
On the Role of Architectural Design Decisions in
Software Product Line Engineering

Rafael Capilla 1, Muhammad Ali Babar2

1Universidad Rey Juan Carlos, Spain 2LERO, UL, Ireland
1rafael.capilla@urjc.es, 2malibaba@lero.ie

Abstract. An increased attention to documenting architectural design decisions
and their rationale has resulted in several approaches and prototype tools for
capturing and managing architectural knowledge. However, most of them are
focused on architecting single products and little attention has been paid to
include design decisions in the context of product line architectures. This paper
studies two similar research tools that capture architecture design decisions and
how these can be extended to include product line specific features. We report
the improvements needed by the data models of the two tools and we provide a
unified data model as a research agenda to support both the relationships
between design decisions and variability models in a product line context.

1. Introduction

Early in the nineties, Perry and Wolf emphasized the importance of Design
Rationale (DR) in Software Architecture (SA) [22]. To date, the traditional
approaches to documenting software architectures have been mainly based on the
description of architecture views that reflect the interest of different stakeholders [10]
[18] [23], but little attention has been paid to capturing and managing the rationale for
key design decisions. The need to reduce the maintenance effort and to avoid
architecture erosion because decisions are never recorded requires them to be
captured.

Many claims have been made about the problems caused when design decisions
are not explicitly documented [27], as they constitute a clear way to mitigate the
effort required in understanding the architecture of a system when the experts or the
creators of the architecture are no longer available. Bosch pinpoints [4] that “we do
not view a software architecture as a set of components and connectors, but rather as
the composition of a set of architectural design decisions”. This idea, also stated in
[10], claims for methods and techniques to enable the representation and capture of
architectural design decisions in parallel with their architectures. In order to bridge
the traditional gap between requirements and designs, a “new” architecture view so-
called the “decision view”, is proposed in [11], which considers design decisions as a
cross-cutting information with respect to the other traditional architecture views that
have to be documented explicitly.

mailto:rafael.capilla@urjc.es
mailto:malibaba@lero.ie

Other research works rely on the definition of specific templates for capturing and
representing the knowledge that should be part of the description of a design decision.
Some authors like [19] [30] propose extensive list of attributes for characterizing he
design decisions whiles other [8] advocate the use of more flexible approaches based
on list of mandatory and optional attributes that can be tailored for different
organizations and user’s needs in order to reduce the effort spent during the capturing
activity. The authors in [19] consider that Architectural Knowledge (AK) = Design Decisions
+ Design, and they use ontologies to describe both the decisions and the relationships
between them. Since design decisions can bridge the gap between requirements and
architectures and code, recording these relationships [31] can benefit maintenance
and evolution processes, and help to understand the root causes of changes or to
estimate change impact analysis. To date, only a few works have partially addressed
using design decisions in a product line environment, and from our view more work
is required to support the specificity of product line development.

The remainder of this work is structured as follows. Section 2 describes those
features specific to product line development as well as some approaches that try to
introduce design decisions in product line practices. Section 3 discusses our approach
to relate architecture design decisions to product line features. Section 4 outlines two
similar prototype tools for supporting and managing design decisions and how these
could support those issues attained to product lines. Section 5 describes a unified data
model as a future research agenda for a new tool aimed to capture, manage, and
represent design decisions both for single architectures and product lines. Section 6
provides some related work, and in section 7 we provide the main conclusions.

2. Product Line Engineering Features

Software Product Line Engineering (SPLE) has emerged as a successful mode of
developing software. SPLE aims to create a family of related products based on a
single architecture that can be tailored to meet the requirements of different products.
This is achieved through the identification of commonalities and variations among the
different systems of a given family which are represented in the product line
architecture (PLA). The required variability can be realized by means of different
variability realization techniques, like those reported in [26]. A PLA has several
unique features that allow the creation of multiple products by means of derivation
techniques [5]. In this section we discuss some of key characteristics that make
product lines different from other software architecture practices. There some other
issues not addressed here but we will focus only on those closely related to the
architecture development practice.

• Variability modelling: Product lines rely on the description of a set of
common and variable characteristics of systems, and variability modelling
deals with the representation of the common and variable aspects through a set
of interrelated variation points and variants. Variability modelling is a
challenge activity that needs suitable tooling support for managing the
hundreds of variation points in complex systems. A major weaknesses of one
of the most widely used modelling languages like UML, is that all variability

concerns are difficult to be represented in a UML model. For instance, the
relationships and constraints between variation points and variants that can be
represented in a FODA tree [17] are hardly to be described in a UML diagram.
Only the OCL (Object Constraint Language) combined with UML provides
better support. In practice, a variability model acts as a decision model in
which the variation points and their variants have to be selected and
instantiated for configuring a particular product.

• Binding time: This mechanism is used to delay design decisions as late as
possible. The realization of the variability can also be achieved through
different binding times, such as; compilation, integration, deployment, or
runtime. Different techniques can be used to resolve the binding time [14] of a
particular software product. In general, binding times are not described in
UML architecture models and they are documented separately from
architectural designs.

• Variability dependencies and product constraints: Variation points and
variants may depend on other variation points. Therefore, the selection of a
certain variation point or variant may depend on a previous selection. These
dependencies are usually represented in the variability model [16] [21].
Dependency models have a great impact on traceability as they provide viable
paths to traverse from feature models to products and vice-versa. Frequently,
dependencies are used to delimit the scope and the number of products during
product configuration and mostly driven by economic and business factors.
For instance, more complex rules like if-then-else conditions can be defined
using a logic formula to specify product constraints. Such rules often crosscut
variability models. Because product lines are very market-drive, the domain
scoping activity aims to define the number and type of product to deliver
through specific product constraints. Hence, when making design decisions to
produce a particular product, all the constraints should be resolved to avoid
the selection of incompatible variation points that may lead to incompatible
products.

• Common and specific requirements: Traditional software development use
different types of requirements to motivate the design decisions made in the
design phase. In product lines, a subset of these requirements are common to
the entire product line whilst product specific requirements motivate the
decisions to deliver each single product through the variation points defined in
the modelling phase.

2.1 Reasoning models in product lines approaches

The majority of the approaches that try to capture design decisions alongside
architectures don’t consider the specificities of product lines. Only some few
proposals attempt to do this and they try to introducing reasoning in variability
models. For instance, in [4] the authors describe a tool for supporting the analysis of
feature models using an automatic reasoning mechanism to deal with extra functional
features, like for instance quality aspects. This reasoning mechanism can be used to

ask questions, such as: which is the number of potential products in a given feature
model? Dhungana et al. [12] state the difficulty to transfer general architectural
knowledge from tacit to an explicit form understandable by the users, and map this
concept to product line variability models in which features have to be linked to
architectural artifacts. More specifically, Dhungana et al. [13] perceive decisions as
variation points for asset composition. These decisions are organized hierarchically
and they become relevant if they are made in a certain order. The consequences of a
decisions are expressed a logical dependencies. Decisions are represented in a
decision model which only describes the need, the scope, and the constraints, but the
same as in [4] no additional information about the rationale or the impact of the
decision is supported. In [23], the authors address how to represent and document
design decisions in product lines that follow a compositional approach to derive the
final products. This composition is supported by the AHEAD tool suite [3], where
product line features are used as building blocks of systems. In [23], decisions are
documented as XML artifacts during the synthesis of the architecture. In their
approach, text descriptions for understanding the decisions are included with product
line assets. Finally, none of the tools analyzed in [9] for modeling and managing
product line variability models don’t consider the description of architectural design
decisions as first class entities and in most cases, they only focus on how to deal with
feature models or in product derivation tasks.

3. Design Decisions for Product Line Architectures

Because almost all the approaches described in section 2 suffer the lack to incorporate
explicit description for the decisions and its underlying reasons that accomplish the
selection of variation points and variants in a product line, this section presents
attempts to link both concepts as a way to include the rationale of the architectural
decisions that affect the selection and the realization of variability models. Hence, we
propose to associate the concept of design decision with variability models to enrich
the reasoning activity that take place in SPLE practices, and we come up with a
general model that can be instantiated for building tool support.

• Design decisions and variability modeling: A variability model constitutes a
decision model, in which variation points and variants have to be resolved to
achieve a specific product configuration. From our view, the definition of
these variations should be considered fine grained decisions (as opposed to
coarse grained decisions based on design patterns and architectural styles).
Different levels of granularity in the decisions can be considered, but from an
architecture point of view, the main decisions are precisely made in the early
stages of the design phase whereas variation points are introduced later to
refine the classes of a product line architecture. In our approach we propose a
mapping between the design decisions that affect the definition or the
selection of a variation point and variant in order to explain the why of the
reasons by which we arrived to a particular feature model.

• Binding time: The binding time should be understood in the traditional use of
product lines, but the selection of a particular binding time should be also
explained as a design decision. Hence, we propose that the binding time of a
particular variation point has associated a decision that explains the realization
of such variation point in the architecture. This binding time should not be
confused with the time in which the decision is made, as all of them are
defined at design time. We assume that the binding time of a set of related
variation point should happen at the same moment. Otherwise, the realization
of the variability will not be feasible.

• Product constraints: In the same way we connect different decisions with
specific links, we need to specify the links between variation points. Such
links are usually defined using logical operators such as AND, OR, XOR, and
NONE. More complex formulas can be also defined to support crosscutting
relationships to the feature model or to include functional dependencies that
usually happen during the execution of the system. These rules that delimit the
scope of the products and may affect to previous decisions. The same as
described before, a new design decision should document each product
constraint, and the dependencies between decisions can be used to define the
links between a product constraint decisions to those previous and related
decisions made before. Therefore, we could be able to know which decisions
related to the definition of variation points depend from decisions that define a
product constraint.

• Common and specific requirements: In order to discriminate between
requirements for a PLA and for a single product, we introduce a new attribute,
to discriminate between common and specific requirements.

Figure 1: A general model that maps the decisions to requirements and architectures and its
corresponding relationships for product line architectures
The top side of Figure 1 show that design decisions are used to bridge the gap
between requirements and architectures as requirements motivated the decisions that

will produce a particular architecture description. The bottom side of the figure adds
the additional entities that belong to product line development. Common and specific
product requirements motivate now the decisions that lead to a concrete product
architecture. These decisions are also design decisions but enhanced with some
distinct features like decisions associates to: product constraints, variability models,
and binding time. Similar traces between both sides of the figure provide a complete
traceability among the entities. Our improved in this general model is to map
significant decisions to the product line variability model which have to be
documented explicitly. This general model can be instantiated for building specific
tool support.

4. Tool Support for Capturing Architectural Design Decisions

Almost none of the existing tools that manage variability models for product lines
offer capabilities to record and document the design decisions and the reasons that led
to the selection of any particular product line architecture or to a concrete variability
model. In addition, the current research prototype tools that capture and document
architectural design decisions (i.e.: Archium [15], AREL [28], ADDSS [7], and
PAKME [2]) don’t offer support for product line features neither for variability
models. Hence, in order to cope with this lack, we have analyzed the similarities and
the differences of the data models of two of the tools specifically developed to
capture architectural design decisions in order to extend its capabilities for product
line engineering. Because of their similarities, we have chosen PAKME and ADDSS
as both are web-based tools with similar nature and purpose. In this section we
provide a description of both tools and to which degree they are able to include or not
product line features.

4.1 Product-line support in ADDSS

ADDSS (Architecture Design Decision Support System [7] is a web-based tool for
managing architectural design decisions (http://triana.escet.urjc.es/ADDSS). The tool
supports an iterative process in which design decisions are captured along with their
rationale and models. ADDSS supports basic dependencies between decisions and
traceability between requirements, design decisions, and architectures. The chain of
dependencies between decisions is documented explicitly for traceability purposes.

We have analyzed the how the current implementation status of ADDSS could
support the features described in section 3. With respect to the inclusion of variation
points, variants, and their relationships, the ADDSS data model can be easily
extended to store such information and relate this with logical operators (such as
AND, OR, XOR) to support product constraints and relationships between the
variation points. In addition, ADDSS could associate each single decision to single
variation points and variants. Hence, the variability associated to the overall set of
decisions will constitute the entire variability model. Relating parts of the variability
model to a subset of the architecture is not possible because the current version of

http://triana.escet.urjc.es/ADDSS

ADDSS cannot relate a set of design decisions to individual architectural parts. A
complementary issue that should be addressed is to check the inconsistencies in the
variability model to avoid incompatible product configurations. This should be
implemented in order to ensure the integrity of the decision model for detecting
violations in the decisions when these are added, changed, or removed, but at present
this feature is not yet supported. Also, including the binding time as an entity or
attribute into the ADDSS data model should not be a problem, and the same stands
for discriminating between common and specific requirements that are selected
during the reasoning activity in the architecting activity. Finally, we can also improve
the documentation generated by the tool if we include the information belonging to
the variability model of all product architectures.

4.2 Product-line support in PAKME

Process-centric Architecture Knowledge Management Environment, PAKME, is a
web-based tool to support software architecture design, documentation and evaluation
activities [2]. PAKME provides a knowledge repository, templates and features to
capture, manage, and present architectural knowledge and design rationale.
PAKME’s knowledge repository is logically divided into two types of knowledge:

• Generic: such as general scenarios, quality attributes, design options
• Project specific: such as concrete scenarios, contextualized patterns, quality

factors, architecture design decisions and rationale underpinning them.

Project-specific AK consists of the artefacts either instantiated from the generic

knowledge or newly created during the software architecture process. Access to a
repository of generic AK enables designers to use accumulated “wisdom” from
different projects when devising or evaluating architecture decisions for projects in
the same or similar domains. The project specific part of the repository captures and
consolidates other AK artefacts and rationale such as concrete scenarios, design
history, and findings of architecture evaluation. A project specific AK repository is
also populated with knowledge drawn from an organisational repository, standard
work products of the design process, logs of the deliberations and histories of
documentation to build organisation’s architecture design memory.

Though, PAKME has initially been developed to support the architecting activities
for a single product, many of its artifacts (such as general scenarios, design options,
and analysis models) can be used to support the activities for designing and
evaluating PLAs. However, there needs to be certain changes required in the data
model and interface for establishing and maintaining explicit relationships between
different artifacts of a product specific architecture and PLAs. PAKME’s data model
also needs to be modified to accommodate the requirements of the solution proposed
in Figure 1. Such changes can easily be accommodated as PAKME has successfully
tailored to a specific domain and the experience showed such modifications are easy.

5. Towards a Unified Model to Support Design Rationale in
Product Line Architectures

In order to compare PAKME and ADDSS data models, we used an illustrated
example from the Intrada Product Family [24] to know how the variability, product
constraints, and common and specific product requirements can be supported in both
tools. After the case study, we analyzed which entities of both data models perform
the same function and which others are completely different or are not supported in
one of the tool. As a result, we arrive to Table 1 (see Appendix 1) which shows those
entities and concepts that are similar or equal in the tools as well as those not
supported by one of them (in Table 1 the rows in blue are entities from PAKME not
supported in ADDSS while in light brown one feature of ADDSS not supported by
PAKME).

5.1 A unified data model for architectural design decisions

As a result of the comparison, we distilled a minimum number of entities required
to support architectural knowledge in both tools and leaving all other complementary
aspects like for instance those related to quality attribute architectural evaluation
supported by PAKME. The entities we agreed to support as our core data model are
described in Table 2 (see Appendix 2) and depicted in the UML class diagram in
Figure 2. For the sake of simplicity, we tried to keep simple and small the unified
model of Figure 2, and include only those entities we perceived are necessary for
supporting the decision-making process in software architecture.

Figure 2: Unified data model for supporting the core entities that support architectural knowledge

In the figure, design decisions are related to architectures, requirements, and to the
stakeholders that make the decision. Architecture descriptions are represented in
terms of views, while design decisions comprise reusable chunks of knowledge like
patterns and style. We have to remark that the “rationale” of a decision is defined as
an attribute in the proposed model, but from a higher level perspective, rationale is
considered an entity in the ANSI/IEEE 1471-2000, currently under review. In
addition, to the evolution of the decisions is already supported by a specific entity
which records all the modifications and changes performed over a particular decision.
The attributes included in the entities of the model can be extended with new ones to
add more functionality. Therefore, keeping the model small, it is easier to extend this
with those features specific to product lines and after if needed, add all those
additional entities and attributes required to support extra functionality like that one
included in the tools analyzed. Next section outlines the product line features added
to the core data model of Figure 2.

5.2 Extended data model to support product line features

The need stated at the beginning of this work to provide support for capturing
design decisions belonging to software product lines is realized by extending the
model of Figure 2 with the features described in section 3. We have refined the
description given by Figure 1 to add the entities and attributes we perceived necessary
to link architectural design decisions to the product line variability model. The result
of this customization is shown in Figure 3.

In the figure, we have added three different entities as well as some attributes. One
new entity captures the information representing the variations points, including a
constraint rule that defines the logical relationship between the variants. In addition, a
category attribute is used to perform a classification of different variation points that
can be filtered for visualization purposes. This variation point decision is attached to
the architectural design decision which explains and motivates the definition of a
particular variation point.

Similarly, we did the same for the variants defined in the variability model. This
fine grained decision has also its corresponding architectural design decision which
justifies the selection of particular variant in the architecture. A new binding time
decision class was also added to indicate the binding time of a particular variation
point or variant, which is related to the architectural design decision that indicates
why a binding time has been chosen but also to the variant or variation point affected
by such binding time. Therefore, we can obtain an extremely fine granularity to
define different binding times for different variants and variation points. Also, the
design decision class has a new attribute, ProductDecision, which defines if a design
decisions concerns to a product line decisions (“yes”) or to a single architecture
(“no”).

Other two entities provide attributes for supporting additional product line
features. The architectural significant requirement class uses an attribute
(“ProductSpecific”) to discriminate between common requirements for an entire
product line or single architecture, or if it belongs to a product specific requirement.
Finally, the architectural description entity uses a new attribute to indicate if the
architecture belongs to a concrete product architecture (this will imply that the
variability model has been resolved and the decisions are made).

Figure 3: Extended data model to incorporate product line feature to an architectural design
decisions model

The approach described in Figure 3 doesn’t consider multi-product lines (a product

line composed by single product lines) and we didn’t represent the dependencies
between design decisions as these are supported in PAKME and ADDSS as
intermediate classes that relate one decision to others. The same will apply to define
relationships between different variation points, but including this stuff will
complicate unnecessarily the description of Figure 3.

5.3 Impact of product line features in the reasoning activity

In this section we analyze the impact product line features may have in the
reasoning process. In addition to the information aimed to support product line
decisions, the process by which a variation point or variant is selected or configured,
has some influence on the steps of the reasoning activity. For instance, typical
architectural design decisions are selected after an evaluation of the best or optimal
choices among several, but the instantiation of a variation point only depends of the
selection of their variants and values. Hence, no alternative design decisions are
evaluated or stored for this case. Otherwise, the selection of a particular binding time
may imply to consider and evaluate different binding time alternatives, which might
be not the same for different architecture subsystems.

In addition, current architectural design decision tools like PAKME and ADDSS
must capture new relationships that are now established between the variability model
and the decisions that explain such variability model. To make more agile the
capturing process, these relationships should be defined internally by the tools to
alleviate the effort spent by the user in defining new links. Only in those cases where
a relationship between variation points and variants has to be defined, the user must
reason about such dependency and make it explicit when capturing the decision. We
can reduce also such effort if the dependency that models a relationship in the
variability model serves also to model the dependency between the decisions attached
to variation points and variants. Hence, product lines slightly modified the way in
which dependencies are modeled respect to single architectures, as the architect
would define the relationship in the variability model and the tool implicitly uses this
to internally define the relationships between its associated decisions.

6. Related Work

Recently, many researchers have emphasized the importance of treating
architectural design decisions as first class entity, however, only a few have
mentioned the use of design decisions in SPLE. In [1], the authors present a
framework for representing design decisions in a SPL, which is structured as a design
decision tree (DDT) where nodes represent design decisions and branches relate
nodes to each other. Some of these nodes represent the variations in a product family.
Lago and Vliet [15] show how to introduce assumptions in UML models representing
architectures and variability concerns in SPLE. They present assumptions with
feature models to show the influence of the assumptions on the features used to
model variability. The work reported in [21] focuses on the reuse of design decisions
in order to customize product line using composition techniques as a step-wise
refinement for product derivation. Design decisions are captured in XML files that
can be reused during the transformations needed to obtain a final product. Extensions
to products and their design decisions can easily be traced by viewing the ways
decisions extend architectures during through successive refinements. The
COVAMOF model for managing variability described in [20] is used to support the
notion of architectural design decisions in a SPL. The authors map architectural

concepts (including decisions) to COVAMOF concepts to demonstrate the feasibility
of capturing architectural knowledge and link this to variability models by mapping
similar concepts.

7. Conclusions

This paper presents the continuation of our efforts in building two similar tools for
capturing and documenting architectural design decisions. Because there is a lack of
specific support for product line architecture decisions, we have merged the data
models of both tools and we have distilled the common model to support the
decisions made in a product line context in order to explain the decisions made in
variability models. Thus thriving research area provides the necessary infrastructure
for systematically and rigorously incorporating the notion of design decisions and
their rationale in designing and maintaining PLAs. Our work identifies the
characteristics of architecture design decisions in the context of SPLE.

From the common model distilled from both tools, we have observed that is no so
difficult to incorporate the decisions made in a variability model to support the
specificities of product lines. However, accommodating this new information may
result a bigger number of medium-size or fine grained decisions. From our
perspective, we believe that the same dependencies defined for the architectural
design decisions can be used to define the relationships in the variability model in
order to not duplicate dependency links.

 Additionally, supporting common and specific requirements is also necessary to
distinguish those decisions that are specific to a single product. For future work we
are planning to start the construction of a new web-based tool or to extend ADDSS in
order to incorporate these new features in a new data model and test the new
capabilities in a product line environment.

References

1. Alonso A, León, G. and Dueñas J.C. Framework for Documenting Design Decisions in
product Families Development, ICECSS IEEE CS, 206-211, (1997).

2. Babar, M. A. and Gorton, I. A Tool for Managing Software Architecture Knowledge.
Proceedings of the 2nd Workshop on Sharing and Reusing Architectural Knowledge, ICSE
Workshops, (2007).

3. Batory D. S., Sarvela, J.N. and Rauschmayer, A. Scaling Step-Wise Refinement. IEEE
Transanctions on Software Engineering 30(6), 355-371, (2004).

4. Benavides, D., Trinidad, P. and Ruiz Cortés, A. Automated Reasoning on Feature Models.
17th International Conference on Advanced Information Systems Engineering (CAiSE)
Springer-Verlag LNCS 3520, 491-503, (2005).

5. Bosch, J. Design and Use of Software Architectures, Addison-Wesley (2000).
6. Bosch, J. Software Architecture: The Next Step, Proceedings of the 1st European Workshop

on Software Architecture (EWSA 2004), Springer-Verlag, LNCS 3047, pp. 194-199 (2004).

7. Capilla, R., Nava, F., Pérez, S. and Dueñas, J.C. A Web-based Tool for Managing
Architectural Design Decisions, Proceedings of the Workshop on Sharing and Reusing
Architectural Knowledge, ACM Digital Library, Software Engineering Notes 31 (5).

8. Capilla, R., Nava, F..and Dueñas, J.C. Modeling and Documenting the Evolution of
Architectural Design Decisions, Proceedings of the 2nd Workshop on Sharing and Reusing
Architectural Knowledge, ICSE Workshops, (2007).

9. Capilla, R. Sánchez, A. Dueñas, J.C. An Analysis of Variability Modelling and
Management Tools for Product Line Development. In Proceedings of the Software and
Services Variability Management Workshop – Concept Models and Tools, Helsinki
University of Technology Software Business and Engineering Institut, HUT-SoberIT-A3,
ISBN: 978-951-22-8747-5, Helsinki, Finland, 32-47, (2007).

10. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and Stafford,
J. Documenting Software Architectures. Views and Beyond, Addison-Wesley (2003).

11. Dueñas, J.C. and Capilla, R. The Decision View of Software Architecture, Proceedings of
the 2nd European Workshop on Software Architecture (EWSA 2005), Springer-Verlag,
LNCS 3047, pp. 222-230 (2005).

12. Dhungana, Rabiser, R., D., Grünbacher, P.and Prähofer, H., Federspiel, C. and Lehner K.
Architectural Knowledge in Product Line Engineering: An Industrial Case Study. 32rd
Euromicro Conference on Software Engineering and Advanced Applications, 186-197,
(2006).

13. Dhungana, D., Grünbacher, P.and Rabiser, R. DecisionKing: A Flexible and Extensible
Tool for Integrated Variability Model. In Proceedings of the 1st Workshop on Variability
Modelling of Software-intensive Systems (VAMOS), LERO, UL, Ireland (2007).

14. Fritsch, C., Lehn, A. and Strohm, T. Evaluating Variability Implementation Mechanisms.
Procs of International Workshop on Product Line Engineering (PLEES’02), Technical
Report at Fraunhofer IESE (No. 056.02/E) 59-64 (2002).

15. Jansen, A. and Bosch, J. Software Architecture as a Set of Architectural Design Decisions,
5th IEEE/IFIP Working Conference on Software Architecture, pp. 109-118, (2005).

16. Jaring, M. and Bosch, J. Variability Dependencies in Product Family Engineering. 5th
International Workshop on Product family Engineering (PFE), Springer-Verlag, LNCS
3014, pp. 81-97, (2004).

17. Kang K. C., Cohen S., Hess J. A., Novak W. E., Peterson A. S.. Featured-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21 ESD-90-TR-
22, Software Engineering Institute, Carnegie Mellon University, Pittsburgh (1990).

18. Kruchten P. Architectural Blueprints. The “4+1” View Model of Software Architecture,
IEEE Software 12 (6), pp.42-50 (1995).

19. Kruchten, P., Lago, P., and van Vliet, H., T. Building up and Reasoning About
Architectural Knowledge, QoSA2006, LNCS, pp. 43-58 (2006).

20. Lago, P and van Vliet, H. Explicit Assumptions Enrich Architectural Models, ICSE 2005,
IEEE CS, 206-214, (2005).

21. Lee, K. and Kang, K.C. Feature Dependency Analysis for Product Line Component
Design. 8th International Conference on Software Reuse (ICSR), Madrid, Springer-Verlag
LNCS 3107, pp. 69-85, (2004).

22. Perry, D.E. and Wolf, A.L. "Foundations for the Study of Software Architecture", Software
Engineering Notes, ACM SIGSOFT, October 1992, pp. 40-52.

23. Rozanski, N. and Woods. E. Software Systems Architecture: Working with Stakeholders
Using viewpoints and Perspectives, Addison-Wesley (2005).

24. Sinemma, M., Deelstra, S., Nijhuis, J. and Bosch J. COVAMOF: A Framework for
Modeling Variability in Software Product Families, 3rd SPLC Springer-Verlag LNCS 3154,
197-213 (2004).

25. Sinemma, M., van der Ven, J.S., and Deelstra S. Using Variability Modeling Principles to
Capture Architectural Knowledge, 1st SHARK Workshop (2006).

26. Svahnberg, M., van Gurp, J. and Bosch, J. A Taxonomy of Variability Realization
Techniques. Software Practice & Experience, vol 35(8), 705-754, (2005).

27. Tang, A., Babar, M.A., Gorton, I. and Han, J.A. A Survey of the Use and Documentation of
Architecture Design Rationale, 5th IEEE/IFIP Working Conference on Software
Architecture, (2005).

28. Tang, A., Jin, Y. and Han, J. A rationale-based architecture model for design traceability
and reasoning. Journal of Systems and Software, 80 (6). 918-934

29. Trujillo, S., Azanza, M., Diaz, O. and Capilla, R. Exploring Extensibility of Architectural
Design Decisions, Proceedings of the Workshop on Sharing and Reusing Architectural
Knowledge and Design Intent (SHARK/ADI’07), ICSE Workshops, Minneapolis, USA,
May 2007, IEEE CS.

30. Tyree, J. and Akerman, A. Architecture Decisions: Demystifying Architecture. IEEE
Software, vol. 22, no 2, pp. 19-27, (2005).

31. Wang, A., Sherdil, K. and Madhavji, N.H. ACCA: An Architecture-centric Concern
Analysis Method, 5th IEEE/IFIP Working Conference on Software Architecture, (2005).

Appendix 1: PAKME-ADDSS Data-model Comparison

Table 1. Comparison of the entities supported in both PAKME and ADDSS data models.

PAKME PAKME description ADDSS ADDSS description Matched
Stakeholder

People interested in the
architecture process or
product

Users

Stakeholders with
different roles
interested in
architectures

Yes

Stakeholder
Group

Define the project
access rights

Permissions Rights for each user
type

Yes

Architectural
significant
requirements
(ASR)

Are NFR (QA) Quality
goals can be derived.
An ASR must be
satisfied by one or
several design decisions

Requirements Functional and non-
functional
requirements. Only
the type, the number,
and a text description
is provided

Yes

Scenario Is a refinement of ASR
and are QA

NFR A non-functional
requirement

Partially through
requirements

Quality factors Are the factors a QA
should match

 Only quality
attributes are
supported

Findings A description for the
QA that meet a
particular scenario

 Not supported in
ADDSS

Analysis Model Is a reasoning
framework that reasons
about the effect of
different tactics on QA

 Not supported in
ADDSS

scenarios
Design Tactic Is a design mechanism

for achieving the
desired level

 Not supported in
ADDSS

Pattern Characterizes a design
solution in a given
context

Pattern Describes a design
solution. Patterns are
classified by its type,
description and an
usage example

Yes

Effect of pattern Defines the effect of the
pattern on a particular
QA

 Not supported in
ADDSS

Support
Information

Captures the
background information
required to justify the
choice of a decision for
a particular scenario

Optional
attributes

Optional attributes
capture extra
information

Partially
supported

Architecture
Decision

Is a high level decision
that satisfies FR and
NFR. There are
dependencies between
decisions.

Design
Decision

Captures the design
decision and its
rationale through a set
of attributes. Basic
dependencies can be
defined but not the of
the dependency

Yes

Architecture
Decision
Rationale

Is the reason behind the
architecture

Rationale Is the reason behind
the architecture

Yes

Design history A history of decisions is
supported

Version and
responsible

Some attributes in
ADDSS are used for
the same goal

Partially
supported

Alternative Design decisions may
be related to other
design alternatives

Status and
category
attributes

ADDSS offers a
category attribute to
indicate if a decision
is alternative design
choice but also an
status to know if the
decisions has been
approved or rejected

Yes

Architecture
Description

Prescribes the
architecture to be
realized

Architecture Provides the
information about a
particular architecture
and a link to the
views supported

Yes

Architectural
View

Provides a description
for architectural views
with the images

View attribute Describes the view of
the architecture and
provides a link to it

Yes

 Translation Provides multilingual
support

Not supported in
PAKME

Appendix 2: Core Common Entities between PAKME and ADDSS

Table 2. Main common entities distilled from PAKME and ADDSS data models.

Common entity Entity description
Stakeholder

Are those persons interested in the architecture process or product

Architectural
significant
requirements

Functional and non functional architectural significant requirements drive
the selected design decisions

General
Knowledge

Characterizes a design solution in a given context, like patterns or styles

Design Decision Is a high level design decision that explains the decisions and its
underpinning rationale

Decision history A history of decisions is supported
Architectural
Description

Prescribes the architecture to be realized

View Provides a description for architectural views with the images

