Skip to main content

Gene Team Tree: A Compact Representation of All Gene Teams

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Abstract

The identification of conserved gene clusters is an important step towards understanding genome evolution and predicting the function of genes. Gene team is a model for conserved gene clusters that takes into account the position of genes on a genome. Existing algorithms for finding gene teams require the user to specify the maximum distance between adjacent genes in a team. However, determining suitable values for this parameter, δ, is non-trivial. Instead of trying to determine a single best value, we propose constructing the gene team tree (GTT), which is a compact representation of all gene teams for every possible value of δ. Our algorithm for computing the GTT extends existing gene team mining algorithms without increasing their time complexity. We compute the GTT for E. coli K-12 and B. subtilis and show that E. coli K-12 operons are recovered at different values of δ. We also describe how to compute the GTT for multi-chromosomal genomes and illustrate using the GTT for the human and mouse genomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Béal, M.-P., Bergeron, A., Corteel, S., Raffinot, M.: An algorithmic view of gene teams. Theor. Comput. Sci. 320(2-3), 395–418 (2004)

    Article  MATH  Google Scholar 

  • Ermolaeva, M.D., White, O., Salzberg, S.L.: Prediction of operons in microbial genomes. Nucleic Acids Res. 29(5), 1216–1221 (2001)

    Article  Google Scholar 

  • Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: Msoar: A high-throughput ortholog assignment system based on genome rearrangement. Journal of Computational Biology 14(9), 1160–1175 (2007)

    Article  MathSciNet  Google Scholar 

  • Gama-Castro, S., Jimnez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Pealoza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muiz-Rascado, L., Martnez-Flores, I., Salgado, H., Bonavides-Martnez, C., Abreu-Goodger, C., Rodrguez-Penagos, C., Miranda-Ros, J., Morett, E., Merino, E., Huerta, A.M., Trevio-Quintanilla, L., Collado-Vides, J.: Regulondb (version 6.0): gene regulation model of escherichia coli k-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res. 36, 120–124 (2008)

    Article  Google Scholar 

  • He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of homology families. Journal of Computational Biology 12(6), 638–656 (2005)

    Article  Google Scholar 

  • Hoberman, R., Durand, D.: The incompatible desiderata of gene cluster properties. In: McLysaght and Huson, pp. 73–87 (2005)ISBN 3-540-28932-1

    Google Scholar 

  • Hoberman, R., Sankoff, D., Durand, D.: The statistical analysis of spatially clustered genes under the maximum gap criterion. Journal of Computational Biology 12(8), 1083–1102 (2005)

    Article  Google Scholar 

  • Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44, 223–270 (1908)

    Google Scholar 

  • Lawrence, J.: Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9(6), 642–648 (1999)

    Article  Google Scholar 

  • McLysaght, A., Huson, D.H. (eds.): RECOMB 2005. LNCS (LNBI), vol. 3678. Springer, Heidelberg (2005)

    Google Scholar 

  • Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96(6), 2896–2901 (1999)

    Article  Google Scholar 

  • Snel, B., Bork, P., Huynen, M.A.: The identification of functional modules from the genomic association of genes. Proc. Natl. Acad. Sci. USA 99(9), 5890–5895 (2002)

    Article  Google Scholar 

  • Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., Koonin, E.V.: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucl. Acids Res. 29(1), 22–28 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, M., Leong, H.W. (2008). Gene Team Tree: A Compact Representation of All Gene Teams. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics