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Abstract. An increased attention to documenting architectural design decisions 
and their rationale has resulted in several approaches and prototype tools for 
capturing and managing architectural knowledge. However, most of them are 
focused on architecting single products and little attention has been paid to 
include design decisions in the context of product line architectures. This paper 
studies two similar research tools that capture architecture design decisions and 
how these can be extended to include product line specific features. We report 
the improvements needed by the data models of the two tools and we provide a 
unified data model as a research agenda to support both the relationships 
between design decisions and variability models in a product line context.  

1. Introduction 

Early in the nineties, Perry and Wolf emphasized the importance of Design 
Rationale (DR) in Software Architecture (SA) [22]. To date, the traditional 
approaches to documenting software architectures have been  mainly based on the 
description of architecture views that reflect the interest of different stakeholders [10]  
[18] [23], but little attention has been paid to capturing and managing the rationale for 
key design decisions. The need to reduce the maintenance effort and to avoid 
architecture erosion because decisions are never recorded requires them to be 
captured.  

Many claims have been made about the problems caused when design decisions 
are not explicitly documented [27], as they constitute a clear way to mitigate the 
effort required in understanding the architecture of a system when the experts or the 
creators of the architecture are no longer available. Bosch pinpoints [4] that “we do 
not view a software architecture as a set of components and connectors, but rather as 
the composition of a set of architectural design decisions”. This idea, also stated in 
[10], claims for methods and techniques to enable the representation and capture of 
architectural design decisions in parallel with their architectures. In order to bridge 
the traditional gap between requirements and designs, a “new” architecture view so-
called the “decision view”, is proposed in [11], which considers design decisions as a 
cross-cutting information with respect to the other traditional architecture views that 
have to be documented explicitly. 
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Other research works rely on the definition of specific templates for capturing and 
representing the knowledge that should be part of the description of a design decision. 
Some authors like [19] [30] propose extensive list of attributes for characterizing he 
design decisions whiles other [8] advocate the use of more flexible approaches based 
on list of mandatory and optional attributes that can be tailored for different 
organizations and user’s needs in order to reduce the effort spent during the capturing 
activity. The authors in [19] consider that Architectural Knowledge (AK) = Design Decisions 
+ Design, and they use ontologies to describe both the decisions and the relationships 
between them. Since design decisions can bridge the gap between requirements and 
architectures and code, recording these relationships [31] can benefit maintenance 
and evolution processes, and help to understand the root causes of changes or to 
estimate change impact analysis. To date, only a few works have partially addressed 
using design decisions in a product line environment, and from our view more work 
is required to support the specificity of product line development.   

The remainder of this work is structured as follows. Section 2 describes those 
features specific to product line development as well as some approaches that try to 
introduce design decisions in product line practices. Section 3 discusses our approach 
to relate architecture design decisions to product line features. Section 4 outlines two 
similar prototype tools for supporting and managing design decisions and how these 
could support those issues attained to product lines. Section 5 describes a unified data 
model as a future research agenda for a new tool aimed to capture, manage, and 
represent design decisions both for single architectures and product lines. Section 6 
provides some related work, and in section 7 we provide the main conclusions.  

2. Product Line Engineering Features 

Software Product Line Engineering (SPLE) has emerged as a successful mode of 
developing software. SPLE aims to create a family of related products based on a 
single architecture that can be tailored to meet the requirements of different products. 
This is achieved through the identification of commonalities and variations among the 
different systems of a given family which are represented in the product line 
architecture (PLA). The required variability can be realized by means of different 
variability realization techniques, like those reported in [26]. A PLA has several 
unique features that allow the creation of multiple products by means of derivation 
techniques [5]. In this section we discuss some of key characteristics that make 
product lines different from other software architecture practices. There some other 
issues not addressed here but we will focus only on those closely related to the 
architecture development practice. 

• Variability modelling: Product lines rely on the description of a set of 
common and variable characteristics of systems, and variability modelling 
deals with the representation of the common and variable aspects through a set 
of interrelated variation points and variants. Variability modelling is a 
challenge activity that needs suitable tooling support for managing the 
hundreds of variation points in complex systems. A major weaknesses of one 
of the most widely used modelling languages like UML, is that all variability 



concerns are difficult to be represented in a UML model. For instance, the 
relationships and constraints between variation points and variants that can be 
represented in a FODA tree [17] are hardly to be described in a UML diagram. 
Only the OCL (Object Constraint Language) combined with UML provides 
better support. In practice, a variability model acts as a decision model in 
which the variation points and their variants have to be selected and 
instantiated for configuring a particular product.  

• Binding time: This mechanism is used to delay design decisions as late as 
possible. The realization of the variability can also be achieved through 
different binding times, such as; compilation, integration, deployment, or 
runtime. Different techniques can be used to resolve the binding time [14] of a 
particular software product. In general, binding times are not described in 
UML architecture models and they are documented separately from 
architectural designs.  

• Variability dependencies and product constraints: Variation points and 
variants may depend on other variation points. Therefore, the selection of a 
certain variation point or variant may depend on a previous selection. These 
dependencies are usually represented in the variability model [16] [21]. 
Dependency models have a great impact on traceability as they provide viable 
paths to traverse from feature models to products and vice-versa. Frequently, 
dependencies are used to delimit the scope and the number of products during 
product configuration and mostly driven by economic and business factors. 
For instance, more complex rules like if-then-else conditions can be defined 
using a logic formula to specify product constraints. Such rules often crosscut 
variability models. Because product lines are very market-drive, the domain 
scoping activity aims to define the number and type of product to deliver 
through specific product constraints. Hence, when making design decisions to 
produce a particular product, all the constraints should be resolved to avoid 
the selection of incompatible variation points that may lead to incompatible 
products.  

• Common and specific requirements: Traditional software development use 
different types of requirements to motivate the design decisions made in the 
design phase. In product lines, a subset of these requirements are common to 
the entire product line whilst product specific requirements motivate the 
decisions to deliver each single product through the variation points defined in 
the modelling phase.  

2.1   Reasoning models in product lines approaches 

The majority of the approaches that try to capture design decisions alongside 
architectures don’t consider the specificities of product lines. Only some few 
proposals attempt to do this and they try to introducing reasoning in variability 
models. For instance, in [4] the authors describe a tool for supporting the analysis of 
feature models using an automatic reasoning mechanism to deal with extra functional 
features, like for instance quality aspects. This reasoning mechanism can be used to 



ask questions, such as: which is the number of potential products in a given feature 
model? Dhungana et al. [12] state the difficulty to transfer general architectural 
knowledge from tacit to an explicit form understandable by the users, and map this 
concept to product line variability models in which features have to be linked to 
architectural artifacts. More specifically, Dhungana et al. [13] perceive decisions as 
variation points for asset composition. These decisions are organized hierarchically 
and they become relevant if they are made in a certain order. The consequences of a 
decisions are expressed a logical dependencies. Decisions are represented in a 
decision model which only describes the need, the scope, and the constraints, but the 
same as in [4] no additional information about the rationale or the impact of the 
decision is supported. In [23], the authors address how to represent and document 
design decisions in product lines that follow a compositional approach to derive the 
final products. This composition is supported by the AHEAD tool suite [3], where 
product line features are used as building blocks of systems. In [23], decisions are 
documented as XML artifacts during the synthesis of the architecture. In their 
approach, text descriptions for understanding the decisions are included with product 
line assets. Finally, none of the tools analyzed in [9] for modeling and managing 
product line variability models don’t consider the description of architectural design 
decisions as first class entities and in most cases, they only focus on how to deal with 
feature models or in product derivation tasks.  

3. Design Decisions for Product Line Architectures 

Because almost all the approaches described in section 2 suffer the lack to incorporate 
explicit description for the decisions and its underlying reasons that accomplish the 
selection of variation points and variants in a product line, this section presents 
attempts to link both concepts as a way to include the rationale of the architectural 
decisions that affect the selection and the realization of variability models. Hence, we 
propose to associate the concept of design decision with variability models to enrich 
the reasoning activity that take place in SPLE practices, and we come up with a 
general model that can be instantiated for building tool support.  
 

• Design decisions and variability modeling: A variability model constitutes a 
decision model, in which variation points and variants have to be resolved to 
achieve a specific product configuration. From our view, the definition of 
these variations should be considered fine grained decisions (as opposed to 
coarse grained decisions based on design patterns and architectural styles). 
Different levels of granularity in the decisions can be considered, but from an 
architecture point of view, the main decisions are precisely made in the early 
stages of the design phase whereas variation points are introduced later to 
refine the classes of a product line architecture. In our approach we propose a 
mapping between the design decisions that affect the definition or the 
selection of a variation point and variant in order to explain the why of the 
reasons by which we arrived to a particular feature model.  



• Binding time: The binding time should be understood in the traditional use of 
product lines, but the selection of a particular binding time should be also 
explained as a design decision. Hence, we propose that the binding time of a 
particular variation point has associated a decision that explains the realization 
of such variation point in the architecture. This binding time should not be 
confused with the time in which the decision is made, as all of them are 
defined at design time. We assume that the binding time of a set of related 
variation point should happen at the same moment. Otherwise, the realization 
of the variability will not be feasible.   

• Product constraints: In the same way we connect different decisions with 
specific links, we need to specify the links between variation points. Such 
links are usually defined using logical operators such as AND, OR, XOR, and 
NONE. More complex formulas can be also defined to support crosscutting 
relationships to the feature model or to include functional dependencies that 
usually happen during the execution of the system. These rules that delimit the 
scope of the products and may affect to previous decisions. The same as 
described before, a new design decision should document each product 
constraint, and the dependencies between decisions can be used to define the 
links between a product constraint decisions to those previous and related 
decisions made before. Therefore, we could be able to know which decisions 
related to the definition of variation points depend from decisions that define a 
product constraint.  

• Common and specific requirements: In order to discriminate between 
requirements for a PLA and for a single product, we introduce a new attribute, 
to discriminate between common and specific requirements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A general model that maps the decisions to requirements and architectures and its 
corresponding relationships for product line architectures 
The top side of Figure 1 show that design decisions are used to bridge the gap 
between requirements and architectures as requirements motivated the decisions that 



will produce a particular architecture description. The bottom side of the figure adds 
the additional entities that belong to product line development. Common and specific 
product requirements motivate now the decisions that lead to a concrete product 
architecture. These decisions are also design decisions but enhanced with some 
distinct features like decisions associates to: product constraints, variability models, 
and binding time. Similar traces between both sides of the figure provide a complete 
traceability among the entities. Our improved in this general model is to map 
significant decisions to the product line variability model which have to be 
documented explicitly. This general model can be instantiated for building specific 
tool support.  

4. Tool Support for Capturing Architectural Design Decisions 

Almost none of the existing tools that manage variability models for product lines 
offer capabilities to record and document the design decisions and the reasons that led 
to the selection of any particular product line architecture or to a concrete variability 
model. In addition, the current research prototype tools that capture and document 
architectural design decisions (i.e.: Archium [15], AREL [28], ADDSS [7], and 
PAKME [2]) don’t offer support for product line features neither for variability 
models. Hence, in order to cope with this lack, we have analyzed the similarities and 
the differences of the data models of two of the tools specifically developed to 
capture architectural design decisions in order to extend its capabilities for product 
line engineering. Because of their similarities, we have chosen PAKME and ADDSS 
as both are web-based tools with similar nature and purpose. In this section we 
provide a description of both tools and to which degree they are able to include or not 
product line features.    

4.1   Product-line support in ADDSS 

ADDSS (Architecture Design Decision Support System [7] is a web-based tool for 
managing architectural design decisions (http://triana.escet.urjc.es/ADDSS). The tool 
supports an iterative process in which design decisions are captured along with their 
rationale and models. ADDSS supports basic dependencies between decisions and 
traceability between requirements, design decisions, and architectures. The chain of 
dependencies between decisions is documented explicitly for traceability purposes.  

We have analyzed the how the current implementation status of ADDSS could 
support the features described in section 3. With respect to the inclusion of variation 
points, variants, and their relationships, the ADDSS data model can be easily 
extended to store such information and relate this with logical operators (such as 
AND, OR, XOR) to support product constraints and relationships between the 
variation points. In addition, ADDSS could associate each single decision to single 
variation points and variants. Hence, the variability associated to the overall set of 
decisions will constitute the entire variability model. Relating parts of the variability 
model to a subset of the architecture is not possible because the current version of 
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ADDSS cannot relate a set of design decisions to individual architectural parts. A 
complementary issue that should be addressed is to check the inconsistencies in the 
variability model to avoid incompatible product configurations.  This should be 
implemented in order to ensure the integrity of the decision model for detecting 
violations in the decisions when these are added, changed, or removed, but at present 
this feature is not yet supported. Also, including the binding time as an entity or 
attribute into the ADDSS data model should not be a problem, and the same stands 
for discriminating between common and specific requirements that are selected 
during the reasoning activity in the architecting activity. Finally, we can also improve 
the documentation generated by the tool if we include the information belonging to 
the variability model of all product architectures. 

4.2   Product-line support in PAKME 

Process-centric Architecture Knowledge Management Environment, PAKME, is a 
web-based tool to support software architecture design, documentation and evaluation 
activities [2]. PAKME provides a knowledge repository, templates and features to 
capture, manage, and present architectural knowledge and design rationale. 
PAKME’s knowledge repository is logically divided into two types of knowledge:  
 

• Generic: such as general scenarios, quality attributes, design options 
• Project specific: such as concrete scenarios, contextualized patterns, quality 

factors, architecture design decisions and rationale underpinning them. 
 
Project-specific AK consists of the artefacts either instantiated from the generic 

knowledge or newly created during the software architecture process. Access to a 
repository of generic AK enables designers to use accumulated “wisdom” from 
different projects when devising or evaluating architecture decisions for projects in 
the same or similar domains. The project specific part of the repository captures and 
consolidates other AK artefacts and rationale such as concrete scenarios, design 
history, and findings of architecture evaluation. A project specific AK repository is 
also populated with knowledge drawn from an organisational repository, standard 
work products of the design process, logs of the deliberations and histories of 
documentation to build organisation’s architecture design memory. 

Though, PAKME has initially been developed to support the architecting activities 
for a single product, many of its artifacts (such as general scenarios, design options, 
and analysis models) can be used to support the activities for designing and 
evaluating PLAs. However, there needs to be certain changes required in the data 
model and interface for establishing and maintaining explicit relationships between 
different artifacts of a product specific architecture and PLAs. PAKME’s data model 
also needs to be modified to accommodate the requirements of the solution proposed 
in Figure 1. Such changes can easily be accommodated as PAKME has successfully 
tailored to a specific domain and the experience showed such modifications are easy.  



5. Towards a Unified Model to Support Design Rationale in 
Product Line Architectures 

In order to compare PAKME and ADDSS data models, we used an illustrated 
example from the Intrada Product Family [24] to know how the variability, product 
constraints, and common and specific product requirements can be supported in both 
tools. After the case study, we analyzed which entities of both data models perform 
the same function and which others are completely different or are not supported in 
one of the tool. As a result, we arrive to Table 1 (see Appendix 1) which shows those 
entities and concepts that are similar or equal in the tools as well as those not 
supported by one of them (in Table 1 the rows in blue are entities from PAKME not 
supported in ADDSS while in light brown one feature of ADDSS not supported by 
PAKME). 

5.1   A unified data model for architectural design decisions 

As a result of the comparison, we distilled a minimum number of entities required 
to support architectural knowledge in both tools and leaving all other complementary 
aspects like for instance those related to quality attribute architectural evaluation 
supported by PAKME. The entities we agreed to support as our core data model are 
described in Table 2 (see Appendix 2) and depicted in the UML class diagram in 
Figure 2. For the sake of simplicity, we tried to keep simple and small the unified 
model of Figure 2, and include only those entities we perceived are necessary for 
supporting the decision-making process in software architecture. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Unified data model for supporting the core entities that support architectural knowledge 
 



In the figure, design decisions are related to architectures, requirements, and to the 
stakeholders that make the decision. Architecture descriptions are represented in 
terms of views, while design decisions comprise reusable chunks of knowledge like 
patterns and style. We have to remark that the “rationale” of a decision is defined as 
an attribute in the proposed model, but from a higher level perspective, rationale is 
considered an entity in the ANSI/IEEE 1471-2000, currently under review. In 
addition, to the evolution of the decisions is already supported by a specific entity 
which records all the modifications and changes performed over a particular decision. 
The attributes included in the entities of the model can be extended with new ones to 
add more functionality. Therefore, keeping the model small, it is easier to extend this 
with those features specific to product lines and after if needed, add all those 
additional entities and attributes required to support extra functionality like that one 
included in the tools analyzed. Next section outlines the product line features added 
to the core data model of Figure 2. 

5.2   Extended data model to support product line features 

The need stated at the beginning of this work to provide support for capturing 
design decisions belonging to software product lines is realized by extending the 
model of Figure 2 with the features described in section 3. We have refined the 
description given by Figure 1 to add the entities and attributes we perceived necessary 
to link architectural design decisions to the product line variability model. The result 
of this customization is shown in Figure 3.  

In the figure, we have added three different entities as well as some attributes. One 
new entity captures the information representing the variations points, including a 
constraint rule that defines the logical relationship between the variants. In addition, a 
category attribute is used to perform a classification of different variation points that 
can be filtered for visualization purposes. This variation point decision is attached to 
the architectural design decision which explains and motivates the definition of a 
particular variation point. 

Similarly, we did the same for the variants defined in the variability model. This 
fine grained decision has also its corresponding architectural design decision which 
justifies the selection of particular variant in the architecture. A new binding time 
decision class was also added to indicate the binding time of a particular variation 
point or variant, which is related to the architectural design decision that indicates 
why a binding time has been chosen but also to the variant or variation point affected 
by such binding time. Therefore, we can obtain an extremely fine granularity to 
define different binding times for different variants and variation points. Also, the 
design decision class has a new attribute, ProductDecision, which defines if a design 
decisions concerns to a product line decisions (“yes”) or to a single architecture 
(“no”).  

 
 
 
 



Other two entities provide attributes for supporting additional product line 
features. The architectural significant requirement class uses an attribute 
(“ProductSpecific”) to discriminate between common requirements for an entire 
product line or single architecture, or if it belongs to a product specific requirement. 
Finally, the architectural description entity uses a new attribute to indicate if the 
architecture belongs to a concrete product architecture (this will imply that the 
variability model has been resolved and the decisions are made).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Extended data model to incorporate product line feature to an architectural design 
decisions model 

 
The approach described in Figure 3 doesn’t consider multi-product lines (a product 

line composed by single product lines) and we didn’t represent the dependencies 
between design decisions as these are supported in PAKME and ADDSS as 
intermediate classes that relate one decision to others. The same will apply to define 
relationships between different variation points, but including this stuff will 
complicate unnecessarily the description of Figure 3.  

 



5.3   Impact of product line features in the reasoning activity 

In this section we analyze the impact product line features may have in the 
reasoning process. In addition to the information aimed to support product line 
decisions, the process by which a variation point or variant is selected or configured, 
has some influence on the steps of the reasoning activity. For instance, typical 
architectural design decisions are selected after an evaluation of the best or optimal 
choices among several, but the instantiation of a variation point only depends of the 
selection of their variants and values. Hence, no alternative design decisions are 
evaluated or stored for this case. Otherwise, the selection of a particular binding time 
may imply to consider and evaluate different binding time alternatives, which might 
be not the same for different architecture subsystems.  

In addition, current architectural design decision tools like PAKME and ADDSS 
must capture new relationships that are now established between the variability model 
and the decisions that explain such variability model. To make more agile the 
capturing process, these relationships should be defined internally by the tools to 
alleviate the effort spent by the user in defining new links. Only in those cases where 
a relationship between variation points and variants has to be defined, the user must 
reason about such dependency and make it explicit when capturing the decision. We 
can reduce also such effort if the dependency that models a relationship in the 
variability model serves also to model the dependency between the decisions attached 
to variation points and variants. Hence, product lines slightly modified the way in 
which dependencies are modeled respect to single architectures, as the architect 
would define the relationship in the variability model and the tool implicitly uses this 
to internally define the relationships between its associated decisions.   

6. Related Work 

Recently, many researchers have emphasized the importance of treating 
architectural design decisions as first class entity, however, only a few have 
mentioned the use of design decisions in SPLE. In [1], the authors present a 
framework for representing design decisions in a SPL, which is structured as a design 
decision tree (DDT) where nodes represent design decisions and branches relate 
nodes to each other. Some of these nodes represent the variations in a product family. 
Lago and Vliet [15] show how to introduce assumptions in UML models representing 
architectures and variability concerns in SPLE. They present assumptions with 
feature models to show the influence of the assumptions on the features used to 
model variability. The work reported in [21] focuses on the reuse of design decisions 
in order to customize product line using composition techniques as a step-wise 
refinement for product derivation. Design decisions are captured in XML files that 
can be reused during the transformations needed to obtain a final product. Extensions 
to products and their design decisions can easily be traced by viewing the ways 
decisions extend architectures during through successive refinements. The 
COVAMOF model for managing variability described in [20] is used to support the 
notion of architectural design decisions in a SPL. The authors map architectural 



concepts (including decisions) to COVAMOF concepts to demonstrate the feasibility 
of capturing architectural knowledge and link this to variability models by mapping 
similar concepts.  

7. Conclusions 

This paper presents the continuation of our efforts in building two similar tools for 
capturing and documenting architectural design decisions. Because there is a lack of 
specific support for product line architecture decisions, we have merged the data 
models of both tools and we have distilled the common model to support the 
decisions made in a product line context in order to explain the decisions made in 
variability models. Thus thriving research area provides the necessary infrastructure 
for systematically and rigorously incorporating the notion of design decisions and 
their rationale in designing and maintaining PLAs. Our work identifies the 
characteristics of architecture design decisions in the context of SPLE.  

From the common model distilled from both tools, we have observed that is no so 
difficult to incorporate the decisions made in a variability model to support the 
specificities of product lines. However, accommodating this new information may 
result a bigger number of medium-size or fine grained decisions. From our 
perspective, we believe that the same dependencies defined for the architectural 
design decisions can be used to define the relationships in the variability model in 
order to not duplicate dependency links. 

 Additionally, supporting common and specific requirements is also necessary to 
distinguish those decisions that are specific to a single product. For future work we 
are planning to start the construction of a new web-based tool or to extend ADDSS in 
order to incorporate these new features in a new data model and test the new 
capabilities in a product line environment.    
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Appendix 1: PAKME-ADDSS Data-model Comparison  

Table 1.  Comparison of the entities supported in both PAKME and ADDSS data models.  

PAKME PAKME description ADDSS ADDSS description Matched 
Stakeholder 
 

People interested in the 
architecture process or 
product 

Users 
 

Stakeholders with 
different roles 
interested in 
architectures 

Yes 

Stakeholder 
Group 

Define the project 
access rights  

Permissions Rights for each user 
type 

Yes 

Architectural 
significant 
requirements 
(ASR) 

Are NFR (QA) Quality 
goals can be derived. 
An ASR must be 
satisfied by one or 
several design decisions 

Requirements Functional and non-
functional 
requirements. Only 
the type, the number, 
and a text description 
is provided 

Yes 

Scenario  Is a refinement of ASR 
and are QA 

NFR A non-functional 
requirement 

Partially through 
requirements 

Quality factors Are the factors a QA 
should match 

  Only quality 
attributes are 
supported 

Findings A description for the 
QA that meet a 
particular scenario 

  Not supported in 
ADDSS 

Analysis Model Is a reasoning 
framework that reasons 
about the effect of 
different tactics on QA 

  Not supported in 
ADDSS 



scenarios 
Design Tactic Is a design mechanism 

for achieving the 
desired level  

  Not supported in 
ADDSS 

Pattern Characterizes a design 
solution in a given 
context 

Pattern  Describes a design 
solution. Patterns are 
classified by its type, 
description and an 
usage example 

Yes 

Effect of pattern Defines the effect of the 
pattern on a particular 
QA 

  Not supported in 
ADDSS 

Support 
Information 

Captures the 
background information 
required to justify the 
choice of a decision for 
a particular scenario 

Optional 
attributes  

Optional attributes 
capture extra 
information 

Partially 
supported 

Architecture 
Decision 

Is a high level decision 
that satisfies FR and 
NFR. There are 
dependencies between 
decisions.  

Design 
Decision 

Captures the design 
decision and its 
rationale through a set 
of attributes. Basic 
dependencies can be 
defined but not the of 
the dependency 

Yes 

Architecture 
Decision 
Rationale 

Is the reason behind the 
architecture 

Rationale  Is the reason behind 
the architecture 

Yes  

Design history A history of decisions is 
supported 

Version and 
responsible 

Some attributes in 
ADDSS are used for 
the same goal 

Partially 
supported 

Alternative Design decisions may 
be related to other 
design alternatives 

Status and 
category 
attributes 

ADDSS offers a 
category attribute to 
indicate if a decision 
is alternative design 
choice but also an 
status to know if the 
decisions has been 
approved or rejected 

Yes 

Architecture 
Description 

Prescribes the 
architecture to be 
realized 

Architecture Provides the 
information about a 
particular architecture 
and a link to the 
views supported 

Yes 

Architectural 
View 

Provides a description 
for architectural views 
with the images 

View attribute Describes the view of 
the architecture and 
provides a link to it 

Yes 

  Translation Provides multilingual 
support 

Not supported in 
PAKME 

 
 



Appendix 2: Core Common Entities between PAKME and ADDSS 

Table 2.  Main common entities distilled from PAKME and ADDSS data models.  

Common entity Entity description 
Stakeholder 

 
Are those persons interested in the architecture process or product 

Architectural 
significant 
requirements 

Functional and non functional architectural significant  requirements drive 
the selected design decisions 

General 
Knowledge 

Characterizes a design solution in a given context, like patterns or styles 

Design Decision Is a high level design decision that explains the decisions and its 
underpinning rationale  

Decision history A history of decisions is supported 
Architectural 
Description 

Prescribes the architecture to be realized 

View Provides a description for architectural views with the images 
 
 
 
 
 
 
 
 
 
 
 
 
 


