for all 7,7/ € G, by (73) and (77),
ro(e,a,7)(0)) £ ri(e,a,7)(0)]. (78)
By (75), the second conjunct of (76) and (77) we have, for all 7€ G and j € {0,1},
h(o) =h(o ori(e,0,7)). (79)

Obviously, if ¢,(s)(#elets(o)) is defined, it can be at most one element in the set {r;(e,o,7)(0) | j €
{0,1},7 € G}. Hence, with (78), we can (possibly not constructively) fix j € {0,1} such that

Pn(o) (Felets(a)) ¢ {rj(e,a,7)(0) | T € G}. (80)

20

By (69), (79) and (80) we have
Ve G dtelets(a) ¢ Lo (f,o0ri(e,0,7)). (81)
By (17), this is equivalent to
V7 e G row(#elets(o), f,o o r;(e,0,7)) € G. (82)

We define k € R such that, for all 7 €N,

vy - [0 mieco T Ghelets(a), i 7 < G)
0, otherwise.
or all 7 € G, since for all i < #elets(7), 7[i + 1] € G, we have
i < felets(o).k(T[i +1])
- i < #elets(o). f(oor;(e,o,7[i+1]))(F#elets(o))
= Ni < #telets(0). f(o o (rj(e,0,7)[i + 1])) (#elets (o)) (84)
o row(#elets(o), f,oorj(e,0,7)).
(82), (84) and Proposition 4.9 show G <¢cp G- [1 (ror CrLAIM)
Suppose, by way of contradiction, G ¢cp G’. Hence, by the claim,
VeVo € [Se]:pe =0 =t(e,0)l. (85)

We apply Lemma 4.2 with tg := t; := ¢, C := TPcpe and 6 = Ex. (i) is trivial from the definitions
and (72). (ii)(a) follows with (70) and (85). (ii)(b), (ii)(c) and (ii)(d) are straight from (74) and (75).
Furthermore, by (75), we get directly to(e,0)l = h(o) # h(o o tg(e,0)); hence, the antecedent of (ii)(e)
is false.

Therefore, S ¢ TPcp Ex, a contradiction. [J (ror THEOREM)

Next are three corollaries to Theorem 4.14 (or its proof). The first two are regarding the other
restricted learnability notions of the present paper. The third is our hierarchy theorem for ordinal
notations.

First, we observe that the set S as in (68) in the proof of Theorem 4.14 does depend only on G, not
on G'. Therefore, we can give the following strong corollary.

Corollary 4.15. Let G € Geomp. We have

TPcpcEx~ |J PesgEx=#2.
G'€Geomp
GtcpG’

Proof. Let S be as given in (68) in the proof of Theorem 4.14. Let V:={ge R | V*®z: f(x) = 0}, the set
of functions of finite support. Clearly, V € TPcpoEx; hence, by the union theorem (Theorem 4.6), we
have 8" :=SuV € TPcpiEx. Let G’ € Geomp such that G £cp G'. The proof of Theorem 4.14 showed
S ¢ TPcpEx; hence, S’ ¢ TPcpEx. Since [S'] = Seq and TPcpo Ex (3=2) TPcsg'Ex, we have, by

the contrapositive of (26) given in Remark 4.1,
S’ ¢ Pesg Ex.

H

Next is a characterization of the graph dependence of relative learning power for the restricted learning
criteria not covered by Theorem 4.14.

21

Corollary 4.16. For all G,G’ € Geomp we have

G <cp G' < RPcpsEx ¢ RPcp Ex (86)
< RPcsgEx ¢ RPcsg Ex (87)
< PcpgEx ¢ Pep Ex (88)
< PcsgEx € Pesgr Ex. (89)

Proof. Obviously, all right-hand-sides are implied by G <cp G’, just as in the proof of “<” of Theo-
rem 4.14. By Corollary 4.15, G £cp G’ implies the negation of each right-hand-side. [l

Recall that, from Section 2, for a graph G € G and m € G, we ambiguously use m to refer to the
countdown-graph {n ¢ G| m —* n}. For two sets M, N we write M # N ifft (M ¢ N A N ¢ M).

Corollary 4.17. Let (N,<x) be a computably related system of ordinal notations. Let u,v € N'. Then
we have

UN UV < U<cp U (90)
< TPcp,Exc TPcp,Ex. (91)

Furthermore, if N gives a notation to at least all ordinals <w -2, then
TPcpyEx # TPcprEx. (92)

Proof of (90). “=": Suppose u <x v. Hence, considering u and v as graphs, we have v c v. Then we
have u <cp v is witnessed by any k € R such that V7 e N : k(7) = last(7), so that Theorem 4.14 applies.
By Example 4.12(a), v £cp u

“<": This follows directly from Example 4.12(a). Proof of (91). By Theorem 4.14.

Proof of (92). This follows directly from Theorem 4.14 and Example 4.12. 1

References

[ACJS04] A. Ambainis, J. Case, S. Jain, and M. Suraj. Parsimony hierarchies for inductive inference.
Journal of Symbolic Logic, 69:287-328, 2004.

[AZ07] Y. Akama and T. Zeugmann. Consistent and coherent learning with d-delay. Technical Report
TCS-TR-A-07-29, Hokkaido University, October 2007.

[Bar74] J. Barzdins$. Inductive inference of automata, functions and programs. In Int. Math. Congress,
Vancouver, pages 771-776, 1974.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125-155, 1975.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15-32, 1974.

[Cas76] J. Case. Sortability and extensibility of the graphs of r.e. partial and total orders. Zeitschrift
fiir Mathematische Logik und Grundlagen der Mathematik, 22:1-18, 1976.

[Cas94] J. Case. Infinitary self-reference in learning theory. Journal of Experimental and Theoretical
Artificial Intelligence, 6:3-16, 1994.

[CISWO04] J. Case, S. Jain, F. Stephan, and R. Wiehagen. Robust learning — rich and poor. Journal of
Computer and System Sciences, 69:123-165, 2004.

[CKP07] John Case, Timo Kétzing, and Todd Paddock. Feasible iteration of feasible learning function-
als. In Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto, editors, ALT, volume 4754 of
Lecture Notes in Computer Science, pages 34—48. Springer, 2007.

[FS93] R. Freivalds and C. Smith. On the role of procrastination in machine learning. Information
and Computation, 107(2):237-271, 1993.

22

[Fulss]

[Joc68]

[JORS99]

[LV97]

[Min76]

[Pit8Y]

[RCO4]

[Rogb67]

[SSVO4|

[WieT6]

[WieT8]

M. Fulk. Saving the phenomenon: Requirements that inductive machines not contradict
known data. Information and Computation, 79:193-209, 1988.

C. Jockusch. Semirecursive sets and positive reducibility. Transactions of the AMS, 131:420—
436, 1968.

S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An Introduction to
Learning Theory. MIT Press, Cambridge, Mass., second edition, 1999.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer Verlag, Heidelberg, second edition, 1997.

E. Minicozzi. Some natural properties of strong identification in inductive inference. Theoret-
ical Computer Science, pages 345-360, 1976.

L. Pitt. Inductive inference, DFAs, and computational complexity. In Analogical and Inductive
Inference, Proceedings of the Second International Workshop (AII’89), volume 397 of Lecture
Notes in Artificial Intelligence, pages 18-44. Springer-Verlag, Berlin, 1989.

J. Royer and J. Case. Subrecursive Programming Systems: Complezity and Succinctness.
Research monograph in Progress in Theoretical Computer Science. Birkhduser Boston, 1994.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts, 1987.

A. Sharma, F. Stephan, and Y. Ventsov. Generalized notions of mind change complexity.
Information and Computation, 189:235-262, 2004.

R. Wiehagen. Limes-erkennung rekursiver funktionen durch spezielle strategien. Electronische
Informationverarbeitung und Kybernetik, 12:93-99, 1976.

R. Wiehagen. Zur Theorie der Algorithmischen Erkennung. PhD thesis, Humboldt University
of Berlin, 1978.

23

