
Abstract λ-Calculus Machines

Werner E. Kluge

Department of Computer Science
University of Kiel

D–24105 Kiel, Germany
wk@informatik.uni-kiel.de

Abstract. This paper is about fully normalizing λ-calculus machines
that permit symbolic computations involving free variables. They em-
ploy full-fledged β-reductions to preserve static binding scopes when
substituting and reducing under abstractions. Abstractions and variables
thus become truly first class objects: both may be freely substituted for
λ-bound variables and returned as abstraction values. This contrasts
with implementations of conventional functional languages which real-
ize a weakly normalizing λ-calculus that is capable of computing closed
terms (or basic values) only.

The two machines described in this paper are descendants of a weakly
normalizing secd-machine that supports a nameless λ-calculus which
has bound variable occurrences replaced by binding indices. Full nor-
malization is achieved by a few more state transition rules that η-extend
unapplied abstractions to full applications, inserting in ascending order
binding indices for missing arguments. Updating these indices in the
course of performing β-reductions is accomplished by means of a sim-
ple counting mechanism that inflicts very little overhead. Both machines
realize a head-order strategy that emphasizes normalization along the
leftmost spine of a λ-expression. The simpler fn secd-machine abides
by the concept of saving (and unsaving) on a dump structure machine
contexts upon each individual β-reduction. The more sophisticated
fn se(m)cd-machine performs what are called β-reductions-in-the-large
that head-normalize entire spines in the same contexts. It also employs
an additional trace stack M that facilitates traversing spines in search
for and contracting redices.

The paper also gives an outline of how the fn se(m)cd-machine can
be implemented as a graph reducer.

1 Introduction

Abstract computing machines are conceptual models of program execution. They
exhibit the runtime structures and the basic operating and control mechanisms that
are absolutely essential to perform computations specified by particular (classes
of) programming languages. They may be considered common interfaces, or

Z. Horváth et al. (Eds.): CEFP 2007, LNCS 5161, pp. 112–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Abstract λ-Calculus Machines 113

intermediate levels of program execution, shared by a variety of real comput-
ing machines irrespective of their specific architectural features. The level of
abstraction may range from direct interpretation of the constructs of a (class of)
language(s) to (compiling to) abstract machine code composed of some minimal
set of instructions that suffices to perform some basic operations on the runtime
structures and to exercise control over their sequencing.

Our interest in abstract λ-calculus machines derives from the fact that the
λ-calculus is at the core of all algorithmic programming languages, procedural
or functional, as we know them today. It is a theory of computable functions that
talks about elementary properties of and the application of operators to operands
and, most importantly, about the role of variables in this game [Chu41, Bar84,
HS86]. In its purest form it knows only three syntactical figures – variables, ab-
stractions (of variables from expressions) and applications (of operator to operand
expressions) – and a single rule for transforming λ-expressions into others. This
β-reduction rule, which specifies the substitution of variables by expressions, tells
us in a nutshell the whole story about computing. The runtime structures that
are involved in reducing λ-expressions are shared, in one form or another, by
abstract machines for all algorithmic languages, particularly in the functional
domain, and so are the basic mechanisms that operate on these structures. Un-
derstanding λ-calculus machines therefore is fundamental to comprehending the
why and how of organizing and performing computations by machinery.

The very first machine of this kind, which has become more or less a standard
model, is the secd-machine proposed by Landin as early as 1964 [Lan64]. It is
named after the four runtime structures it employs, of which the most important
ones, besides a code structure C, are an environment E and a dump D which
facilitate efficient substitutions while maintaining correct binding scopes. The
machine is said to be weakly normalizing, meaning that substitutions and reduc-
tions under abstractions are outlawed in order to avoid the seeming complexity
of full-fledged β-reductions which would be required to resolve potential naming
conflicts between free variable occurrences in arguments and variables bound by
the abstractions. It is due to this restriction that the secd-machine cannot re-
ally compute abstractions as values but must represent them as closures, i.e., as
unevaluated abstractions embedded in the environments that hold instantiations
of their (relatively) free variables 1.

It can justifiably be argued that this restriction, for all practical purposes,
is of minor relevance if we are mainly interested in computing basic values (or
ground terms) only, which is what real-life application programming overwhelm-
ingly is all about. In fact, all implementations of functional languages are based
on weakly normalizing machinery with a naive parameter passing (or substitu-
tion) mechanism, well known examples being the G-machine, the STG-machine,
the Functional Abstract Machine (FAM) or the Categorial Abstract Machine
(CAM) [Joh84, PeyJ92, CMQ83, CCM85/87]. Implementations of procedural
languages go even one step further by demanding that functions (procedures) be

1 We refer to a variable as being relatively free if it is free in a particular subexpression
under consideration but bound higher up in a larger, surrounding expression.

114 W.E. Kluge

legitimately applied to full sets of arguments only. Moreover, variables represent
values but are not values themselves, as in the λ-calculus.

However, there are some benefits to supporting a fully normalizing λ-calulus
based on a full-fledged β-reduction. Resolving naming conflicts between free and
bound variable occurrences is the key to correctly performing symbolic computa-
tions as both variables and functions (abstractions) can then truly be treated as
first class objects in the sense that both may be passed as function parameters
and returned as function values.

This quality may be advantegeously employed, for instance, in term rewrite
systems or, more specifically, in proof systems where establishing semantic equal-
ity between two terms containing free variables is an important proof tactics.
Another useful application of full normalization is in the area of high-level pro-
gram optimizations, e.g., by converting partial function applications into new,
specialized functions with normalized bodies. Such optimizations could pay off
significantly in terms of runtime performance if the specialized functions are
repeatedly called in different contexts.

This paper is to show how fully normalizing abstract λ-calculus machines can
be derived from standard secd-machinery by a few minor extensions and mod-
ifications, and how these machines can be taken as blueprints for the design of
equivalent graph reduction machines whose runtime efficiencies are competitive
with those of its weakly normalizing counterparts.

To do so, we will proceed as follows: In the next section we will look at a
very simple program to illustrate some of the shortcomings of current imple-
mentations of functional languages in order to make a case for supporting a
fully normalizing λ-calculus. Section 3 introduces a normal-order secd-machine
which supports a nameless λ-calculus that has bound variables replaced by bind-
ing indices. In section 4 we will first outline the concept of head-order reductions
(which is just a particular way of looking at normal-order evaluation) and then
introduce in section 5 a fully normalizing fn secd-machine that differs from its
weakly normalizing counterpart by the addition of a few more state transition
rules that primarily deal with unapplied abstractions.

In section 6 we will introduce a more sophisticated fn se(m)cd-machine that
performs what are called head-order reductions-in-the-large. It engages the dump
only when entering (or returning from) the evaluation of so-called suspensions 2

and also employs an additional trace stack M for apply nodes and abstractors
encountered while traversing an expression in search for β-redices. Section 7
outlines the workings of a fully normalizing graph reducer that derives from this
fn se(m)cd-machine.

2 Some Simple Exercises in Functional Programming

To motivate what we are trying to accomplish, let’s have a look at several variants
of a very simple functional program, written in scheme [Dyb87], that exposes
2 Loosely speaking, these are expressions embedded in their environments whose eval-

uation has been postponed under the normal-order strategy.

Abstract λ-Calculus Machines 115

some of the problems of weak normalization. This program consists of the
following two function definitions:

(define twice (lambda (f u) (f (f u))))

(define square (lambda (v) (* v v)))

The function twice applies whatever is substituted for its first parameter f twice
to whatever is substituted for its second parameter u, and the function square
computes the square of a number substituted for its parameter v.

When applying twice to square and 2, a scheme interpreter returns, as one
would expect,

(twice square 2) --> 16

i.e., the square of the square of 2. But if twice is just applied to either square
or to itself, we get

(twice square) --> procedure twice: expects 2 args,
given 1 : (lambda(a1) ...)

(twice twice) --> procedure twice: expects 2 args,
given 1 : (lambda(a1) ...)

i.e., the interpreter notifies us in both cases of attempts to apply a function of
two parameters to just one argument, indicating that the result is a function of
one parameter that is artificially introduced as a1, but it cannot return a full
function body in scheme notation.

The same happens with the application

(twice twice square) --> procedure twice: expects 2 args,
given 1 : (lambda(a1) ...)

though here twice is applied to two arguments, so everything should work out.
However, the problem now arises in the body of twice where the parameter f
is applied to just one parameter u, but f is substituted by twice itself, which
expects two arguments. Again, the result is a function of one parameter a1, as
one would expect, whose body cannot be made explicit.

We now slightly modify the function twice, turning it into curried form (i.e.,
into a nesting of unary functions), and see what happens then.

(define twice (lambda (f)
(lambda (u) (f (f u)))))

When matching the curried version of twice by corresponding nestings of ap-
plications, as for instance in

((twice square) 2) --> 16

116 W.E. Kluge

or in

(((twice twice) square) 2) --> 65536

we obviously get the expected results. However, when applying twice to two
arguments, as in

((twice twice square) 2)
--> procedure twice: expects 1 arg,

given 2 : (lambda(a1) ...)

the interpreter complains about a unary function being applied to two argu-
ments, the result of which is a function of one parameter (which is correct)
whose body, again, cannot be returned in scheme notation.

In the following two applications, we have no mismatching arities,

(twice twice) --> (lambda (a1) ...)

((twice twice) square) --> (lambda (a1) ...)

Here again we are only told that the result is a function of one parameter, but
the function body is not disclosed.

However, what one would wish to see as output of these latter two applications,
and what a fully normalizing λ-calculus would readily deliver, is something like
this:

(twice twice) --> (lambda (u’) (lambda (u)
(u’(u’(u’(u’ u))))))

((twice twice) square)
--> (lambda (u)

(* (* (* (* u u) (* u u))
(* (* u u) (* u u))) (....)))

i.e., the self-application of twice should return in high-level notation a function
that could be called double-twice as it applies four times its first to the second
parameter 3. Applying this self-application to square should return a function
of one parameter (which is expected to be substituted by a number) that is mul-
tiplied 16 times by itself. Both functions may be considered spezialized versions
of the original partial applications. They may be applied in different contexts
without going repeatedly through the motions of evaluating them as parts of full
applications, i.e., these functions are in fact optimized.

The unfortunate state of affairs of not being able to compute functions truly
as function values, let alone returning them in the above form as output, is

3 Note that evaluating this self-application produces a naming conflict between a
bound and a relatively free occurrence of the variable u which must be resolved
by renaming either one of them as u’.

Abstract λ-Calculus Machines 117

common to all current implementations of functional languages, e.g., haskell,
clean, ml or scheme [Bird98, PvE93, Ull98, Dyb87]. Little is accomplished
if the programmer is just informed that the result of some computation (that
generally may be rather complex) is a function, without telling what the function
looks like, i.e., what exactly it computes 4. This deficiency is a direct consequence
of compiling, for reasons of runtime efficiency, programs of these languages to
code of some abstract or real machine. Such code being static, it expects the
right things (the objects of the computation) to be in the right places (memory
locations) at the right time (or state of control). More specifically, it means that,
as the above examples indicate, function (abstraction) code can execute correctly
if and only if it can access at prefixed locations relative to the top of the runtime
stack a full set of arguments (of the right types), i.e., an actual for each of its
formal parameters. Otherwise, code execution must either be suspended until
missing arguments can be picked up later on, or the user must be notified, as in
the above examples, that the computation is getting stuck in a state that cannot
be decompiled into a legitimate program expression.

This is to say that, in λ-calculus terminology, these languages in fact feature
a weakly normalizing semantics that is more or less imposed by the constraints
of compiling to static code: a function application can only be evaluated if the
function’s arity matches the number of arguments supplied; a partial function
application may have its arguments evaluated but nothing can be done beyond
that since neither substitutions under the (remaining) abstraction nor evaluation
of the abstraction body are permitted.

Static code seems to leave no room for the flexibility that is required to sup-
port full normalization, in which case the code would have to deal with partial
applications, i.e., with varying numbers of arguments on the stack, and with
free variables (which are their own values). Also, new code would have to be
generated at runtime for new functions that are being computed by application
of existing ones. Though these things can be done in principle, it is generally
believed that they are difficult to implement, degrading runtime performance
considerably, and therefore considered a luxury that is not really needed.

However, in the following we will show that full normalization can be achieved
with little effort, in terms of additional machinery, beyond what is necessary to
perform weakly normalizing computations.

3 A Weakly Normalizing λ-Calculus Machine

A good starting point for the design of a fully normalizing λ-calculus machine is
Landin’s classical secd-machine [Lan64]. It is an abstract applicative order eval-
uator that reduces λ-expressions to weak normal forms. The operating principles
of this machine are based on the ideas of delayed substitutions, environments and,
related to it, the notion of closures.

4 Typed languages such as haskell, clean or ml can at least infer the type of the
resulting function which, however, is not of much help either.

118 W.E. Kluge

The concept of delayed substitutions is to split β-reductions up into two
steps that are distributed over space and time. Upon encountering β-redices,
generally several in succession, the machine just collects in an environment
structure the operand expressions to be substituted. All substitutions are then
done in one sweep through the abstraction body by looking the operands up
in the environment. Closures are special constructs that, loosely speaking, pair
abstractions with the environments in which they may have to be evaluated
later on.

We will first show how the secd-machine can be modified to support normal-
order evalution which guarantees termination with weak normal forms, so they
exist, and then upgrade it to reduce λ-expressions to full normal forms.

3.1 A Machine-Compatible Syntax for λ-Expressions

We begin the construction of a normal-order secd-machine with the choice of
a suitable syntax for λ-expressions, taking into account that machines have a
hard time dealing with variables and parentheses. We therefore use the nameless
λ-calculus of deBruijn [Bru72] which replaces λ-bound variable occurrences with
binding indices. We also switch to nameless abstractors Λ, replace left parenthe-
ses of applications with apply nodes @, and drop right parentheses altogether.
The ensuing constructor syntax of what we in the following will refer to as the
Λ-calculus thus looks like this:

eΛ =s #i | Λ eb | @ ef ea

Expressions are deBruijn indices #i, abstractions and normal-order applications,
respectively. The apply node @ and the abstractor Λ are the constructors of this
syntax.

DeBruijn indices may assume values i ∈ { 0, . . . , n − 1 }, where n is the
number of Λ-abstractors encountered along the path from the root node of the
Λ-expression down to the occurrence of the index #i. The index itself measures
the distance, in terms of intervening Λs, to the one that binds it (with index #0
being bound to the innermost Λ).

The expressions ef and ea are considered operator and operand, respectively,
of an application. If the operator happens to be an abstraction, then it may
alternatively be referred to as the function and the operand as the argument of
the application 5.

In addition to Λ-expressions, the machine also works with two syntactical
constructs [E Λ eb] and [E e] which respectively are called closures and sus-
pensions. They both pair expressions with the environments in which they may
have to be evaluated. The difference between the two is that closures are specif-
ically created for abstractions that occur in operator positions of applications,
5 It should be noted that scanning an application from left to right is equivalent to

traversing in pre-order the underlying binary tree structure, i.e., the apply node
at the root is inspected first, followed by operator and operand as left and right
subtrees, respectively, recursively in pre-order.

Abstract λ-Calculus Machines 119

whereas suspensions are created for operand expressions, including abstractions,
to delay their evaluation until called for by the normal-order regime later on.
Syntactically, closures are just special suspensions.

3.2 The Basics of Doing β-Reductions

A brief illustration of how β-reductions are being processed by the abstract ma-
chine we are going to design is given in fig.1. It shows how the graph representa-
tion of the nested application @ @ @ ΛΛΛ eb e1 e2 e3 is step by step transformed,
beginning in the upper left and following the thick arrows.

We assume that this nested application is part of a larger, surrounding ex-
pression, and that β-reductions performed in this expression have produced some

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@@

E

e1

e2

e3

[E e1]

[E e2]

[E e3]

[E e2]

[E e3][E e3]

ΛΛΛeb [E ΛΛΛeb]

[[E e2] : [E e1] : E Λ eb]

[[E e1] : E ΛΛeb]

[[E e3] : [E e2] : [E e1] : E eb]

Fig. 1. Sequence of steps that reduces a nested application @ @ @ ΛΛΛ eb e1 e2 e3

120 W.E. Kluge

environment E 6 once the focus of control has arrived at the outermost apply
node under consideration, as indicated in the upper left graph by the little arrow
pointing to it from the left. The entries in this environment are suspensions which
may have to be substituted for deBruijn indices that occur free in the operand
expressions e1, e2, e3 and in the abstraction ΛΛΛeb in operator position.

As the focus of control moves down the spine of apply nodes, the environment
E is distributed over the operand expressions e1, e2, e3, creating suspensions in
their places, and over the abstraction ΛΛΛeb in operator position, wrapping it
up in a closure, as shown in the upper right graph.

It is important to note that at this point no attempts have been made to
evaluate these constructs: the normal-order regime demands that, for the time
being, the suspensions in operand positions be left untouched. The closure in
operator position cannot be evaluated either as it would require substituting
environment entries under an abstraction, which is outlawed under a weakly
normalizing regime.

However, with the focus of control now pointing to the innermost apply node,
we have an instance of a β-redex with an abstraction embedded in a closure
in operator position and a suspension in operand position. Evaluating this ap-
plication creates a new closure in its place that has one Λ removed from the
abstraction and has the operand suspension prepended to the environment (de-
noted as [E e1] : E), as depicted in the graph at the lower right. Continuing in
this way, the whole spine is consumed from the bottom up, resulting in a closure
that has two more entries prepended to the original environment E which is
now paired with an abstraction body eb that is stripped off all Λ-abstractors
(at the bottom of fig. 1). This being the case, the closure can now safely be
evaluated by substituting all occurrences of deBruijn indices #i in eb by the
entries found i positions deep in the environment (counting from left to right
and beginning with the index i = 0) as they are, i.e., without worrying about
naming conflicts. We will refer to such substitutions, and in consequence also to
β-reductions realized in this form, as being naive.

Note that we have chosen here the ideal case that the number of apply nodes
along the spine matches the number of Λs in (or the arity of) the abstraction
that is in the head of the spine, but the other cases are covered as well. If the
number of apply nodes exceeds the abstraction’s arity, then a shorter spine is
left over with a closure as at the bottom of fig. 1 in its head. Should the arity of
the abstraction exceed the number of apply nodes along the spine, i.e., we have
a partial application, then we end up with a closure containing an abstraction of
lesser arity that cannot be evaluated any further.

3.3 A Normal-Order secd-Machine

The workings of an abstract machine are described by a set of machine states
and a state transition function that maps (transforms) current into next states.

6 If the application would be top level, the environment would be empty, denoted as
nil.

Abstract λ-Calculus Machines 121

A state, in turn, is described by a collection of dynamically changing data struc-
tures on which the machine operates.

The name of the secd-machine derives from four stack-like structures that
make up the machine states. These are

– a code structure C that holds Λ-expressions or fragments thereof in the order
in which they need to be evaluated;

– a value stack S into which are pushed the values of expressions (or sub-
expressions);

– an environment structure E whose entries are suspensions that may have to
be substituted for deBruijn indices that pop to the top of C;

– a dump stack D for entire machine states that are pushed and popped when
entering and returning from β-reductions, respectively.

Thus, a state of the secd-machine, to which we will also refer as a configura-
tion, is defined by a quadruple (S, E, C, D), and the state transition function
as:

τsecd : (S, E, C, D) → (S′, E′, C′, D′) .

The actual contents of the stack-like runtime structures are specified as

stack =s nil | X | item : stack ,

where nil denotes an empty stack, X stands for one of the stack symbols S, E, C,
D, and ′ :′ separates some specific topmost symbol or expression from the rest
of the stack.

The basic operating principle of this machine is to initially set up the entire
Λ-expression in the code structure C, to evaluate recursively from innermost to
outermost applications popping to the top of C, and to move their values over
into S, where the resulting weak normal form is recursively constructed from the
bottom up.

More specifically, an application @ ef ea on top of C is rearranged in post
order as ea : ef : @ to have the operand evaluated before the operator and before
the entire application. Following the normal-order regime, the value of ea must
be moved into S as a suspension [E ea], followed by a closure [E ef] if ef

happens to be an abstraction. The applicator @ then popping to the top of C
forces the evaluation of the application, consuming its components from C and
S and (eventually) pushing its value into S instead.

However, evaluating β-redices takes a number of intermediate steps that in-
volve the environment and the dump. The operand suspension is prepended to
the environment carried along with the closure that contains the abstraction,
and the abstraction body is in isolation set up on top of C for further eval-
uation in this new environment. The latter is accomplished by saving on the
dump the machine state that represents the entire surrounding context of the
β-redex. This context in fact constitutes the return continuation with which the

122 W.E. Kluge

Rearranging applications on C and creating suspensions on S
(1) (S, E, @ ef ea : C, D) → ([E ea] : S, E, ef : @ : C, D)

Creating closures on S for abstractions on C
(2) (S, E, Λeb : C, D) → ([E Λeb] : S, E, C, D)

Substituting deBruijn indices
(3) (S, E, #i : C, D) → (lookup(#i, E) : S, E, C, D)

Entering naive β–reductions
(4) ([E′ Λeb] : ea : S, E, @ : C, D) → (S, ea : E′, eb : nil, (E, C, D))

Reducing suspensions not containing abstractions
(5) ([E′ e′] : S, E, C, D) | (e′ �= Λeb) → (S, E′, e′ : nil, (E, C, D))

Reconstructing irreducible applications in S
(6) (eb : ea : S, E, @ : C, D) → (@ eb ea : S, E, C, D)

Returning from naive β-reductions
(7) (S, E, nil, (E′, C′, D′)) → (S, E′, C′, D′)

Fig. 2. The complete set of state transition rules for the normal-order secd machine

computation must continue once evaluation of the β-redex is completed, where-
upon its value ends up on S and the code structure C becomes empty.

The details of how this machine works are specified by the set of state transi-
tion rules given in fig. 2, which realizes the state transition function τsecd. They
are listed in the order in which they must be matched against actual machine
states.

Rules (1) to (3) identify the machine configurations that have the three syn-
tactical figures of legitimate Λ-expressions appear on top of the code structure
C. Rule (1) splits an application up into its three components which are rear-
ranged so that the apply node is squeezed underneath the operator, whereas the
operand is embedded in a suspension that is pushed into S. Rule (2) wraps an
abstraction up in a closure that is pushed into S. A deBruijn index on top of
C accesses, by application of rule (3), the i-th entry relative to the top of the
environment E, using a function lookup, and pushes it into S, which realizes the
substitution that completes a naive β-reduction.

Rule (4) enters a (naive) β-reduction: an applicator @ on top of C in conjunc-
tion with a closure on S has the body of the abstraction isolated for evaluation
in C together with its environment on E, while the current environment and the
current code structure, i.e., the calling context, are saved as return continuation
on the dump. The operand retrieved from underneath the closure in S, which
is bound to be a suspension, is prepended as a new entry to what has now become

Abstract λ-Calculus Machines 123

the active environment. Evaluating an abstraction body involves traversing it
step by step from C to S, thereby substituting deBruijn indices by environment
entries or calling for other (naive) β-reductions. Completing this traversal is
signified by an empty code structure, at which point rule (7) is called to return
to the context saved on the dump.

Isolating in C the body of an abstraction to be evaluated and in E the en-
vironment in which evaluation must take place while saving the surrounding
context on the dump is a measure that ensures substitution of deBruijn indices
in exactly the intended binding scope – the abstraction body – by suspensions
that belong to just the relevant environment.

Rule (5) takes care of suspensions that contain expressions other than abstrac-
tions, i.e., primarily applications but also deBruijn indices. They are set up for
evaluation in basically the same way as by rule (4): the expressions are isolated
in C together with the corresponding environments in E, and the surrounding
contexts are saved on the dump.

And finally, rule (6) reconstructs from the components spread out over C and
S irreducible applications in S.

An initial machine state has the entire expression to be reduced set up in the
code structure C, with all other structures empty, and the terminal state, so
it exists, has its weak normal form set up in the value stack S, while all other
structures are empty.

The machine stops in such a state since none of the rules of fig. 2 matches.
It has to be well understood that this machine can reduce only closed λ-

expressions. This is due to the fact that deBruijn indices, by definition, cannot
occur free anywhere in the expression and that therefore legitimate reducible
expressions can only be top-level applications of closed abstractions to closed
abstractions, as a consequence of which the resulting weak normal forms can only
be abstractions embedded in closures (which syntactically are indistinguishable
from suspensions).

3.4 Reducing Step by Step a Simple Λ-Expression

As an illustration of how this normal-order secd-machine works, lets have a look
at the sequence of machine states in fig. 3 that it brings about when reducing
the Λ-expression

@ @ Λ #0 Λ #0 @ Λ #0 Λ #0

to its weak normal form Λ #0 (which is also its full normal form).
The initial stack configuration at the top of fig. 3 has the entire expression set

up in the code structure C while all other structures are empty. This expression
being an application, rule (1) takes over to enclose the operand expression in a
suspensions that is pushed into S, and the apply node is squeezed underneath
the operator in C. The operator thus exposed as the next expression that must
be taken care of again is an application which calls once more for rule (1), yielding

124 W.E. Kluge

the third stack configuration from the top. The abstraction now on top of C is
by rule (2) wrapped up in a closure and pushed as value into S, thus bringing
the inner apply node to the top of C, its operand being underneath the operator
in S (fourth configuration).

nil | S
nil | E

@ @ Λ #0 Λ #0 @ Λ #0 Λ #0 : nil | C
nil | D

Rule 1 ⇓

[nil @ Λ #0 Λ #0] : nil | S
nil | E

@ Λ #0 Λ #0 : @ : nil | C
nil | D

Rule 1 ⇓

[nil Λ #0] : [nil @ Λ #0 Λ #0] : nil | S
nil | E

Λ #0 : @ : @ : nil | C
nil | D

Rule 2 ⇓

[nil Λ #0] : [nil Λ #0] : [nil @ Λ #0 Λ #0] : nil | S
nil | E

@ : @ : nil | C
nil | D

Rule 4 ⇓

[nil @ Λ #0 Λ #0] : nil | S
[nil Λ #0] : nil | E

#0 : nil | C
(nil, @ : nil, nil) | D

Rule 3 ⇓

[nil Λ #0] : [nil @ Λ #0 Λ #0] : nil | S
[nil Λ #0] : nil | E

nil | C
(nil, @ : nil, nil) | D

Rule 7 ⇓

Fig. 3. Reducing step by step the expression @ @ Λ #0 Λ #0@ Λ #0 Λ #0 on the secd-
machine

Abstract λ-Calculus Machines 125

[nil Λ #0] : [nil @ Λ #0 Λ #0] : nil | S
nil | E

@ : nil | C
nil | D

Rule 4 ⇓

nil | S
[nil @ Λ #0 Λ #0] : nil | E

#0 : nil | C
(nil, nil, nil) | D

Rule 3 ⇓

[nil @ Λ #0 Λ #0] : nil | S
[nil @ Λ #0 Λ #0] : nil | E

nil | C
(nil, nil, nil) | D

Rule 7 ⇓

[nil @ Λ #0 Λ #0] : nil | S
nil | E
nil | C
nil | D

Rule 5 ⇓

nil | S
nil | E

@ Λ #0 Λ #0 : nil | C
(nil, nil, nil) | D

Rule 3 ⇓

... and so on ...

Fig. 3. (continued)

At this point rule (4) detects a β-redex. It removes both the operator closure
and the operand suspension from S, isolates the body #0 of the abstraction
in C, and also prepends the operand suspension to the empty environment nil
carried along with the closure, which now becomes active. The old environment
and the remaining code structure C, i.e., the outermost apply node, are saved on
the dump (fifth configuration from the top). Evaluating the deBruijn index #0
in C calls for rule (3), which copies the environment entry at position 0 relative

126 W.E. Kluge

to its top, which is the suspension [nil Λ #0], on top of S, leaving the control
structure C empty (last configuration of fig. 3).

Having thus completed the evaluation of the operator expression of the out-
ermost application, the machine returns, by rule (7), to the surrounding context
to continue with the evaluation of the outermost application (top configuration
of fig. 3). Going basically through the same motions, it arrives, after three more
steps, at a configuration that has the operand of the outermost application en-
closed in a suspension set up in S, with all other structures empty. As this
suspension contains an application, it is intercepted by rule (5) to enforce its
evaluation as well. In doing so, the machine creates a new context which has
the application @ Λ #0 Λ #0 set up in C and the associated empty environ-
ment in E, just as before starting the evaluation of the entire expression. After
performing the same four steps that reduced the identical operator expression,
the machine terminates with the closure [nil Λ #0] in S and all other structures
empty.

4 Toward Fully Normalizing λ-Calculus Machines

Upgrading a weakly to a fully normalizing λ-calculus machine requires (the
equivalent of) full-fledged β-reductions to preserve the functional property of
the λ-calculus when substituting and reducing under abstractions. A clever im-
plementation that can be mechanically executed almost as efficiently as naive
substitutions may be obtained by taking advantage of a few more properties of
the λ-calculus beyond the β-reduction rule itself that are well covered in standard
textbooks [Bar84, HS86]. They are briefly reviewed in the following subsection.

4.1 β-Reduction, η-Extension, β-Distribution and Head (Normal)
Forms

In the nameless Λ-calculus that is of interest here, deBruijn indices measure
distances, in terms of numbers of intervening Λs, between the syntactical posi-
tions of their occurrences and the Λ-abstractors that bind them. Full-fledged
β-reduction requires updating them whenever the number of Λs in between
changes. More specifically, when removing intervening Λs, the indices must be
decremented, and when squeezing additional Λs in between, the indices must be
incremented accordingly.

Consider as a small example that may help to illustrate how this works the
expression 7

Λ2 @ Λ1Λ0 @ #1 #2 Λ4 #1 .

In the body of the abstraction Λ1Λ0 @ #1 #2 the indices #1 and #2 are bound
to Λ1 and Λ2, respectively, the index #1 occurs free in the abstraction Λ4 #1
but is also bound to Λ2; there are no indices that are bound to Λ0 and Λ4.

7 The subscripts attached to the Λs merely serve to facilitate explaining which deBruijn
index is bound to which abstractor.

Abstract λ-Calculus Machines 127

This expression evaluates in two β-reduction steps as follows:

Λ2 @ Λ1Λ0 @ #1 #2 Λ4 #1 →β Λ2Λ0 @ Λ4 #2 #1 →β Λ2Λ0 #1

Reducing, in the first step, the outer application substitutes the abstraction
Λ4 #1 for the index #1 in the body of the abstraction Λ1Λ0 @ #1 #2 , thereby
removing the abstractor Λ1 and decrementing the original index #2 as the dis-
tance to the binding Λ2 is now one less. However, the index in the body of Λ4 #1
must be incremented since crossing the abstractor Λ0 increases the distance to
the binding Λ2 by one.

The second step β-reduces the remaining application. As the abstractor Λ4

does not bind anything, the operand #1 is simply consumed, but the index #2
in the abstraction body is decremented to #1 since the disappearance of the
abstractor Λ4 has shortened by one the distance to the binding Λ2.

The troublesome part about performing β-reductions in this way is that de-
Bruijn indices may have to be counted up and down several times, as may be
illustrated by the following example:

@ @ @ ΛΛΛ @ #2 @ #1 #0 #3 #2 #1

(here it is assumed that the indices #3, #2, #1 in operand positions of the
three nested outer applications are bound by Λ-abstractors somewhere in a sur-
rounding expression). Reducing these applications step by step from innermost
to outermost yields:

@ @ @ ΛΛΛ @ #2 @ #1 #0 #3 #2 #1 →β

@ @ ΛΛ@ #5 @ #1 #0 #2 #1 →β @ Λ@ #4 @ #3 #0 #1 →β @ #3 @ #2 #1

It is interesting to note that the operand indices are in their places of substitu-
tion in the abstraction body first stepped up by the number of Λs whose scopes
are being penetrated, but that these indices are decremented again as the Λs are
being consumed by subsequent β-reductions, with the net effect that they have
not changed at all after all β-reductions are done. Needless to say that this is a
special property of full applications which has in fact already been exploited in
the weakly normalizing machine of the preceding section.

However, this example also tells us that when β-reducing step by step a partial
application, free occurrences of deBruijn indices in operand expressions are, after
all redices are done, in their places of substitution effectively stepped up by the
number of Λs remaining, i.e., by the arity of the resulting abstraction.

More specifically, a partial application of the general form

@ . . . @
︸ ︷︷ ︸

k

Λ . . . Λ
︸ ︷︷ ︸

n

eb e1 . . . ek | k < n

β-reduces to an (n− k)-ary abstraction that has all occurrences of the deBruijn
indices #(n− 1) . . .#(n− k) in eb substituted by the operands e1 . . . ek, respec-
tively, in which all occurrences of (relatively) free deBruijn indices are incre-
mented by (n−k). In the special case that k = n, i.e., we have a full application

128 W.E. Kluge

as above, the original indices remain unchanged. Of course, all free occurrences
of deBruijn indices in the original n-ary abstraction must be decremented by k.

This leads us to conclude that if we can find a way of doing these k β-reductions
in one conceptual step, a lot of superfluous index updates could be spared.

As a first step toward this end, we make use of η-extensions as an elegant way
of minimizing the number of updates on deBruijn indices when reducing partial
applications. η-extension derives from the semantic equivalence

@ e0 e1 = @ Λ@ e
(+1)
0 #0 e1 ,

where the superscript on e
(+1)
0 denotes the addition of 1 to all free occurrences

of deBruijn indices in e0, since an additional abstractor Λ has been squeezed
between them and the binding Λs that may be found in a larger, surrounding
expression. This equivalence also implies that

e0 = Λ @ e
(+1)
0 #0 .

More generally, when η-extending an abstraction k-fold, we get

e = Λ . . . Λ
︸ ︷︷ ︸

k

@ . . .@
︸ ︷︷ ︸

k

e(+k) #(k − 1) . . .#0 .

This semantic equivalence may be readily employed to turn partial into full ap-
plications that can be reduced by a weakly normalizing machine. All that needs
to be done is to extend a partial application by as many applications to deBruijn
indices in ascending order as there are missing operands, and to put in front of
this extended application the same number of Λ-abstractors:

@ . . .@
︸ ︷︷ ︸

k

Λ . . . Λ
︸ ︷︷ ︸

n

eb ek−1 . . . e0 =

Λ . . . Λ
︸ ︷︷ ︸

n−k

@ . . .@
︸ ︷︷ ︸

n−k

< @ . . .@
︸ ︷︷ ︸

k

Λ . . . Λ
︸ ︷︷ ︸

n

eb ek−1 . . . e0 >+(n−k) #(n−k−1) . . . #0 .

(the construct < · · · >+(n−k) denotes incrementation by (n − k) of all free
occurrences of deBruijn indices in the expressions within the brackets.)

The weakly normalizing secd-machine augmented by an appropriate mecha-
nism for such η-extension-in-the-large can thus be made to reduce, under an (n−k)-
ary abstraction, a body composed of the application of an n-ary abstraction to n
operand expressions of which the outermost (n−k) are deBruijn indices from the
interval #0 . . . #(n − k − 1). It creates an environment for the evaluation of the
abstraction body eb which substitutes the indices #(n−1) . . . #(n−k) by the ex-
pressions e(k−1) . . . e0 (with updated indices) and the indices #(n− k − 1) . . .#0
by themselves.

As a second step, we will make use of the fact that β-redices can be distributed
over the components of an abstraction body that is itself an application. For the
simple case of distributing just one β-redex we have

@ Λ @ ea eb e1 = @ @ Λ ea e1 @ Λ eb e1 .

Abstract λ-Calculus Machines 129

This may be generalized for n nested redices as

@ . . .@
︸ ︷︷ ︸

n

Λ . . . Λ
︸ ︷︷ ︸

n

@ ea eb e1 . . . en =

@ @ . . . @
︸ ︷︷ ︸

n

Λ . . . Λ
︸ ︷︷ ︸

n

ea e1 . . . en @ . . .@
︸ ︷︷ ︸

n

Λ . . . Λ
︸ ︷︷ ︸

n

eb e1 . . . en ,

which we may call a β-distribution-in-the-large. By pushing β-redices in this way re-
cursively in front of the subexpressions of an abstraction body, β-reductions may
be delayed until and performed only when and where they are actually needed.

As a third step, we combine both η-extensions-in-the-large and β-distributions-
in-the-large with a suitable reduction strategy. It may be derived from looking at
the syntax of Λ-expressions from a particular perspective that emphasizes what
are called head forms:

h | t =s #i | Λ . . . Λ
︸ ︷︷ ︸

n

@ . . .@
︸ ︷︷ ︸

r

h t1 . . . tr

A head form generally is a (nested) application of a single head expression h to
some r ≥ 0 tail expressions t1 . . . tr which is preceded by some n ≥ 0 abstractors.
Heads and tails are recursively constructed in the same way, i.e., they all have
head forms as well. Trivial head expressions are deBruijn indices #i. If the out-
ermost head expression h is a deBruijn index, then we have a head-normal form.

Occurrences of deBruijn indices in Λ-expressions must always be smaller than
the total number of Λs preceding them, i.e., there is no notion of such indices
being free in the entire head form. However, we may consider indices as being
free if they are bound to the outermost leading sequence of Λs because then
they may be passed around and updated by β-reductions but they never get
substituted by anything else.

Following a normal-order regime, the reduction strategy that lends itself di-
rectly to head forms is called head-order reduction as it emphasizes reductions
in the head: It first reduces the head expression to head-normal form and then
recursively all remaining tails to head normal forms as well, thus eventually ar-
riving at a full normal form of the entire expression, provided the whole process
terminates after finitely many β-reductions. The significance of this heads-first
strategy derives from the fact that an expression cannot have a full normal form
without having a head normal form, which should therefore be determined before
evaluating the tails.

4.2 Head-Order Reduction

In this subsection we are going to illustrate, by means of the graphical repre-
sentation of a typical head form as in fig. 4, how head-order reductions can be
organized, closely following an earlier proposal by Berkling [Ber86] 8.

8 The contents of this subsection are in large parts adopted from the author’s mono-
graph on Abstract Computing Machines[Kge05].

130 W.E. Kluge

�

�
�

�
�

�

�
�

�
�

�
�

�

�

�

�

Λ0 Λ1

Λ2 Λ3 Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10

@2 @3

@5 @6

@9 @10 @11

#i

apps

lambs

Fig. 4. A typical head form of a λ-expression

Head and tail expressions obviously are the operators and operands (depicted
by the downward pointing thin lines), respectively, of applications. On the path
from the root node of this graph down to the head index #i we find alternately
only sequences of Λ-abstractors and sequences of applicators @, to which we will
refer as lambs and apps sequences, respectively, and to the entire path as the
(leftmost) spine of the head form. All tails along this spine have recursively head
forms, or are spines, of their own.9

A section of the spine headed by a lambs sequence of length n is in fact a
curried n-ary abstraction whose body stretches over the entire remaining spine,
i.e., the spine of fig. 4 includes four abstractions nested inside each other.

Normal order reduction as effected by the applicator @ demands that β-redices
be reduced systematically from top to bottom along such spines until no more
β-redices are left, i.e., the spine features a sequence of leading Λs followed by a
sequence of applicators (which may be empty) followed by a head index bound
by one of the leading Λs, in which case we have arrived at a head-normal form.

Looking at the meander-like structure of the spine in fig. 4, β-redices can
be easily identified in the left-hand corners that connect apps and lambs se-
quences and thus pair innermost apply nodes with outermost abstractors. How-
ever, rather than actually performing these β-reductions step by step from left
to right, the idea of head-order reduction is to take largest possible chunks of
β-redices, which we’ll call cuts, out of such corners and to distribute them over
the head and tail expressions of the apps sequence that follows next along the
spine, using β-distributions-in-the-large as outlined in the preceding subsection.

9 Λ-nodes and apply nodes are in this graph enumerated so that one can follow up
more easily on what is ending up where when reducing this spine.

Abstract λ-Calculus Machines 131

Just what these cuts are depends on the relative lengths of the apps and lambs
sequences involved, as depicted in fig. 5 below.

�

�
�

�
�

�
�

�
�

�

�

�

�

�

� �
�

�
�

�

�

�

@ @ @ @

Λ Λ

@ @

@ @ @ @

Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ

#1 #0

η-extension

cut

cut

cut

(+2) (+2)(+2)

(a) apps longer than lambs

(b) lambs longer than apps

Fig. 5. Taking cuts off left-hand corners

The upper part (a) shows the easier case with an apps sequence that has at
least the same length as the lambs sequence. Here we have a full application as
the cut matches each abstractor with an apply node.

The lower part (b) shows a corner in which the lambs sequence is longer than
the apps sequence, i.e., we have a partial application that β-reduces to a new
abstraction of lesser arity, which would be 2 in the particular case. This can be
accomplished by means of an η-extension-in-the-large, as also introduced in the
preceding subsection, that transforms the entire apps− lambs corner into a full
application. The added apply nodes have the deBruijn indices #0 and #1 in
their tails, and all free occurrences of deBruijn indices in the head and the tails
of the original apps sequence are stepped up by 2, as annotated at the respective
edges, to account for the two Λ-nodes introduced by the η-extension.

132 W.E. Kluge

Inspecting the spine of fig. 4, we note that this head form includes three
apps− lambs corners, of which the upper two are partial applications that must
be η-extended before β-distributing them over the branches of the spine. Fig. 6
below illustrates how this is done.

�

�

�

�

�

�
�

�
�

�
�

	

�

�
�

�

�

�
�

�
��

�

	

�

�
�	

Λ0 Λ1 Λ′
4

Λ2 Λ3 Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 #i

@2 @3 @′
4

@5 @6

@9 @10 @11

#0
(+1)(+1)(+1)

cut A

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 #i

@5 @6 @′
7 @′

8

@9 @10 @11

A A A #1 #0
(+2) (+2) (+2)

cut B

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

@9 @10 @11

Λ9 Λ10 #i

B B B B

cut C

Fig. 6. β-distributing cuts over the branches of the spine

Proceeding from top to bottom along the spine, the first corner that is be-
ing encountered must be η-extended by one Λ |@ pair to obtain a cut A that

Abstract λ-Calculus Machines 133

represents a full application (the graph in the upper part of the figure).
Distributing this cut over the next corner of the spine squeezes it in front of
the tails and the head of its apps-sequence. This corner must be η-extended by
two Λ |@ pairs to form another cut B for a full application (the graph in the
middle of the figure), which in turn is β-distributed over the head and the tails of
the remaining corner of the spine (the graph at the bottom). This corner consti-
tutes a full application as it is, forming a cut C. This cut is trivially distributed
just in front of the head index #i, i.e., it remains in place.

If in cut C we now expand the copy of cut B that makes up its left-hand
corner and, likewise, in cut B expand the copy of cut A on the left, we obtain
the spine shown in fig. 7 below.

�

�

�

�

� � �

cut A cut B cut C

Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 #i

Λ0Λ1 Λ′
4 Λ′

7 Λ′
8

@2 @3 @′
4 @5 @6 @′

7 @′
8 @9 @10 @11

e2 e3 #0 #1 #0
e6e5 e9 e10 e11

AA B B B
(+3) (+3) (+2) (+2) (+2)

(+3)

Fig. 7. The spine emerging from the one of fig. 4 after having completed all η-extensions
and β-distributions-in-the-large

This spine features a leading lambs-sequence to which have been lifted the
Λ-abstractors that have been introduced by η-extensions. It is followed by a
single left-hand corner that connects an apps sequence of length 10 with a lambs
sequence of length 9, i.e., we have in fact unfolded, by means of repeated η-
extensions and β-distributions (...-in-the-large) what was the original cut C to
nine β-redices. This new cut C includes cut B which, in turn, includes cut A 10.

Having thus straightened the original spine, we can finally contract, in one
conceptual step to which we may refer as β-reduction-in-the-large, all β-redices
of the original spine that have now accumulated in a single cut C, thereby com-
pletely consuming it. The resulting reductum depends on the deBruijn index #i
in the head of the spine, which happens to be the entire body of the abstraction
formed by the lambs-sequence preceding it.

If this index is smaller than 9, it is bound to a Λ within the preceding lambs
sequence, which means that the abstraction is in fact a selector function that
picks from the apps sequence the tail of the apply node that in the graph is
10 Note that the apply and Λ nodes that have been introduced by η-extensions are

annotated as primed and receive the same indices as the corresponding Λs in the
original lambs sequences.

134 W.E. Kluge

opposite to the Λ to which the index is bound. For instance, an index i = 1 that
is bound to Λ9 selects the tail of @9, or an index i = 4 is bound to Λ6 and thus
returns the tail of @6.

These tails are substituted in the head position of the spine that is left
over after the cut C has disappeared, which is just the leading lambs sequence
Λ0Λ1Λ

′
4Λ

′
7Λ

′
8 followed by the apply node @11 whose tail remains intact.

This process of η-extensions, β-distributions and β-reductions (-in-the-large)
repeats itself in the head thus expanded until the head position is occupied by
an index bound to one of the Λs of the leading lambs-sequence, i.e., the spine
has become head-normalized.

This is the case if in the original spine of fig. 4 the index was bound either to
one of the leading Λs, say i = 10, or to one of the unapplied Λs that gave rise to
η-extensions, say i = 6.

In the former case, the head index is bound to Λ0 and must remain so after
cut C in fig. 7 has been completely β-reduced, i.e., the resulting index should
be i = 4. We can easily convince ourselves that this is indeed so: there are
nine intervening Λs that do disappear due to these β-reductions, decrementing
the head index to i = 1, but three Λs have been squeezed in between due to
η-extensions, resulting in the index i = 4.

In the latter case, the original index i = 6 is bound to Λ4, which selects the
index i = 2 (i.e., i = 0 incremented by 2) as the tail of @′

4, which in turn is
bound to Λ′

4 in what has become the expanded leading lambs sequence.
The cuts that build up along the spine in fact define an environment, just

as we know it from the secd-machine, in which the head expression is to be
evaluated. This environment just keeps expanding as long as there are apps–
lambs corners left to be distributed down the spine. With one large apps–lambs
corner remaining that has accumulated, in nested form, all the others that were
preceding it, we have a single contiguous environment. Depending on its value,
the head index defines either a single access into this environment to retrieve a
tail expression that must be substituted in the head, generally leading to more β-
reductions along the spine, or it is bound by one of the Λs of the resulting leading
lambs sequence, in which case we are done with the head, having arrived at a
head-normal form, and may turn to the tails, if there are any left, and recursively
reduce them in head-order as well.

The tails of head normal forms are generally unevaluated expressions preceded
by cuts, or by their environments, that are equivalent to the suspensions as we
know them from the secd-machine.

5 The fn secd-Machine

The runtime structures and the basic mechanisms of the weakly normalizing
secd-machine, not very surprisingly, can be employed in a fully normalizing ma-
chine as well. We definitely need a code structure C, an environment that holds
suspensions [E e], some stack S that temporarily holds intermediate values,
basically again suspensions but also deBruijn indices that are bound by leading

Abstract λ-Calculus Machines 135

Λs. Stack S also serves as the destination of full normal forms. Beyond that, it
is expedient to include a dump as well that keeps track of nested β-distributions
and η-extensions, accommodating the respective return continuations.

The machine must also include an efficient η-extension mechanism that does
the equivalent of generating as arguments for unapplied Λs deBruijn indices and
of updating those introduced by earlier η-extensions, as outlined in subsection 4.2.

5.1 The Unapplied Lambdas Count

The basic idea of how η-extensions and the ensuing updates on deBruijn indices
can be done almost effortlessly may be inferred from a close look at the spine of
fig. 7.

We note that after the first η-extension that leads to cut A the deBruijn index
in the tail of the apply node @′

4 receives the value #0. When doing the second
η-extension that brings about cut B, the tails of the new apply nodes @′

7 and
@′

8 receive the indices #1 and #0, respectively, and the index in the tail of @′
4

is stepped up by 2, which equals the number of Λs that have been squeezed in
between.

Rather than updating in this way earlier deBruijn indices whenever another
η-extension must be done along the spine, the very same index values may be
obtained by the following method that is decidedly simpler to implement and
more efficient to execute [Trou93]:

– The number of unapplied Λs introduced by η-extensions while proceeding
from top to bottom along the original spine is kept track of in a count
variable ULC (which stands for Unapplied Lambdas Count), beginning with
the value 0 (though any other non-negative integer value could be chosen as
well);

– The tails of the apply nodes introduced by η-extensions are filled with ULC
values rather than deBruijn indices in monotonically ascending order;

– When needed, the correct deBruijn indices may be obtained by subtracting
from the current value of the ULC counter the ULC values actually found
in the η-extended tails (which may be the same or lower).

The interesting properties about this method are that the ULCs put into the
η-extended tails are invariant against further η-extensions down the spine, that
these values can be generated by a simple counting mechanism, and that correct
index values can be calculated by a single integer subtraction, thus minimizing
the effort of manipulating them.

However, in order to treat all deBruijn indices, including those that are bound
by what originally were the leading Λs of the spine, in a uniform way, these
unapplied abstractors must be η-extended as well.

These extensions add another (innermost) cut L to the spine of fig. 7, yielding
the spine depicted in fig. 8. It has the tails of cut L filled with the ULC values 1
and 2, followed by the value 3 in the η-extended cut A and by the values 4 and

136 W.E. Kluge

5 in the η-extended cut B. The ULC values after completion of the cuts L, A,
B and C are also shown at the bottom.

�

�

�
�

� � � �

cut L cut A cut B cut C

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 #i

Λ′
0 Λ′

1 Λ′
4 Λ′

7 Λ′
8

@′
0 @′

1 @2 @3 @′
4 @5 @6 @′

7 @′
8 @9 @10 @11

1 2
e2 e3

3 4 5
e6e5 e9 e10 e11

ULC = 5ULC = 5ULC = 3ULC = 2

L L AA B B B

Fig. 8. The spine of fig. 7, η-extended by another cut L for the leading Λs, and showing
ULC values replacing all η-extended deBruijn indices

To exemplify calculation from ULCs of correct deBruijn indices, consider
environment accesses with the head indices #3, #6 and #10, all of which are
bound by unapplied Λs. Index #3 picks the tail of the η-extended apply node
@′

7, i.e., the ULC value 4. Correcting it with the ULC value 5 reached after
having flattened the entire spine yields the deBruijn index #1; likewise the head
index #6 selects the value 3 from the tail of @′

4 and, after subtracting it from the
ULC-value 5, returns the deBruijn index #2. In both cases we obtain exactly
the same deBruijn indices as would be selected from the spine of fig. 7. And
finally, index #10 which was bound to Λ0 in the original spine selects 1 from
the tail of @′

0. Upon subtracting it from the ULC value 5 we get the deBruijn
index #4 which remains bound by Λ′

0 in the emerging leading lambs sequence
Λ′

0Λ
′
1Λ

′
4Λ

′
7Λ

′
8

11.

5.2 The State Transition Rules

The state description of the fn secd-machine differs from that of the ordinary
secd-machine only in the addition of the unapplied lambdas count ULC as a
plain variable u, i.e., the state transition rules specify mappings of the form:

τfn secd : (S, E, C, D, u) → (S′, E′, C′, D′, u′).

The full set of these rules is given in fig. 9, again in the order in which they need
to be matched against machine states. To facilitate comparison with the state
transition rules of the weakly normalizing counterpart as given in fig. 2, the same
enumeration of rules has been chosen. The rules that complement existing rules

11 Note that the entire apps − −lambs corner in between disappears due to the β-
reduction-in-the-large that effects the selection.

Abstract λ-Calculus Machines 137

Returning from β-reductions with closures on S
(7b) ([Eb Λ eb] : S, E, nil, (E′, C′, D′, u′), u) → ([Eb Λ eb] : S, E′, C′, D′, u′)

Rearranging applications on C
(1) (S, E, @ ef ea : C, D, u) → ([E ea] : S, E, ef : @ : C, D, u)

Creating closures on S for abstractions on C
(2) (S, E, Λ eb : C, D, u) → ([E Λ eb] : S, E, C, D, u)

Substituting deBruijn indices
(3) (S, E, #i : C, D, u) → (lookup(#i, u, E) : S, E, C, D, u)

Entering the evaluation of β-redices
(4a) ([E′ Λ eb] : ea : S, E, @ : C, D, u) → (S, ea : E′, eb : nil, (E, C, D, u), u)

Dealing with unapplied closures on S
(4b) ([E′ Λ eb] : S, E, C, D, u) → (S, (u + 1) : E′, eb : Λ : nil, (E, C, D, u), (u + 1))

Entering the normalization of suspensions on S
(5) ([E′ e′] : S, E, C, D, u) → (S, E′, e′ : nil, (E, C, D, u), u)

Putting leading Λs in front of an expression in S
(4c) (eb : S, E, Λ : nil, (E′, C′, D′, u′), u) → (Λ eb : S, E′, C′, D′, u′)

Dealing with abstractions on S and apply nodes on C
(8) (Λ eb : S, E, @ : C, D, u) → (S, E, Λ eb : @ : C, D, u)

Rearranging applications for the evaluation of tail suspensions
(9) (eb : [E′ ea] : S, E, @ : C, D, u) → ([E′ ea] : eb : S, E, @∗ : C, D, u)

Reconstructing applications after normalization of their tail suspensions
(10) (ea : eb : S, E, @∗ : C, D, u) → (@ eb ea : S, E, C, D u)

Reconstructing irreducible applications in S
(6) (eb : ea : S, E, @ : C, D, u) → (@ eb ea : S, E, C, D, u)

Returning from β-reductions and η-extensions
(7a) (S, E, nil, (E′, C′, D′, u′) u) → (S, E′, C′, D′, u′)

Fig. 9. The state transition rules of a fully normalizing fn secd machine

have their numbers tagged by letters b, c (with a tagging the original rules), and
three entirely new rules receive the numbers 8, 9 and 10.

Rules (1) to (4a), other than for an additional variable u that holds the current
ULC value, are exactly the same as those of the weakly normalizing machine. The
function lookup used in rule (3) is per pattern matching recursively defined as:

lookup (#0, u, [E′ e′] : E) → [E′ e′]
(#0, u, un : E) → #(u − un)
(#i, u, v : E) → lookup (#(i − 1), u, E)

138 W.E. Kluge

i.e., it returns as the i-th environment entry either a suspension or, if this entry
contains a ULC value un, the corresponding deBruijn index.

Rule (4b) η-extends the unapplied abstraction contained in a closure that sits
on top of stack S. It does so by prepending the current ULC, incremented by
one, to the closure’s environment that now becomes active, and by setting the
isolated abstraction body up in C for evaluation. To complete the η-extension,
the Λ is squeezed underneath the abstraction body, from where it may be re-
trieved once the body is completely evaluated. Also, the machine saves on the
dump a return continuation that includes the old ULC, and it continues with
the updated ULC in what now has become the current context. Rule (4c) inter-
cepts the complementary stack configuration that has the evaluated abstraction
body on top of S and a Λ as the sole entry on top of C. From these components
it constructs a head-normalized abstraction on S. The return continuation re-
trieved from the dump also includes the old ULC value, which happens to be
the current value decremented by one.

There are two rules that are complementary to those that save current ma-
chine states (or contexts) on the dump. Rule (7a) covers the general case of
returning to a calling context whenever the code structure becomes empty, i.e.,
an instantiated abstraction body has been evaluated and in this form been com-
pletely moved from C to S. This rule must be called after all the other rules
have failed to match. However, there is also the special case of an empty code
structure in conjunction with a closure on top of S. Such configurations may
come about when retrieving, by means of the function lookup, tail suspensions
that happen to contain abstractions (and thus are in fact closures) from the en-
vironment. They must be caught before trying any of the other rules that expect
closures on top of S, specifically rule (4b); hence rule (7b) as the first of the list.

Of the new rules, rule (8) takes care of the special case that an abstraction may
end up as value on top of stack S together with an apply node @ in C, relative
to which it is in operator position. This rule simply moves the abstraction back
to C so that rule (2) may, in preparation for an application of rule (4a), wrap it
up in a closure that is returned to S.

The remaining new rules (9) and (10) are to force and return from (head-)
normalizing tail suspensions left over in a head-normalized spine. To figure out
what must be done here, we need to understand that a machine that is just head-
normalizing would produce in the value stack S an expression of the general form

Λ . . . Λ
︸ ︷︷ ︸

n

@ . . .@
︸ ︷︷ ︸

r

#i [E1 t1] . . . [Er tr] ,

i.e., from top to bottom we have a leading lambs sequence followed by an apps
sequence followed by a deBruijn index bound by one of the leading Λs followed
by a sequence of tail expressions wrapped up in suspensions. But before this
terminal state is reached, we have a configuration with the sequence

#i [E1 t1] . . . [En tr] in S

Abstract λ-Calculus Machines 139

and with the sequence
@ . . .@
︸ ︷︷ ︸

r

Λ . . . Λ
︸ ︷︷ ︸

n

,

of which the first @ is on top of C, and the remaining @s and Λs are, as parts
of recursively nested contexts, stacked up in the dump D.

From this configuration forward, without rules (9) and (10) all apply nodes
would be moved from C to S, using r times rules (6) and (7a), and then the Λs
would follow, using n times rules (4c) and again (7a), which in fact means that
the head-normalized spine would be assembled in S from the bottom (the head
symbol #i) up to the topmost Λ, without doing anything to the tail suspensions.

To evaluate, on the way up, the tails as well, the machine must intercept stack
configurations with an apply node on top of C, an expression value other than a
suspension (closure) on top of S and a suspension underneath, and to force the
evaluation of this suspension. The first such configuration encountered has the
head index #i of the head-normalized spine on top of S; all other configurations
have irreducible application on top of S.

Rule (9), upon encountering such configuration, switches the first and the
second expression, thus bringing the tail suspension to the top of S, which in
turn enables rule (5) to effect its evaluation. At the same time, the apply node on
top of C is marked with the superscript ∗ to keep note of the fact that operator
and operand have been interchanged. Upon returning the value (normal form)
of the suspension to the top of S, rule (10) simply takes the two expressions on
S and the apply node on C to construct a syntactically complete (irreducible)
application on top of S, with operator and operand in the right order again.

5.3 Head-Normalizing a Λ-Expression: An Example

To illustrate how the fn secd-machine goes about doing its job, fig. 10 shows
a sequence of representative configurations that it steps through when reducing
the Λ-expression

ΛΛ @ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0

just to head-normal form. All configurations shown (except the last one) are
those at which the machine arrives after having processed either successive η-
extensions of unapplied abstractions or successive β-redices12.

The first configuration shown at the top of the figure depicts the situation af-
ter having η-extended the leading two Λs. The ULC indices 2 and 1 are stacked
up in the environment and the remaining expression is still in C, with one of the
abstractors underneath, while the other one is saved on the dump as part of the
outer of two nested return continuations. Next follows the configuration after
having rearranged the two nested applications on top of C. It has suspensions
for their arguments #0 and #1 stacked up in S, and the applicators squeezed
underneath the remaining abstraction in C. The third configuration depicts
12 To accommodate the relevant steps of this sequence on a single page, the initial

configuration which has the ULC value initialized with 0, the entire expression set
up in the code structure C and all other structures empty is omitted.

140 W.E. Kluge

Rules 2 and 4b twice ⇓

nil | S
2 : 1 : nil | E

@ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0 : Λ : nil | C
(1 : nil, Λ : nil, (nil, nil, nil, 0), 1) | D

2 | u
Rule 1 twice ⇓

[2 : 1 : nil #1] : [2 : 1 : nil #0] : nil | S
2 : 1 : nil | E

ΛΛΛ @ @ Λ #4 #3 #2 : @ : @ : Λ : nil | C
(1 : nil, Λ : nil, (nil, nil, nil, 0), 1) | D

2 | u
Rules 2 and 4a twice ⇓

nil | S
[2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

Λ @ @ Λ #4 #3 #2 : nil | C
(2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2) | D

2 | u
Rules 2 and 4b once ⇓

nil | S
3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : #2 : #1 : nil | E

@ @ Λ #4 #3 #2 : Λ : nil | C
(2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2) | D

3 | u
Rule 1 twice ⇓

[E′ #3] : [E′ #2] : nil | S
E′ = 3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

Λ #4 : @ : @ : Λ : nil | C
(2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2) | D

3 | u
Rules 2 and 4a once ⇓

[E′ #2] : nil | S
[E′ #3] : 3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

#4 : nil | C
(E′, @ : Λ : nil, (2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2), 3) | D

3 | u
Rule 3 once ⇓

#1 : [E′ #2] : nil | S
[E′ #3] : 3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

nil | C
(E′, @ : Λ : nil, (2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2), 3) | D

3 | u

Fig. 10. Snapshots of typical fn secd-machine configurations while head-normalizing
the Λ-expression ΛΛ @@ ΛΛΛ@ @ Λ #4 #3 #2 #1 #0 . Note that all deBruijn indices
are preceded by #, all ULCs are given as plain integers.

Abstract λ-Calculus Machines 141

the situation after having completed the equivalent of two β-distributions: the
argument suspensions are removed from S and prepended to the environment,
while the applicators and abstractors involved are being consumed 13. The follow-
ing three configurations show the same steps being performed on the abstraction
left in C, which return as the sole entry in C the index #4.

This configuration is conceptually equivalent to a ‘straightened’ spine consist-
ing of a single apps− lambs-corner similar to the one in fig. 8. Here we have the
original expression completely transformed into an environment whose entries
are the tails of the apply nodes in the apps-sequence of such corner. Nothing
except the head index of this expression is left in the code structure C.

Accessing the environment with this index, which corresponds to β-reducing
in one conceptual step (or in-the-large) an equivalent apps− lambs-corner, picks
the entry 2 which, after correction with the ULC value 3, is pushed into S as
deBruijn index #1 (the last configuration).

At this point, the computation has in fact arrived at a head-normal form
which, unfortunately, is not immediately obvious. Except for the updated head
index in S and a tail suspension underneath, the constructor nodes of the head-
normalized spine are recursively hidden in the dump. It contains four nestings of
contexts that are being saved along the way, which include, from outermost to
innermost, the code fragments @ : Λ : nil, Λ : nil, Λ : nil, nil. When appended
to each other, they yield the trace @ : Λ : Λ : Λ. Prepending this trace in reverse
order to the two entries in S would yield Λ : Λ : Λ : @ : #1 : [E′ #2] . Except
for the separating symbols, this sequence equals the head-normal form of the
initial expression.

However, since the machine doesn’t stop there but computes full normal forms,
it continues to first unsave, by means of rule (7a), the outermost context on D,
thus restoring in C the code sequence @ : Λ : nil. This in turn enables rule (9)
to force the evaluation of the tail suspension [E′ #2], which after several more
steps returns the index value #2, and subsequently, after having recursively
restored all the other contexts stacked up in the dump, the fully normalized
expression ΛΛΛ @ #1 #2.

6 The fn se(m)cd-Machine

In this section we introduce a more sophisticated version of the fn secd-machine
that does away with some of the complications inherited from the original secd-
machine. Prime candidates for improvement are the state transition rules (2) and
(4a/b) of the fn secd-machine (see fig. 9) which, irrespective of the contexts in
which they are applicable, transform abstractions on top of C into closures on
top of S, with the consequence that they have to be unwrapped again before re-
ducing applications or η-extending unapplied abstractions, which almost always
happens immediately afterwards. Moreover, as a closure on top of S may also
13 Note that the environment that has built up in this configuration is in all subsequent

steps abbreviated as E′ to contain the representation of the dump structure in a
single line.

142 W.E. Kluge

originate from an environment access (rule (3)), it is imperative that the general
approach be taken to create new contexts (and to save the current contexts in the
dump) to ensure that the computation continues in the environment included in
the closure. As an unpleasant side effect, head-normalizing only moderately long
spines may generate deeply nested dump structures, as exemplified by the state
transition sequence of fig. 10, since every single η-extension or β-distribution
along a spine pushes another context (or return continuation). These contexts
include, in nested form, successively growing environments and, as parts of the
codes saved, the apply nodes and abstractors from which normalized spines must
be (re)constructed. This is to say that the machine is predominantly busy sav-
ing on (and unsaving from) the dump increasingly complex structures that are
pretty hard to analyze, e.g., when the machine is used in a step-by-step mode
to follow up on some sequence of state transitions, say, for validation purposes.

The fn se(m)cd-machine avoids these problems by two fairly simple mea-
sures. It evaluates β-redices and η-extends unapplied abstractions directly, i.e.,
without going through the superfluous motions of creating closures, and thus
avoids the excessive use of the dump. In fact, entire spines can be head-normalized
in the same contexts, leaving the dump unchanged. New contexts need be created,
and current contexts be saved, only when entering the evaluation of suspensions
that are being retrieved from the environment, which happens either whenever
a suspension is substituted into the head of a spine or whenever the tails of a
head-normalized spine need to be normalized.

Moreover, the environments saved on the dump can be replaced by something
much simpler. From the conceptual outline of head-order reduction in subsec-
tion 4.2 we recall that the apps− lambs-corner that builds up when η-extending
and β-distributing cuts along a spine (compare figs. 7 and 8) is being consumed
when β-reducing it in-the-large. This translates into the environment becoming
irrelevant once it has been accessed by a head index which substitutes an envi-
ronment entry in its place. If this entry happens to be a suspension, it creates a
new context in which it is being evaluated, routinely saving a return continuation
on the dump. This immediately raises the question of what the environment to
be saved must look like now that the one that is part of the calling context has
become obsolote. Another problem relates to the questions of what needs to be
done about deBruijn indices that belong to the (head-) normalized expression
returned after evaluating the suspension, and which role is being played by the
ULCs in this new setting.

To find answers to these questions, we simply need to have a closer look
at the spine of fig. 8. Once β-reduction-in-the-large has eaten up the entire
apps − lambs-corner, there is basically only a leading sequence of η-extended
Λs left of the original spine. As a head index bound by one of these leading Λs
must, upon returning to the calling context, find an environment entry for it, all
that needs to be done conceptually is to η-extend this leading lambs-sequence
once more, which generates an apps-sequence of equal length that has in its tails
ULCs in ascending order. And this is exactly the environment that must be
included in a return continuation.

Abstract λ-Calculus Machines 143

So, the solution to our problems consists in replacing in our machine state
description the plain ULC variable u by a stack U which, beginning with the
initial value 0, stacks up ULCs in their order of creation. This stack is made
part of the context stored in the dump. Whenever a context is retrieved from
the dump, the contents of this stack become the new (initial) environment. The
current ULC value that is required to compute correct deBruijn indices is the
topmost entry of U .

The machine also employs a special shunting yard mechanism that uses a
separate trace stack M to temporarily store the sequence of abstractors and
applicators encountered while traversing a spine from the root node down to the
current position of activity. In any state of program execution, it contains the
Λs that belong to the leading lambs-sequence that has built up at that point,
and on top of it apply nodes @ that may or may not be consumed by further
β-reductions.

The fn se(m)cd-machine derives from the weakly normalizing se(m)cd-
machine described in [Kge05] whose specification, unfortunately, is erroneous,
but under www.informatik.uni-kiel.de/inf/Kluge/index-de.html a cor-
rected version may be found. Relative to the fn secd-machine, its specification
requires a few more state transition rules as more stack configurations need to be
distinguished, specifically with regard to the topmost entries on the trace stack
M . The rules are generally simpler and more direct, operating just locally on
the stack tops. Except for environment accesses, there is no need to digg deeper
than two entries into a stack.

6.1 Traversing the Spine

Traversing the spine of an expression in the fn se(m)cd-machine involves just
the code structure C, the value stack S and the trace stack M . They are op-
erated like a shunting yard to traverse constructor expressions in pre-order. The
expressions are initially set up in pre-order linearized form in C and from there
moved to S. To preserve pre-order linearization in S, the constructor symbols
Λ and @ are temporarily sidelined in M while their subexpressions, following
recursively the same mechanism, are moved from C to S, where they end up
with their left and right subexpressions interchanged [Ber75].

To describe how this traversal mechanism works, we consider a very basic
machine only whose state is given by a triple (S, M, C). The expressions to
be traversed are assumed to have the general form κ e1 e2 . . . en, where κ is an
n-ary constructor and e1, . . . , en are subexpressions; they are in C set up for
traversal as sequences κ : e1 : e2 : . . . : en : C.

The state transition rules of this machine are given below, listed in the order
in which they must be matched against machine states:

(S, κ(0) : nil, C) → (κ : S, nil, C)

(S, κ
(0)
1 : κ

(i)
2 : M, C) | i > 0 → (κ1 : S, κ

(i−1)
2 : M, C)

144 W.E. Kluge

(S, κ(i) : M, eat : C) | i > 0 → (eat : S, κ(i−1) : M, C)

(S, M, κ : C) → (S, κ(n) : M, C)

The last rule moves a constructor symbol that appears on top of C into the
trace stack M and attaches to it an index which initially receives as value the
arity n. This index denotes the number of subexpressions hooked up to the
constructor that are still lined up in C. The third rule specifies how the index is
decremented upon moving an atomic subexpression eat from C to S.

Completing the traversal of a constructor expression is captured by the first
two rules. A constructor with arity 0 on top of M indicates that all its subex-
pressions have been moved to S, i.e., none are left in C, and the traversal of
the entire expression can be completed by moving the constructor from M to S.
The two rules distinguish between the trace stack underneath being empty and
another constructor being underneath, in which case its index must be decre-
mented to notify completion in S of one of its subexpressions. Discriminating
between these two trace stack configurations is required in several of the state
transition rules of the full fn se(m)cd-machine.

The machine terminates with both M and C being empty as there is no rule
with which to continue.

The sequence of state transitions shown in fig. 11 illustrates how this machine
traverses the expression κ a κ b c, where κ is assumed to be a binary constructor,

κ : a : κ : b : c : nil | C a : κ : b : c : nil | C

nil | M =⇒ κ(2) : nil | M
nil | S nil | S

⇓

b : c : nil | C κ : b : c : nil | C

κ(2) : κ(1) : nil | M ⇐= κ(1) : nil | M
a : nil | S a : nil | S

⇓

c : nil | C nil | C

κ(1) : κ(1) : nil | M =⇒ κ(0) : κ(1) : nil | M
b : a : nil | S c : b : a : nil | S

⇓

nil | C nil | C

nil | M ⇐= κ(0) : nil | M
κ : κ : c : b : a : nil | S κ : c : b : a : nil | S

Fig. 11. Traversing the expression κ a κ b c from stack C to S via stack M

Abstract λ-Calculus Machines 145

as for instance the applicator @, and a, b, c are atomic expressions. The traversal
begins with the stack configuration in the upper left, which has the expression
set up in C (with M and S being empty), and continues along the double arrows
until it terminates with the stack configuration in the lower left, which has the
expression in left-right transposed pre-order linearized form reconstructed in S;
M and C are empty.

It is interesting to note that this mechanism recursively brings about config-
urations in which the components of binary constructor expressions are spread
out over the tops of the stacks involved, i.e., with a constructor whose index is
1 on top of M , its right subexpression on top of C and its left subexpression on
top of S (the third and fifth configurations). If the expressions would be more
complex, e.g., applications of abstractions, then such configurations could be
easily intercepted to perform β-reductions by popping their components off the
tops of the stacks and pushing into S their values instead.

Using stack M as a temporary storage for constructor symbols is the key
to performing almost all state transformations in the fn se(m)cd-machine as
local operations that involve just stack tops, which are fairly straightforward to
implement in a real machine.

6.2 The State Transition Rules

A state of the full fn se(m)cd-machine is described by a six-tuple

(S, E, M, C, D, U) ,

which, other than including the trace stack M and replacing the ULC variable
u with the stack U , is the same as that of the fn secd-machine of section 5.
The structures saved on (and unsaved from) the dump accordingly change to
(U, M, C, D).

The applicators @ or the abstractors Λ that appear on top of the trace stack,
in conjunction with the indices attached to them, play a decisive role in almost
all state transition rules. As before, these rules are in the order in which they
need to be checked against machine states given in fig. 1214.

Rule (1) prepares in one step applications for evaluation. It does so by creating
in S a suspension for the operand expression ea and by pushing the applicator
with index 1 into the trace stack M , indicating that only its operator expression
remains in C. This transformation, which in fact interchanges the positions of
operator and operand relative to the applicator, can be split up into the follow-
ing sequence of simpler state transitions

(1a) (S, E, M, @ ef ea : C, D, U) → (S, E, M, @ : ea : ef : C, D, U)

(1b) (S, E, M, @ : ea : ef : C, D, U) → (S, E, @(2) : M, ea : ef : C, D, u)

(1c) (S, E, @(2) : M, ea : ef : C, D, U) → ([E ea] : S, E, @(1) : M, ef : C, D, U)

14 The constructor κ that is used in rules (4b) and (5b) stands for either @ or Λ.

146 W.E. Kluge

which, after having flipped operator and operand, follows more closely the ele-
mentary traversal steps specified in the preceding subsection.

Rule (2) applies abstractions directly to operands in S (which due to prior
application of rule (1) are bound to be suspensions). Rule (3) has unapplied
abstractions prepend current ULC values (incremented by one) to the active
environment; it also pushes the ULC into stack U and the abstractor into the
trace stack. Rules (4a/b) effect environment accesses for deBruijn indices occur-
ing on top of the code structure C. Since pushing into S an environment entry

Returning from β-reductions in the large
(0) (S, E, nil, nil, (U ′, M ′, C′, D′), U) → (S, U ′, M ′, C′, D′, U ′)

Spreading applications on top of C out over C, M, S

(1) (S, E, M, @ ef ea : C, D, U) → ([E ea] : S, E, @(1) : M, ef : C, D, U)

Applying abstractions on top of C to operands on top of S

(2) (ea : S, E, @(1) : M, Λeb : C, D, U) → (S, ea : E, M, eb : C, D, U)

η-extending unapplied abstractions on top of C

(3) (S, E, M, Λeb : C, D, u : U) → (S, (u + 1) : E, Λ(1) : M, eb : C, D, (u + 1) : u : U)

Substituting deBruijn indices by environment entries
(4a) (S, E, nil, #i : C, D, u : U) → (lookup(#i, u, E) : S, E, nil, C, D, u : U)

(4b) (S, E, κ(j) : M, #i : C, D, u : U) | (j > 0) → (lookup(#i, u, E) : S, E, κ(j−1) : M, C, D, u : U)

Applying closures on top of S to operands underneath

(5a) ([E′ Λeb] : ea : S, E, @(0) : nil, C, D, U) → (S, ea : E′, nil, eb : nil, (U, nil, C, D), U)

(5b) ([E′ Λeb] : ea : S, E, @(0) : κ(j) : M, C, D, U) | (j > 0) →
(S, ea : E′, nil, eb : nil, (U, κ(j−1) : M, C, D), U)

Setting suspensions on top of S up for evaluation
(6) ([E′ ea] : S, E, M, C, D, U) → (S, E′, nil, ea : nil, (U, M, C, D), U)

Constructing abstractions on top of S from their components on M and C

(7a) (eb : S, E, Λ(0) : nil, nil, D, u : U) → (Λeb : S, E, nil, nil, D, U)

(7b) (eb : S, E, Λ(0) : Λ(1) : M, nil, D, u : U) → (Λeb : S, E, Λ(0) : M, nil, D, U)

Moving abstractions from S to C

(8) (Λeb : S, E, @(0) : M, C, D, U) → (S, E, @(1) : M, Λeb : C, D, U)

Setting tail suspensions up for evaluation

(9) (eb : [E′ e′a] : S, E, @(0) : M, C, D, U) → (S, E′, nil, e′a : nil, (U, @∗ : M, eb : C, D), U)

Returning from evaluating tail suspensions

(10) (ea : S, E, @∗ : M, eb : C, D, U) → (eb : ea : S, E, @(0) : M, C, D, U)

Reconstructing irreducible applications on S

(11a) (eb : ea : S, E, @(0) : nil, C, D, U) → (@ eb ea : S, E, nil, C, D, U)

(11b) (eb : ea : S, E, @(0) : κ(j) : M, C, D, U) | (j > 0) → (@ eb ea : S, E, κ(j−1) : M, C, D, U)

Fig. 12. The state transition rules of a fully normalizing se(m)cd-machine

Abstract λ-Calculus Machines 147

accessed by a deBruijn index found on C is in fact equivalent to moving this
entry from C to S, rule (4b) must also decrement the index attached to the
constructor symbol on top of M to signal completion of the traversal of one of
its subexpressions.

Environment accesses that return on S suspensions which are substituted
for deBruijn indices in head (or operator) positions are taken care of by rules
(5a/b) and (6) 15. The special case that such a suspension is in fact a closure, i.e.,
contains an abstraction, effects creation of a new context in which the abstraction
body is set up for evaluation in the environment that comes with the closure.
This environment is prepended by the operand of the particular application that
in S is found underneath the closure. The general case of a suspension on top of
S leads to the creation of a new context in which it is evaluated. The old context
is in either case saved on the dump.

Suspensions in the tails of apply nodes that are left over in a head-normalized
spine are by rule (9) set up for evaluation in new contexts. Being in the tail of
an application whose head (operator) is already evaluated is identified as being
the second-to-top entry in the value stack S relative to an applicator @(0) on
top of M . Entering and returning from evaluating a tail suspension necessitates
a reverse traversal step which moves the operator expression back to the control
structure C in order to bring the suspension to the top of S prior to creating
a new context. This can be made more explicit by splitting rule (9) up in two
consecutive steps:

(9a) (eb : [E′ e′a] : S, E, @(0) : M, C, D, U) → ([E′ e′a] : S, E, @∗ : M, eb : C, D, U)

(9b) ([E′ e′a] : S, E, @∗ : M, eb : C, D, U) → (S, E′, nil, e′a : nil, (U, @∗ : M, eb : C, D), U)

The special applicator @∗ serves as a marker that signifies evaluation of its tail
suspension. Upon returning from the new context, rule (10) uses this applicator
to restore the original stack configuration with the suspension, now evaluated to
ea, underneath eb on S and the applicator @(0) again on top of M .

Returning from evaluating a suspension in another context is accomplished
by rule (0). It intercepts a configuration with an empty control structure and an
empty trace stack, which signals completion of traversing, and thereby evaluat-
ing, an expression from C to S, and restores the calling context saved as return
continuation on the dump D. Note that the contents of stack U that are included
in the return continuation becomes the new environment.

The remaining rules (7a/b) and (11a/b) are to construct in S from the @s
and Λs that have accumulated in the trace stack the apps and lambs sequences,
respectively, of a head-normalized spine.

6.3 Head-Normalizing the Expression of Subsection 5.3

Fig. 13 illustrates, again as a sequence of stack configurations, how the fn se(m)
cd-machine reduces the spine of a Λ-expression to head-normal form. To expose
15 Note that a suspension on top of S being in head (operator) position of an application

is identified by the index 0 attached to the applicator that sits on top of M .

148 W.E. Kluge

Rule 3 twice ⇓

nil | S
2 : 1 : nil | E

Λ(1) : Λ(1) : nil | M
@ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0 : nil | C

nil | D
2 : 1 : 0 : nil | U

Rule 1 twice ⇓

[2 : 1 : nil #1] : [2 : 1 : nil #0] : nil | S
2 : 1 : nil | E

@(1) : @(1) : Λ(1) : Λ(1) : nil | M
ΛΛΛ @ @ Λ #4 #3 #2 : nil | C

nil | D
2 : 1 : 0 : nil | U

Rule 2 twice ⇓

nil | S
[2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

Λ(1) : Λ(1) : nil | M
Λ @ @ Λ #4 #3 #2 : nil | C

nil | D
2 : 1 : 0 : nil | U

Rule 3 once ⇓

nil | S
3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

Λ(1) : Λ(1) : Λ(1) : nil | M
@ @ Λ #4 #3 #2 : Λ : nil | C

nil | D
3 : 2 : 1 : 0 : nil | U

Rule 1 twice ⇓

[E′ #3] : [E′ #2] : nil | S
E′ = 3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

@(1) : @(1) : Λ(1) : Λ(1) : Λ(1) : nil | M
Λ #4 : nil | C

nil | D
3 : 2 : 1 : 0 : nil | U

Rule 2 once ⇓

[E′ #2] : nil | S
[E′ #3] : 3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

@(1) : Λ(1) : Λ(1) : Λ(1) : nil | M
#4 : nil | C

nil | D
3 : 2 : 1 : 0 : nil | U

Rule 4b once ⇓

#1 : [E′ #2] : nil | S
[E′ #3] : 3 : [2 : 1 : nil #0] : [2 : 1 : nil #1] : 2 : 1 : nil | E

@(0) : Λ(1) : Λ(1) : Λ(1) : nil | M
nil | C
nil | D

3 : 2 : 1 : 0 : nil | U

Fig. 13. Snapshots of typical fn se(m)cd-machine configurations while head-
normalizing the Λ-expression ΛΛ @@ ΛΛΛ @@ Λ #4 #3 #2 #1 #0

Abstract λ-Calculus Machines 149

the differences relative to the fn secd-machine of the preceding section, we have
chosen as an example again the expression

ΛΛ @ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0

as in fig. 10 in order to be able to compare on a step-by-step basis how both
machines are working.

The main difference that immediately catches the eye is that the dump struc-
ture D of the fn se(m)cd remains empty throughout the entire head-normalizing
sequence since none of the η-extensions or β-distributions creates a new context.
This has been made possible by eliminating the superfluous steps of creating clo-
sures for abstractions that can be directly applied or η-extended, as a consequence
of which the machine also accomplishes with one rule application each the same
as the fn secd-machine with two.

The applicators and abstractors encountered along the spine, minus the @s
that are being consumed by β-reductions/distributions, are now building up in
the trace stack M , cleanly separated from the code structure that must accom-
modate them in the fn secd-machine. In the head-normalized configuration at
the bottom, this trace includes in the form of a flat sequence exactly those con-
structor symbols from which the spine of the full normal form must be assembled.

This sequence of machine configuration also shows how the stack U up to the
point of head-normalization grows to three non-zero entries pushed by the three
unapplied Λs along the spine.

Most importantly, it may be noted that the items stacked up in the value
stack S and in the environment structure E are in each of the configurations
exactly the same as in the equivalent configurations of the fn secd-machine
(compare fig. 10), just as it should be.

Going through essentially the same sequences of state transformations when
head-normalizing the same expression renders it reasonable to assume that both
machines also compute the same normal forms. This may be concluded from the
fact that reducing left-over tail suspensions of head-normalized spines is noth-
ing but recursively applying head-normalization to the spines of the respective
expressions in their own environments.

7 A Fully Normalizing Graph Reducer

We will now briefly outlined a conceivable implementation of the fn se(m)cd-
machine as a graph reducer 16.

Graph reduction is the standard implementation technique for functional lan-
guages, particularly for those with a lazy semantics [Joh84, PeyJ92, PvE93].
The idea is to represent Λ-expressions in a form that hides (sub)expressions of
constructor symbols and also environment structures recursively behind point-
ers and to perform reductions primarily as pointer manipulations, which typi-
cally brings down from O(n2) to O(n) the runtime complexity of programs that
16 The contents of this section are in parts adopted from the authors monograph on

Abstract Computing Machines [Kge05].

150 W.E. Kluge

operate on data structures of size n. Another important advantage of graph re-
duction relates to sharing the evaluation of (sub)expressions among several points
of substitution. This technique is the key to optimizing normal order reduction
strategies with regard to numbers of reduction steps performed.

Under a head-order regime, opportunities for sharing primarily arise when-
ever suspensions are copied from the environment into head positions of spines.
Reducing them in these places may then be shared with the environment and
thus with all occurrences of pointers to the suspensions from elsewhere.

7.1 Graphs and Graph Reduction

Following its syntax, graph representations of expressions of the pure Λ-calculus
may be composed of just two types of inner nodes, these being the constructors
@ and Λ, and of deBruijn indices as the only type of leaf nodes. The nodes
are connected by directed edges leading from root nodes (to root nodes) to leaf
nodes. In a conceivable implementation, the inner nodes may be represented as
cells in a memory section called the heap which, in addition to the node symbols
themselves, also include pointers to subgraphs. The leaf node cells just contain
deBruijn indices (or other atomic symbols such as constant values, primitive
function symbols, etc. of an applied λ calculus). Entire lambs sequences of length
n may be represented by single node cells of the form [Λ, n, ph] (with ph

being the pointer to the subgraph that represents the abstraction body) as no
other graph structures are branching off, and apply nodes by cells of the form
[@, ph, pt] (with ph, pt being the pointers to the head and tail subgraphs,
respectively). Suspension nodes take the form [sus, pE , pe], where sus denotes
the node type, pE is the pointer to the environment, and pe is the pointer to the
tail expression.

For instance, the head form depicted in fig. 4 of section 4 thus translates into
the graph shown in fig. 14 below. The tails that are abbreviated here by the
symbols ej, of course, feature similar graph structures of their own.

A graph reducer typically uses such graphs as static (nondestructible) struc-
tures, or alternatively equivalent static code, in order to be able to share their
application to different sets of nonshareable operands. These graphs are traversed
from top to bottom along their spines to build environments from apps− lambs
corners encountered and to construct, from the bottom up, new graph structures
somewhere else in the heap.

The environment is composed of frames corresponding to apps−lambs-corners
which in their order of creation are linked by pointers. A frame contains as many
pointers to suspensions and as many ULC entries as there are apply nodes in
the apps-sequence and unapplied Λs in the lambs-sequence, respectively, in the
particular corner, so that the frame size equals the length of the lambs-sequence
(or the arity of the abstraction) involved. Each frame is preceded by a header
which includes the link pointer to the frame deeper down in the environment,
the number of frame entries, and the ULC value that applies in the particular
(sub)environment.

Abstract λ-Calculus Machines 151

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�
�
�
�
�
�

�
�
�
�
�
�
���

�

�

�

�

�

�

�
Λ

Λ

Λ

Λ

2

4

3

2

@

@

@

@

@

@

@

Λ

Λ

Λ

Λ

2

4

3

2

@

@

@

@

@

@

@

e9

e10

e11

e5

e6

e2

e3

#i

pG

Fig. 14. Graph implementation of the spine of fig. 4

Organizing the environment as a structure of linked frames is due to the
need to share, as a matter of efficiency, common parts among environments
that belong to different contexts. A typical example is a tail suspension that
comes with an environment E1 contained in a larger environment E2 of which
the suspension is an entry. Substituting this suspension for a head index and
evaluating it in this place means that new environment frames must be created
on top of E2 but linked up to the environment E1 by a pointer that bridges the
gap between the tops of E2 and E1.

As a minor inconvenience, accessing a particular environment entry with some
index #i therefore entails conparing it with the size of the topmost frame and,
if found larger, to subtract this size from the index and proceed down the link
pointer to the next frame. This step must be repeated until the remaining index
falls inside a frame.

The runtime structures necessary to perform graph reductions are the static
graph (or equivalent static code), the environment, and a trace stack that serves
a slightly different purpose than the one of the fn se(m)cd-machine. In fact,
other than maintaining a pointer to the leading Λ-cell it assumes more or less the
role of its value stack S: it stacks (and unstacks) pointers to the tail suspensions
that are being created on the way down a spine and from which, after evaluating
the suspensions left over in the trace stack following head normalization, the
spine of a fully normalized graph (or subgraph) is reconstructed.

Reducing a graph sets out with an empty environment, a ULC set to 0, and
a graph pointer pG pointing to the topmost node cell of the graph. The pointer
to this cell becomes the first entry of the trace stack.

152 W.E. Kluge

The graph pointer then advances down the spine along the chain of head
pointers ph and pushes into the trace stack pointers to suspensions for tail ex-
pressions until the next Λ-cell is reached. This Λ-cell now controls the creation
of an environment frame by filling it from the trace stack either with suspension
pointers as the cell’s arity parameter demands or until these pointers are prema-
turely exhausted, in which case the topmost Λ-cell (the pointer to which is at
the bottom of the trace stack) pops to the top, indicating unapplied Λs. In this
latter case, the remaining frame entries are filled with ULCs and the number of
ULCs pushed is added to the arity of the Λ-cell in the trace stack, thus in fact
completing an η-extension.

�

�

�

�

�� �
� �

�
�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

��

��

��

��

��

�

�

�

�

�

�

��

��

��

��

��

Λ 5 �

#ipEB

e11@

sus
sp

pG

trace stack spinesuspensions

suspensionsframes

environment structure

sus
sus

sus
sus

sus
sus

nil

e2

e5

e5

e3

e6

e10

pEC

pEB

pEA

pEL

1
2

3

4
5

2

3

4

2

2

3

5

5

Fig. 15. Trace stack and environment after having reached the head of the spine

Abstract λ-Calculus Machines 153

Fig. 15 above shows how the trace stack and the environment look like after
evaluation has arrived at the head of the spine, as indicated by the position of the
graphpointer pG. The trace stack just has a pointer to the suspension for the tail e11

sitting on top of the pointer to the topmost Λ-cell which has its arity index updated
to 5. The environment that has built up at this point is composed of four frames
corresponding to the three apps− lambs corners of the original spine and a fourth
frame at the bottom that is due the η-extension of the leading lambs sequence.
Note that the environments pointed to by pEC , pEB, pEA and pEL correspond to
cuts C, B, A and L, respectively, in the straightened head form of fig. 8.

7.2 Continuing with Reductions in the Head

If the head index to which pG is pointing selects from the environment another
suspension, then in a straightforward approach its graph would have to be sub-
stituted for this head index and head-order reduction would have to continue
along the extended spine in the environment carried along with the suspension.
This may be accomplished by setting the graph pointer pG and the environment
pointer pE to those found in the suspension node, and by setting the ULC to
that of the topmost frame of the environment that comes with the suspension. If
the suspension thus substituted is, or reduces to, an abstraction, then it creates
a new environment frame by either consuming suspensions already held in the
trace stack or by filling it with ULC entries.

The problem with these old suspensions held in the trace stack is that they
constitute specific instantiations of the abstraction that renders reductions fur-
ther down the extended spine dependent on them, i.e., evaluation of the suspen-
sion cannot be shared.

Sharing requires that a suspension selected by the head index be first reduced
in isolation and that then the suspension node be overwritten with the resulting
graph so that it can be seen by all pointers directed at it from somewhere else.
The pointer to this graph may then be substituted for the head index, and
reduction may continue along its spine.

The question that remains to be answered is just how far should the sus-
pension be reduced in isolation. The safe thing to do is to reduce it just to
head-normal form. If one exists, then we have a chance to reach a full normal
form for the entire expression as well, but not necessarily so. If the result of
head-normalizing the suspension would be an abstraction and the machine, on
its way up the spine, would continue evaluating tail suspensions, some of them
might not terminate, i.e., the computation would get trapped in a ’black hole’.
However, if evaluating the suspension would stop with a head-normalized ab-
straction, and this abstraction would be applied to tail suspensions left in the
trace stack, there might be a chance that the non-terminating tails are thrown
away and the computation could terminate with a full normal form.

Substituting a head-normalized suspension for a head index is depicted in
fig. 16. The upper part shows a typical trace stack and the lower end of a
static graph with a deBruijn index in its head; the lower part shows the head-
normalized spine of the suspension selected by the head index. The substitution

154 W.E. Kluge

�

�

�

�

�

�

�

��� �
�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �
�

�
�

�
�

�

�

�

�

Λ 2 �

sus

sus

@

@

sus

sus

sp

Λ r

@

pE

@

pG = pS

...

#jj

#i

e1

ep

pEE1

pEEp

trace stack suspensions the graph

head-normalized

suspension

Fig. 16. Linking up to a head-normalized suspension in the head of a spine

is done simply by overwriting the graph pointer pG with the pointer pS to the
topmost node of the new spine. The evaluation then continues by processing the
apps − lambs corner formed by the two suspensions held in the trace stack and
by the Λ-node to which pG is now pointing.

Once the computation has arrived at a head-normal form, identified by a
ULC value retrieved from the environment, the machine finally reverses gear,
evaluates the suspensions left on the trace stack, and recursively constructs from
the bottom up a spine of apply nodes (with a head index at the bottom) that are
linked up by head pointers and whose tail pointers point to the normalized tail
graphs. Finally, when arriving at the single Λ-node at the bottom of the trace
stack, the spine is completed upwards by as many Λs as specified by the arity
index in that node.

8 Related Work and Conclusion

Research on fully normalizing λ-calculus machines dates back to 1975 when
Berkling proposed a string reduction machine whose most important opera-
tion was a complete and direct implementation of the β-reduction rule [Ber75].

Abstract λ-Calculus Machines 155

To demonstrate the feasibility of the underlying concept, this proposal led to
the construction of an experimental hardware machine that was completed in
1979 [Kge79]. To overcome the performance problems inherent in string reduc-
tion, Hommes published in 1982 an early graph reduction version of this ma-
chine [Hom82]. Also to mention is Wadsworth’s work on a λ-calculus-based graph
reducer [Wads71] which represents binding structures by pointers and performs
β-reductions by pointer rearrangements.

In 1986 Berkling came up with the more sophisticated head-order reduction
concept outlined in section 4 that describes environments completely within the
framework of the nameles Λ-calculus. It employs η-extensions-in-the-large to fill
in binding indices for missing arguments of abstractions and β-distributions-in-
the-large to distribute environments over the components of applications [Ber86].
An alternative theoretical approach which achieves the same ends by slightly dif-
ferent means is the λσ-calculus of Abadi, Cardelli, Curien and Levi [ACCL90]. It
introduces environments through the notion of substitutions as an extension of
the nameless Λ-calculus. Full normalization can be achieved by weakly normal-
izing machinery which must call upon a mechanism that pushes substitutions
across unapplied abstractors and updates binding indices accordingly, which is
equivalent to η-extension.

Based on Berklings work, Troullinos gives in his PhD thesis a formal speci-
fication of an abstract head-order reduction machine that, by a skillful choice
of state transition rules, completely avoids a dump, using instead a direction
parameter to distinguish between going up or down a spine [Trou93]. It also in-
troduces the notion of an unapplied lambdas count as used by the secd-machine
descendants described in this paper. Crégut describes a fully normalizing ab-
stract machine based on Krivine’s weakly normalizing K-machine [Kri85]. In the
course of evaluating suspensions, it uses an updating scheme for binding indices
that is similar to ULCs. Another fully normalizing machine is due to Grégoire
and Leroy [GrLe02]. It augments a weakly normalizing machine by a so-called
rollback function which, following the classical definition of the β-reduction rule,
α-converts λ-bound variables in order to take them out of naming conflicts.

An early implementation of Berkling’s head-order reduction concept is de-
scribed in the PhD thesis by Hilton [Hil90]. An instruction-based fully-normalizing
head-order reducer that makes extensive use of sharing reductions in the head is
described in [Kge05]. This B-machine has been reconstructed from various unpub-
lished drafts and handwritten notes by Berkling [Ber96, Ber97], and from the PhD
theses by Hilton [Hil90] and Troullinos [Trou93].

Another instruction-based machine described in this monograph and earlier
published in [GK96] employs weak normalization to do the routine work of
naive substitutions when reducing full applications but switches to a special
η-extension mechanism to deal with unapplied abstractions. Rather than filling
in ULCs for missing arguments, it re-introduces the original variables, doing the
equivalent of the transformation:

(Λ . . . Λ
︸ ︷︷ ︸

n

e0 e1 . . . ek) | k < n → λvk+1 . . . λvn((Λ . . . Λ
︸ ︷︷ ︸

n

e0 e1 . . . ek) vk+1 . . . vn).

156 W.E. Kluge

The variables { vk+1 . . . vn } are being retrieved from persistent structures in
which have been saved the full parameter sets of all λ-abstractions of a program
before converting them into equivalent nameless Λ-abstractions for reduction.

This η-extension mechanism makes use of the fact that unapplied abstractors
always end up in a leading λ-sequence that never engages in further β-reductions
but becomes part of the full normal form. Different instances of the same vari-
ables are distinguished by subscripts that enumerate the η-extension steps by
which they have been introduced.

The two abstract machines described in this paper have been devised for the
purpose of the summer school to convey the basic message that, starting from
the well-known weakly normalizing secd-machine, fully normalizing machines
can be had by supplementing them with a few more state transition rules that
η-extend unapplied abstractions, thus elegantly getting by the trouble of imple-
menting full-fledged β-reductions. The key to performing these η-extensions with
very little overhead is the use of ULC-indices rather than binding indices. It takes
very simple updates to turn ULCs retrieved from the environment into deBruijn
indices, in which form they must show up in (head-)normalized Λ-expressions.

Both the fn secd-machine and the fn se(m)cd-machine have been tested
with the same set of about 25 example λ-expressions, all of which include in
various contexts unapplied abstractions that require η-extension. Both machines
have been found to reduce these expressions correctly to full normal forms. Of
course, this is no proof that they work correctly for all Λ-expressions but it raises
the level of confidence considerably.

References

[ACCL90] Abadi, M., Cardelli, L., Curien, P.-L., Levi, J.-J.: Explicit Substitutions.
In: Proceedings of the 17th ACM Symposium on Principles of Program-
ming Languages, pp. 1–16. ACM Press, New York (1990)

[Bar84] Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam (1984)

[Ber75] Berkling, K.J.: Reduction Languages for Reduction Machines. In:
Berkling, K.J. (ed.) Proceedings of the 2nd Annual Symposium on Com-
puter Architecture, pp. 133–140. ACM/IEEE (1975)

[Ber86] Berkling, K.J.: Head-Order Reduction: a Graph Reduction Scheme for
the Operational Lambda Calculus. LNCS, vol. 254, pp. 26–48. Springer,
Heidelberg (1986)

[Ber96] Berkling, K.J.: The von Neumann-PLUS Architecture: an Evolutionary
Development. unpublished draft (1996)

[Ber97] Berkling, K.J.: Privately communicated handwritten notes, Syracuse,
NY (Spring 1997)

[Bird98] Bird, R.S.: Introduction to Functional Programming with Haskell, 2nd
edn. Prentice-Hall, Englewood Cliffs (1998)

[Bru72] de Bruijn, N.G.: A Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation, with Application to the
Church–Rosser Theorem. Indagationes Mathematicae 34, 381–392 (1972)

Abstract λ-Calculus Machines 157

[CMQ83] Cardelli, L., McQueen, D.: The Functional Abstract Machine,The
ML/LCF/HOPE Newsletter. AT&T Bell Labs, Murray Hill, NJ (1983)

[Chu41] Church, A.: The Calculi of Lambda Conversion. Princeton University
Press, Princeton (1941)

[CCM85/87] Cousineau, G., Curien, P.L., Mauny, M.: The Categorial Abstract Ma-
chine. In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 50–64.
Springer, Heidelberg (1985); Science of Computer Programming, No. 8,
173–202 (1987)

[Cre90] Crégut, P.: An Abstract Machine for the Normalization of λ-Terms. In:
Proceedings of the ACM Conference on LISP and Functional Program-
ming, pp. 333–340 (1990)

[Dyb87] Dybvig, R.K.: The SCHEME Programming Language. Prentice-Hall,
Englewood Cliffs (1987)

[GK96] Gaertner, D., Kluge, W.E.: π-red+ – an Interactive Compiling Graph
Reduction System for an Applied λ-Calculus. Journal of Functional Pro-
gramming 6(5), 723–757 (1996)

[GrLe02] Grégoire, B., Leroy, X.: A Compiled Implementation of Strong Reduc-
tion. In: Proceedings of the ACM International Conference on Functional
Programming, pp. 235–246 (2002)

[Hil90] Hilton, M.L.: Implementation of Declarative Languages, PhD thesis,
CASE Center Technical Report No. 9008. Syracuse University, Syra-
cuse, NY (1990)

[HS86] Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ-Calculus.
London Mathematical Society Student Texts. Cambridge University
Press, Cambridge (1986)

[Hom82] Hommes, F.: The Heap/Substitution Concept - an Implementation of
Functional Operations on Data Structures for a Reduction Machine.
In: Proc. 9th Annual Symposium on Computer Architecture, Austin
(Texas), pp. 248–256 (1982)

[Joh84] Johnsson, T.: Efficient Compilation of Lazy Evaluation. ACM Confer-
ence on Compiler Construction, Montreal, Que., pp. 58–69 (1984)

[Kge79] Kluge, W.E.: The Architecture of the Reduction Machine Hardware
Model, Internal Report GMD ISF-79-3, St. Augustin, Germany (1979)

[Kge05] Kluge, W.: Abstract Computing Machines – A Lambda Calculus Per-
spective. Springer, New York (2005)

[Kri85] Krivine, J.-L.: Un interpréte du λ-calcul. (1985)
[Lan64] Landin, P.J.: The Mechanical Evaluation of Expressions. The Computer

Journal 6(4), 308–320 (1964)
[PeyJ92] Peyton Jones, S.L.: Implementing Lazy Functional Languages on Stock

Hardware: the Spineless Tagless G-Machine. Journal of Functional Pro-
gramming 2(2), 127–202 (1992)

[PvE93] Plasmeijer, R., van Eekelen, M.: Functional Programming and Parallel
Graph Rewriting. Addison-Wesley, Reading (1993)

[Trou93] Troullinos, N.B.: Head-Order Techniques and Other Pragmatics of
Lambda Calculus Graph Reduction, PhD thesis, CASE Center Tech-
nical Report No. 9322, Syracuse University, Syracuse, NY (1993)

[Ull98] Ullman, J.U.: Elements of MLProgramming, 2nd edn. Prentice-Hall, En-
glewood Cliffs (1998)

[Wads71] Wadsworth, C.P.: Semantics and Pragmatics of the Lambda Calculus,
PhD thesis, Oxford University (1971)

	Introduction
	Some Simple Exercises in Functional Programming
	A Weakly Normalizing -Calculus Machine
	A Machine-Compatible Syntax for -Expressions
	The Basics of Doing -Reductions
	A Normal-Order secd-Machine
	Reducing Step by Step a Simple -Expression

	Toward Fully Normalizing -Calculus Machines
	-Reduction, -Extension, -Distribution and Head (Normal) Forms
	Head-Order Reduction

	The fn_secd-Machine
	The Unapplied Lambdas Count
	The State Transition Rules
	Head-Normalizing a -Expression: An Example

	The fn_se(m)cd-Machine
	Traversing the Spine
	The State Transition Rules
	Head-Normalizing the Expression of Subsection 5.3

	A Fully Normalizing Graph Reducer
	Graphs and Graph Reduction
	Continuing with Reductions in the Head

	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

