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Abstract. Modern information systems, and web information systems
in particular, are faced with frequent database schema changes, which
generate the necessity to manage them and preserve the schema evolution
history. In this paper, we describe the Panta Rhei Framework designed to
provide powerful tools that: (i) facilitate schema evolution and guide the
Database Administrator in planning and evaluating changes, (ii) support
automatic rewriting of legacy queries against the current schema version,
(iii) enable efficient archiving of the histories of data and metadata, and
(iv) support complex temporal queries over such histories. We then in-
troduce the Historical Metadata Manager (HMM), a tool designed to
facilitate the process of documenting and querying the schema evolution
itself. We use the schema history of the Wikipedia database as a telling
example of the many uses and benefits of HMM.

1 Introduction

The main goal of a traditional database, i.e., capturing the “current state of the
modelled reality”, is satisfactory only in simple applications [1]. More sophis-
ticated information systems require a systematic archiving and management of
the history of the database. In particular, in web information systems, such as
Wikipedia, ethical and legal expectations for accountability and preservation
arise for information that was once placed in the public domain and divulged
to the world; thus policies and systems are needed to support historical archives
for web information. This situation has generated renewed interest in broad re-
search on temporal databases and on transaction-time databases, in particular.
In addition to data evolution [2], these systems experience intense evolution of
database schema, as we reported in our analysis [3] of the Wikipedia DB, which
has experienced more than 170 different schema versions in its 4.5 years of life-
time. Schema evolution, already a serious problem in traditional information
systems [4, 5], becomes even more critical in web information systems.

In order to effectively manage information systems under the realistic as-
sumption that Panta Rhei—everything is in flux—so that not only data, but
also schemas, queries and applications are in continuous evolution, we propose
the Panta Rhei Framework3. This framework provides a unified solution to the
3 The project homepage is: http://yellowstone.cs.ucla.edu/schema-evolution/.



problems of: (i) graceful database evolution in the presence of schema changes,
(ii) transaction-time history archiving and querying of databases under schema
evolution.

The first objective is achieved by PRISM [6, 7], a tool that assists the
Database Administrator (DBA) in designing a new schema and that automat-
ically revises legacy queries to work on it. The second objective is achieved by
the transaction-time database system ArchIS [8, 9], and its extension PRIMA
[10]: ArchIS supports efficient temporal queries on the archived history of (fixed-
schema) databases, while PRIMA introduces the transparent support for com-
plex temporal queries over archives with evolving schema. Both PRISM and
PRIMA exploit an intuitive operational language of Schema Modification Op-
erators (SMOs) to explicitly capture the semantics of the schema evolution.

In this paper, we further extend the framework by introducing the Historical
Metadata Manager (HMM), a tool capable of archiving and querying rich meta-
data histories. Most modern DBMS provide their meta-level information in the
form of a virtual DB named information schema (SQL:2003 standard). With
the HMM we extend the scope of the information schema, inasmuch as the
complete history of the DB schema, not just its current snapshot, is preserved
and queried. Moreover, the HMM exploits the SMO-based representation of the
schema evolution to provide users with a better understanding of the semantics
of each schema change.
Contributions The novel contributions of this paper are the following:

– the overall architecture of the Panta Rhei Framework for graceful schema evo-
lution and historical archive management under schema evolution;

– the History Metadata Manager, a tool capable of providing an effective
archival mechanism for metadata and a query facility enabling complex tem-
poral queries on schema histories.

The paper is organized as follows: Section 2 provides an overview of the Panta
Rhei Framework architecture. Section 3 describes the Historical Metadata Man-
ager (HMM) and its capabilities. In Section 4, we discuss related works, while
Section 5 is devoted to future developments. Section 6 draws our conclusions.

2 The Panta Rhei Framework
The Panta Rhei Framework, presented in Figure 1, aims at providing seamless
support for evolution of both data and schema and complete history manage-
ment. The objectives of the framework are as follows: (i) a workbench to assist
the DBA designing schema revisions with tools for change impact analysis and
automatic query rewriting, (ii) efficient archiving of DB histories, (iii) support
for complex temporal queries over a historical archive under schema evolution,
and (iv) archiving and temporal querying of the metadata history.

Objective (i—iii) were largely realized by PRISM [6, 7], ArchIS [8, 9] and
PRIMA [10, 11], but this paper is the first to describe the overall architecture
of our Panta Rhei Framework and the design of the History Metadata Manager
(HMM) addressing objective (iv).



Fig. 1. Panta Rhei Framework Architecture

2.1 PRISM

PRISM aims at automating the error-prone and time-consuming activity of
schema evolution. The system provides: (i) a language of Schema Modification
Operators (SMO) used for expressing complex schema changes in a concise way,
(ii) tools that allow the DBA to evaluate the effects of schema changes, (iii)
automated data migration, and (iv) optimized support for legacy queries on the
current schema version.

SMOs provide an operational and concise way to capture schema evolution [3,
6], that specify how both schema and data evolve. By analyzing SMO sequences
specified by the DBA, the system provides feedback on the proposed evolution,
thus improving predictability of the evolution process. The same SMO represen-
tation is used to automate data migration and query adaptation by (i) generat-
ing SQL data migration scripts, and (ii) automatically rewriting legacy queries
to operate on the new schema. Legacy queries are automatically supported in
two alternative ways: by means of SQL views (among schema versions) or by
automatically translating queries across schema versions by the query rewrit-
ing engine [12]. Wikipedia and its 170+ schema versions provided an invaluable
testbed for validating PRISM and its query rewriting capabilities.

2.2 ArchIS

ArchIS [9] provides, in the context of Panta Rhei Framework, a powerful temporal
data model based on XML, called V-Documents. V-Documents represent, in
a temporally-grouped fashion, the attribute-level-timestamped history of the
snapshot DB. This simplifies issues such as temporal coalescing [13]; moreover,
the choice of XML allows the use of XQuery, which proved well-suited to express
complex temporal queries [8]. To overcome the current performance limitations of
XML, ArchIS exploits mature RDBMS technology, by shredding V-Documents
and storing them in a relational format named H-tables. It also translates XQuery
into the equivalent SQL/XML queries that can be executed over H-tables.



2.3 PRIMA

PRIMA [10, 11] extends the functionalities of ArchIS by allowing the schema to
evolve as data evolve. At every schema change, the snapshot data are archived
using the schema version under which they first appeared, to achieve perfect
archival quality4. This produces a transaction-time database that archives the
data history under multiple schema versions. On the other hand, the task of
writing temporal queries on such archive might become taxing for the users,
since queries may potentially span over several schema versions (tens or even
hundreds in the Wikipedia scenario). PRIMA addresses this issue by letting
the users express temporal queries under a selected schema version, typically the
current one, and then automatically rewriting them against pertinent schema
versions.

2.4 Putting all together: the overall architecture

The overall architecture of the Panta Rhei Framework is shown in Figure 1. The
left-hand side of Figure 1 represents a snapshot database, augmented by the log-
ging functionality, which updates the historical archives of both data and meta-
data (Section 3.3). The right-hand side of Figure 1 shows the core components of
our architecture: PRISM, ArchIS, PRIMA, and the HMM querying interface.
These components share a common data layer based on two archives, captur-
ing data and metadata histories, and the SMO representation of the schema
evolution. In particular, the Historical Data DB represents the transaction-time
archive of the snapshot database—maintained by ArchIS in the relational for-
mat of H-table. In a similar way, the Historical Metadata DB (HMDB) stores
the history of the meta-information that the SQL-compliant DBMSs offer in the
information schema and the SMO-based description of the schema changes.
These data, besides being used by PRISM and PRIMA, provide invaluable
documentation when queried by the Historical Metadata Manager (HMM), as
further discuss in Section 3. One of the benefits of this integrated solution is that
the effort needed to adopt one component, e.g., PRISM, enables at no extra
cost the entire set of functionalities of the Panta Rhei Framework.

3 Historical Metadata Manager

The Historical Metadata Manager (HMM) is a tool capable of storing and query-
ing metadata histories. In this section, we discuss its main components, namely
(i) the underlying data layer Historical Metadata DB (HMDB), (ii) the querying
interface allowing to pose complex temporal queries over the HMDB, and (iii)
the HMM logger, a component that maintains the historical archives updated,
based on the set of changes occurred in the snapshot data and metadata.

4 Data migration is, in general, not information-preserving, thus can potentially com-
promise archival quality.
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Fig. 2. Historical Metadata DB : a portion of V-Document and the corresponding H-
table representations.

3.1 Historical Metadata DB

The HMDB captures the history of the information schema, together with
additional metadata needed in the Panta Rhei Framework (SMOs, user queries,
etc.). Due to space limitation, we discuss only a selected subset of the HMDB
content. We introduce it in a snapshot format, to later present the corresponding
temporal archive.

schemata(schema_name, default_character_set_name)

tables(table_schema, table_name, table_type, table_rows)

columns(table_schema, table_name, column_name, data_type, default_value)

queries(query_id, query_text, schema_name, issue_timestamp)

query_exec(query_id, exec_timestamp, exec_success)

smos(smo_id, smo_text, smo_type, timestamp)

The first three relations, schemata, tables, and columns, come from the
information schema, while the relations named queries, query exec, and smos
store additional metadata needed by PRISM and PRIMA. The queries rela-
tion archives the user queries (as templates), the target schema, and query issuing
time. The table query exec stores the results (boolean flag exec success) of
testing each of above query templates against the subsequent schema versions,
used in the PRISM impact analysis. Lastly, the table smos stores the SMOs
describing the semantics of each schema change.

In order to effectively and efficiently archive the history of these metadata,
we represent them in the V-Document format. Figure 2 shows a portion of the
V-document, capturing the evolution of two columns in the Wikipedia schema
history, and its corresponding H-table representation—ts and te represent re-
spectively the start and end time of the period in which a given value was valid
in the snapshot DB. The first row element represents a column cur.cur text



Fig. 3. Wikipedia results for: (a) Result of Query 2: Wikipedia schema size, and (b)
Result of Query 5: success rate of Wikipedia legacy queries against the subsequent
schema version.

which did not change between time T1 and T2, when it disappears forever. The
second row element, in contrast, shows a column page.page id, which was newly
introduced at time T3, changed its type at time T4 (from INT(5) to INT(15))
and its default value at time T5 (from 0 to -1). The H-table representation in
Figure 2 highlights how the XML data have been shredded in a set of tables
with a regular structure: key-columns, nonkey-column, ts, te.

3.2 Querying the HMDB

The HMM Interface component of Figure 1 builds on top of the ArchIS storage
engine to provide a simple query interface over the HMDB. By means of simple
query examples on the Wikipedia schema evolution history, we illustrate how
the HMM can be leveraged to obtain a deep insight on the evolution itself. The
queries we present are grouped in two classes: (i) queries over the history of the
information schema (Query 1 -Query 3 ), and (ii) queries exploiting SMOs and
logged queries (Query 4 and Query 5 ).

Simple but very useful temporal queries are snapshot queries as the following:

Query 1. What was the Wikipedia database schema valid on 2007-01-01?

for $db in document("wiki-hmdb.xml")/db,

$tn in $db/Tables/row/table_name[@ts<="2007-01-01" and @te>"2007-01-01"]

return <table> {$tn/@text}, <cols>

{$db/Columns/row[table_name=$tn]/

column_name[@ts<="2007-01-01" and @te>"2007-01-01"]/text()}</cols>

</table>

Similarly, it is possible (by range queries) to inspect specific portions of the
history, retrieving all the subsequent modifications occured in a given period.
Next, we give an example of temporal aggregate queries that can be exploited
to observe general trends of the schema evolution:

Query 2. Retrieve the number of columns in the Wikipedia DB throughout the
history.



for $db in document("wiki-hmdb.xml")/db,

$t in $db/Schemata/rows/timestamp

return <tuple> <timestamp>{$t}</timestamp>,

<cnt>{count($db/Columns/row/column_name[@ts<=$t and @te>$t])}</cnt>

</tuple>

The output of such query is nicely rendered in Figure 3a, where it is easy to
spot a net growing trend in the Wikipedia schema size, roughly 31% a year.

Furthermore, to analyze quality and stability of the design it is possible to
pose queries retrieving stable or unstable portions of the schema as the following:

Query 3. Which table in Wikipedia DB schema that remained valid for the longest
period?

let maxInterval:=

max(for $tn in document("wiki-hmdb.xml")/db/Tables/row/table_name

return $tn/@te-$tn/@ts)

for $tn in document("wiki-hmdb.xml")/db/Tables/row/table_name

where $tn/@te-$tn/@ts = maxInterval

return $tn/text()

The answer of this query reveals how the user table was the most stable in
the DB schema. Another interesting class of queries exploits the explicit charac-
terization of the change semantics provided by SMOs to track back (or forward)
the evolution of information stored in a given schema element. Consider the fol-
lowing example:

Query 4. Retrieve the previous version of the information currently stored in
table ‘page’.

let $last_smo_timestamp := max(document("wiki-hmdb.xml")/db/Tables/row/

smo[affected_table_name="page"]/timestamp)

let $last_smo := document("wiki-hmdb.xml")/db/Tables/row/

smo[affected_table_name="page" and timestamp=$last_smo_timestamp]

return $last_smo/input_tables

Finally, by exploiting the information about query templates and their exe-
cution, it is possible to retrieve and visualize the impact of the schema evolution
on the original user queries, as exemplified by the following query:

Query 5. What’s the success rate of legacy queries (valid on 2004-08-15) after
each Wikipedia schema change?

for $db in document("wiki-hmdb.xml")/db,

$t in $db/Schemata/rows/timestamp

return

<tuple>

<schema-change-time>{$t}</schema-change-time>,

<success-rate>{avg($db/query_exec/row

[query_id=$db/queries/row[execution_timestamp="2004-08-15"]/query_id]/

success_flag)}</success-rate>

</tuple>



The result of the query is shown in Figure 3b. The graph effectively highlights
that a sudden drop occurred around 2005-03, due to a deep change of the article
revision management in the Wikipedia DB [3]; this impacted over 70% of the
queries. The spikes in the graph corresponds to syntactically incorrect schema
versions, for which most of the queries failed, see [3] for details.

These relatively simple queries are naturally supported by the HMM on the
history of metadata we archive. This querying capability provides a powerful
tool for dissecting the metadata history, enabling a better understanding of un-
dergoing schema evolution.

3.3 Archive Maintenance

This section briefly discusses how we maintain the historical archives up to date.
The HMM logger of Figure 1 integrates the following functionalities:

Data Archive Update The problem of creating and maintaining a temporal
archive of the snapshot DB has been addressed in [9]. Two solutions have been
proposed, one based on active rules and the other on update logs. In the ArchIS-
DB2 experience, a set of DML triggers have been exploited to maintain the
H-table archive updated by propagating every update of the snapshot DB to the
temporal archive, while the ArchIS-ATLaS prototype obtains the same results
by processing the update log. The choice between the two approaches depends
on performance issues, the interested reader can refer to [9].

Metadata Archive Update To adapt the above methods to work on metadata,
we exploit DDL triggers and SQL DDL logs analysis. The information schema
is, in fact, a virtual DB and no direct updates are issued on it. Recent versions of
Oracle and MS SQL Server support DDL triggers. For MySQL and DB2, simple
workarounds have been designed, based on the fact that the information schema
provides timestamps of the last modifications and that the frequency of schema
changes is rather low. It is thus possible to monitor5 it to detect changes, and
use the timestamps stored in the snapshot information schema itself, to obtain
an accurate temporal archive. The HMDB also stores the sequences of Schema
Modification Operators describing the semantics of the schema change. This is
achieved in two alternative ways: (i) by systematically exploiting PRISM to
explicitly model the schema evolution of the snapshot DB, or (ii) by observing
the evolution and semi-automatically mining the corresponding SMOs.

4 Related Works

The long standing problems of schema evolution and versioning [14, 15] have
been the subject of several research efforts surveyed in [16], and more recent
approaches were proposed in [17–20]. Archiving and querying metadata histories
has been discussed, to a limited extent, in [21], as a byproduct of temporal data

5 This can be automated within the DBMS by means of event triggers (MySQL 5.1)
or scheduled administration tasks (DB2).



archiving. Recent theoretical and practical advances on the related problems of
query rewriting, mapping composition and invertibility appeared in [12, 22–24].
The Panta Rhei Framework builds on top of this solid theoretical foundations
and provides, at the best of our knowledge, one of the most advanced, unified
approaches to the issues of schema evolution and data and metadata history
management.

5 Future Developments

Much of the Panta Rhei Framework is still under development; along with the
implementation of new features and optimizations techniques, a substantial in-
tegration effort is taking place to provide an easily-deployable, unified tool-suite.

Mapping and query rewriting are two core features that our Panta Rhei Frame-
work shares with most of the existing approaches to the problem of data integra-
tion. It is part of our research agenda to investigate the use of the techniques we
exploit in PRISM and PRIMA to tackle data integration and schema evo-
lution in a unified way, as we discuss in [25]. Moreover, metadata histories can
be effectively exploited in the context of automatic schema matching to develop
history-aware matching heuristics. Further investigation is on-going about the
use of semantic data models, to capture uniformly schema changes and schema
mappings [26] in a semantically rich model, which might enable automatic rea-
soning.

6 Conclusions

In this paper, we presented the overall architecture of the Panta Rhei Frame-
work, that unifies the concurrently ongoing endeavors on temporal databases
and schema evolution that have produced PRISM [6, 7], ArchIS [8, 9], and
PRIMA [10, 11]. Thus, this is the first paper describing the History Meta-
data Manager (HMM), a powerful tool we have developed for archiving and
querying the history of the metadata evolution. Such information, represent-
ing the core knowledge on which PRISM and PRIMA operate, is invalu-
able for a Database Administrator trying to understand the schema evolution
of an Information System. The unified XML model exploited allows the use of
XQuery, which is well-suited to express complex temporal queries. The Panta Rhei
Framework has been validated on the real-life schema evolution of the Wikipedia
database.
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