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Abstract. Effective temporal logic model-checking algorithms exist that exploit
symmetries arising from parallel composition of multiple identical components.
These algorithms often employ a function rep from states to representative
states under the symmetries exploited. We adapt this idea to the context of
refinement checking for the process algebra CSP. In so doing, we must cope
with refinement-style specifications. The main challenge, though, is the need
for access to sufficient local information about states to enable definition of a
useful rep function, since compilation of CSP processes to Labelled Transition
Systems (LTSs) renders state information a global property instead of a local
one. Using a structured form of implementation transition system, we obtain an
efficient symmetry exploiting CSP refinement-checking algorithm, generalise it
in two directions, and demonstrate all three variants on simple examples.

Keywords: Symmetry, CSP, Process Algebra, Refinement, Model Checking.

1. Introduction

Model checking suffers from the state explosion problem, which is the tendency for
state space to grow exponentially in size (number of states) as the size of the model
(system description in the modelling language) grows. A simple example is the expo-
nential state space growth that can occur when adding parallel components.

A popular approach to combating the state explosion problem is to exploit state
space symmetries. This approach has received much attention in the context of tem-
poral logic state-based model checking ([1] contains a survey), but little has been
published in the context of refinement checking (“refinement-style model checking”)
for process algebras.
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For temporal logic model checking, effective algorithms exist that exploit symmet-
ries arising from parallel composition of multiple identical components. The most
common approach uses a function rep from states to representative states and requires
full symmetry of the model and the property. We adapt this idea for Communicating
Sequential Processes (CSP) [2,3] refinement checking. The main challenge, which
may be considered a significant obstacle, is the need for local information about states
to enable use of a rep function; compiling CSP processes to Labelled Transition Sys-
tems (LTSs) makes state information a global property, not a local one.

By exploiting a richer notation than LTSs, namely 'structured machines' (already
used internally by the FDR [4] refinement checker for other reasons), we can define a
suitable rep function. We obtain a refinement checking algorithm that explores a re-
duced state space efficiently for systems that have parallel components.

We then generalise this algorithm, dropping the requirement for full symmetry and
then making it less restrictive, in a different sense, about the need for property sym-
metries. Restricting to symmetric temporal logic formulae effectively requires that the
future behaviour is always symmetric, regardless of what has happened in the past; in
contrast, our second generalisation only needs the specification process (correspond-
ing to a property formula) to express symmetric behaviour starting at the initial state.

An earlier paper [5] outlined some of our work aimed at efficient identification of
CSP process symmetries, including an approach to exploit symmetries when refine-
ment checking. The exploitation approach in this paper is quite different.

For brevity, we restrict attention to refinement in CSP’s traces model, which al-
lows one to check safety properties; the algorithms extend to other semantic models.

Section 2 provides background regarding the process algebra CSP and refinement
checking between CSP processes. Section 3 defines CSP process symmetry. Section 4
recaps the representative function approach to symmetry exploitation for temporal
logic model checking. Section 5 describes structured machines and identification of
their symmetries. Section 6 gives our basic symmetry exploiting refinement-checking
algorithm and Section 7 extends it in two directions. Section 8 presents experimental
results and Section 9 concludes. An appendix contains correctness proofs.

2. CSP Language, Refinement, LTSs and Refinement Checking

2.1 CSP and Refinement

Process algebras allow systems to be modelled as processes, which may be atomic
(such as CSP's STOP process) or may be defined as compositions of other, child, pro-



cesses using available process operators. CSP [2,3] has a variety of process operators,
including: interleaving (lll), generalised parallel (llx), alphabetised parallel (xlly), where
processes must synchronise on alphabet X or alphabet XNY; internal choice ([1);
external choice(O); hiding (\X); and renaming([[R]]), for relation R on events.

Refinement of a process Spec by a process Impl amounts to all behaviours (of
some particular kind, such as the finite traces) of Impl being behaviours of Spec. In
the traces semantic model, 7, a behaviour is a finite trace the process can perform.

2.2 Labelled Transition Systems

A widely used operational form for CSP processes is the Labelled Transition Sys-
tem (LTS). An LTS is a tuple (S,T,so) where S is a set of states (sometimes called
nodes), T : S x Z x S (for universal event set X) is a labelled transition relation, and
state s, is the initial state. An LTS path <sy, ey, s, ... ,€q, So> has the trace <ey, ..., e,>.
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Fig. 1. An LTS for Towers of Hanoi with 3 poles and 2 discs. The initial state is shaded.
Dashed arrows show a (B C)-bisimulation relation, which can be ignored until Section 3.

2.3 Refinement Checking

CSP refinement-checking algorithms operate over transition systems Tspe and Ty Of
a specification process, Spec, and an implementation process, Impl. Each transition
system is a compiled form of the process and supports calculation of the initial state



and the set of transitions. Transition system Ty is required to be an LTS in normal
form [3,6], to ensure no two paths of Ts,.. with the same trace end at different states.

The usual refinement-checking algorithm [6] explores the product space of (spec
state, impl state) pairs such that a common trace can take the spec and impl to the re-
spective states. Exploration starts at the initial state pair and continues until a counter-
example has been reached or all sucessors of reached pairs have been found.

Although it is usual to refer to these as 'pairs' (and we do so throughout), refine-
ment-checking algorithms gernerally record tuples of at least four values; they ex-
plore a product space and record extra information as they go, as explained below.

At each pair reached: (i) 'compatibility' of the implementation state with the spe-
cification state is checked; (ii) all successor state pairs are added to the set of pairs
seen so far. The compatibility test depends on the semantic model used for the check;
for the traces model it simply checks that all events labelling outgoing transitions of
the impl state appear among the labels on outgoing transitions from the spec state.'

If an incompatible state pair is reached a counterexample trace to this pair is re-
covered by stepping through the implementation transition system backwards until its
initial state is reached; this is possible since the identifier of a parent pair is recorded
with each newly reached state pair, plus an event from the parent to this pair.

3. CSP Symmetry and Permutation Bisimulations

3.1 Algebraic and Denotational Permutation Symmetry

In a process algebraic context symmetry acts principally on events/actions; 'states' are
identified with particular sets of possible future behaviours (indeed, a state represents
a process). Event permutations lift naturally to state (or process) permutations.
Perhaps the simplest definition of CSP symmetry is in the algebraic semantics. Let
O be any permutation of events in some universal event set 2, where we insist that
TO = T (i.e., that the special CSP event T, denoting an internal action, is unaffected
by 0). Then we say that a process P is O-symmetric in the traces semantic model, 7,
when P =, Po. Throughout the paper, PG denotes the functional renaming” of P ac-

cording to O, so PO is the process that can perform event X0 whenever P can perform

1 Internal transitions, labelled by special event T, are removed from the spec transition system
by normalising it, which ensures that no two spec states are reachable by the same trace. Pair
(u,v'") is treated as a successor to (u,v) if v has a T transition to v'. For details, see [3] or [6].

2 Functional renaming for injective functions is defined on page 87 of [3].



an event x (equivalently, using the relational renaming operator, we may write PO as
P[[a]]). Also, =, denotes traces equivalence.

Notice that we do not restrict O to preserve channels: we allow permutations that
map, say, a.2 to b.44. However, we may anticipate that a common form of symmetry
permutation will be the canonical lifting of a datatype permutation: e.g., if @' is a
permutation of a datatype D and c is a CSP channel carrying data of type D, then the
canonical lifting of 0' to an event permutation O maps events c.x to c.(x0). When
events have complex datatypes, the canonical lifting applies the datatype permutation
to all fields of that type. Sometimes we will denote an event permutation 0 by the
datatype permutation 0" such that 0 is the canonical lifting of G".

The equivalent denotational definition of CSP symmetry is also straightforward:
process P is 0-symmetric in 7 if the mathematical object that P denotes in 7 (the set
of finite traces of P) is itself symmetric according to O, that is, if permuting this ob-
ject by the lifted permutation leaves it unchanged.

3.2 Operational Permutation Symmetry

Before defining LTS symmetries we remark that, as one would expect, permutation
symmetries of LTSs imply the same symmetries of the processes they represent
(though structurally asymmetric LTSs can represent symmetric processes).

Our definition of LTS symmetries uses the more general notion of permutation
bisimulations, or pbisims for short, which were introduced in [5]. Permutation bisimu-
lation extends the classical notion of (strong) bisimulation [7,8]. For permutation O, a
binary relation R over the nodes S of an LTS L is a 0-bisimulation if R is a 0-simula-
tion of L and R is a 0”'-simulation of L. Permutation simulation extends the classical
notion of simulation: classical simulation requires that (1) if pRp' A p —(2)» q € L,
then 3 p' —(a)—> q € Ls.t. qRq; and (2) Vp € S, A p' € S s.t. pRp'; instead, 0-simu-
lation requires p' —(a0)— q' in the consequent of the first condition.

Here we treat T events the same way as visible events; when a = T we require that
p' —(T)— q' (recall that our event permutations do not affect T). A possible generalisa-
tion is to consider the permutation analogue of weak bisimulation [8], but we use
(strong) bisimulation here; our simpler definition admits fewer symmetries.

Two nodes are O-bisimilar if there is a 0-bisimulation that relates them. Permuta-
tion bisimilarity captures the equivalence of processes represented by LTS nodes in
the following sense: if state x is O-bisimilar to state y, then the process represented by
y equals the process represented by x (P, say) renamed by O (i.e., PO).

LTS symmetry can be defined in terms of permutation bisimulation: for permuta-
tion 0, an LTS L for a process P is 0-symmetric iff some 0-bisimulation relates L's



initial state s, to itself (i.e., s, is O-bisimilar to itself). The LTS of Figure 1 is (B C)-
symmetric as the (B C)-bisimulation shown relates the initial node to itself.

3.3 Group Symmetry

The above definitions lift easily to group symmetry, as follows. Let G be a group
of event permutations. Then a process P, or LTS L, is G-symmetric if it is O-symmet-
ric for each 0 in G. (It is clearly sufficient to be 0-symmetric for each of a set of gen-
erators of G.)

4. Symmetry and Temporal Logic Model Checking

This section summarises the temporal logic model-checking problem and outlines
what may be called the “representative function” approach to symmetry exploitation,
broadly following the presentation in [1].

A Kripke structure over a set AP of atomic propositions is a tuple M = (S,R,L,Sy)
where: (1) S is a non-empty finite set of states; (2) R € § x S is a total transition rela-
tion; (3) L: S — 2" is a mapping that labels each state in S with the set of atomic pro-
positions true in that state; and (4) So € S is a set of initial states. Temporal logic
model checking determines whether a given Kripke structure M satisfies a given for-
mula ¢ expressed in some temporal logic (often CTL* or one of its sub-logics LTL or
CTL); this is denoted M = @ and amounts to @ holding in each initial state of M.

The representative function approach to symmetry exploitation in this context is
applicable with symmetric formulae @ w.r.t. a group G of automorphismsof M (which
are state permutations that preserve the transition relation R). A symmetric CTL* for-
mula @ w.r.t. a group G of state permutations is one where, for every maximal pro-
positional subformula fin ¢, f holds in a state s iff it holds in state A(s) for each A in
G. So, symmetric formulae are such that the validity of each maximal propositional
subformula is unaffected by permutations in G.

Further, this symmetry exploitation approach requires that M represents a parallel
composition of identical components and that each element of G permutes the values
of state variables according to some permutation of the component indices.

The idea is to use a 'representative’ function, usually called rep, chosen according
to a symmetry group G s.t. ¢ is known to be symmetric w.r.t. G. This function maps
each state s of the Kripke structure to a representative state rep(s) in the same G-orbit
as s, where G-orbits are equivalence classes induced by the relation “is related to by



some permutation in G”. That is, rep maps each state to a representative state to
which it is related by some permutation in G.

A quotient Kripke structure Mg = (Sc,,Rg,Lg,SOG) is generated where: Sg = {rep(s) | s
€ S}, R = {(rep(s).rep(s)) | (s,;8') € R}, Lo(rep(s)) = L(rep(s)), S'c = {rep(s) | s €
Sy}. The quotient structure is then checked against the original formula . It has been
proved that M = @ iff Mg = @ [9,10]. The quotient check is up to n! times faster than
the original, for n identical components, and can consume significantly less memory.

5. Structured Machines and their Symmetries

5.1 Structured Machines

A structured machine represents an LTS as an operator tree with a CSP process oper-
ator at each non-leaf node and an LTS at each leaf. Alphabets are associated with
child nodes as appropriate for the parent node’s CSP operator (i.e., according to the
number of operand alphabets). Structured machines reflect an upper part of a process
expression's algebraic structure. They are called configurations in [3,6]. They can be
much smaller than equivalent LTSs, being linear in the number of component pro-
cesses of indexed parallel composition; they can often be operated on very efficiently.
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Fig. 2. A structured machine for Towers of Hanoi with 3 poles and 2 discs, with alphabetised
parallel at the root. A (B C)-bisimulation relation on LTS nodes is shown using dashed arrows.

=

The example in Figure 2 represents a process P = Il p : PEGS @ [ interface(p) |
POLE(p) for a datatype PEGS = {A,B,C} and alphabet- and process-valued functions
interface/1 and POLE/1. The definition of interface/l1 is not shown, but that of
POLE/1 is implied by the three leaf LTSs in the right-hand portion of Figure 2, one
for each of the child processes POLE(p). The initial node of each leaf LTS is shaded.
The same process P is represented explicitly by the LTS of Figure 1.

For simplicity, we consider only single-configuration processes, which has the ef-
fect of allowing only a subset of CSP process operators outside recursive definitions:
parallel operators, hiding and renaming. In practice many processes have this form. A
structured machine with a top level parallel operator has states in tuple form — each
component denotes the local state of a particular leaf LTS. See [3,6] for more details.

5.2 Structured Machine Symmetries

Symmetries of a structured machine can be represented conveniently using permuta-
tion bisimulations between the nodes of its leaf LTSs, as demonstrated by Figure 2. A
single permutation bisimulation may relates nodes of a single leaf LTS, or nodes of



different leaf LTSs. Permutation bisimulations can often be found by exploiting the
structure of CSP process expressions, as explained below. Operational and algebraic
approaches to identifying (finding/checking) symmetries and permutation bisimula-
tions were discussed briefly in [5]. The algebraic approach is well suited to efficient
identification of structured machine symmetries, so it is described here.

Table 1 expands the table in [5]. It gives a selection of rules that relate trace sym-
metries of processes to those of sub-processes and alphabets. Due to space limita-
tions, Table 1 is incomplete and we omit our proofs of these results. Throughout, O is
taken to be an event permutation. For an alphabet X (A, H or A(i) in the table), X0
denotes the set {x0 | xXE€X]}. In rules 9-13, 0 permutes indices in the set I and per-
mutes events according to the corresponding canonical lifting.

Rules 4 and 5 are alternative instances of rule 10 for two sub-processes: rule 4 is
obtained when 0 maps P to P and Q to Q, and rule 5 is obtained when 0 swaps P and
Q; rechristening P as P(1) and Q as P(2), the distinction is how O acts on the indices 1
and 2 in rule 10, i.e. on whether 0 maps 1 to 1 and 2 to 2, or swaps 1 and 2. Rule 3 is
an instance of rule 12. In this way, specialised rules can be derived easily from rules
9-13. Rule 8 uses the ‘exact alphabet’ function Q.

Rules 9-13 allow one to infer symmetries that are (liftings of) index permutations.
These rules can be generalised, replacing Vi € I, P(i0) =, P(i)0 by 3 an index per-
mutation p - Vi € I, Pip) =, P(i)0, where p permutes indices and O permutes
events.

Most of the rules are deliberately approximate. Informally, they only allow ‘easy’
symmetries to be identified — symmetries one would expect to hold ‘at first glance’.
This helps to make them simple and easy to implement. Reasoning with such rules
will generally miss some symmetries, but we expect they would find most that arise
in practice. Some approximation is necessary, as finding all symmetries would in gen-
eral be too computationally demanding.

One approach to cope with recursive definitions would be to calculate conditions
iteratively and terminate on reaching a fixed point. This would require some support-
ing theory to argue termination and perhaps uniqueness of the fixed point. We take
the simpler approach of identifying symmetry of recursive processes operationally
[5], by examining transition systems (LTSs, in fact) that represent them.

We have developed a prototype tool which implements extended versions of these
rules, for deciding whether any given processes Proc, and Proc, are mutually per-
mutation symmetric by a given event permutation 0 (i.e., whether Proc,0 =, Proc,).
By choosing Proc, = P(x) and Proc, = P(x0), the extended rules can also be used for
checking permutation transparency conditions P(x)0 =, P(x0). Such conditions occur
at lines 2 and 9-13 of Table 1.



Proc op | (Proc)o = Proc Explanation of Proc
1 | STOP < | True STOP has only the empty trace
2 | x:A->Px) © | Ao =A A VXEA, P(x0)=; P(x)0 Acceptx in A, then act as P(x)
31 POQ < | Po=,PAQ0=;Q External choice between P, Q
4 | PIANQ <= | Po=;PAQO=,QANAC=A P and Q synchronisedon A
5 PIIANQ <= | Po=;,QAQ0=;PAAC=A P and Q synchronisedon A
6| P:;Q < | Po=4,PAQO=,Q P then (on termination) Q
7 | P\H < | Po=;PAHo=;H P with events in H hidden
8 | PIIR]] < | 3p * Pp=,P A VaEaP, aRb = (ap)R(bc?) P renamed by event relation R
9 | i€T=PGl) < | o= 1A Vi€ELP(i0)=;, Pli)o Interleaving of all 'P(i)'s
10 | [Ali€E€TP3) <] ol=>1AViELP3io)=; PG)o N A=A Generalised parallel of 'P(i)'s
11 €L« [ADI] PG) [ <= | o= | A Vi €1, P(i0) =7 P()0 A A(i0) =, A()0 'P(i)'s synchronisedon 'A(i)'s
12 | Oi€1«PG) < | ol=1AVi€ElP3o)=; PG)o External choice of all 'P(i)'s
13 | I~li €T+ PG) < | o> | A ViELPGo) =, P()o Non-det choice of all 'P(i)'s

Table 1. Some exact (1 and 2) and sufficient (3-13) conditions for CSP process symmetry.

The most significant rules for this paper are those for the replicated parallel operat-
ors: rows 9-11 in the table. This is because structured machines with these operators
have effective state spaces with states being tuples of local states, one per child ma-
chine. Sections 6 and 7 will define rep functions on such tuple states.

An alternative, promising approach to finding permutation transparencies (and so
symmetries) is to look for data independence (d.i.) [11] of a parametrized process ex-
pression P(x) in the type X, say, of its parameter. This is because d.i. — a simple syn-
tactic property — implies transparency with respect to all permutations of the type.

It appears possible to liberalise the notion of data independence to yield a syntactic
characterisation of a large class of transparent processes: one would remove condi-
tions (notably banning of parallel composition indexed by the d.i. type) designed to
prevent d.i. processes 'counting' the datatype. Having identified transparency syn-
tactically — using standard d.i. or a liberalised version — one could deduce symmetries
using the rules above. This is motivated further in [5], in particular for d.i. index sets.
However, this symmetry identification short cut is outside the scope of the paper.

The algebraic rules in Table 1 can be extended to yield a compiled representation
of the process as a structured machine, plus permutation bisimulation relations on the
nodes of its LTSs (not just knowledge of whether the process is symmetric). Such
permutation bisimulations will justify the rep functions defined in the next sections.
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6. Basic Symmetry Exploiting Algorithm

Recall that symmetry of a CTL* formula f w.r.t. group G means f never discriminates
between mutually symmetric behaviours, regardless of the number of steps already
taken. The corresponding condition on a specification process is that it is G-symmet-
ric in each state (each process to which it can evolve is G-symmetric); if this holds we
say the specification process is universally G-symmetric. Similarly, a specification
transition system (LTS or structured machine) is universally G-symmetric if each of
its states is G-symmetric, implying universal G-symmetry of the process it represents.

The product space for a specification Spec with states Sg.. and implementation
Impl with states Sy, is the subspace of SgpecXSmp reachable under lock-step syn-
chronisation on all visible events. This state space is explored during a standard re-
finement check; each 'state' of the product space is really a state pair (u,v), say, where
u is a specification state and v is an implementation state. A path through a transition
system is an alternating sequence <sy,e1,S1,...,€n,8+> Of states and events, starting and
ending with states s.t. for each 0 <1 < n, there is a transition from s; to s;,; labelled e;,;.

A twisted path through a Spec-Impl product space is a sequence <S¢,€1,01,S1;.--,€n,
0,,8:> of (product) states, events and permutations, starting and ending with states,
with the following well formedness condition between successive states: V 0 <i <n,
there is a product space transition labelled e;,; from s; = (u;,v;) to pre-si,; = STy =
(U101, Vis 05y ). Intuitively, non-trivial permutations O 'twist' the search away from
paths that the usual refinement checking algorithm would follow.

Given a function repPair from state pairs to state pairs, a repPair-twisted path is a
twisted path <so,e,0,81,...,€0,00,8:> such that V 0 < i < n, s; = repPair(pre-s;), where
pre-s; = sioi . (We let repPair return a permutation too, which this definition ignores.)

6.1 TwistedCheck

The symmetry exploiting algorithms will be defined in terms of a curried function
TwistedCheck (see Figure 3) parametrized by a function repPair. Ignoring counter-
example recovery for now, TwistedCheck(repPair) is obtained by changing the usual
refinement checking algorithm (Section 2.3) as follows: during exploration, instead of
recording a reached state pair (u,v), record (rep,, rep,) where (rep,, rep,, 0) = rep-
Pair(u,v). Note that TwistedCheck(repPair) does not need Spec or Impl G-symmetry.

TwistedCheck(repPair) explores the Spec-Impl product space by following rep-
Pair-twisted paths — each non-trivial permutation 0 returned by repPair re-directs
the search to continue from ( r epnext ., r epnext ) instead of from ( next ., next.) .
Each such 0 is recorded for counterexample recovery.

11



Twi st edCheck(repPai r) ( Tspec, Timi)
1 Input: Normal Spec transition system Tsec With states Sepec

2 I npl structured nachine Tim With states S
3 r epPai I SspecXSiml => SspecXSimi xG
4 CQutput: ArepPair-tw sted counterexanple or 'REFINES
5
6 function recover2(state, vparent, e, n)
7 i f defined(vparent) then
8 (u,v,vparent2,e2,g) := Seen[vparent];
9 return recover2(v, vparent2, e2, on) “<en>;
10 else
11 return <>;
12 endi f
13 end
14

15 Seen := {(init(Tspec),init(Timm),undef,undef,1)}; Done := {};
16

17 while Seen - Done is not enpty do

18 Choose sone (u,v,vparent,event,n) from Seen- Done;

19 if vis conpatible with u then

20 foreach transition (v,ey, nexty) in Ty do

21 e, .= ey

22 Let next, be unique such that (u,eu nexty) € Tspec;
23 (repnext,, repnext,, o) := repPair(next,, nexty);
24 Put (repnext. repnexty,v,ey, o) in Seen if

25 no tuple in Seen has sane first two val ues;
26 endf or

27 el se

28 bad := an event possible for v but not for u;
29 print recover2(v,vparent, event, n)”~bad; abort;
30 endi f

31 Done : = union(Done, {(u,v,vparent, event,n)});

32 endwhil e

33

34 print ' REFINES ;

Fig. 3. Twisted refinement checking algorithm for traces refinement. Underlining shows the
differences compared with the usual refinement checking algorithm.

A bad state pair, and a bad event from that pair, are a pair (u,v) and event e where
v has an outward transition labelled e but u does not. We generalise the notion of bad
event: a bad trace from a bad state pair (u,v) is a trace t such that Impl state v can per-
form t but Spec state u cannot.

A counterexample trace is a trace to a bad state pair, extended by a bad trace from
that pair. It is easy to see that the counterexample traces are exactly the Impl traces
that are not Spec traces.

Define recover(<path>) and recover2(<repPair-twisted path>) as follows:

recover(<sg,e1,81,...,€n,5x>) = <€1, ..., €n.1, €x>

12



recover2(<sy,e1,01,51,...,.€n,0,Sp>) = <€,0,05...0,, ..., €,.10,.10,, €,0,>
So recover(p) is the trace of events along path p, and recover2 also yields a trace. Let
a repPuair trace to state pair s be the result of applying recover2 to a repPair-twisted
pathrtos.

A repPair counterexample trace is then a repPair trace to a bad state pair, extended
by a bad trace from that pair. Examination of Figure 3 shows that on reaching a bad
pair (u,v) the condition at line 19 fails and TwistedCheck(repPair) effectively applies
recover2 to a repPair-twisted path to (u,v), extends the result by a bad event, and so

obtains a repPair counterexample trace.

6.2 SymCheckl

Suppose a function rep maps each implementation state v to a representative in the
G-equivalence class of v, for some event permutation group G. Define SymCheckl1 to
be TwistedCheck(repPairl) where repPairl is defined in terms of a function sortRep:
repPairl(u,v) = (u,rep(v),0), some O in G s.t. vO=rep(v)
rep = sortRep

SymCheckl explores the Spec-Impl product space by following repPairl-twisted
paths. Recall that universal G-symmetry of a specification transition system Tgp.
means that each state u of Ts,.. is G-symmetric, i.e. each u is such that uo = u for all
0 in G. So, for state u of Tsp. and state v of Ty, repPairl maps state pair (u,v) to
(u,rep(v),0) [for some O in G s.t. vo=rep(v)] = (u0,v0,0) [using universal G-sym-
metry of Ty, and that vo=rep(v)] = (u0,,,v0,,,0.,) for 0,, = 0. The significance of
this is that Theorem 2, proved in the appendix, applies.

Theorem 2: Let G be a group of event permutations and suppose Spec and Impl have
G-symmetric transition systems Tsp.. and Ty, respectively. Suppose function repPair
maps each state pair (u,v) to (u0,,,v0,,,0,,) for some 0,, in G. Then Spec E,, Impl

has a counterexample trace t iff Spec ., Impl has a repPair counterexample trace t.

So, SymCheck1 eventually finds a repPair counterexample trace exactly when the
refinement does not hold, and this will be a counterexample trace. If the exploration
order is breadth-first, the counterexample found will clearly have minimal length.

6.3 Method sortRep

It remains to define a suitable function rep that maps each implementation state v to
some G-equivalent representative. Given a group G, an implementation structured
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machine T, with n leaves and a state v=(vi,...,v,) of Ty, we describe a method of
calculating a representative rep(v) and a permutation O in G such that vOo = rep(v).
This method and an alternative defined later both rely on knowledge of the permuta-
tion bisimulations between the nodes of Ty, and in particular the 0-bisimulations for
0 in G. The method sortRep is fast but, as discussed below, it needs all pbisims to
have a simple form. Furthermore, G must be a full symmetry group.

Suppose process P is a parallel composition, by some parallel operator op, of n>1
processes P(id)), ..., P(id,) represented by LTSs L(1), ..., L(n). Then P can be repres-
ented by a structured machine S having a simple form if op is interleaving, shared
parallel on some G-symmetric alphabet A, or alphabetised parallel on G-transparent
alphabets (so each process P(id) is synchronised with the others on an alphabet A(id),
where A(ido) = A(id)0, each 0 in G). In such cases, P is representable by structured
machine S having top level operator op and children L(1), ..., L(n). As previously
stated, Figure 2 gives an example for Towers of Hanoi with 3 poles and 2 discs.

A pbisim pgis a simple swap pbisim for leaf indices 1 and j if p, relates each i:m to
jmm, each j:m to i:m and, for k & {i,j}, each kxm to kxm. Consider arbitrary state v =
(V1,...,Vn) of such a structured machine S having simple swap O-bisimulation p;; for i
and j. Then applying p;; to v has the effect of swapping the values at indices i and j of
v and not changing other values, i.e., it yields the state V' = (Vi,....,Vi.t, Vi Victsee, Vit Vi,
Vis1,---,Va). State v is O-bisimilar to v' since each component of v' is O-bisimilar to a
component of v.

Suppose PBISIMS is a set of simple swap pbisims and S is a subset of {I,....,n}.
Then PBISIMS is a full set of simple swap pbisims for S if for each i, j € S there is a
simple swap pbisim p, € PBISIMS for i and j, with p, a 0-bisimulation relation. Let
G be the group generated by such permutations O. In this case any permutation of
components v; of v = (vy,...,v,) with indices in S yields a G-equivalent state. The
method sortRep sorts the components of a state v = (vy,...,v,) that have indices in S
and leaves the others unchanged; the resulting state is G-related to v by the above
reasoning.

A structured machine can be determined to have a full set of simple swap pbisims
by finding a set of suitably intersecting 'cycle' pbisims for permutations {(e; ... €1a1),
.oes (Bk1 .. €knx) } covering all values permuted in G.

There is scope for defining variants of this method that are more widely applicable.
In particular, it would be straightforward to cope with multiple simultaneous swaps of
indices — such as (1 2)(5 6) — and still use a fast sort-based method: sort a subset of
the local state values (say, v, and v,) and apply a corresponding permutation to the
other values (vs and v in this example).
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7. Extensions

Two extended algorithms are described. SymCheck?2 uses a more general rep function
that applies to a larger class of implementation processes than does sortRep.
SymCheck3 is even more general, requiring only G-symmetry of the Spec transition
system instead of universal G-symmetry.

7.1 SymCheck2

Define SymCheck?2 to be TwistedCheck(repPair2), where repPair2 uses a more gen-
eral rep function:
repPair2(u,v) = (u,rep(v),0), some O in G s.t. vO=rep(Vv)
rep = genRep

SymCheck2 explores the Spec-Impl product space by following repPair2-twisted
paths. Compared to SymCheckl, SymCheck2 uses genRep (defined below) in place
of sortRep. Theorem 2 also justifies use of SymCheck?2 to find counterexamples when
the Spec transition system is universally G-symmetric and the Impl transition system
is G-symmetric; the practical difference is that SymCheck?2 is less restrictive about
the form of the Impl transition system and its known permutation bisimulations.

Method genRep

As already mentioned, this method is more general than sortRep. It works with any
set of Impl permutation bisimulations such that, for each leaf index i, each pbisim p
relates all nodes of LTS(i) to nodes of a distinct LTS(j), and each such LTS(j) node is
the image of some LTS(i) node by p, where j depends on the pbisim (and could be the
same as i). That is, we require each pbisim p to be the union of bijections {pi,...,pa}
with each p; having domain the nodes of LTS(i) and range the nodes of some distinct
LTS(). We call such pbisims uniform. (Uniformity is a natural condition, indeed all
pbisims calculated using our extended Table 1 rules are uniform, and composition of
pbisims preserves uniformity.)

The method genRep calculates each state (v'y,...,v',) related to v = (vy,...,v,) by some
pbisim, using pre-calculated pbisims between nodes of the LTSs, and chooses the lex-
icographically smallest.

We explain how to calculate the node v' = (v';,...,v',) to which v is related, as de-
termined by a particular permutation bisimulation p. The value v'; at position j of
tuple v' is determined as follows: find the leaf number, i, of the Impl leaf LTS such
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that p relates LTS(i) nodes to LTS(j) nodes, and set v'; to the node of LTS(j) to which
node v; of LTS(i) is related. Now, v represents Pv, Il ... Il Pv, where each Pv; is the
process represented by node v; of LTS(i), and by construction each Pv; is such that Pv;
= Pv',0, for some distinct (by uniformity of p) index j. So, Pv, Il ... | Pv, =Pv o Il ... Il
Pv',0 =(Pv', Il ... I Pv',))0 and hence Pv = Pv'0.

For improved efficiency, our implementation pre-calculates, for each pbisim, the
appropriate ordering of indices i to calculate the components of v' in left-to-right or-
der. It abandons calculation of v' when a component V'; is calculated that makes the
partial v' larger than the lex-least thus far.

When using genRep, before exploration we transitively close the calculated
pbisims in the obvious sense — this makes it sufficient to find just a generating set of
pbisims (i.e., pbisims for a generating set of permutations of G) using the extended
Table 1 rules. Transitive closure is not used for sortRep, since sortRep does not gener-
ate all related nodes — even partially — and can be determined applicable given a small
number of suitable generating pbisims.

7.2 SymCheck3

Define SymCheck3 to be TwistedCheck(repPair3) where:
repPair3(u,v) = (u0,rep(v),0), some 0 in G s.t. vo=rep(V)
rep = genRep

So SymCheck3 explores the Spec-Impl product space by following repPair3-twisted
paths. Theorem 2 applies directly to SymCheck3 when the Spec and Impl transition
systems are each G-symmetric. We drop the condition (needed for SymCheckl and
SymCheck?2) that the Spec transition system Tsp.. is universally G-symmetric — this
condition is not needed here because repPair3 is defined to yield uo in the first part
of its result, exactly as needed for Theorem 1 to apply. Hence this algorithm is more
general than SymCheck2; the price paid for this extra generality is the need to calcu-
late uo, but this is straightforward given pbisims for Ts,... Note that it would not be
appropriate to use rep(u) instead of uo here, as these will be different in general.

8. Experimental Results

We present results obtained using a prototype tool written in Perl. The tool compiles
given Spec and Impl processes, checks particular symmetries of them claimed by the
user and in so doing finds corresponding pbisims, and checks applicability of, and

16



runs, refinement checking algorithms as requested by the user. The results presented
are for the usual refinement checking algorithm (which we call Check) and for sym-
metry exploiting algorithms SymCheck1, SymCheck?2 and SymCheck3.

Specification processes were chosen that are refined by the implementations, to
show the full size of the (product) state space explored in each case. Three classes of
refinement check are reported, distinguished by the choice of specification and imple-
mentation:

« refinement of RUN(Events) by Towers of Hanoi models with 4 discs and 4-7

poles, where RUN(Events) can always perform any event;

« refinement of RUN({l try,enter,leave |}), which can perform all events on chan-
nels try, enter and leave, by Dijkstra mutual exclusion algorithm models with 2-4
participants; and

« refinement of SpecME by these Dijkstra models, where SpecME can perform
exactly the desired patterns of try.i, enter.i and leave.i events and is not univer-
sally symmetric for any non-trivial permutation.

Table 2 shows the results obtained for the most efficient of the applicable symmetry
exploiting algorithms. For each check, G is the full symmetry group on pole indices
(except pole A, where all discs start) or participant identifiers.

In each case the applicable SymCheck algorithms can be determined automatically
based on whether there is found to be a full set of simple swap pbisims (in which case
sortRep can be used) and whether the specification process LTS is found to be univer-
sally G-symmetric (in which case SymCheck2 applies, and so does SymCheckl if
sortRep can be used).

One column gives total time for compilation of the implementation process to a
structured machine plus checking of the claimed implementation symmetries. Others
give supercompilation’ [6] time, and time for transitive closure of implementation
transition system pbisims (i.e. for determining an implementation transition system
pbisim for each permutation in G, which is needed for genRep and so for SymCheck2
and SymCheck3). Corresponding timings are omitted for the specification as they are
much smaller. In addition, exploration times are of course reported.

Although the table does not show it, SymCheck3 has a larger overhead per state
explored than does SymCheck2. The table does include evidence that SymCheck?2 has
a larger overhead than SymCheckl.

The Towers of Hanoi models are very simple. Each has a structured machine with
a full set of simple swap pbisims for G. Also, the specification RUN(Events) is found
to be universally G-symmetric. These properties are determined quickly by the tool
and hence SymCheck] is found to apply. Compared with Check, there is a substantial
reduction in the number of state pairs explored by SymCheckl and in exploration

3 Supercompilation can reduce exploration times greatly; it is outside the scope of this paper.
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time. Although the compilation effort is larger, the extra costs are small compared to
the benefits of exploring fewer state pairs.

The Dijkstra mutual exclusion models were chosen partly because their structured
machines do not have simple swap pbisims for the permutations in the corresponding
group G. Accordingly, SymCheck1 does not apply. SymCheck?2 applies when check-
ing refinement of RUN({| try,enter,leave }), as this specification is univerally G-sym-
metric. However, SymCheck2 does not apply with the merely G-symmetric specifica-
tion SpecME; only SymCheck3 applies in the case of this refinement property.

Time (secs)
Impl Number of |Overhead perf
Algorithm MODEL States compilation Impl Impl pbisim Sl permsyms|  state
+sym | supercompilation | transitive closure found explored
checking
Check hanoi4p4d 256 | 100% 334 0.20 - 3.58 100% - 0%
SymChecki|  hanoi4pdd 51 [ 19.92% | 334 0.20 - 0.73 20% 6 2%
SymCheck2|  hanoi4p4d 51 [ 19.92% | 3.34 0.20 0.01 0.73 20% 6 2%
Check hanoi5p4d 625 | 100% 5.13 0.37 - 19.14 100% - 0%
SymChecki|  hanoi5pdd 52 | 83% | 513 0.37 . 1.583 8% 24 4%
SymCheck2|  hanoi5p4d 52 | 83% | 513 0.37 0.05 1.72 %% 24 8%
Check hanoi6p4d 129 | 100% 7.38 0.78 - 82.29 100% - 0%
SymChecki|  hanoi6p4d 52 | 401% | 7.38 0.78 - 3 4% 120 6%
SymCheck2|  hanoi6p4d 52 | 401% | 7.38 0.78 0.56 4.20 5% 120 27%
Check hanoi7p4d 2401 | 100% 9.88 378 - 246.83 100% - 0%
SymChecki|  hanoi7pd 52 | 217% | 9.8 378 - 5.09 2% 720 5%
SymCheck2|  hanoi7p4d 52 | 217% | 9.88 3.78 5.69 15.38 6% 720 188%
Check | DikstraME 2 | 445 | 100% 4.18 0.53 . 0.1 100% = 0%
SymCheck2| DikstraME 2 | 224 | 50.34% | 4.18 0.53 0.00 0.1 69% 2 37%
Check | DikstraME 3 | 19161 | 100% | 22.66 2.65 - 1n.77 100% - 0%
SymCheck2| DikstraME_3 | 3269 | 17.06% | 22.66 2.65 0.01 2.94 25% 6 46%
Check | DikstraME 4 |1189379] 100% | 63.89 10.02 5 1103.00 100% = 0%
SymCheck2| DikstraME 4 | 51571 | 4.34% | 63.89 10.02 0.07 118.95 11% 24 149%
Check | DikstraME 2 | 445 | 100% 4.08 0.52 - 0.13 100% - 0%
SymCheck3| DikstraME 2 | 224 | 50.34% | 4.08 0.52 0.00 0.12 9% 2 83%
Check | DikstraME 3 | 19161 | 100% | 22.77 2.66 - 8.82 100% - 0%
SymCheck3| DikstraME_3 | 3269 | 17.06% | 22.77 2.66 0.01 2.96 34% 6 97%
Check | DikstraME 4 |1189379] 100% | 63.57 10.00 - 861.12 100% - 0%
SymCheck3| DikstraME 4 | 51571 | 4.34% | 63.57 10.00 0.07 133.88 16% 24 25%%

Table 2. Experimental results for the usual refinement checking algorithm Check and the three
SymCheck algorithms.

For the larger symmetry groups, algorithms SymCheck2 and SymCheck3 suffer
from the rapid increases in the size of G that result from increasing the number of
poles or participants; this is because both algorithms use genRep, which needs a
pbisim for each element of G. SymCheck]1 is much less sensitive to this because it
uses sortRep, which only requires a linear number of (simple swap) pbisims. Further,
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these pbisims can be calculated efficiently from just two pbisims corresponding to
any transposition (x y) and any cycle on all elements of G except for x. This was done
for the SymCheck]1 checks reported in the table.

9. Conclusions

We have successfully adapted the representative function approach to symmetry ex-
ploitation from the temporal logic model checking context to CSP refinement check-
ing. The major obstacle was the need for access to sufficient local information about
state during refinement checking, which is provided by representing the implementa-
tion process as a structured machine. We have also presented two generalisations of
the basic algorithm. All three algorithms have been presented in a common style, in
terms of a curried function TwistedCheck.

An option for future work is to characterise more precisely, in terms of processes,
when alternative SymCheck variants apply and even develop methods for transform-
ing CSP models, or their transition systems, to make the more efficient algorithms
more widely applicable.

There are many other possible extensions, including: use of (a perhaps liberalized
notion of) data independence to increase the efficiency of symmetry identification;
development of variants of the sorfRep function to cope efficiently with wider classes
of structured machines and permutation bisimulations over them (and hence more
implementation processes); extension to multiple representatives; extension to virtual
symmetries [12]; and use of computational group theory to improve efficiency.

It would also be interesting to investigate the temporal logic analogue of (non-
universal) G-symmetry and perhaps generalise the representative function approach
to symmetry exploitation for temporal logic model checking, effectively removing the
requirement that the specification is always symmetric.

Our experimental results illustrate that the refinement checking algorithms we
have presented can give significant savings in the number of state pairs explored and
in verification time. The former can be expected to lead to corresponding reductions
in memory usage, which is often the dominant factor determining the sizes of prob-
lems that can be checked.
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Appendix: Theory

Lemma 1: Let G be a group of event permutations. Consider the product space for
particular Spec and Impl transition systems, with initial state pair so=(uo,vo). Suppose
repPair is a function that maps each state pair (u,v) to (40 ,,,v0,,,0.,), some O, in G.
Then, for all traces t, there is a path p from s, to state pair s=(u,v), with recover(p) = t
iff there is a repPair-twisted path r from s, to sO = (u0,v0), with recover2(r) = t0,
some O in G.

Proof: Induction on length k of t.

Base case: k = 0, so t = <>. There is exactly one path, p=<s¢>, starting at s, and such

that recover(p) = <>. This path ends at (u,v)=(u,v¢)=s,. Also, there is exactly one rep-
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Pair-twisted path, r=<sy>, starting at s, and such that recover2(r) = <>. This repPair-
twisted path ends at s, = syl so we may choose 0=1. Then recover2(r) = <> =<>0.
Inductive step: Suppose the lemma holds for all traces t of length k. We show it also
holds for all t of length k+1.
(=) Suppose p=p' » <e> is a length-k+1 path from s, to (u,v), with recover(p) = t.
Then p' is a length-k path to some state pair (u',v') and there is a transition (u',v') -
(e)-> (u,v). Clearly, recover(p) = recover(p' » <e>) = recover(p')  <e>. So, defin-
ing t'=recover(p'), we have t = t' * <e>. By the induction hypothesis applied to p'
and t', there is a repPair-twisted path r' from s, to (u'0’',v'0") with recover2(r') =t'0’,
some 0' in G. Recall there is a transition (u',v') -(e)-> (u,v), so there is a transition
(u'o'v'a") -(e0")-> (ua',va'). Let p in G be such that repPainuo',va')=(ua'p,va'p,
P)." Then r = ' A <e0",p,(uC'P,vO'P)> is a repPair-twisted path to (uo'p,va'P)
since 1' is repPair-twisted and ends at (u'0’',v'0") and there is a transition (u'0’',v'0")
-(e0")-> (uo',vo') and repPain(uo',va') = (u0'p,vo'P,P). Putting 0 = 0'p, we ob-
tain that r is a repPair-twisted path from s, to s0=(u0,v0), where 0 = 0'p is in G
since both @' and p are. It remains to show that recover2(r) = to. We have recov-
er2(r) = recover2(r' N <e0',p,(uad'P,va'P)>) = (recover2(r’) N <e0'™>)p = (t'a" "
<ed>)p = (t' *<e>)0'p =to.
(<) Similar.

Theorem 1: Let G be a group of event permutations and suppose Spec and Impl have
transition systems Ts,.. and Ty, respectively. Suppose function repPair maps each state
pair (w,v) to (u0,,,v0,,,0,,) for some 0,, in G. Then Spec E,, Impl has a counter-

example trace t iff 1 0 € G s.t. Spec =, Impl has a repPair counterexample trace t0.

Proof: (=) Let t be a counterexample trace of Spec ., Impl. Then t is a trace of Impl.
Let t; be the longest prefix of t that is a trace of Spec and t, be such that t = t;*t,. Then
there is a path p from initial state pair s, to s=(u,v), say, with recover(p) =t; and t, a
bad trace from (u,v). By Lemma 1, there is a repPair-twisted path r from s, to sO,
some O in G, with recover2(r) = t,0. But sO = (u0,v0) is a bad state pair, and t,0
must be a bad trace from s0 (since Impl state vO is able to perform trace t,0 but Spec
state ug is not). So recover2(r) * t,0 = t,0 * t,0 = (t;,)0 = tO is a repPair counter-
example trace, for this 0 in G.

(<) Let t be a repPair counterexample trace of Spec =, Impl. Then t = recover2(r) »
t, for some repPair-twisted path r from initial state pair s, to a bad state pair s=(u,v),
such that t, is a bad trace from (u,v). So Impl state v can perform trace t, but Spec
state u cannot . Putting t, = recover2(r), we have t = t;*t,. By Lemma 1, there is a path
p from s, to so”', some 0" in G, with recover(p) = t,0”". Now so™' = (uo’',va™) is

4 Such a p is denoted Oy in the statement of the lemma.
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must be a bad state pair with t,0™' a bad trace from sg”', since Impl state vo™' can per-
form trace t,0"' but Spec state ug™' cannot. So p is a path from s, to bad state pair so”
and recover(p) » L0 = t,0" A ,0"' = (t;",)0”" = t0”' is a counterexample trace, for
this 0™ in G.

Theorem 2: Let G be a group of event permutations and suppose Spec and Impl have
G-symmetric transition systems Tsp.. and T, respectively. Suppose function repPair
maps each state pair (u,v) to (u0,,,v0,,,0,,) for some 0,, in G. Then Spec E., Impl
has a counterexample trace t iff Spec =, Impl has a repPair counterexample trace t.
Proof: By Theorem 1, Spec £, Impl has a counterexample trace t iff 3 0 € G s.t.
Spec E, Impl has a repPair counterexample trace tg. Then use that, V 0 in G, Spec
E, Impl has a counterexample trace t iff it has a counterexample trace to (which fol-

lows from G-symmetry of the Spec and Impl transition systems).
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