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Abstract. Ascribing causality amounts to determining what elements
in a sequence of reported facts can be related in a causal way, on the
basis of some knowledge about the course of the world. The paper of-
fers a comparison of a large span of formal models (based on structural
equations, non-monotonic consequence relations, trajectory preference
relations, identification of violated norms, graphical representations, or
connectionism), using a running example taken from a corpus of car
accident reports. Interestingly enough, the compared approaches focus
on different aspects of the problem by either identifying all the potential
causes, or selecting a smaller subset by taking advantages of contextually
abnormal facts, or by modeling interventions to get rid of simple corre-
lations. The paper concludes by a general discussion based on a battery
of criteria (several of them being proper to AI approaches to causality).

1 Introduction

Causality is a protean and complex notion. Accordingly, multiple models of cau-
sation were developed in Artificial Intelligence (AI). Indeed, the idea of causality
pervades several important AI problems, e.g., in the diagnosis of the potential
causes from observed effects; in the induction of causal laws from series of obser-
vations; in logics of action; in the qualitative simulation of dynamical systems
(when propagating constraints in influence graphs).

In this article, we focus on the perception of causal relations and causal as-
cription. Unsurprisingly, models proposed for causal ascription generally agree in
some way with the idea of relating causality to counterfactuality: the counterfac-
tual ‘Had A not taken place, B would not have occurred’ sounds as a necessary
condition for declaring that A causes B. This idea underlies many approaches,
from that initiated in modal logic years ago [1], to the approach more recently
advocated by Pearl [2] in a probabilistic setting. However, as we will see, pro-
viding a full account of the way causality is perceived may also benefit from the
identification of facts found ‘abnormal’ by agents in given contexts, among a
series of reported events.
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It is a daunting task to compare the definitions and properties of models of
causal perception and ascription. A preliminary and useful step toward such an
achievement, though, consists of illustrating the behavior of the models through
a series of well-chosen examples. The examples should be realistic and relevant to
the real world—but not so complex that they would no longer be manageable.
They should strike the right balance between traditional, simplistic examples
(the causal equivalents of the Tweety problem in default reasoning), and in-
tractable scenarios such as the circumstances of Princess Diana’s death. Traffic
accidents reports offer an excellent source for such examples. They describe gen-
uine events; they naturally lend themselves to causal analysis (in fact, they are
often used for that very purpose); and they occur in a relatively self-contained
micro-universe. We were able to gain access to a database of traffic accident re-
ports submitted by drivers to insurance companies (the current sample consists
of about one hundred reports of accidents that happened in France in recent
years). We then submitted these reports to a battery of formal models (based
on structural equations, nonmonotonic logics, graphs, or connectionism). Due to
space limitations, we will restrict ourselves to one report:

Example 1 (Accident). We were at ∗ ∗ ∗, I was surprised by the person who braked
in front of me, not having the option of changing lane and the road being wet, I could
not stop completely in time.

All models will use the same common core of variables and pieces of knowledge.
Variables are: Acc (occurrence of an accident), Wet (road being wet), Brak
(driver B brakes in front of driver A), Reac (driver A brakes in reaction to
driver B’s braking), with variants ReacS and ReacL (driver A brakes shortly
after B brakes, or with a longer delay), Ncl (A does not have the option of
changing lane), Sur (A is surprised). Additional variables may be introduced in
some models to display interesting variants of the example. Logical constraints
exist among the variables: (1) Reac ≡ ReacS∨ReacL, (2) ¬ReacS∨¬ReacL, (3)
¬Reac ∨ Brak. The common core of knowledge is: (4) Accidents are abnormal,
(5) Being surprised is abnormal, (6) ReacL and Wet promote Acc, (7) Brak
and Ncl and Sur promote ReacL, (8) Brak and Ncl and ¬Sur promote ReacS.
Each model will incorporate this common core of knowledge, up to its represen-
tational specificities (especially regarding the formalization of what ‘abnormal’
and ‘promote’ mean). Again, additional pieces of knowledge may be introduced
to highlight interesting aspects of the models. The presentation of each model
will follow the same structure: brief motivation, reminder of definitions, sum-
mary of characteristic features, treatment of the example, discussion. Although
the original purpose of this paper is to compare the models mainly on the basis
of formal considerations, their discussion will occasionally point to experimental
data, when they exist.

2 Structural Equations Model

Halpern and Pearl [3] propose a model allowing identification of ‘actual causes.’
Themodel distinguishes between ‘endogenous’ and ‘exogenous’ variables.Assigned
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values of endogenous variables are governed by structural equations, whereas ex-
ogenous variables are assumed to be known and out of control. Only endogenous
variables can be causes or be caused. Background knowledge in such model is given
by the context and structural equations.A causalmodel is denotedbyM=(U, V, F )
where U and V are sets of exogenous and endogenous variables.F is a function that
assigns a value to each variable given each value of its parents. Each assignment of
the exogenous variables U = u determines a unique value x of each subset X of
endogenous variables (i.e. X ⊆ V ).

Definition 1. The event X = x is said to be an actual cause of an event φ if
and only if:

1. X(u) = x and φ(u) is true (when U takes the value u).
2. There exists a partition (Z, W ) of V with X ⊆ Z and some settings (x′, w′)

of (X, W ) such that if Z(u) = z∗ (z∗ is the value assigned to Z when U = u),
both of the following conditions hold:
a) φX←x′,W←w′(u) is false, namely, if X is set to x′ and W is set to w′

then φ becomes false.
b) φX←x,W ′←[w′],Z′←[z∗](u) is true for all W ′ ⊆ W and for all Z ′ ⊆ Z.

Namely, if X is set to x, W ′ is set to [w′] ([w′] is an instantiation of W ′

consistent with w′), and Z ′ is set to [z∗] then φ remains true.
3. The subset X is minimal.

Pearl and Halpern also proposed an extended causal model to deal with ex-
cluded settings. The extended version of Definition 1 consists of adding to the
tuple (U, V, F ) a set E that contains allowed settings of endogenous variables.
E functions as some kind of integrity constraint. In our example, all settings are
considered allowed, and the extended causal model collapses with Definition 1.
The causal model described above can be represented using a graph, in which
nodes are corresponding to variables in V and an edge from X to Y exists if the
value of Y depends from the value of X . This graph is a directed acyclic graph
(DAG) representing the relationships between variables which are fully specified
by structural equations.

Example. We model the example presented in the introduction using only en-
dogenous variables. Variables Brak, Ncl, Sur, Wet and Acc have the same
meaning as previously given. The variable Reac is a ternary variable taking its
values in {ReacS, ReacL, NoReac} where NoReac stands for ‘A does not brake’.
For simplicity, we consider that all settings are allowed (E = ∅). The structural
equations are given by:

– Acc =
{

1 if wet = 1 and Reac = ReacL
0 otherwise

– Reac =

⎧⎨
⎩

NoReac if Brak = 0 or Ncl = 0
ReacS if Sur = 0 and Brak = 1 and Ncl = 1
ReacL if Sur = 1 and Brak = 1 and Ncl = 1



50 S. Benferhat et al.

Sur

Brak

Ncl

Reac

Wet

Acc�
����

�
�

��
�

�
�

��

Fig. 1. A causal network

This model can be represented by the DAG given in Figure 1. Assume that the
actual context is Sur = 1 and Brak = 1 and Ncl = 1 and Reac = ReacL and
Wet = 1 and Acc = 1. Now let us find causes of the event Acc = 1 in this
context. We first check if Ncl = 1 is a cause of Acc = 1. Condition 1 holds
since Ncl = 1 and Acc = 1 is true in the actual world. Given the partition
Z = {Ncl, Reac, Acc} and W = {Sur, Brak, Wet}, it is easy to check that
maintaining the actual context (w′ = {Sur = 1, Brak = 1, Wet = 1}) and
changing the value of Ncl from true to false (i.e. Ncl = 0) is enough to change
the value of Acc from true to false (i.e. Acc = 0). Condition 2a is satisfied for
w′. Setting Ncl to true and setting all subsets Ŵ (e.g. {Sur = 1}) of W to their
values ŵ (consistent with w′) is not enough to change the value of Acc which
remains true (i.e. Acc = 1). Thus condition 2b is also satisfied. It is obvious
that Ncl = 1 is minimal (condition 3). We conclude that Ncl = 1 is a cause of
Acc = 1. Maintaining the same context and setting W = w′ we obtain that each
event is a cause of Acc = 1.

Discussion. Despite the fact that this model allows to handle notorious case
studies on causality, it still presents some limitations. Reasoning with structural
equations means that all required information must be available (this makes
sense in some physics applications where structural equations reflects physical
laws among a limited set of variables). Unfortunately, this is not always the
case, which may limit the scope of application. For example, rules (4) and (5)
in the introduction cannot be easily represented [4], and using non-monotonic
rules may be an interesting alternative. Besides, requiring that any assignment
of exogenous variables uniquely determines the value of all endogenous variables
is not always natural. The apparent lack of selective power of this model may
also be considered a weakness, as an event is very easily designated as a cause
of another. E.g., in our example, each event is a cause of Acc = 1. In order to
select preferred causes, it may be interesting to assign ‘weights’ on the basis of
levels of normality assigned to each cause according to its implication in making
the event happening.

3 Nonmonotonic Logic Approaches

As discussed by philosophers of law [5], and experimentally checked by psychol-
ogists,‘abnormal’ facts are privileged when providing causal explanations [6].
Added to the insufficiency of material implication for representing causation,
this naturally leads to consider nonmonotonic logic-based approaches for causal
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ascriptions. Relations between nonmonotonic inference and causality have al-
ready been emphasized by authors dealing with reasoning about actions and the
frame problem [7,8]. ‘Causal rules’ are understood there as ‘there is a cause for
effect B to be true if it is true that A has just been executed,’ where ‘there is a
cause for’ is a modal operator. However, we are not interested in the following
in the proper modeling of already established causality relations, but rather in
the ascription of causality relations in a reported series of facts or events.

3.1 Nonmonotonic Consequence Approach

To reflect the fact that human agents cannot always couch their beliefs in pre-
cise probabilistic terms, Bonnefon et al. [9,10] offer a qualitative counterpart to
probabilistic conceptions of causality. This approach is based on pieces of default
knowledge, and privileges the role of abnormal events in a given context.

Definition 2. Assume an agent learns of the sequence ¬Bt, At, Bt+k. Call Kt

(the context) the conjunction of all other facts known by the agent at time t. Let
|∼ denote a nonmonotonic consequence relation. If the agent believes K |∼ ¬B
and K ∧ A |∼ B, the agent will perceive A to cause B in context K, denoted
A � B. If the agent believes that K |∼ ¬B, and K ∧ A �|∼ ¬B rather than
K ∧ A |∼ B, then A is perceived as facilitating rather than causing B, denoted
A � B.1

In the definitions of � and �, |∼ is a preferential entailment in the sense of Kraus
et al. [11], and a rational closure entailment, respectively. This definition has no-
ticeable features. E.g., causes and facilitations are abnormal in context: If A � B
or A � B then K |∼ ¬A. Furthermore, causality is transitive only in particular
cases: If A is the normal way of getting B in context K, i.e., K ∧ B |∼ A, and if
A � B and B � C, then A � C. The practical significance of Def. 2 (includ-
ing the distinction between causation and facilitation), as well as the restricted
transitivity property, have been validated by behavioral experiments. Note that a
facilitation is abnormal and is not a necessary condition for the effect, in contrast
to an enabling condition (see below).

Example. The story that unfolds in the report reads: At any point in time, Wet
is true. Initially, Ncl is true, and Acc, Brak, Reac, and Sur are false. Next,
Brak and Sur become true. Next, ReacL becomes true. Finally, Acc becomes
true. The formalization of the common core of knowledge is : (4) |∼ ¬Acc;
(5) |∼ ¬Sur; (6) ReacL ∧ Wet |∼ Acc ; (7) Brak ∧ Ncl ∧ Sur |∼ ReacL; (8)
Brak ∧ Ncl ∧ ¬Sur |∼ ReacS.

From (4) and (6), we derive ReacL∧Wet � Acc. The cause of the accident is
the conjunction of braking late and the road being wet. Now let us consider a few
additional plausible nonmonotonic rules. Assume that long-delay braking alone,
1 K may be omitted in practice. Def. 1 corresponds to a basic scenario already consid-

ered by von Wright [1]: The falsity of Bt agrees with the piece of general knowledge
K |∼ ¬B and after At takes place Bt+k becomes true, although normally if At does
not happen, ¬B would have persisted.
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although it does not make accidents normal, at least makes them not abnormal
(ReacL �|∼ Acc together with ReacL �|∼ ¬Acc). Adding this assumption, we can
derive ReacL � Acc; i.e., the long-delay braking alone facilitated the accident
(but the cause of the accident is still the conjunction of late braking and the
road being wet). Assume now that late braking is abnormal (|∼ ¬ReacL), and
remains so in the context of others braking, and being unable to change lane
(Brak∧Ncl |∼ ¬ReacL). Then it follows from (7) that being surprised caused the
late braking (Sur � ReacL). For the purpose of further illustration, let us assume
that accidents remain abnormal even when roads are wet (Wet |∼ ¬Acc). Then it
is possible to derive than late braking alone caused the accident (ReacL � Acc).
Note now that Sur � ReacL together with ReacL � Acc. Surprise caused the
late braking that itself caused the accident. Does it follow by transitivity that
Sur � Acc, i.e., that surprise caused the accident? Not necessarily so, for � is
not generally transitive. If, however, we are ready to accept that ReacL |∼ Sur,
i.e., a late braking is usually diagnostic of a surprised driver, then it follows from
the restricted transitivity property of � that the surprise caused the accident.
Finally, suppose that that we add to the story that some other car C hit B.
Then, the nonmonotonic approach yields a disjunctive causal ascription ‘car
hitting OR late braking’ caused the accident. Only a more detailed report may
lead the approach to privilege one of the disjuncts.

Discussion. This approach relies on the beliefs about the ‘normal’ states and
courses of the world. Such beliefs are agent-dependent, which explains that differ-
ent individuals may have different readings of events. Since the inference engine
based on System P is very cautious, many of these normal states must be explic-
itly coded rather than derived. Causality ascription is localized, thanks to a lack
of general transitivity, but also because only events that are explicitly mentioned
in the story can be detected as causes. Exceptional events are favored as poten-
tial causes, which help discriminating causes; in fact, the approach only exhibits
causes that are abnormal events. A notion of ‘necessary condition’ (or enabling
condition) [12] can be defined to deal with normal events without which nothing
would have happened. Finally, this approach does not embed the notion of inter-
vention and thus cannot readily distinguish spurious correlation from causation.
See nonetheless the Graphical Models and Interventions section for an extension
of the approach into that direction (both the current approach and graphical
models can be encoded in a possibilistic setting).

3.2 Trajectory-Based Preference Relations

This proposal [13]2 starts with the idea that counterfactuality involves the com-
putation of two kinds of evolutions of the world, namely extrapolation [14] and
update [15]. If we want to know whether Sur(2) (being surprised at time point 2)
is a counterfactual cause of Acc(3), given a scenario Σ (Brak(1)∧Sur(2)∧Ncl(2)∧
Wet(2) ∧Acc(3)), we need to (i) compute the most normal evolutions of the world

2 For the sake of brevity, this novel approach is only sketched in this paper.
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(called trajectories) that correspond to the scenario Sur(2) and Acc(3). This com-
putation is called extrapolation, it is a process of completing initial beliefs sets
stemming from observations by assuming minimal ‘abnormalities’ in the evolu-
tion of the world with respect to generic knowledge. In our example, the preferred
trajectories satisfying Σ do satisfy Sur(2) and Acc(3) (since they are mentioned in
Σ). (ii) Compute what would have happened to Acc3 if Sur(2) had not been true.
This is done by updating the temporal formula representing the scenario by the
formula ¬Sur(2). At this step, update aims at capturing a minimal change w.r.t.
the initial scenario. The update operator proposed in [13] is based on a distance
between trajectories that take into account the time point of the change and nor-
mality. Here, the trajectories that satisfy ¬Sur(2) that are closest to the previous
preferred trajectories until the time of the change and that are the most normal
satisfy ¬Acc(3). Hence the surprise can be considered as counterfactually caus-
ing the accident. One may consider that not all counterfactual causes are impor-
tant; the lack of selectivity of counterfactuality is tackled here by using normality.
Choosing among the ‘normal’ counterfactual causes, the most abnormal ones in
context, would further increase selectivity.

3.3 Norm-Based Approach

This approach [16], too, rests on the idea that norms are crucial for people to
find causes of events: if the event is considered normal, its cause is the norm
itself; if abnormal, its cause is traced back to the violation of a norm.3

Principle. Searching for the cause of an abnormal event E occurring at time
t basically amounts to finding an agent who should, according to some norm,
adopt behavior b at a time t′ < t, and actually adopted another behavior b′, such
that E appears as a normal consequence of b′ (in that sense, for example, the
lack of liability insurance is a norm violation but cannot usually be considered
the cause of an accident, because it arguably does not normally have an accident
as a consequence). Another condition must be checked, namely that, at t′, the
agent had the possibility to have the normal behavior b; otherwise, b′ is only
a derived anomaly and the search must be pursued to find a primary anomaly,
occurring earlier than t′ and explaining the impossibility of the agent to have
the behavior b at t′. Whenever this search fails, i.e., when the privilege conferred
to an ‘interventionist’ kind of cause gives no result, and only in this case, we
look for some non agentive abnormal circumstance that could explain E.

Norm-based reasoning is intrinsically non monotonic, as norms are rules that
apply by default. For this reason, in this approach, the knowledge necessary to
causal ascription is expressed in a reified first-order logic augmented with default
rules (in the sense of R. Reiter); the fact that property P holds for agent A at
time t is written holds(P, A, t). A discrete and linear model of time is sufficient,
as only what really happened is represented. Two modalities are introduced to

3 The word ‘norm’ is taken here in the ‘normal’ rather than ‘normative’ sense; but as
we expect agents to respect their duties, the normative is seen as a special case of
the normal.
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express norm violations: should(P, A, t) and able(P, A, t) standing for: at time t,
A should (resp. has the ability to) achieve P .

Testing this approach in the domain of road accidents requires to gather all
the literals of the form should(P, A, t) that are relevant for this domain. To this
end, we examined 73 car-crash reports, used as a training sample among the 160
reports in our possession; the remainder being left for validation purposes. For
the running example of this paper, we only need a few of these literals: By wet
weather, one should reduce one’s speed; having had an accident at time t entails
that one had at time t − 1 the duty of avoiding some obstacle; and having this
duty and being unable to change lane amounts to have the duty to stop. This is
written (→ is the material implication):

(1) Wet → should(reduced speed, A, t)
(2) holds(Acc, A, t) → should(avoid obs, A, t − 1)
(3) should(avoid obs, A, t) ∧ ¬able(ch lane, A, t)

→ should(stop, A, t)

Expressed in this language, the cause of an abnormal event (the ‘primary
anomaly’ P ano) obtains as:

(4) should(F, A, t) ∧ able(F, A, t) ∧ ¬holds(F, A, t + 1) → P ano(F, A, t + 1)

I.e., if at t an agent A should do F and was able to do F , while at t+1, F failed
to be done, this failure is the cause looked for. Similarly, a ‘derived anomaly’
D ano is detected by the rule:

(5) should(F, A, t) ∧ ¬able(F, A, t) → D ano(F, A, t)

Assume as a default that agents having a duty are generally able to comply with
it. Exceptions to this default mostly correspond to cases where the situation
allows to prove the impossibility of actions known to produce the desired effect.
Example. With the notations adopted in this paper, the example is writ-
ten: holds(Brak, B, 0), holds(Sur, A, 1), holds(Ncl, A, 2), holds(Reac, A, 2),
holds(Acc, A, 3), Wet. Ncl (inability to change lane) translates as:

(6) holds(Ncl, A, t) → ¬able(ch lane, A, T )

Expressing that surprise entails a late brake is written as:

(7) holds(Sur, A, t − 1) ∧ holds(Reac, A, t) → holds(ReacL, A, t)

Whether late braking entails or not an accident depends on the ability of the
driver to stop the vehicle, i.e.:

(8) holds(ReacL, A, t) → [holds(Acc, A, t + 1) ↔ ¬able(stop, A, t)]

Rule (2) and fact holds(Acc, A, 3) yield should(avoid obs, A, 2); (6) gives
¬able(ch lane, A, 2), hence (3) deduces should(stop, A, 2). From (7) with
premises holds(Reac, A, 2) and holds(Sur, A, 1) we get holds(ReacL, A, 2). So
(8) shows that something abnormal occurred: agent A should have stopped
at time 2 but was unable to. According to (5), this is a derived anomaly,
so the search for the cause of the accident must go on. The ability to stop,
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under the circumstances, is expressed by (9) able(stop, A, t) ↔ (¬Wet ∨
holds(reduced speed, A, t)), which gives ¬holds(reduced speed, A, 2). (1) shows
that should(reduced speed, A, t) for any t. Without proof to the contrary, the
default ‘agents who should do something are generally able to do it’ yields
able(reduced speed, A, 1), and (4) tells that we have a primary anomaly, i.e.,
a cause of the accident: ‘at time 1, A was able to reduce speed; because of the
wetness of the road, A should have done so, but the occurrence of the accident
at time 3 shows that he was still driving too fast at time 2.’

Discussion. In traffic accident examples, the norm-based approach views norms
as normative duties. To generalize this approach to domains where norms are
only what is normal (as opposed to mandatory), it is necessary to organize these
norms in a hierarchy, and to conjecture that the most specific violated norm
will be perceived as the cause of an abnormal event. Testing this conjecture
requires to gather a reasonably complete set of norms for the domain, which
is a hard task. This was achieved in the domain of traffic accidents, and the
validation process for this domain is underway. We intuitively determined the
causes of the 160 accidents in the corpus, translated the gathered norms in
Smodels [17], and implemented a system translating natural language sentences
into the language of the norm-based approach. This system [16] agrees with the
researchers’ intuitions in 95% of the training sample and 85% of the validation
sample. Behavioral experiments are underway to check whether these intuitions
are shared by a majority of subjects.

4 Graphical Models and Interventions

Intervention is a critical route to causation. Ascribing causality becomes eas-
ier when experimenting, then observing the effects of the manipulation on the
system. Such changes cannot be deduced from a joint probability nor possi-
bility distribution, even fully specified on the variables describing the system.
Graphical causal models help make explicit the assumptions needed by allowing
inference from interventions as well as observations. A causal Bayesian network
is a Bayesian network where directed arcs of the graph are interpreted as ele-
mentary causal relations between variables. When there is an influence relation
between two variables, intervention allows to determine the causality relation
between these variables. In this case, arcs between variables should follow the
direction of the causal process. Pearl [2] proposed an approach for handling inter-
ventions using causal graphs based on a ‘do’ operator. Note that causal relations
expressed by graphs only concern variables, not complex events. Causal Bayesian
networks organize causal knowledge in terms of a few basic mechanisms, each
involving a relatively small number of variables. Each intervention entails local
change at the level of only one parents-child relation.

This section summarizes manipulation methods for handling interventions
in possibilistic causal networks. Indeed graphical models are compatible both
with a probabilistic and a possibilistic modeling of uncertainty. The possibilistic
setting [18] is adopted here. It is more qualitative, and allows us to more easily
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relate graphical models to nonmonotonic approaches. In fact, the ‘do’ operator
has been first proposed within Spohn’s ordinal conditional functions framework
which has strong relationships with possibility theory. The parents-child relation
at the level of each variable Ai is governed by a local possibility distribution
Π(Ai|UAi) where UAi is the parents set of Ai. The joint possibility distribution
is computed using the chain rule: π(A1, ..., An) = ♦i=1,...,nΠ(Ai|UAi), where
♦ is either equal to min or product. An intervention forcing a variable Ai to
take the value ai is denoted do(Ai = ai) or do(ai). This intervention consists
of making Ai true independently from all its other direct causes (i.e. parents).
Graphically, this modification is represented by the deletion of links from UAi

pointing into Ai. The resulting graph is said to be mutilated and we have:

π(ω|do(Ai = ai)) = πmut(ω|Ai = ai) =
{

♦aj :Aj �=AiΠ(aj |uAj ) if ω[Ai] = ai

0 otherwise

where ω[Ai] = ai means that ω is consistent with Ai = ai, and πmut is the joint
possibility distribution given by the mutilated graph. Another approach [19]
consists in adding a new variable denoted DOAi as a parent node of Ai. DOAi

takes value doAi−noact when no intervention is observed, and value doai when an
intervention occurs, forcing Ai to take value ai (ai belonging to the domain of
Ai). The resulting graph is called augmented. In [20], we showed that the better
option to compute the effect of interventions is using augmented graphs, since
it allows to reuse existing propagation algorithms without any change.

Example. Let us consider the possibilistic causal network given in Fig. 1. The
variables Brak, Ncl, Sur, Wet and Acc are binary variables with a domain {0, 1}
and have the same meaning as in above examples. However, Reac is a ternary
variable taking its values in {ReacS, ReacL, NoReac} where NoReac means ‘A
does not brake’, ReacS means ‘A brakes as soon as B brakes’ and ReacL means
‘A brakes later after B braked’. For simplicity’s sake, we assume only three levels
of normality: 1 (i.e. fully plausible) > β > α > 0 (i.e. impossible). Prior local
possibility distributions are assumed to be: Π(Sur = 0) = 1 > Π(Sur = 1) = α,
which encodes rule (5) of the introduction; Π(Brak = 0) = 1 > Π(Brak = 1) =
β > α, Π(Ncl = 0) = 1 > Π(Ncl = 1) = α, Π(Wet = 0) = 1 > Π(Wet =
1) = α, which respectively express that normally: ’B does not brake’, ‘ there
is no possibility to change lane’, and ’the road is not wet’. The local possibility
distribution for Reac (i.e. Λ1 = Π(Reac|Sur, Brak, Ncl)) is given by (9):

Λ1 =

⎧⎪⎪⎨
⎪⎪⎩

1 if (Reac = NoReac and (Brak = 0 or Ncl = 0))
or (Reac = ReacS and Sur = 0 and Brak = 1 and Ncl = 1)
or (Reac = ReacL and Sur = 1 and Brak = 1 and Ncl = 1)

α otherwise

Rules (7) and (8) of the introduction are encoded. Indeed, for instance re-
garding rule (8) we have Π(Reac = ReacL | Sur = 1, Ncl = 1, Brak = 1)
= 1 > Π(Reac = ReacS|Sur = 1, Ncl = 1, Brak = 1) = α (and Π(Reac
= ReacL | Sur = 1, Ncl = 1, Brak = 1) = 1 > Π(Reac = NoReac|Sur = 1,
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Ncl = 1, Brak = 1) = α, which means that if ‘when the driver B brakes, A is
surprised and there is no a possibility to change lane’ then it is more plausible
that the driver A brakes with a longer delay than he does not brake or he brakes
shortly after B brakes. Lastly, the local possibility distribution at the level of
Acc (i.e. Λ2 = Π(Acc|Wet, Reac)) is given by (10):

Λ2 =

⎧⎨
⎩

1 if (Acc = 1 and Wet = 1 and Reac = ReacL)
or (Acc = 0 and (Wet = 0 or Reac = NoReac or Reac = ReacS))

α otherwise

Again, rule (6) is encoded since Π(Acc = 1 | Wet = 1 and Reac = ReacL) >
Π(Acc = 1 | Wet = 0 or Reac �= ReacL). Note that rule (4) is not explicitly
represented but is only derived. Indeed, after propagation of weights we obtain
Π(Acc = 0) = 1 > Π(Acc = 1) = α which means that accidents are abnormal.

For binary variables, possibilistic graphical models can encode causality re-
lations as defined by nonmonotonic logic approaches. E |∼ F is interpreted by
Π(E∧F ) > Π(E∧¬F ). This relation satisfies rational monotony in addition to
System P, providing more causal relations. Besides, whereas only reported events
can be causes as per Definition 1, unreported but strongly plausible events can
be causes in the possibilistic frameworks. Lastly, graphical models provide a com-
putational tool for causality ascriptions in presence of interventions. Recall that
Π(Acc = 0) = 1 > Π(Acc = 1), i.e. Acc = 1 is rejected in the initial context.
Let us consider an external factor (say, an animal crossing the road) forcing
the variable Reac to take value ReacL. This intervention do(Reac = ReacL)
can be represented by mutilating or by augmenting the graph. Assume more-
over that the road is wet. After computation, we have Π(Acc = 1|do(Reac =
ReacL), Wet = 1) = 1 > Π(Acc = 0|do(Reac = ReacL), Wet = 1). Namely,
after intervention do(Reac = ReacL) and observation Wet = 1, event Acc = 1
becomes accepted. We conclude that do(Reac = ReacL) and Wet = 1 caused
Acc = 1.

Discussion. Graphical models offer a natural representation of causal relations
between elementary events (e.g. variables), thanks to the ’do’ operator that
models interventions. They can be viewed as complementing or extending non-
monotonic approaches. Indeed, Definition 1 can be naturally extended when
reported events include interventions (as illustrated above). A graphical model
goes beyond System P without recovering transitivity. It can be used to discrim-
inate between possible causes by considering the most plausible ones, and allows
causality ascription in presence of observations and interventions.

5 Theory of Explanatory Coherence (TEC)

Thagard’s theory of explanatory coherence [21] and its connectionist implemen-
tation (ECHO) view causal ascriptions as attempts to maximize explanatory
coherence between propositions. Although this model did not originate from the
AI knowledge representation community, it addresses a similar concern to the
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other models with have reviewed, and it is as much implementable. In the ac-
cident example, maximizing coherence would lead to accept the most plausible
hypotheses that explain the accident and reject the alternative hypotheses. If
one proposition explains another, then there is a positive constraint between
them. Negative constraints result from events that prevent or are inconsistent
with other events. Maximizing coherence is generally considered to be computa-
tionally intractable. Nevertheless, good approximation algorithms are available,
in particular connectionist algorithms such as ECHO. ECHO creates a network
of units with explanatory and inhibitory non directional links and then makes
inference by spreading activation through the network until all activations have
reached stable values. Note that links can be excitatory or inhibitory and units
can be positively or negatively activated. When units have settled, the accepta-
tion and rejection of hypotheses depend on whether final activation is positive
or negative. Some units can be given priority by linking them positively with
a special unit whose activation is kept at 1. A coherence problem is defined as
follows [22]. Let E be a finite set of elements {ei} and C be a set of constraints
on E understood as a set {(ei, ej)} of pairs of elements of E. C divides into
C+, the positive constraints on E, and C−, the negative constraints on E. With
each constraint is associated a number w, which is the weight (strength) of the
constraint. The problem is to partition E into two sets, A and R, in a way that
maximizes compliance with the following two coherence conditions:

1. if (ei, ej) is in C+, then ei is in A iff ej is in A;
2. if (ei, ej) is in C−, then ei is in A iff ej is in R.

Let W be the sum of the weights of the satisfied constraints. The coherence
problem is then to partition E into A and R in a way that maximizes W . Let
E, C, C+, and C− as defined above. ECHO runs as follows:

1. For every ei of E, construct a unit ui, a node in a network of units U ;
2. For every positive (negative) constraint in C+ (C−) on elements ei and ej ,

construct an excitatory (inhibitory) link between the corresponding units ui

and uj affected with the same positive (negative) weight.
3. Assign each unit ui an equal initial activation. Update activation of all the

units in parallel given current activations and the weights on links [23]
4. When units have settled, hypotheses acceptation and rejection depend on

the sign of their final activation. Some units can be given priority by linking
them positively with a special unit whose activation is kept at 1.

Example. In Figure 2 each node represents a variable. The three nodes on the
left and the Wet node correspond to variables with priority; in this case, ini-
tial conditions at the beginning of the accident process. Dotted lines represent

Table 1. Final TEC activation values

Brak Wet Sur Ncl ReacL ReacS Acc
Brak, Wet, Sur, Ncl initially set to 1 -.22 .72 .68 -.22 .23 -.70 .58
Only Brak initially set to 1 .68 -.64 -.65 -.43 .46 .73 -.56
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Brak

Ncl

Sur

ReacL

Wet

ReacS

Acc

Fig. 2. Accident Example Network in ECHO

inhibitory links. Table 1 shows final activation values of the variables after the
units have settled. When initial conditions are Brak = Wet = Sur = Ncl = 1
(All in Table 1), the hypothesis that the accident occurs is accepted (Acc = .58).
Wet, Sur, and ReacL are accepted, all other hypotheses are rejected. The most
activated causes are Wet and Sur. When the only initial condition is Brak, the
accident hypothesis is rejected: Brak alone is not a sufficient condition for Acc.

Discussion. ECHO establishes an ordering between accepted causes, their final
activation representing their causal power. It is of particular interest because
previous experimental studies [9] have suggested that human distinction be-
tween facilitation and genuine causality is based on the strength of the relation
between events. Inference in connectionist models like ECHO is not monotonic,
not transitive, and can be forward or backward. Although the only central notion
is coherence in TEC, questions of abnormality, temporality and intervention can
be introduced in order to compute a more powerful causal inference. ECHO can
be translated in Pearl’s probabilistic networks [24], and has been used in diverse
psychological domains in addition to the computation of causation [25].

6 General Discussion

Causality has always been the matter of hot debates. There exists no consensus
about its very nature: is it a means by which the human mind makes sense of
the world, or an objective property of the world? Is causation intrinsically deter-
ministic, and only our ignorance makes it admissible to approach it by methods
devoted to handle uncertain knowledge; or on the opposite, is its relation to
uncertainty fundamental? The models we described are agnostic with respect to
such debates—and this should be no surprise to the reader, as this paper is not
about causation per se, but about how, under practical circumstances, agents
prune among a huge number of potential causal factors.

Although the different models start with the same core of variables and pieces
of knowledge (1–8), they rely on representation frameworks of different expres-
sive power, and they may exploit additional pieces of knowledge that are not
assumed to be available to other models. For example, the norm-based approach
relies on a vast set of norms extracted from driving regulations, while for in-
stance the graphical approach relies on probabilistic or possibilistic information.
Although this introduces some heterogeneity in the treatment of the example,
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Table 2. Comparison of the models, synthesis

Structural Eq. TEC Norms Trajectories Nonmon. Consequences Graphs
Selectivity No Yes Yes Yes Yes Yes
Abnormality No No Yes Yes Yes Yes
Temporality No No Yes Yes Yes Yes
Cause Present No No No No Yes Yes
Intervention No No No Yes No Yes
Agentivity No No Yes No No No
Backward Cause Yes Yes No No No No

this heterogeneity is irreducible if we want to compare a large span of approaches
while respecting their specific modeling strategy.

Table 2 sums up some features of each model.4 TEC and the structural equa-
tion model do not make explicit the temporal relation between the factors they
deal with, e.g. braking occurs before stopping (temporality). All other models
make this temporal link explicit. Accordingly, all models but TEC and the struc-
tural equation model assume that effects cannot precede their causes (backward
causation). The structural equation approach is the least selective of all (but
see caveat in section 2), in that sense that it delivers a set of factors that all rea-
sonably have some relevant causal connection to the effect under consideration.
All other models strive to select a smaller set of factors, apparently emulat-
ing human judgments (selectivity). These models privilege different aspects
of information to select one event as the main cause. First, all these selective
models make explicit the contrast between normal and abnormal states of af-
fairs, to orient the search of causes of an abnormal event towards factors that
make a normal course of events become abnormal (abnormality). Then, some
of them (nonmonotonic consequences, graphical models) consider that the cause
is bound to belong to the set of facts given in the description (cause present),
whereas the other models are allowed to elicit causes among implicit elements
derived from these facts, or including as background knowledge in the course of
the modelling. Besides, one model (norm-based) privileges as causes events that
are under the control of agents (agentivity). Finally, some models (trajectories,
graphical model) can support explicit intervention-like manipulations, where a
variable can be forced to take some value, regardless of what its normal value
would be given the values of the other variables (intervention).

In addition to the criteria summarized in Table 2, let us note that only the
structural equation model is deterministic, in the sense that there is (commonly)
no uncertainty in the structural equations relating the variables representing the
micro-universe under consideration. This could be seen as a guarantee of accu-
rateness, as far as the description of the micro-universe is reasonably complete.
4 Transitivity is not a built-in characteristic in any model we have considered. De-

pending on the specific setting of some parameters, though, some of them may take
causation to be transitive. Comptutational tractability is not a truly discrimi-
native criterion here either. All the formalisms underlying the approaches we have
reviewed have already been implemented. Moreover, the formal complexity of all
these frameworks has already been studied; and in any case, the treatment of traffic
accident reports is unlikely to lead to any significant combinatorial explosion.
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However, such accurateness would come with a price. Leaving aside the compu-
tational cost of ascription itself, a deterministic model is more costly in terms
of the acquisition of information that is necessary prior to making any ascrip-
tion. Furthermore, default, incomplete knowledge is arguably less unrealistic as
a model of the kind of knowledge human agents bring to a causal ascription task.

Among the topics that we have not covered, the role of argumentation in
causal ascription is worth mentioning. Argumentation is a dynamical process
where arguments interact to assess a given claim (here, a causal claim), and
processing of causal arguments requires a particular argumentation theory [26].
Agents may argue about where causation takes place in a sequence of events;
they may use a weaker notion of causality than, e.g., Def. 2. But agents may
also use argumentation in a self-serving way: in the case of a traffic accident,
they may attempt to present events in a favorable way; to produce a ‘biased
description,’ that remains respectful of the essential facts, but triggers inferences
to conclusions that are in favor of the arguer. For example, one argumentation
technique consists in suggesting a causal link between two facts, even if the
causation is at best debatable. One typical case is to present the violation of a
‘strong’ norm as a consequence caused by the adversary’s violation of a ‘weak’
norm, as in the example: ‘At the stop sign, the driver on the main road delayed
in entering the intersection; I proceeded.’ The author wishes to convey that it is
normal to overstep a stop sign, in case the vehicle having priority is hesitating.
Identifying argumentative strategies may help to get a better understanding of
reports, by detecting understatements, and reconstructing what is not explicitly
said. In addition, further work will have to compare approaches in terms of their
handling of preventative (negative) causation, and of their syntax sensitivity.
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