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Abstract
Within the domain of safety-critical systems, software engineering becomes a major
challenge, as failures of a system may have life-threatening ramifications. In order to
ensure the reliability of software, its correctness is essential. For the correctness proof of
a model, integrated formalisms with an underlying formal semantics can be used.

Several obstacles complicate a successful application of model checking software
models. The main challenge is to cope with the state explosion problem, that is, the
exponential growth of the system’s state space in the size of the model. Several approaches
deal with this well-known problem. One of them is compositional verification.

The basic idea of compositional verification is that the check of correctness of a complex
system can be divided into smaller verification tasks. The technique avoids to build up
the entire state space of the model, as it solely needs to deal with the individual state
spaces of the single components of a system.

In order to facilitate an application of this technique, two problems need to be ad-
dressed: the model itself must be assembled from several components which is, in general,
not the case. Furthermore, an application of compositional reasoning must provide an
efficiency advantage over monolithic model checking.

Within this thesis, we develop a technique on how to decompose software models
specified in the integrated formalism CSP-OZ. Such a decomposition results in two
components suitable for the application of compositional reasoning.

A first challenge is posed by a proof of correctness, showing the equivalence of the
original specification and a decomposition in our semantic domain. In order to achieve
this, we carry out a dependence analysis by means of a specification’s dependence graph.
The analysis leads to a set of correctness criteria, based on which the graph is fragmented
into two parts. The fragmentation then results in the decomposition of the specification.
In addition, we introduce several techniques and algorithms to restore the specification’s
original control flow and its data flow.

As a second challenge, we address the practicability of compositional reasoning: we
identify heuristics for measuring the quality of a valid decomposition. Here, we neglect
inefficient decompositions. This allows us to consider only those, which most likely result
in an effective compositional verification.

Overall, our approach facilitates a general application of compositional reasoning, as
it does not rely on systems composed of several components. Moreover, valid decompo-
sitions, which are assessed as good by our heuristics, are beneficial for a compositional
verification.

The whole approach is tool-supported due to an integration into a graphical modelling
environment, allowing for the modelling, analysis, decomposition and (compositional)
verification of integrated specifications. Model checking itself is performed within an
assume-guarantee-based verification framework. Here, we use two proof rules, which
are shown to be valid in our semantic domain. Along with this, we provide several case
studies and experimental results.





Zusammenfassung

Die Softwareentwicklung im Bereich von sicherheitskritischen Systemen stellt eine große
Herausforderung dar, da Systemfehler lebensgefährliche Konsequenzen haben können.
Die Korrektheit von Software ist essentiell, um ihre Verlässlichkeit zu garantieren. Für den
Korrektheitsbeweis eines Softwaremodells eignen sich integrierte Formalismen, welchen
eine formale Semantik zu Grunde liegt.

Das Model Checking von Softwaremodellen wird durch verschiedene Hindernisse
erschwert. Die größte Herausforderung ist die Bewältigung der Zustandsexplosion, des
exponentiellen Wachstums des Zustandsraums mit der Größe des betrachteten Systems.
Eine Reihe von Techniken beschäftigt sich mit diesem populären Problem, unter anderem
die kompositionelle Verifikation.

Die grundlegende Idee bei der kompositionellen Verifikation ist die Zerlegung des
Korrektheitsbeweises in Teilaufgaben. Diese Methodik vermeidet die Konstruktion des Zu-
standsraums des gesamten Systems, stattdessen werden die Zustandsräume der einzelnen
Systemkomponenten betrachtet.

Die Anwendbarkeit dieser Technik ist an zwei Voraussetzungen gebunden. Zum einen
muss das Softwaremodell aus mehreren Einzelkomponenten zusammengesetzt sein, was im
Allgemeinen nicht der Fall ist. Des Weiteren muss die Anwendung der kompositionellen
Verifikation einen Effizienzvorteil gegenüber dem direkten Model Checking erbringen.

Diese Arbeit beschäftigt sich mit der Dekomposition von Softwaremodellen, spezi-
fiziert in dem integrierten Formalismus CSP-OZ. Eine solche Zerlegung definiert zwei
Komponenten, welche sich für die kompositionelle Verifikation eignen.

Eine erste Herausforderung dieser Arbeit stellt ein Korrektheitsbeweis dar, welcher die
Äquivalenz der ursprünglichen Spezifikation und einer Dekomposition in der zugrunde
liegenden semantischen Domäne zeigt. Dazu wird eine Abhängigkeitsanalyse durchgeführt,
die auf dem Abhängigkeitsgraphen einer Spezifikation basiert. Diese Analyse führt zu einer
Menge von Korrektheitsbedingungen, auf deren Basis der Graph in zwei Teile zerlegt wird.
Daraus ergibt sich die Dekomposition der Spezifikation. Zusätzlich werden Techniken und
Algorithmen zur Wiederherstellung des Kontroll- und Datenflusses der ursprünglichen
Spezifikation vorgestellt.

Eine zweite Schwierigkeit betrifft die Praktikabilität der kompositionellen Verifikation.
Dazu werden in dieser Arbeit Heuristiken zur Messung der Qualität einer validen De-
komposition ermittelt, wobei ineffiziente Dekompositionen vernachlässigt werden. Dies
erlaubt es, ausschließlich solche Zerlegungen zu betrachten, die eine effektive kompositio-
nelle Verifikation in Aussicht stellen.

Insgesamt ermöglicht die beschriebene Technik die Anwendung von kompositioneller
Verifikation, da sich der Ansatz nicht nur auf zusammengesetzte Systeme beschränkt.
Außerdem sind durch die Heuristiken favorisierte valide Dekompositionen vorteilhaft für
die Anwendung der kompositionellen Verifikation.

Für den gesamten Ansatz existiert eine Werkzeugunterstützung. Diese basiert auf
einer Integration in eine grafische Modellierungsumgebung, welche die Modellierung,
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Analyse, Dekomposition und (kompositionelle) Verifikation von integrierten Spezifikatio-
nen erlaubt. Das Model Checking wird im Rahmen eines Frameworks im Kontext des
Assume-Guarantee Beweisverfahrens durchgeführt. Dabei werden zwei Beweisregeln ver-
wendet, deren Korrektheit gezeigt wird. Schließlich werden einige Fallstudien sowie
experimentelle Ergebnisse präsentiert.
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1 Introduction

Contents
1.1 A Vision of Correct Software . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Formal Methods and their Combination . . . . . . . . . . . . . . . . 2

1.3 Compositional Verification . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 A Vision of Correct Software

Over the last decades, research in Computer Science underwent a major focus change:
as hardware and software systems influence our daily lives in many critical and even
life-threatening situations, systematic approaches to ensure their quality in terms of
correct functionality are essential. Trustworthiness and safety-critical hardware and
software are required in many areas such as aerospace manufacturing, the automotive
industry and medical care, to mention only a few. The more we depend on these systems,
the more confidence we need to have in their reliability.

Software quality assurance (SQA) [Gal04] is an approach to observe the engineering
process regarding to the quality of the resulting software. Since weaknesses and errors
can be introduced at any given point in the process of software development, they need
to be excluded at an early stage of the design process.

One SQA methodology is the model-driven development (MDD) [MDA]: software
systems are described as models in some (domain specific) language. For modelling
object-oriented systems, the Unified Modelling Language (UML) [BJR99] is the current
de facto standard.

In order to ensure software quality, techniques for early model analysis have been
developed, which makes MDD highly useful. One specific analysis technique is software
testing [Xie96], aiming at the detection of errors in the model. Automated testing can be
of great benefit if hidden faults can be determined and corrected early in the development
process. However, correctness of a program can never be achieved by testing:

Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence. [Dij72]

Since malfunctions are in many cases unacceptable, errors in critical parts of the system
have to be ruled out completely. Limited computing resources make the verification of
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large models practically impossible. Therefore, a possible strategy is to verify vital parts
of a system complemented by testing the system’s functionality and non-critical aspects.

For a system’s verification, the model needs to be specified in some mathematical
formalism incorporating a well-defined semantics. One particular kind of mathematical-
based techniques are formal specification languages (formal methods [CW96]). Based on
their precise semantics, they allow for the application of verification techniques. In order
to guarantee a reliable system, the developer needs to adhere to the specification, which
has to be proven correct.

1.2 Formal Methods and their Combination

An informal description of a software model – such as by using an intuitive description
based on natural language – is not sufficient for mathematical-based proof techniques
due to its missing formal semantics. Owed to its expressive power, the UML does not have
a common mathematical-based representation and is often referred to as a semi formal
modelling language. This lack of a precise underlying semantics makes the verification of
UML models generally impossible.

Formal methods [CW96] are widely-used as a mathematical-based approach of design-
ing software and hardware systems and they receive considerable attention from the
research community. The existence of a well-defined underlying semantics, making a
precise analysis of the system technically feasible, is common to all formal languages.
There are a lot of different notations and techniques, with all of them holding their
specific advantages and disadvantages. In general, formal methods can be classified
into several categories for describing different aspects of a system, among them are
state-based techniques using set theory and predicate logic such as Z [ISO00] and the
B-method [Abr96]. In contrast, process algebras like CSP [Hoa85] and CCS [Mil89], for
instance, specify the system’s behavioural aspects.

Individual formalisms do not cover all relevant aspects to describe a complex system as
a whole. Instead of redefining existing methods moving away from the original intention
for a specific method, recent research has shifted to the domain of integrated formal
methods. Focusing on more than one specific facet, they combine different languages to
model different viewpoints of a system within one, well-defined formalism. By defining a
common and consistent semantics, these notations incorporate the advantages of each
individual formalism. Some examples are the combination of the process algebra CSP
with the state-based formalism B into CSP||B [ST02], the formalism Event-B [AH06], a
combination of the B method [Abr96] with events, and the method we are focusing on in
this thesis, CSP-OZ [Fis97], a combination of CSP with the object-oriented extension of Z,
Object-Z [Smi00].

In terms of the overall goal (that is, the verification of a system model), the system
has to be specified in an (integrated) formalism and needs to be proven correct against
certain requirements of the system. This act is called formal verification.



1.3 Compositional Verification 3

1.3 Compositional Verification

Besides theorem proving, model checking [CGP99] is the most widespread formal verifi-
cation method. Given a specification S, specified as a finite state-transition system, and a
requirement P, formulated in some logical formalism, model checking fully automatically
proves or disproves that the system meets the requirement. This is in general denoted by
S |= P.

As the complexity of software and hardware systems increases, so does the complexity
of its models. The most common and major problem for the applicability of model
checking is the state explosion: the size of the software model, represented by a state
transition system, exponentially grows with the size and number of its components and
data domains. In particular, model checking for integrated specifications needs to deal
with the state explosion problem: for instance, the behavioural part of the specification
can incorporate concurrency, leading to an exponential blow-up of its branching structure.
In addition, its state space can be large or even infinite due to its possibly infinite data
types.

In general, building up the full state space of a model is infeasible. In order to
allow model checking to scale to complex systems, several techniques to tackle this
problem were proposed. To mention some of them, symbolic model checking aims at
an efficient representation of the model’s state space whereas partial order reduction
and data abstraction techniques try to reduce the state space of a model by exploring its
concurrency structure and by abstracting from concrete data values, respectively. These
techniques complement each other and can be combined.

Amongst these techniques, compositional verification [dRHH+01] is one promising
approach: instead of verifying a software model as a whole, the components of the model
are analysed separately. The verification results can then be combined into one global
result. For an application of this divide-and-conquer approach, the system needs to be
structured into several (parallel) components. That being the case, different strategies
can be applied in order to incrementally prove a system correct without ever building up
its full state space.

The main technique of compositional verification is assume-guarantee reasoning [FP78,
Jon83, MC81], applied to a system usually structured into two components. For a given
property P on the overall system composed of S1 and S2, both components can be verified
separately without building the global state space. In order to do so, an environment
assumption A needs to be identified, describing the connection and interdependences
between the components. The application of an appropriate proof rule, employing A,
yields the correctness of the system with respect to P.

Assume-guarantee reasoning has been researched for more than three decades. Re-
cently, a new strategy to fully automatically generate the assumption [CGP03, BGP03]
gave a new impulse to this area of research. The strategy is based on automatic learn-
ing, thereby freeing the user from a manual computation of the assumptions used in
assume-guarantee reasoning.

However, the technique relies on a given structuring of the system into parallel com-
ponents. Moreover, the efficiency of this approach depends on several factors: if the
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generated assumption is too large or the size of the components is not well-balanced,
applying the approach can again lead to large state spaces and even worse verification
run-times compared to monolithic (direct) verification. It is essential to think about good
decompositions to ensure applicability and scalability of the approach [CAC06].

Figure 1.1: Decomposition of a specification S into S1 and S2

Figure 1.2: Illustration of the overall approach of this thesis

In this thesis, we construct and evaluate decompositions of integrated specifications.
The starting point is a specification S for which we want to show a specific property P. We
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define a set of correctness criteria, serving as the basis for the decomposition of S. Figure
1.1 illustrates the overall idea. The decomposition results in two specification parts, S1

and S2. These two parts represent the two parallel components of the decomposed system.
An appropriate synchronisation between S1 and S2 ensures that the decomposition and
the original system are behaviourally equivalent which is subsequently shown in the
correctness proof.

S1 and S2 then serve as the input for assume-guarantee-based proof rules. The proof
rule, as illustrated in Figure 1.2, states the following: if S1 satisfies an assumption A
(described by the symbol ‘|=’) and if S2 satisfies P under the assumption A, then the
overall system composed of S1 and S2 satisfies P. Correctness of the decomposition yields
that S satisfies P, if, and only if, the conclusion of the proof rule can be inferred.

The approach is based on several context-specific heuristics pointing the direction for
reasonable decompositions. The technique thus allows for an efficient application of
assume-guarantee reasoning. Within our implemented framework for CSP-OZ, we trans-
late the obtained components to the input language of a model checker and ultimately
apply the learning-based approach. We are able to evaluate different decompositions by
comparing verification run-times with those for monolithic verification.

1.4 Contributions

Compositional verification for integrated formal methods has been researched in [ST04,
But09]. These works perform the decomposition of a system by hand and rely on the fact
that it can be carried out effectively.

Learning for compositional verification, especially to automate the verification process,
was introduced in [CGP03] and further developed in [PGB+08]. The techniques are,
however, not applied in the context of formal methods and rely on systems which are
already composed of several components.

Alur and Nam [NA06, Nam07] use assume-guarantee-based reasoning in the context of
symbolic model checking. They apply the learning framework to automatically generate
assumptions and decompose a given system. In addition, they propose heuristics to
improve the decomposition process. In their semantic domain of symbolic transition
modules solely based on boolean variables, they do not deal with the aspects of inte-
grated formalisms such as data flow, control flow and synchronisation. Furthermore, the
developed heuristics only focus on aspects of the learning framework and they do not
consider the (dependence structure of the) original system.

The key contribution of this thesis is an approach on how to combine all of these
strategies, that is, how to effectively apply compositional verification for integrated
formal methods: based on several correctness criteria and certain heuristics, we explicitly
decompose the given system. The result of the decomposition serves as the input for the
learning-based automated verification process.

Overall, the thesis’ contributions are given as follows. We define an approach to decom-
pose specifications written in CSP-OZ. The approach does not rely on systems which are
already composed of several processes but, instead, leads to self-defined decompositions.
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CATEGORY CONTRIBUTIONS

Decomposition X Decomposition for integrated specifications.
X Exploitation of specification’s dependence structure.
X Heuristics-based approach to detect reasonable decomposi-

tions.

Soundness Proof X Equivalence between original and decomposed system.
X Correctness in context of assume-guarantee framework.

Implementation X Integration into graphical modelling framework.
X Integration into assume-guarantee-based framework.
X Evaluation-based on case studies.

Table 1.1: Contributions of this thesis

In order to achieve reasonable decompositions, we investigate heuristics, exploiting the
dependence structure of the specification as well as algorithms for the assumption identi-
fication. We present a correctness proof, showing that our decomposition preserves the
observable behaviour of the specification. Since the decomposition mandatorily modifies
the specification’s internal behaviour, the proof incorporates several techniques to link the
original system to its decomposition. We integrate the approach along with the learning
strategy into a graphical modelling framework for CSP-OZ [Sys06]. An evaluation of the
approach is performed based on several case studies and two different learning strategies
according to [CGP03] and [BGP03].

1.5 Thesis Structure

This thesis is structured as follows.
Chapter 2 provides an overview of (integrated) formal methods and introduces the

employed formalism CSP-OZ [Fis97], a combination of the process algebra CSP [Hoa85],
and the state-based formalism Object-Z [Smi00]. The semantics of CSP-OZ and necessary
definitions are given. For an illustration of CSP-OZ, we present the running case study of
this thesis. Along with this, we provide background on the dependence analysis for CSP-
OZ, which serves as the basis for the decomposition approach. The dependence structure
of a specification is defined by means of a dependence graph developed in [Brü08],
reflecting the control flow of a specification’s CSP part as well as data dependences with
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respect to the Object-Z part. We present the definition and slightly modify it for our
purpose.

Chapter 3 introduces compositional reasoning and starts with an overview on relevant
techniques to cope with the state explosion problem in model checking. We survey
compositional verification, particularly in the context of integrated formal methods.
Afterwards, we present the specific method we deal with in this thesis: the assume-
guarantee paradigm. The learning strategy to automatically generate assumptions is
introduced next. In order to integrate assume-guarantee reasoning into our setting, we
show the correctness of two compositional proof rules in the semantic domain of CSP-OZ.
The chapter concludes with a discussion of related work.

Chapters 4-6 are the core chapters of this thesis. In Chapter 4, we introduce our
definition for the decomposition of a CSP-OZ specification. We start by defining correct-
ness criteria for a fragmentation of a specification’s dependence graph into two parts.
Subsequently, we define the decomposition of the specification itself resulting in two
specification parts. These parts represent the two parallel components for the employed
compositional proof rules. We motivate and describe the employed techniques to guar-
antee a semantics-preserving decomposition and illustrate the individual steps on the
running case study. Finally, we discuss works closely related to our approach.

Chapter 5 presents the correctness proof of our approach. Ultimately, we show that
the decomposition does not change the overall semantics of the specification. Several
properties, relating the decomposed specification to the original system, are proven. We
show that the original specification and the decomposed system, that is, the composition
of the two parallel components, are behaviourally equivalent in our semantic domain.
Achieving this is done through employing the compositional semantics of CSP-OZ along
with the criteria on a correct decomposition.

Chapter 6 describes techniques and heuristics for finding reasonable decompositions.
These are the ones for which model-checking-based on our approach will presumably
outperform monolithic model checking. We motivate and discuss some context-specific
heuristics for good decompositions. Furthermore, we introduce a second, bigger case
study, on which we illustrate the application of the heuristics.

Chapter 7 introduces our implementation framework and experimental results. The
graphical modelling framework Syspect [Sys06] for modelling CSP-OZ specifications
serves as the platform. We describe our integration of the decomposition approach and
the integration of the learning framework along with the heuristics-based identification
for reasonable decompositions. Additionally, we evaluate our approach on three case
studies and discuss the results.

Chapter 8 summarises this thesis, discusses the main results and points out possible
topics for future work.
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The introduction gave a brief overview on the subject area and goals of this thesis. The
following two chapters provide the necessary background for the main part of this work.
In this chapter, (integrated) formal methods, and in particular CSP-OZ, will be introduced
in Sections 2.1 and 2.2. The dependence analysis for CSP-OZ, which serves as the basis
for the decomposition, is presented in Section 2.3.

2.1 A Survey of (Integrated) Formal Methods

Model-driven software development aims at the abstract description of a system by
specifying a software model in some domain specific language. A model needs to
precisely reflect the relevant aspects of the software product to be developed. After an
accurate analysis, tools are used to automatically generate code from the model.

The Unified Modelling Language (UML) [BJR99] is undeniable the notation to model
object-oriented systems in a graphical and intuitive way. The acceptance of the UML as a
standard, not only in the academic but also in the industrial field, was not an overnight
process. Over many years, researchers defined and evaluated different notations to finally
end up with the UML 1.0 proposed in 1997.

Due to the lack of a common precise formal semantics, the UML is not adequate for a
rigorous formal analysis. Even though there exist several tools supporting the automated
verification of UML diagrams [BGH+05, DWQQ01, BBK+04], they are all restricted to
part of the language.

In the perspective to define mathematically-based languages suitable for formal specifi-
cation and verification, researchers all over the world investigate different techniques
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and formalisms. Over the last three decades, a huge amount of formal methods has been
developed. In [CW96], Clarke and Wing surveyed the current state of the art. More
recently, Bowen [Bow09] set up a Wiki [Wik06] used by the formal methods community
which gives a detailed overview over many individual formalisms and shows the broad
spectrum of research in this area.

Formal methods can be classified into different categories. Mainly, these are behaviour
oriented techniques concentrating on the dynamic aspects of a system such as communi-
cation, concurrence and control flow, state-based formalisms for the specification of the
data and functional aspects and languages to describe hybrid systems which incorporate
both, discrete and continuous behaviour.

Behaviour Oriented Formalisms: Among the formalisms to describe behavioural as-
pects of a system, Petri Nets [Rei85] are a graphical notation to illustrate distributed
systems. Process algebras such as CCS [Mil89], CSP [Hoa85] and LOTOS [ISO89]
describe concurrent systems by using an algebraic language. Milner also devel-
oped the strongly CCS related π-calculus [Mil99]. Another widely used formalism,
particularly in the context of the UML, are State Charts [Har87].

State Based Formalisms: The most popular techniques concentrating on the data as-
pects of a system, that is, describing a system’s state space, are Z [Spi92, ISO00],
a set theory and first-order-predicate-logic-based formalism, and the Z related B
method [Abr96], where B is slightly more low-level and focused on automatic code
generation with great success in industrial application [Abr06]. Object-Z [Smi00] is
an extension of Z to additionally integrate object-oriented concepts into Z. Event-B
[AH06] extends the B method with guarded events. Abstract State Machines [BS03]
describe a system’s state space and its modifications by using transformation rules
and functions.

Formalisms for Hybrid Systems: For the specification of hybrid systems, hybrid au-
tomata [ACHH92] combine the description of discrete and continuous behaviour of
a system. For the description of continuous real time aspects, in 1994, Alur and Dill
developed a real time extension for finite state automata, called timed automata
[AD94].

Naturally, different description languages specify different viewpoints of a system. The
analysis of large systems thus requires more than one dedicated formalism to reason
about different aspects. Many researchers advocating formal methods agree on the
statement that there exists no single notation covering all aspects of complex software
systems. For this reason, they aim at combining existing, well researched languages, into
one consistent new formalism, an integrated formal method.

These combinations range from the integration of two or more viewpoints into a single
formalism. Combinations of a process calculus with a state-based technique are, for
instance, CCS-Z [TA97] combining CCS and Z, the combination of CSP and Z into CSP-Z
[MS98], along with CSP||B [TS99], a combination of CSP with the B-method. Fischer
[Fis97] integrated CSP and Object-Z into the formalism CSP-OZ.
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The integration of time aspects into existing formalisms is, for instance, researched in
the context of Timed CSP [Sch99], an integration of real time into CSP. E-LOTOS [ISO01]
supplements LOTOS to support time and incorporates a functional-language-based data
typing part. In [Hoe06], Hoenicke extended CSP-OZ with the real time interval logic
Duration Calculus [ZH04] into CSP-OZ-DC.

The differences between these combinations can also be found in how the new seman-
tics is defined. As an example, Circus [WC02], a combination of CSP, Z and a refinement
calculus [SWC02], introduces a new semantics from scratch, that is, the semantics of CSP
and Z are redefined into a new model, using Hoare’s approach of Unifying Theories of
Programs [HJ98]. Other formalisms, such as CSP||B, keep the original semantics and
are thus able to use existing tools.

The following section stepwise introduces the applied formalism, CSP-OZ, illustrated
by an example. In order to familiarise this formalism for the core chapters, we introduce
the syntax and semantics of CSP-OZ along with necessary definitions and characteristics.

2.2 The Integrated Formalism CSP-OZ

Ever since its introduction in 1978 by Sir Anthony Hoare [Hoa78], the process algebra
Communicating Sequential Processes (CSP) draws a lot of attention and is widely used
for the specification of concurrent systems. The basic underlying concept is a description
of a system by events and processes: a process defines the communication and interaction
aspects by using an underlying alphabet, its set of events.

The state-based Z notation was developed by Jean-Raymond Abrial and others in the
late 1970s. By using the concept of operation schemas, a Z specification describes the
state space and its modifications based on mathematical theory [Spi92]. Smith [Smi00]
defined an object-oriented extension of Z, Object-Z.

The integrated formalism we will concentrate on in this thesis is CSP-OZ, a combination
of CSP with the object-oriented specification language Object-Z, introduced in [Fis97]
and further elaborated on in [Fis00]. In his PhD thesis, Fischer developed the formalism
by preserving the original semantics of both, CSP and Object-Z, with the objective to
reuse existing theories and tools for both, CSP and Object-Z. In comparison to [Smi00],
he introduced a slightly modified notation for Object-Z to which we will refer in this
thesis.

We introduce CSP-OZ by means of an example serving as the running case study for
this thesis. Afterwards, we give an overview on the syntax and semantics along with
required definitions for the incorporated formalisms CSP, Object-Z and CSP-OZ itself.

2.2.1 Case Study: Candy Machine

The following example of a CSP-OZ specification describes a candy machine allowing
for the payment and collection of several goodies. At first, we define some basic types
needed for the specification and start with a free type Candies denoting the set of possible
candies a customer may order. These are either a chocolate, a cookie or crisps:
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Candies ::= CHOC | COOKIE | CRISPS

For simplification, the candy machine only accepts coins with value 1 or 2:

Coins == {1, 2}

We define a constant identifying the maximal value of all inserted coins, which we set
to 5:

Max == 5

Next, we give an axiomatic definition for a function determining the price of each of
the candies:

price : Candies→ N

price(CHOC) = 1 ∧ price(COOKIE) = 2 ∧ price(CRISPS) = 3

In general, a CSP-OZ specification consists of a set of a classes which can then be
combined to define the overall system. In Chapter 4, we will consider a specification
consisting of several classes. As of now, in our running example, we will sufficiently deal
with a specification comprising one class only.

S
I [interface definition]
main [CSP part]
OZ [Object-Z part]

Figure 2.1: Structure of a CSP-OZ specification

The general structure of a CSP-OZ class named S is depicted in Figure 2.1. A class
consists of three parts, namely its interface, its CSP part and its Object-Z part. The Object-Z
part is again divided into its state schema, initial state schema and its set of operation
schemas as shown in Figure 2.2.

S.OZ
State [state schema]
Init [initial state schema]
enable op [enable-schemas]
effect op [effect-schemas]

Figure 2.2: Structure of the Object-Z part of a CSP-OZ specification

The fundamental concept of CSP-OZ is the connection between CSP part and Object-Z
part by using the interface I as the common alphabet for both viewpoints of the system:
one operation schema of the Object-Z part corresponds to a set of events of the CSP part.
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For achieving this correspondence, the interface defines a set of typed channels. A
channel declaration has the form

chan name[p1 : t1; . . . pn : tn],

where name identifies the name of the channel and pi is a decorated parameter of type
ti. We distinguish between three different parameter categories:

Input: Input parameters are decorated with ’?’ and controlled by the environment of
the class. Neither the CSP part nor the Object-Z part can control input parameters.
However, the guard of an operation can refer to input parameters, thus allowing
the operation to be blocked for a subset of the values of the parameter’s type.

Output: Output parameters are decorated with ’!’ and controlled by the class itself.
Predicates of an operation schema can restrict output values. If the operation is
executed, the value is determined non-deterministically.

Simple: In contrast to input and output parameters known from CSP and Object-Z,
simple parameters are an extension in CSP-OZ and they are in general used for
indexing purposes. Simple parameters are undecorated and controlled by the class
and its environment. They can be restricted by both, the Object-Z part and the CSP
part.

Figure 2.3 shows the actual CSP-OZ specification of the candy machine. Here, the
interface comprises eight channels. For instance, channel pay has one input parameter
of type Coin modelling the customer’s payment. In contrast, channel deliver has one
output parameter of type Candies modelling a goody the machine dispenses. Note that all
parameters are inputs to the CSP part since neither of them is a simple parameter. Some
channels such as abort do not use any parameters.

As already mentioned, the CSP part of the specification describes the dynamic behaviour
of a system by means of the possible sequences of events and their orderings. This is
achieved by a set of process equations. As a convention, the initial process of a class’
CSP part is named main. The remaining set of process equations comprises four process
names: Payout describes the behaviour of the system if the customer chooses to abort the
procedure and collects his money. Select models the selection of an item and Order its
actual ordering. Finally, Deliver describes the delivery of the ordered items.

The Object-Z part starts with the class’ state schema, containing the set of state variables
for the description of the class’ state space and its modifications. These are two variables,
sum and credits, of type N to denote the current sum of money paid by the customer and
the remaining credits, respectively. A sequence of coins paid models the inserted coins,
and a second sequence items the previously ordered candies before the actual delivery.
Finally, the variable selected of type Candies describes the current item, selected by the
customer.

The initial state schema of the class defines the set of valid initial configurations by
using predicates, restricting the values of the state variables. In our example, both
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CandyMachine
chan pay : [coin? : Coins] chan payout : [coin! : Coins]
chan abort chan switch chan order
chan select : [ca? : Candies] chan deliver : [ca! : Candies] chan term : [rest! : N]

main
c= pay?coin→ main 2 Payout 2 switch→ Select

Payout c= payout?coin→ Payout 2 abort→ Skip

Select c= (select?ca→ (Select 2 Order)) 2 Deliver
Order c= order→ Select

Deliver c= deliver?ca→ Deliver 2 term?rest→ Skip

sum, credits : N
paid : seq Coins
items : seq Candies
selected : Candies

Init
sum = 0
paid = 〈 〉
items = 〈 〉

enable pay
sum + 2 ≤ Max

enable payout
paid 6= 〈〉

enable abort
paid = 〈〉 ∧ sum = 0

enable switch
sum ≥ 2

enable order
credits ≥ price(selected)

enable select
credits ≥ 1

enable deliver
items 6= 〈〉

enable term
items = 〈〉

effect pay
∆(sum, paid)
coin? : Coins

sum′ = sum + coin?
paid′ = paida 〈coin?〉

effect payout
∆(sum, paid)
coin! : Coins

sum′ = sum− coin!
paid′ = tail paid
coin! = head paid

effect switch
∆(sum, credits, paid)

sum′ = 0 ∧ paid′ = 〈 〉
credits′ = sum

effect order
∆(items, credits)

items′ = itemsa 〈selected〉
credits′ = credits− price(selected)

effect select
∆(selected)
ca? : Candies

selected′ = ca?

effect deliver
∆(items)
ca! : Candies

items′ = tail items
ca! = head items

effect term
∆(credits)
rest! : N

credits′ = 0
rest! = credits

Figure 2.3: Candy machine specification
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sequences need to be initially empty, and the initial sum of money is equal to zero. The
remaining state variables are not restricted by the initial state schema.

The static behaviour of the class is described in terms of a set of enable- and effect
schemas, conjointly defining the behaviour of an operation schema. An enable schema
defines the precondition of an operation by again using predicates referring to state
variables of the class. An operation can only be executed if its respective precondition is
satisfied. Otherwise, the operation is blocked. For instance, operation deliver is blocked if
there are no items to deliver, that is, items = 〈 〉 holds. Besides, order can only be executed
if there are enough credits left to pay the price of the selected items.

An effect schema defines an operation and how its execution modifies the state space.
It starts with its ∆-list, comprising the set of state variables, modified by the operation.
All variables not appearing in this list remain unchanged. As an example, the effect
schema of payout modifies the variables sum and paid. Next, the schema can contain a set
of parameter declarations, corresponding to the parameters in the operation’s interface
declaration. Finally, the predicate part of the schema defines the actual modifications
of the state variables. For that purpose, a predicate can refer to the possible values of
a state variable after execution of the operation; these post-state values are depicted in
primed form. For instance, payout restricts the post value of sum, sum’, to sum− coin!.
Thus, the operation ensures that the only possible value of sum after execution of payout
is exactly the original amount of money, reduced by the value of the dispensed coin. Note
that the operation abort possesses an empty effect schema which leaves all variable
values unchanged. In this thesis, we will leave out empty schemas.

We will now describe the dynamic behaviour of the class and its state space modifica-
tions by clarifying and illustrating its workflow. Figure 2.4 illustrates the CSP part of the
specification as a state transition graph, according to the operational semantics of CSP as
given in [Ros98].

A customer has three initial options, modelled by the CSP operator 2 for external
choice by the environment: first, if the amount of already inserted money increased by
two is smaller than Max, a user can insert a coin into the machine (pay) followed by
(using the prefix operator→) a call of the initial process main. The coin and its value
are stored in the variables paid and sum, respectively. Second, the customer can chose to
cancel buying candies as described in the process Payout, where he repeatedly collects
his coins (payout) by emptying the paid sequence. After a possibly empty sequence of
payouts, the process is finally aborted and terminates (denoted by Skip, the basic CSP
process for termination). As a last option, if the user inserted at least coins of an overall
value of 2, he can request to process to the ordering of candies (switch), for which the
process Select is called. The customer may now select an item which she wants to order.
If enough credits are left, the item is ordered by storing it in the sequence items and
reducing the credits by the respective amount. Otherwise, the customer needs to reselect
another item. If he ordered at least one item, he can proceed to get his candies delivered.
In this case, the machine dispenses the items one by one in the correct order. The process
terminates after the potential order and delivery of candies. Remaining spare money is
returned.

Next, we clarify some syntactical aspects of Object-Z, CSP and CSP-OZ along with
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main

Payout

Order
Select

Deliver

pay

switch

payout
Skip

select

select

order

deliver

Skip

term

abort

payout

deliver Skip

abort Skip

term

Figure 2.4: Illustration of the CSP part of the candy machine specification

defining their semantics. For more details, we refer to [Smi00, Spi92, ISO00], [Ros98,
Sch99] and [Fis00] for comprehensive documentations on (Object-)Z, CSP and CSP-OZ,
respectively.

2.2.2 Object-Z

As already explained, we use a sightly adapted version of the Object-Z language as
introduced in [Fis00]. Therefore, we will continue to refer to the Object-Z part of a
CSP-OZ class specification, denoted by OZ, instead of pure Object-Z class specifications.

OZ generally consists of a state schema, an initial state schema and a set of operation
schemas, where elements of the latter comprise an enable schema and effect schema,
as depicted in Figure 2.2. The keywords State and Init denote the state schema and
initial state schema of a class, respectively. Thus, OZ can be denoted by a tuple:

OZ = (State,Init, (enable op)op∈Op, (effect op)op∈Op)

In the remainder of this thesis, we denote the sets of all values for input parameters,
output parameters and simple parameters of an operation schema op by In(op), Out(op)
and Simple(op), respectively. Elements of these sets are tuples adhering to the types of
the operation parameters. The set Events is defined as the set of operation names of OZ,
completed by values for their parameters:

Events = {op.in.sim.out | op ∈ Op, in ∈ In(op), sim ∈ Simple(op), out ∈ Out(op)}

The state schema State defines the state space of OZ and comprises the set of state
variables the class uses along with their types. Additionally, the state schema contains a
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(possibly empty) set of state invariants – a set of predicates, which have to be satisfied
initially as well as for any reachable state of the class. The set of state variables will
be referred to as V. A state of OZ is defined as a valuation of all state variables: for
V = {x1, . . . , xn}, a state s is denoted as the tuple s = (v1, . . . , vn) where vi are values of xi
within the variable’s domain. We write State(s) or, equivalently, s ∈ State, to refer to
states of the OZ state space, and we use s.xi to denote the value of xi in the state s.

For the definition of our decomposition, we need to project a state s ∈ State on a
subset of the state variables V′ ⊆ V:

Definition 2.2.1. (State Projection)
Let V = {x1, . . . , xn}, and let s = (v1, . . . , vn) with s ∈ State. We use

(v1, . . . , vn) = ((v1, . . . , vn−1), vn).

The projection of s on the set of state variables V′ ⊆ V, denoted by s� V′, is inductively
defined as

((. . . (v1), . . . vn−1), vn)� V′ :=

{
(. . . (v1), . . . vn−1)� V′, xn 6∈ V′,
((. . . (v1), . . . vn−1)� V′, vn), xn ∈ V′.

The initial state schema restricts the initial valuation of the state variables. The enable
schema defines an operation’s guard. It consists of a declaration part for possible input-
and simple parameters (enable-schemas must not declare output variables) and a
predicate part, containing predicates solely referring to unprimed state variables, that is,
to the state before the operation took place. If the conjunction of these predicates is not
satisfied, the operation is blocked. enable op can be interpreted as a predicate, denoted
by enable op(s, in, sim) with s ∈ State, in ∈ In(op) and sim ∈ Simple(op).

An operation’s effect schema declares the possible post states after the operation took
place. It consists of a ∆-list, comprising all variables which are modified by the operation.
The subsequent declaration part contains the schema’s parameters and its predicate part
defines the restriction on the post-state. For this, variables denoted in primed form refer
to post state values. For any variable x not contained in the ∆-list, x′ = x implicitly holds.
An effect schema can be denoted as the predicate effect op(s, in, sim, out, s′) with
s ∈ State, in ∈ In(op), sim ∈ Simple(op), out ∈ Out(op) and s′ ∈ State′.

In the remainder of this thesis, we let ref(op) denote the set of referenced variables of an
operation (those occurring in unprimed form), whereas mod(op) denotes its set of modified
variables (those occurring in its ∆-list). In addition, we set all(op) := ref(op) ∪mod(op).

The precondition of an effect-schema can be defined as

pre effect op(s, in, sim) :=
∃ out ∈ Out(op), s′ ∈ State′ • effect op(s, in, sim, out, s′)

In this thesis, we assume that enable op(s, in, sim)⇒ pre effect op(s, in, sim) holds.
This corresponds to the blocking view of operations as described in [Fis00]: an operation
can only be executed if its precondition is satisfied, otherwise it is blocked.
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As an enable-schema can always be strengthened such that enable ∧ ¬ pre effect
is impossible, this is not a restriction. For instance, consider the following operation op:

enable op
i? : N

x > y

effect op
∆(x)
i? : N

x′ = i? ∧ x′ > y′

For any value of i? such that i? ≤ y holds, pre effect op is not satisfied. Adding
i? > y to enable op schema ensures the previous implication.

When referring to an operation op, comprising enable op and effect op, we denote
its entire predicate part by op.pred whereas the declaration part will be denoted by op.dec.
In case we need to refer to the delta list of an operation, we write op.delta.

Semantics of Object-Z

As we are interested in the sequences of events of a specification, our approach is based
on an operational semantics for Object-Z and ultimately for CSP-OZ.

For the Object-Z part of a specification, we need to reason about events and states. The
decomposition approach analyses a specification’s dependence structure. A description
of paths solely referring to events is insufficient, since we need to incorporate the state
space and its modifications as well.

In order to be precise, execution of an event op.in.sim.out within the Object-Z part,
changing the before state s into the after state s′, refers to an operation’s enable- and
effect-schema:

s
op.in.sim.out−→ s′ ⇔ (enable op(s, in, sim) ∧ effect op(s, in, sim, out, s′))

The notation we are using is closely related to the Object-Z semantics of [Brü08] which
itself is based on the history semantics of Object-Z [Smi95]: sequences of state valuations
and operation calls describe the possible behaviours.

As a semantic model, we use labelled transitions systems (LTS). In order to reason
about states of the Object-Z part, a path of a labelled transition system is an alternating
sequence of states and events.

Definition 2.2.2. (Labelled Transition System)
Let E be an alphabet of events. A labelled transition system (LTS) M = (S, S0,→) over E
consists of

• a set of states S,

• a set of initial states S0 ⊆ S and

• a transition relation→⊆ S× E× S.

A path of an LTS is a finite or infinite sequence 〈s0, e0, s1, e1, . . . 〉 alternating between states
and events such that (si, ei, si+1) ∈→ holds for all i ≥ 0.
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Note that paths of LTS can be infinite but do not need to be infinite. Next, we define
the operational semantics of OZ in terms of labelled transitions systems.

Definition 2.2.3. (Labelled Transition System for Object-Z)
Let OZ be the Object-Z part of a CSP-OZ class specification. The LTS semantics of OZ is
defined as the labelled transition system MOZ = (S, S0,→OZ), defined over E := Events, with

• S = {s | s ∈ State},

• S0 = {s ∈ S | Init(s)},

• →OZ= {(s, op.in.sim.out, s′) |
enable op(s, in, sim) ∧ effect op(s, in, sim, out, s′)}.

The set of all paths of MOZ is defined as Traces(OZ). Moreover, let

traces(OZ) := {π� Events | π ∈ Traces(OZ)}

and for tr ∈ traces(OZ),

tr�Op :=

{
〈 〉, tr = 〈 〉
〈op〉a (tr′�Op), tr = 〈op.in.sim.out〉a tr′

Finally, for π ∈ Traces(OZ), let π[i] denote the i-th state and π.i the i-th event of π.

For clarification, π denotes a trace within Traces(OZ) distinguishing it from tr ∈
traces(OZ) not comprising states. We exemplify the definition with our case study:

Example 2.2.4. The following trace, named π, is a valid path of the LTS of the Object-Z
part of the candy machine:
〈
(sum = 0, credits = 0, paid = 〈 〉, items = 〈 〉, selected = COOKIE), pay.2,
(sum = 2, credits = 0, paid = 〈2〉, items = 〈 〉, selected = COOKIE), switch,
(sum = 0, credits = 2, paid = 〈 〉, items = 〈 〉, selected = COOKIE), select.CHOC,
(sum = 0, credits = 2, paid = 〈 〉, items = 〈 〉, selected = CHOC), order,
(sum = 0, credits = 1, paid = 〈 〉, items = 〈CHOC〉, selected = CHOC), deliver.CHOC,
(sum = 0, credits = 1, paid = 〈 〉, items = 〈 〉, selected = CHOC), term.1,
(sum = 0, credits = 0, paid = 〈 〉, items = 〈 〉, selected = CHOC)
〉

Its projection on events is given by

tr = π� Events = 〈pay.2, switch, select.CHOC, order, deliver.CHOC, term.1〉.

The projection of tr on its set of operation names yields

tr�Op = 〈pay, switch, select, order, deliver, term〉.
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P ::= Skip (Termination)
| Stop (Deadlock)
| a→ P1 (Prefixing)
| P1 2 P2 (External Choice)
| P1 u P2 (Internal Choice)
| P1

o
9 P2 (Sequential Composition)

| P1 ‖A P2 (Interface Parallel)
| P1 A1‖A2 P2 (Alphabetised Parallel)
| P1 ‖| P2 (Interleaving)
| P1 \ A (Hiding)
| X (Process Call)
| PJRK (Renaming)

Figure 2.5: Simplified grammar of CSP

2.2.3 CSP

In general, a CSP process P is defined over a set of communication events which the
process can perform: its alphabet. For this, we need the notion of channels. A channel
consists of a name and a finite, possibly empty, sequence of data types T1 × · · · × Tk, the
type of the channel. An event is then composed of the channel name and possible data
values, corresponding to the channel’s type.

In our example specification of a candy machine, the channel payout is of type Coins.
Thus, payout.1 denotes a possible event, communicated by the CandyMachine which is
composed of the channel name payout and the value 1 according to its type.

In this thesis, we will, in general, refer to an alphabet Events, denoting a global set
of all events which corresponds to the set of events for the Object-Z part. These are
comprised of the operation names and values for their parameters. If we want to refer to
the distinguished alphabet of a process P, we use the notation αP. Accordingly, we let
Op denote the set of channel names, corresponding to the set of operation names for the
Object-Z part. We use the terms operation and channel synonymously throughout this
thesis.

The inductive definition of a CSP process, which we will refer to in this thesis, is
summarised in the grammar, given in Figure 2.5. Here, a ∈ Events denotes an event and
A,A1,A2 ⊆ Events sets of events.
Skip and Stop are basic CSP processes for termination and deadlock, respectively.

Stop does not communicate at all whereas Skip solely communicates the reserved
event X to indicate successful termination. The prefix process a→ P1 communicates the
event a and subsequently behaves as P1. P1 2 P2 describes the external choice (resolved
by the environment) between both processes P1 and P2 whereas P1 u P2 denotes the
internal choice (resolved internally). P1

o
9 P2 describes sequential composition meaning

that first, P1 is executed and, if P1 successfully terminates, P2 is allowed to occur. P1 ‖A P2

defines the interface parallel composition of two processes, which need to synchronise
on all events in A. Similarly, the alphabetised parallel composition P1 A1‖A2 P2 needs
to synchronously perform any events within A1 ∩ A2. We will sometimes leave out the
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synchronisation alphabet(s) and denote the parallel composition of two processes by
P1 ‖ P2, if the alphabet is not considered. The interleave process P1 ‖| P2 is a special case
of parallel composition where the synchronisation alphabet is empty. P1 \ A behaves
similar to P1, except that events from A are hidden, that is, invisible to the environment.
All events within A are renamed to a distinguished, internal event τ . Since CSP processes
are defined via process equations, X denotes the body, that is, the right hand side, of a
process equation. Finally, PJRK depicts the process where all events e occurring in P are
renamed to R(e), according to a relation R : Events→ P(Events).

From now on, we let LCSP denote the set of all CSP terms. We introduce some additional
generalisations and abbreviations, which we will use in the remainder of this thesis. First,
binary operators can be indexed over some finite indexing set I. As an example, the
indexed external choice, denoted by

2i∈I
Pi,

defines the external choice over all processes Pi with i ∈ I. Similarly, N-way indexed
parallel composition can be denoted by

‖N
i=1

Pi.

Based on associativity laws, N-way indexed parallel composition can be transformed
into a chain of binary parallel compositions. The same holds for the remaining binary
operators. Therefore, in the following definitions and proofs, we do not need to deal
separately with indexed operators.

The prefix choice process a : A → P1 initially offers any event of A and subsequently
behaves as P1. Prefix choice can be seen as generalisation of prefixing. For finite A,
according to [Ros98], prefix choice can equivalently be transformed into indexed external
choice based on the equivalence

a : A→ P1 ⇔ 2a:A
a→ P1

The process RunA defined as

RunA
c= a : A→ RunA

can always communicate any member of A. If no alphabet is specified, we assume
A = Events and set Run := RunEvents.

Sometimes, it is convenient to refer to the set of events extending a set of channel
names with all possible parameter values. This motivates the following definition from
[Ros98]:

Definition 2.2.5. (Extension of channels)
Let c be a channel of type T1 × · · · × Tk. The extension set of c is defined as

{| c |} := {c.v1. . . . .vk | vi ∈ Ti}.



22 2 Background: Integrated Formal Methods

The definition allows us to refer to a set of channel names as the synchronisation
alphabet, meaning that the extension sets of their operations are synchronised.

A channel includes an ordering on its data types. Partially defined events fix a (possibly
empty) subset of its type while the remaining data values (possibly none) are undeter-
mined. Achieving this is done through using the underscore- (don’t care-) symbol "_" in
order to refer to positions within a channel’s type and define:

Definition 2.2.6. ((Extensions of) partial events)
Let c be a channel of type T1 × · · · × Tk. c.v1. . . . .vk is a partial event if vj ∈ Tj ∪ { }. Its
extension set is defined as

{| c.v1. . . . .vk |} := {c.v′1. . . . .v′k |

{
v′j = vj, vj 6=
v′j ∈ Tj, otherwise

}
}.

Note that by definition, the set of partial events includes the set of (complete) events.
We give an example for Definition 2.2.6:

Example 2.2.7. Let c be a channel of type N× B. Then,

{| c. . true |} = {c.v1. true | v1 ∈ N} and
{| c.3. |} = {c.3. true, c.3. false}.

Semantics of CSP

In order to analyse specifications and, in particular, CSP processes, we need to consider
the formalism’s semantics. The standard semantic model of CSP is the failures-divergences
model. In addition, the less discriminating stable failures model and the least restrictive
traces model can be chosen.

Traces of a CSP process describe its observable behaviour by means of sequences
of events. The prefix closed set of all finite traces of a CSP process P is denoted by
traces(P) ⊆ P(Events∗). Elements are described as sequences 〈e1, e2, . . . , en〉 with ei ∈
Events. Internal events (τ -events) do not appear in the traces of a process. For instance,
〈pay.2, switch, select.CRISPS, order, deliver.COOKIE, term.2〉 describes a valid trace of the
candy machine’s CSP part.1

A failure of a CSP process P is expressed as a tuple (tr,A) ∈ Events∗ × P(Events) where
tr denotes a trace and A a set of events which P is unable to accept after tr has been
performed. For instance, (〈switch〉, {pay}) is a failure of the CSP part of the candy
machine.

Divergence within a CSP process P describes the ability of P to perform an infinite
sequence of internal events. The set of divergences of a process P contains the set of
traces after which P can diverge.

Our decomposition approach focusses on the verification of safety properties. As
explained in [Weh00] and [OW05], this allows us to move to the semantic domain of the
CSP traces model.

1Note that this is not a valid trace if we additionally consider the Object-Z part.
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Next, we introduce some notations adopted from [Sch99] and [Ros98] which we will
use in this thesis, and we start with the projection of a trace on a set of events:

Definition 2.2.8. (Trace Projection)
The projection of tr ∈ traces(P) with respect to a set of events A is denoted by tr� A and
defined as:

〈 〉� A = 〈 〉,

(〈a〉a tr)� A =

{
tr� A, a 6∈ A,

〈a〉a (tr� A), a ∈ A

As an example:

〈pay.2, switch, select.CRISPS, order, deliver.COOKIE, term.2〉� {pay, term} =
〈pay.2, term.2〉.

The set of initial events, a process is able to perform, is defined as follows:

Definition 2.2.9. (Initials)
Let P be a CSP process. Then,

initials(P) := {a | 〈a〉 ∈ traces(P)}

For instance, initials(main) = {pay, switch, payout}.
In order to describe that a certain CSP process satisfies a given property, also described

as a process, we need to be able to effectively compare processes. The general concept
behind this is to show refinement of one process by another. If a specification Q refines
another specification P, then Q is more restrictive and preserves the behaviour of P. In
our semantic domain of traces, preservation means that Q offers fewer traces than P thus
not allowing more behaviour. This gives rise to the following definition:

Definition 2.2.10. (Trace Refinement)
Let P,Q be CSP processes. Q is a trace refinement of P, if traces(Q) ⊆ traces(P). We write
P vT Q. P is trace equivalent to Q, P =T Q, if, and only if, P vT Q and Q vT P.

The traces of a CSP process can be obtained by defining its transition graph. A labelled
transition system for a process can be deduced from the operational semantics of CSP.
LTSs are the standard way for describing CSP processes in terms of transition graphs. For
more details on the operational semantics of CSP, we refer to [Ros98].

Definition 2.2.11. (Labelled Transition System for CSP)
The LTS semantics of a CSP process main over a set of events A is defined as the labelled
transition system MCSP = (S, S0,→CSP) with

• S = LCSP the set of all CSP terms,

• S0 = {main},

• →CSP according to the operational semantics of CSP.

The labelled transition system definitions for Object-Z and CSP will be used to define
the operational semantics of CSP-OZ.
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Case Study Revisited

One particular property of the candy machine specification can informally be described
as follows:

“ The amount of money, paid by the customer, must be equal to the sum of the values of
all delivered candies plus the potential spare money. ”

For specifying properties of a specification, we will use CSP as the modelling language.
This is reasonable since the semantics of CSP-OZ specifications can jointly be given in
terms of CSP alone as we will see in Section 2.2.4.

Figure 2.6 defines a CSP process Prop, exactly describing the previously introduced
property. Here, all three comprised processes have a parameter of type N, counting the
current amount of inserted money and credits, respectively. This yields three sets of
families of process equations. Paying(i) monitors the sum of inserted money whereas
Collecting(i) decreases the sum by the specific costs of the delivered candies. In order to
identify the respective candy delivered by the machine, we explicitly denote the parameter
for the event deliver. Finally, Terminate(i) calls the event term with the remaining money
of value i.

Prop = Paying(0)
Paying(i) = 2j∈Coins

(pay.j→ Paying(i + j)) 2 Collecting(i)

Collecting(i) = deliver.CHOC→ Collecting(i− 1) 2

deliver.COOKIE→ Collecting(i− 2) 2

deliver.CRISPS→ Collecting(i− 3) 2

Terminate(i)
Terminate(i) = term.i→ Skip

Figure 2.6: Correctness requirement for the candy machine specification

In order to show that Prop is valid for the specification of a candy machine, we need to
prove

Prop vT CandyMachine \ {| payout, abort, startOrder, select, order |}.

As we are only interested in the behaviour reflected by Prop, all events not occurring in
Prop are hidden.

2.2.4 Semantics of CSP-OZ

For the definition of the semantics of CSP-OZ, Fischer [Fis00] uses an extension of CSP,
which he calls CSPZ, and ultimately defines a CSPZ process capturing the semantics
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of a CSP-OZ class. Figure 2.7 shows a simplified version of his definition: a function
Semantics inputs a CSP-OZ class and translates it into a CSP process. Here, the operator
& represents guarding of an event defined as

b & P :⇔ (if b then P else Stop).

Semantics(S) =
let

Z PART(s) =
2op∈Op, in∈In(op), sim∈Simple(op)

enable op(s, in, sim) &

uout∈Out(op), s′∈State′ • effect op(s,in,sim,out,s′)

(op.in.sim.out→ Z PART(s′))

Z MAIN = us∈State • Init(s)
Z PART(s)

within
Z MAIN ‖Events

main

Figure 2.7: Translation of a CSP-OZ specification into a CSP process

The basic underlying idea for this definition is to define a CSP process Z MAIN mod-
elling the Object-Z part of the specification and putting it in parallel with the specifica-
tion’s original CSP part main. Both processes need to synchronise on Events. Z MAIN
non-deterministically chooses a valid initial state s and subsequently calls Z PART(s).
Z PART(s) recursively executes operations of the Object-Z part in an arbitrary order
as long as the operation’s enable-schema is satisfied. Input parameters are determin-
istically chosen (using 2) whereas output parameters and post states are determined
non-deterministically (using u). This is motivated by the idea that output parameters
and post states are internally chosen by a specification.

We aim at using the model checker FDR2 [For05] for verifying CSP-OZ specifications
against certain requirements. For this, we need to translate a CSP-OZ specification to
the input language of FDR2, CSPM, without changing its semantics. A tool-supported
translation of CSP-Z to CSPM has been accomplished in [MS01], [FMS01]. Bolton and
Davies compare data refinement in Object-Z with failures-refinement in CSP based on the
Object-Z semantics as given in [Smi95] and use a translation of Object-Z to CSPM. In the
context of refinement, Schneider [Sch05] introduced a more general translation from
abstract data types (ADTs) [LZ74] to CSP, which can be applied for (part of) Object-Z as
well.

In our context of CSP-OZ, Fischer [Fis97] derives a failures-divergences semantics for
CSP-OZ based on the definition from Figure 2.7. This allows us to generally use a CSP
model checker based on this transformation of CSP-OZ specifications. A transformation
function using the above translation and resulting in a process defined in CSPM is
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introduced in [FW99]. In Chapter 7, we will apply this transformation to use FDR2 for
checking trace refinements. We give more details on FDR2 and the tools we are using
there.

Our aim is to give an operational semantics for CSP-OZ by using the definition from
Fischer. In this thesis, we are interested in the paths a specification might execute.
In this particular case, we do not need to deal separately with external choice and
internal choice: based on the operational semantics of CSP, the trace semantics does not
distinguish between external and internal choice. More precisely, for two CSP processes
P1 and P2:

P1 2 P2 =T P1 u P2.

Next, we define the operational semantics of CSP-OZ by putting the labelled transition
systems for the specification’s CSP part and Object-Z part in parallel. The parallel
composition of two labelled transition systems is defined as follows:

Definition 2.2.12. (Parallel composition of labelled transition systems)
Let M1 = (S1, S1

0,→1) and M2 = (S2, S2
0,→2) be two labelled transition systems

over the same set of events E. The parallel composition of M1 and M2 is defined as
M1 ‖E M2 = (S, S0,→) with

• S = S1 × S2, S0 = S1
0 × S2

0,

• (s1, s2) e→ (s′1, s
′
2) if one of the three conditions

a) s1
e→1 s′1 ∧ s2

e→2 s′2,

b) s1
τ→1 s′1 ∧ s′2 = s2,

c) s′1 = s1 ∧ s2
τ→2 s′2.

holds.

The operational semantics of CSP-OZ is then defined as the parallel composition of
MCSP and MOZ, synchronising on Events. Note that we assume the alphabets of operations
of the CSP part and the Object-Z part to be equal. This is not a restriction, as any
operation solely represented in the CSP part of a class can be added to its Object-Z part
by using an empty predicate part not modifying the state space of the class. Conversely,
operations exclusively appearing in the Object-Z part can be integrated into the CSP
process by globally offering them based on an additional interleaving. Besides, based
on the operational semantics of CSP, MCSP can indeed perform τ -events whereas MOZ

cannot.
Table 2.1 gives an overview on the two semantics of CSP-OZ which we introduced

in this section. When showing correctness of our approach, we will refer to the LTS
semantics of CSP-OZ, incorporating state valuations and events in their paths. The
more discriminating CSPZ semantics maps a CSP-OZ class specification on a CSP process,
preserving the original behaviour within the failures-divergences model.

Even though the translation of CSP-OZ to CSPM uses the CSPZ semantics and is thus
semantics-preserving for any of the three models of CSP, our approach solely focusses on
the traces model.
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LTS SEMANTICS CSPZ SEMANTICS

Semantic model traces model of CSP failures-divergences model of CSP

Alphabet for paths (State× Events) Events

Application in thesis correctness proof model checking (trace refinement)

Table 2.1: Comparison between the different semantics for CSP-OZ

2.3 Dependence Analysis

The main aspects of this thesis are the construction and evaluation of decompositions for
software models, specified in CSP-OZ. We require correctness of our approach, meaning
that the decomposition must preserve the observable behaviour of the specification. This
is achieved by a correctness proof, requiring a representation of the model on which the
decomposition and the general proof can be carried out. This representation must reflect
the structure of the specification as well as the interdependences between its elements.

In his PhD thesis [Brü08], Brückner introduced a dependence analysis for CSP-OZ
based on the definition of a (program) dependence graph. In the context of program
slicing [Wei81], he uses it to show correctness of his approach. Since a dependence graph
precisely reflects all the specification’s interdependences, we can take advantage of this
construction and use his graph in a slightly modified version.

This section introduces the dependence analysis for CSP-OZ specifications mainly
according to [Brü08]. We start with a small motivation, stepwise present the dependence
graph and illustrate its definition by means of our case study. Instead of repeating all the
details of the dependence analysis, we concentrate on the main aspects and an illustration
of the concept. Along with that, we describe our context-specific modifications and
introduce some necessary properties of the dependence graph.

2.3.1 Dependence Analysis for CSP-OZ: Motivation

The introduction already gave an overview on the overall goals of this thesis. In particular,
Figure 1.1 illustrated the approach for decomposing a given specification S into two
components S1 and S2, yielding a system S1 ‖ S2.

Decomposing a CSP-OZ specification S means that S is split-up into two smaller CSP-OZ
specifications S1 and S2. For that purpose, the specification’s elements, such as operation
schemas and state variables, are distributed over S1 and S2. In order to define correct
decompositions, we cannot simply assign these constituents to S1 and S2 at random:
the specification’s elements might depend on each other. The distribution of dependent
elements over both components is not beneficial but generally possible. A definition
of S1 and S2 needs to conform to the structure of the original model such that the
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Swapper
chan store b,move a,move b

main
c= store b→ move a→ move b→ Skip

a, b, tmp : N
Init
a = 1
b = 2

effect store b
∆(tmp)

tmp′ = b

effect move a
∆(b)

b′ = a

effect move b
∆(a)

a′ = tmp

Figure 2.8: Simple CSP-OZ class specification for swapping two numbers

(observational) equivalence of S and S1 ‖ S2 can be deduced.
We illustrate the need for a precise specification’s analysis with a small example.

Consider the simple CSP-OZ specification Swapper as given in Figure 2.8. The specification
swaps two natural numbers a and b with respective values 1 and 2 by using a temporary
variable tmp.

A decomposition could, for instance, yield two specifications Swapper1 and Swapper2

such that store b and move b are distributed over different components. This defini-
tion bears some problems: first, the parallel composition of the resulting CSP parts
needs to preserve the original ordering of events 〈store b,move a,move b〉 according to
Swapper.main. In the parallel composition Swapper1 ‖ Swapper2, the operation move b
must not be performed prior to any other event. The dependence graph must therefore
comprise edges reflecting the control flow of a specification’s CSP part.

Second, consider the Object-Z part of the resulting specification part Swapper2: the
variable tmp is modified within store b. We need to ensure that move b refers to the
correct value of tmp. The modified value somehow needs to be restored within Swapper2.
This interconnection needs to be reflected in the dependence graph as well. Here, we use
edges representing the specification’s data dependences.

In general, we need to preserve the dependence structure of both, a specification’s CSP
part and Object-Z part. Our dependence analysis for CSP-OZ specifications addresses this
issue by using two graphs:

a) a control flow graph (CFG), which represents the workflow of the specification’s CSP
part and

b) a data dependence graph (DDG), representing the interdependences between state
variables and parameters of the specification’s Object-Z part.

The overall dependence structure is subsequently defined in the specification’s (pro-
gram) dependence graph (DG) combining the CFG and DDG. Our definition of the DG
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mainly corresponds to the one by Brückner [Brü08]. However, in this thesis and contrary
to Brueckner’s definitions, the DG is defined with respect to operation nodes. We do
not separately consider an operation’s enable- and effect-schema and its contained
predicates.

A decomposition defines a split-up of the dependence graph which then leads to the
decomposition of the underlying specification. Preservation of the observable behaviour
is defined in terms of correctness criteria on this fragmentation in Chapter 4.

2.3.2 Definition of the Control Flow Graph

In order to analyse a program in respect of its execution paths, control flow analysis
[All70] is a standard practice. A control flow graph is a graph theoretical representation
of a program.

The definition of [Brü08] yields a control flow graph representing a CSP process. Nodes
of this graph mainly correspond to CSP events and CSP operators. We start with the
general definition of the control flow graph. Ultimately, we are interested in a dependence
graph for a CSP-OZ specification S. To this end, the following definitions refer to the CSP
part main of a CSP-OZ specification and to the set of operation schemas Op of S.

Definition 2.3.1. (Control Flow Graph (CFG) of S)
The control flow graph (CFG) CFGS = (N,−→) of a CSP-OZ specification S is defined over a
set of nodes N = cf(N) ∪ op(N) and a set of edges −→⊆ N × N.

Nodes of the CFG either correspond to a CSP operator or to an operation schema of
the underlying specification. Table 2.2 denotes all nodes along with the corresponding
CSP operators, if existent.

We use a unique node start, representing the start of main. The set N comprises the set
of nodes op(N) which is defined as

op(N) = {opi | op ∈ Op} ∪ {init}.

Here, a special node init represents the initial state schema of a class, comprising all initial
predicates. For the definition of the CFG, the init-node is conjoined with the start-node of
the class. As an operation schema op may occur more than once in main and thus in its
CFG, we denote the i-th occurrence of the respective operation node by opi.
cf(N) is the set of CSP operator nodes plus a set of additional nodes representing

entry and leaving of a process. The whole set complies with the elements of the CSP
grammar as given in Figure 2.5. Some of these operators, namely the ones corresponding
to external choice, internal choice, both parallel operators (which are not separately
dealt with in the CFG) and interleaving, introduce branching into the CFG. Here, we
introduce split nodes and corresponding join nodes, which are denoted by cfop and uncfop
for cfop ∈ {extch, intch, par, interleave}, respectively. According to operation nodes, the
same notation for the i-th occurrence of a CSP operator node applies.

Note that we do not separately consider parallel composition of classes since, on graph
level, parallel composition of classes and processes is equally dealt with [Brü08]. Thus,
we equally treat specifications consisting of one and several classes.
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Node CSP operator Name
start - (Start of main)

opi - (Operation Node for op ∈ Op)

skip i Skip (Termination)
stop i Stop (Deadlock)
extch i 2 (Split External Choice)
unextch i - (Join External Choice)
intchi u (Split Internal Choice)
unintch i - (Join Internal Choice)
seq i o

9 (Sequential Composition)
par i ‖ (Split Parallel)
unpar i - (Join Parallel)
interleave i ‖| (Split Interleave)
uninterleave i - (Join Interleave)
start.X - (Process Entry)
term.X - (Process Termination)
call.X - (Process Call)
ret.X - (Process Return)

Table 2.2: Table of nodes of the control flow graph

The remaining four nodes are used for structuring of CSP process definitions: start of a
process X, termination of X, call of X and returning from X. As an example, executing
switch in the candy machine and subsequently calling the process Select corresponds to a
CFG path 〈. . . , switch, call.Select, start.Select, . . . 〉.

In general, a CFG node n ∈ N must always have zero, one or two successor nodes. We
denote a single successor node by succ(n), in case of two successor nodes we separately
denote each one with succ one(n) and succ two(n), respectively.

Paths of the CFG precisely reflect the control flow of main. For the correctness proof,
we make one important observation: according to the definition of the CFG, the sole
possibility of cycles within the CFG are process calls within the CSP part. This is reflected
in [Brü08] where the definition of GCFG introduces cycles into the CFG solely for the case
of call-nodes.

Figure 2.9 shows a slightly simplified version of the CFG for the candy machine
specification. We omit unextch nodes, term nodes and ret nodes to avoid a blow up in the
illustration. Operation nodes are highlighted in grey.

The following notations for paths of the CFG are mainly corresponding to [Brü08]:

Definition 2.3.2. (Paths of the Control Flow Graph)
Let CFGS = (N,−→) be the CFG of S, and let n, n’ ∈ N. We use the following notations for
paths of the CFG, that is, sequences of nodes, visited, when walking along the edges of the
graph:

• pathCFG denotes the set of all paths of the CFG whereas pathCFG(n, n’) denotes the set
of paths starting in n and terminating in n’.
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Figure 2.9: Control flow graph (CFG) for the candy machine specification

• n
π−→ n’ denotes that π ∈ pathCFG(n, n’) whereas n

∗−→ n’ denotes that there exists
some path from n to n’, that is, pathCFG(n, n’) 6= ∅.

• For n, n’ ∈ op(N), we write

n
•−→ n’ if, and only if, (∃π ∈ pathCFG(n, n’) • π ∩ op(N) = {n, n’}).

We will sometimes need to refer to paths connecting two operation nodes n, n’ without
additional operation nodes in between. For this, we use the last definition. For π ∈
pathCFG(n, n’), we let x ∈ π denote that x ∈ N is an arbitrary node on the path π, including
n and n’ themselves.
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We give a small illustrating example for the previous definition:

Example 2.3.3. For the CFG of the candy machine from Figure 2.9, we get:

• 〈start, extch1, switch, call1.Select, start.Select, extch3, select〉 ∈ pathCFG,

• 〈switch, call1.Select, start.Select, extch3, select〉 ∈ pathCFG(switch, select),

• start.Deliver −→ extch5,

• switch
∗−→ order and

• select
•−→ order.

Next, we define a mapping between the set of operation nodes of the CFG, op(N), and
the set of operations Op of a specification:

Definition 2.3.4. (Labelling of CFG nodes)
Let CFGS = (N,−→) be the CFG of S, and let Op be the set of all operation schemas of S. The
labelling function l : op(N)→ Op maps an operation node of the CFG on its corresponding
schema name: l(opi) := op. For O ⊆ Op, we define

l−1[O] := {n ∈ op(N) | l(n) ∈ O}.

As multiple occurrences of an Object-Z operation within the CSP part of a specification’s
class are possible, the cardinality of op(N) is greater or equal than the cardinality of Op:
for all op ∈ Op, there exists at least – but in many cases more than – one occurrence opi

within the DG. Thus, the mapping l is surjective but in general not injective. If l−1[{op}]
only contains one element, we denote it by op, leaving out the index.

For a more precise definition and description of the CFG, we refer to [Brü08].

2.3.3 Definition of the Data Dependence Graph

The control flow of a program can be represented in a graph theoretical way, and the
same applies to its data flow. Data flow analysis and data dependence graphs [Den74]
aim at an evaluation and description of dependent program statements, incorporating
data values. A data dependence is, for instance, given if one statement modifies a certain
program variable, while another statement refers to it, and the variable is not overwritten
in between.

The data dependence graph, which we consider, is solely defined over the set of nodes
op(N), that is, the set of operation schemas of a specification plus its initial state schema.
It supplements the CFG in the sense that its edges are related to paths of the CFG and
that it is mainly derived from the Object-Z part of a specification.

As already mentioned, enable- and effect-schemas are comprised into one opera-
tion node. Dealing with operation nodes instead of its constituents is reasonable, since,
as we will see in Chapter 4, our decomposition approach does not further decompose an
operation but rather keeps operations as atoms.
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Besides, we refer to a normalisation of the Object-Z part of S according to [Brü08]: as
a state invariant needs to hold before and after execution of each method, it can safely
be copied to the effect-schema of each method and eliminated from the state schema,
without changing the behaviour of the specification.

The definition of the data dependence graph is as follows:

Definition 2.3.5. (Data Dependence Graph (DDG) of S)
The data dependence graph (DDG) DDGS = (op(N), 999K) of a specification S is defined over
a set of nodes op(N) and a set of edges 999K⊆ op(N)× op(N).

Edges of the DDG incorporate several dependences with all of them being introduced
in [Brü08]. Table 2.3 denotes all comprised edges. Note that we do not consider control
dependences, as we will explain in the next section.

Edge Name
dd
999K (Direct Data Dependence)
idd
999K (Initial Data Dependence)
ifdd
999K (Interference Data Dependence)
sd
L999K (Synchronisation Dependence)
sdd
999K (Synchronisation Data Dependence)

Table 2.3: Table of edges of the data dependence graph

The simplest example is a (direct) data dependence: assume a certain state variable v ∈ V
being modified in some operation schema op1 and referenced in some other operation
schema op2, that is, v ∈ (mod(op1) ∩ ref(op2)). For all operation nodes n ∈ l−1(op1),
n’ ∈ l−1(op2), such that there exists a CFG path from the first to the latter node and v is

not further modified on this path, the DDG contains a data dependence edge n
dd
999K n’.

Initial data dependences are a special case of direct data dependences. Since the initial
state schema poses restrictions on the set of state variables, an initial data dependence
connects the representation of the initial state schema with an operation if some variable
v is restricted in Init and referenced in op, without being overwritten in between. As
initial data dependences will frequently be used in the following chapters, we introduce

a separate notation: init
idd
999K n’, if, and only if, init

dd
999K n’ for n’ ∈ l−1(op).

An interference data dependence exists from one node to another if both nodes are
located in different branches of an interleaving or parallel composition and, again, the
source node modifies a variable that the target node references. Note that, in general,
there is no CFG path connecting both nodes.

Synchronisation dependences model the fact that synchronised events within a parallel
composition have a mutual dependence on each other. These edges can more likely be
seen as a representation of the control flow. However, we integrate them in the DDG,
since we want to keep the original definition of the CFG. Note that synchronisation
dependences are always symmetric.
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Finally, synchronisation data dependences complement synchronisation dependences.
They connect two operation nodes if they are connected by a synchronisation dependence,
and one of the corresponding operations declares an output variable which the other
corresponding operation uses as an input.

Since we will need to refer to the precise conditions for some of these edges later on,
we give their definitions next.

Definition 2.3.6. ((Direct-, Interference-) Data Dependence, Synchronisation Dependence)

1.) A direct data dependence exists from n ∈ op(N) to n’ ∈ op(N), n
dd
999K n’, if, and only if,

∃ op1, op2 ∈ Op • n ∈ l−1(op1), n’ ∈ l−1(op2) ∧ (nodes corresp. to two operations)
∃ v ∈ (mod(op1) ∩ ref(op2)) ∧ (v modified in op1, referenced in op2)
∃π ∈ pathCFG(n, n’) • (nodes are connected by CFG path)
∀m ∈ π • v ∈ mod(l(m))⇒ (m = n) ∨ (m = n’) (no further modification of v)

2.) An interference data dependence exists from n ∈ op(N) to n’ ∈ op(N), n
ifdd
999K n’, if, and

only if,

∃ op1, op2 ∈ Op • n ∈ l−1(op1), n’ ∈ l−1(op2) ∧ (nodes corresp. to two operations)
∃ v ∈ (mod(op1) ∩ ref(op2)) ∧ (v modified in op1, referenced in op2)
∃m = (interleave ∨ parS • op ∈ S) ∧ (interleaving or parallel composition)
∃π ∈ pathCFG(m, n) ∧ (first node in one branch)
∃π′ ∈ pathCFG(m, n’) • (second node in the other branch)
π ∩ π′ = {m} (no join of branches within paths)

3.) A synchronisation dependence exists between n, n’ ∈ op(N), n
sd
L999K n’, if, and only if,

∃ op ∈ Op • n, n’ ∈ l−1(op) ∧ (two nodes corresponding to same operation)
∃m = parS • op ∈ S ∧ (parallel composition with operation synchronised)
∃π ∈ pathCFG(m, n) ∧ (first node in one branch of parallel composition)
∃π′ ∈ pathCFG(m, n’) • (second node in the other branch of par. composition)
π ∩ π′ = {m} (no join of branches within paths)

Sometimes, we explicitly need to refer to the state variable responsible for a data
dependence. This leads to the following notation:

Definition 2.3.7. ((Direct-, Interference-) Data Dependence by Reason)
Let n

dd
999K n’, and let the state variable v satisfy the criteria from Definition 2.3.6, 1.). In

this case, we write n
dd
999K(v) n’ and say that n

dd
999K n’ holds by reason of v. Correspondingly,

we define n
ifdd
999K(v) n’.

Note that n
dd
999K n’ and n

ifdd
999K n’ can hold by reason of more than one variable. The

definitions for all kinds of dependences can be found in [Brü08]. We immediately deduce
a small lemma which we will frequently use in the following chapters:

Lemma 2.3.8. (Direct data dependence requires CFG path)
Let n, n’ ∈ op(N) such that n

dd
999K n’. Then, n

∗−→ n’.
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Proof. Immediately follows from Definition 2.3.6, 1.). 2

Customer
chan insert one, insert two chan ticket : [t! : B]

main
c= (insert one→ Skip ‖| insert two→ Skip) o

9 ticket?t→ Skip

money : N
Init
money = 0

effect insert one
∆(money)

money′ = money + 1

effect insert two
∆(money)

money′ = money + 2

effect ticket
t! : B

t! = true

Machine
chan ticket : [t? : B]

main
c= ticket?t→ Skip

enable ticket
t? : B

t? = true

System
Customer {|insert one,insert two,ticket|}‖ {|ticket|}Machine

Figure 2.10: Simple CSP-OZ class specification for a ticket machine

Since our main case study does not incorporate all kinds of data dependences, we give
a small example to illustrate them. Figure 2.10 shows a ticket machine specification
consisting of two classes Customer and Machine. The overall system is defined as the
parallel composition of both classes, synchronising on the set {| ticket |}. The customer
can insert coins of value 1 and 2 in an arbitrary order and afterwards, the machine
dispenses the ticket. The full DDG of this small specification is given in Figure 2.11. Edges
are labelled according to Table 2.3.

The specification incorporates the following dependences:

Initial Data Dependence: Since the state variable money is restricted in the initial state
schema of Customer, referenced within insert one, insert two and possibly not
overwritten in between, there exist two initial data dependences (¬, ) from Init
to the respective operations.

Synchronisation Dependence: The operation schema ticket is synchronised be-
tween both classes thus yielding a synchronisation dependence (®) between
Customer.ticket and Machine.ticket.
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Figure 2.11: Data dependence graph (DDG) for the ticket machine specification

Interference Data Dependence: Based on money ∈ (mod(insert one) ∩ ref(insert two))
and vice versa money ∈ (mod(insert two) ∩ ref(insert one)), both nodes are
connected via a (symmetric) interference data dependence (¯).

Synchronisation Data Dependence: As Customer.ticket sends the value of the parame-
ter t to Machine.ticket, a synchronisation data dependence (°), with Customer.ticket
as the source node and Machine.ticket as the target node, connects both operation
nodes.

The sole remaining data dependence, which we did not yet exemplify, is the direct data
dependence. In the candy machine specification, one such edge is the link from switch to
select due to credits ∈ (mod(switch) ∩ ref(select)).

Figure 2.12 gives an extract of the DDG for the candy machine specification which
solely comprises direct data dependences and initial data dependences. All edges of the
DDG will be given in the next section as part of the specification’s dependence graph.

2.3.4 Definition of the Dependence Graph

The idea of the definition of a (program) dependence graph (PDG), as introduced in
[FOW87], is the unification of all the dependences of a program into one determined
graph which can then serve as the sole basis for the analysis of a program.
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Figure 2.12: Extract of DDG for the candy machine specification

According to the structure of CSP-OZ specifications, the analysis of their dependence
structure is two-folded: the construction of the overall dependence graph of the specifica-
tion comprises the control flow graph for representing the control flow of a specification
and the data dependence graph as a representation of its data flow. We will now consoli-
date both graphs into one. Again, we start with the general definition:

Definition 2.3.9. (Dependence Graph (DG) of S)
The dependence graph (DG) DGS = (N,−→DG) of a CSP-OZ specification S is defined over a
set of nodes N and a set of edges −→DG⊆ N × N, where

• N = cf(N) ∪ op(N) and

• −→DG= (−→ ∪999K),

according to Definition 2.3.1 and Definition 2.3.5 for the CFG and DDG, respectively.

The dependence graph is defined over the same set of nodes N = cf(N) ∪ op(N) as the
CFG and comprises both, edges of the CFG and the DDG. Recall that edges of the DDG
always connect operation nodes.

Our definition of the DG differs from the one defined in [Brü08] in several points:

Definition based on Operation Nodes: Our set of DG nodes comprises operation nodes
instead of predicate nodes. Data dependences thus connect the respective opera-
tion nodes which contain the responsible predicates. This definition corresponds
to Brückner’s simplified graph representation, using super nodes. However, we
additionally consolidate enable- and effect schemas of an operation into one
node. The coarsening is motivated by the idea that in our decomposition, we will
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keep operations atomic, that is, we will either assign all or none of the original
predicates of an operation to the generated components.

Inclusion of the CFG: In our context, a decomposition completely needs to adhere to the
CFG, since we must not destroy the overall dependence structure of a specification.
Therefore, in contrast to Brückner, we integrate the full CFG into our dependence
graph.

Neglect of Control Dependences: Based on the previous explanations, neither direct
nor indirect control dependences as defined in [Brü08] are relevant in our context.

Neglect of Symmetric Data Dependences: Symmetric data dependences model shar-
ing of modified variables between two predicates. These edges are only used for
connecting two predicates within the same operation. Analogous to the previous
explanations, we can safely omit them.

Paths of the DG are defined according to paths of the CFG, except that we use the
notation pathDG. Finally, we present the dependence graph for our case study in Figure
2.13. We do not explicitly distinguish between the several types of edges of the DDG here.
The Init schema of the specification, attached with outgoing initial data dependences,
is linked to the start-node of the graph.
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In the introduction, we discussed strategies to ensure the reliability of a software
system. Our approach concentrates on the verification of a system model with respect
to certain requirements. This is achieved by specifying the system in the integrated
formalism CSP-OZ, as introduced in the previous chapter, and employ model checking.

Model checking [CGP99] is a technique to automatically verify a system model, repre-
sented as a finite state machine, against desired properties of the system, described in
some logical formalism. It either shows the validity of the desired properties or produces
counterexamples, giving some insight on why the model is invalid. The methodology is
introduced in [EC80, CES86], and extensive research has been devoted to it over the last
years.

Even though model checking algorithms generally have a linear or at worst polynomial
complexity in the size of their underlying models [Sch02], they all need to compute the
state space of the system, which exponentially grows in the number of its components.
Therefore, the main focus of attention is to cope with this decisive task, know as the state
explosion problem.

This chapter provides the necessary background on model checking techniques and
particularly on compositional verification as our object of research. Section 3.1 elaborates
on the most relevant techniques to tackle the state explosion problem. Subsequently,
Section 3.2 gives an overview on compositional verification and introduces our employed
proof method, assume-guarantee reasoning. Along with this, we describe a methodology
on learning assumptions for an automation of assume-guarantee-based verification.
Section 3.3 puts assume-guarantee reasoning into our semantic context. Finally, Section
3.4 discusses related work on compositional verification.
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3.1 Approaches to the State Space Explosion

Verification of program correctness incorporates the analysis of any possible program exe-
cution and any reachable state. In order to achieve this, mathematical-based techniques
aim to build a model, representing all possible program configurations. This structure
is in general referred to as a program’s state space. Model checking verifies the system
model against certain requirements by analysing its state space.

Due to limited computing resources, automated verification of a software model can
only construct models up to a certain extent. Thus, if the state space of a model becomes
larger and larger, model checking becomes infeasible.

Model checking of specifications written in an integrated formal method are highly
afflicted from the state explosion problem: as the data-oriented description of a system
may cause an enormous state space due to large or even infinite data types, so does the
behaviour-oriented description, owed to its concurrency. If two diverse formalisms are
combined into one, automated formal verification suffers from both of these problems at
the same time.

There are many strategies to tackle state explosion, with most of them having their
specific advantages in certain domains. The most important techniques are described in
the following.

Partial order reduction [KP88, God96] concentrates on the analysis of the concurrency
of a system. More precisely, it aims at identifying independent and thus commutative
transition paths in asynchronous systems. As a result, different orderings on these
transitions can be conjoined. This technique clearly has its key benefits if applied to
behaviour-oriented formalisms, incorporating asynchronous concurrency.

In order to apply model checking for infinite state systems, abstraction techniques need
to be employed. In general, these techniques aim at either removing or simplifying parts
of the system model.

One such technique is data abstraction [CGL94], which aims at handling large data
domains. It is based on the idea of abstract interpretations [CC77]. Instead of evaluating a
property with respect to all possible data values, an abstraction mapping identifies a set of
concrete values for one abstract value. If the mapping satisfies certain correctness criteria,
properties of the abstract system also hold for the concrete system. Data abstraction
techniques for CSP-OZ were introduced in [Weh00].

However, too coarse abstractions can lead to wrong verification results. Counterexample
guided abstraction-refinement [CGJ+03] iteratively refines an initially minimal abstraction
and is guided by the model checker’s counterexamples. In case of a spurious counterex-
ample, based on an over-approximation of the system, the model is refined, and the
verification process is repeated. In the context of CSP and Z, this technique has been
applied in [DW07].

Symmetry reduction [CJEF96] aims at finding behavioural symmetries to subsequently
reduce the model. A similar approach is followed in [RW94] in the context of sequential
composition.

Another abstraction technique is cone-of-influence reduction [Kur94]. Based on a certain
property under interest, this technique aims at eliminating all specification elements



3.2 Compositional Reasoning 43

which do not influence the verification property. For that purpose, the dependence
structure of the specification is computed and analysed. A similar technique is program
slicing [Wei81] which was successfully applied in the context of CSP-OZ [Brü08], as
already mentioned in Section 2.3.

Symbolic model checking [JEK+90, McM93] aims at representing the state space in
a canonical and more efficient form by means of a boolean encoding (ordered binary
decision diagrams, [Bry86]). Many existing model checkers work on a symbolic represen-
tation of the original state machine and by using symbolic model checking algorithms.

Bounded model checking,[BCCZ99] as one branch of symbolic model checking
[CBRZ01], incrementally tries to find finite prefixes of counterexamples by examining
paths up to a certain bound k. If no counterexample is found, the bound is incremented,
and the algorithm continues. The bounded model checking problem can efficiently be
reduced to the propositional satisfiability problem (SAT) [DP60].

3.2 Compositional Reasoning

The strategy to cope with the state explosion problem we focus on is compositional
verification. Many systems are not defined as one single large component but more likely
composed of smaller parts. Compositional verification [dRHH+01] uses this property by
means of a “divide and conquer” approach: instead of verifying the system as a whole,
the verification task is split up into smaller subtasks. The components of the system are
verified independently, and the verification results are combined.

The benefits are evident: instead of computing the global state space of the overall
system, compositional verification merely needs to deal with the individual state spaces
of the system components and thus avoids the state explosion problem up to a certain
extent.

There are a lot of different compositional proof strategies [BCC98] but the most popular
ones are based on the assume-guarantee paradigm [FP78, Jon83, MC81]: since, in general,
a system component S depends on its environment, it cannot be verified in isolation.
However, if a certain environment assumption A is assumed for S, a guarantee condition G
of S can be inferred. Typically, this is expressed by a logical triple 〈A〉 S 〈G〉, stating that if
S is part of an overall system satisfying A, then the system must guarantee G.

Assume guarantee reasoning uses the previously described paradigm in terms of
inference rules. In our context and in the context of [BGP03], A, S and G represent
labelled transition systems. Thus, we may let L(A) denote the language of the assumption
A, that is, its set of traces over Σ∗ on the underlying LTS, where Σ denotes the trace
alphabet of A. Furthermore, let L(A)C denote the complement of this language, that is,
L(A)C = Σ∗ \ L(A).

Next, we present the different proof rules, which we will deal with in this thesis.

3.2.1 Assume Guarantee Proof Rules

Proof rules adhering to the assume-guarantee paradigm can be classified into different
categories. Suppose an overall system S to be composed of two components S1 and
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S2 running in parallel: S = S1 || S2. The simplest assume-guarantee proof rule can be
described as follows: if component S1 guarantees (satisfies) an assumption A, and if
component S2 satisfies a property Prop under the assumption A, then the overall system
S1 || S2 satisfies Prop. This can be denoted as an inference rule as given in Figure 3.1.

〈true〉 S1 〈A〉
〈A〉 S2 〈Prop〉

〈true〉 S1 || S2 〈Prop〉

Figure 3.1: Basic assume-guarantee proof
rule (B-AGR)

〈A1〉 S1 〈Prop〉
〈A2〉 S2 〈Prop〉

L(A1)C ∩ L(A2)C = ∅
〈true〉 S1 || S2 〈Prop〉

Figure 3.2: Parallel assume-guarantee proof
rule (P-AGR)

From now on, this rule will be denoted by (B-AGR) and it will be called the basic
assume-guarantee proof rule. It can be classified as being sequential in the sense that the
first premise, 〈true〉 S1 〈A〉, needs to be evaluated before the second premise, 〈A〉 S2 〈Prop〉,
can be considered – A must already be determined before it can serve as an assumption
for S2.

Another proof rule is motivated by the need for a symmetric computation of assumptions
for both components. One particular symmetric proof rule is given in [BGP03] and
depicted in Figure 3.2. In contrast to the basic proof rule, we call this rule the parallel
proof rule and refer to it as (P-AGR).

The main difference to rule (B-AGR) is the usage of one additional premise and
assumption. Moreover, the rule allows for a parallel computation of the first and second
premise, since both assumptions do not appear on the right hand side of both logical
triples.

The first premise states that under the assumption A1, component S1 satisfies Prop. The
second premise states the corresponding for A2 and S2. In order to show that S1 || S2

satisfies Prop, we need a third premise: the intersection of the complements of both
assumption languages needs to be empty.

In [BGP03], the authors show that the third premise, which is equivalent to L(A1) ∪
L(A2) = Σ∗, is indeed necessary. The intuitive reason can roughly be described as follows:
A1 restricts S1 to Prop and A2 restricts S2 to Prop, whereas the conclusion states that
S1 || S2 satisfies Prop without any restriction. Thus, the unification of the languages
of both assumptions must contain all possible words. This ensures that no possible
behaviour is ruled out by both assumptions at the same time.

A third class of assume-guarantee proof rules are referred to as circular proof rules.
These rules either involve circularity on the assumptions or, as in our case, on the
components: one circular proof rule as introduced originally in [GL91] is depicted in
Figure 3.3 which we will refer to as rule (C-AGR). Here, two premises coincide on their
component. In general, in comparison to non-circular ones, proving soundness and
completeness of circular proof rules is rather difficult [Mai03].

In this thesis, we will focus on non-circular rules and on the the first two proof rules,
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〈true〉 S1 〈A1〉
〈A1〉 S2 〈A〉
〈A2〉 S1 〈Prop〉

〈true〉 S1 || S2 〈Prop〉

Figure 3.3: Circular assume-guarantee rule (C-AGR)

rules (B-AGR) and (P-AGR). For an application of these proof rules, one needs to identify
appropriate assumptions.

3.2.2 Obstacles to the Application of Assume Guarantee Reasoning

Several issues complicate the application of assume-guarantee reasoning. First, the system
needs to be composed of several components. If this is not the case, assume-guarantee
reasoning is not applicable at all.

Furthermore, the identification of environment assumptions had to be done manually
by the user. By the use of a new technique based on a learning approach and proposed in
[CGP03], this process can now fully be automated. We will introduce the approach in the
next section.

Even though that automated learning of an assumption removes one of the obstacles
assume-guarantee reasoning has to deal with, its usefulness in comparison to monolithic
verification is still questionable: the major aim of this technique is to explore smaller state
spaces. However, an unadvantageous decomposition can still lead to large assumptions
and thus large state spaces. In [CAC06], the authors investigated the effectiveness of
assume-guarantee reasoning based on exploring different decompositions of a given
system and comparing memory usage. The results show that only in very few cases,
assume-guarantee reasoning indeed outperforms non-compositional verification. Even
worse, in most cases, the explored state spaces are actually larger in compositional
verification.

In particular in the context of compositional verification for formal methods, these
considerations motivate the need for a technique to define decompositions which are
advantageous for an application of assume-guarantee-based techniques. We address this
problem in Chapter 6.

3.2.3 Learning for Compositional Verification

In order to apply an assume-guarantee-based proof rule, environment assumptions
need to be identified. Consider the basic proof rule (B-AGR). Unfortunately, it is a
non-trivial process to find an assumption which, on the one hand, abstracts from S1 by
over-approximating it and which is, on the other hand, strong enough for S2, such that
Prop can be deduced. This applies to any of these proof rules.
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Over many years, the development of an assumption had to be done manually by the
user, not allowing assume-guarantee reasoning to be performed in an automatic manner.
Recently, a new technique to fully automatically generate assumptions [CGP03] based on
a learning algorithm [Ang87] has been developed. The core idea for this technique is to
use a model checker to learn the assumption. This technique can be applied with respect
to several assume-guarantee proof rules [PGB+08] and in a framework, freeing the user
from manual interference.

Teacher L*

Membership Queries
„Is the word an element 

of the language?“

YES / NO

Equivalence Queries
„Is the conjecture

correct?“

YES / counterexample

Figure 3.4: Illustration of the L∗ algorithm

The basis for this approach is an algorithm which learns an unknown regular language
(in our case: the language of the assumption) and returns a deterministic finite automaton
(DFA) accepting this language. The algorithm is called L∗, and it was introduced in
[Ang87]. We describe the basic idea of the algorithm: suppose that U is an unknown
regular language over some alphabet Σ. For an effective learning of U, the algorithm
requires an oracle which correctly answers two different questions:

Question (Membership Query):
Given a word w over the alphabet Σ, is w an element of U?
Answer:
Yes, if w is an element of U, no otherwise.

Question (Equivalence Query):
Does the DFA D accept the language U?
Answer:
Yes, if L(D) = U holds, a counterexample w ∈ (L(D) \ U) ∪ (U \ L(D)) otherwise.
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If the oracle (or teacher, as it is called in the context of L∗) correctly answers this question,
the algorithm always terminates and outputs a DFA DU, such that L(DU) = U holds.

Figure 3.4 illustrates this concept. The approach presented in [CGP03] incorporates the
L∗ algorithm into an assume-guarantee-based framework for the automatic computation
of the required assumptions. The technique can be applied to all three previously
introduced proof rules, as shown in [PGB+08]. Here, a model checker serves as the
teacher. The idea is to incrementally compute the assumption.

<A> S
2
<Prop>

 

<true> S
1 
<A>

 

 

counterexample
analysis

 

false

true

spurious 
counter-
example

real 
counter-
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<true> S
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||S
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<true> S
1
||S

2
<Prop>

 

is invalid

L*

Figure 3.5: Illustration of the L∗ based learning framework

As an example, for the basic proof rule (B-AGR), the framework starts by making use of
L∗ to compute an assumption A such that 〈A〉 S2 〈Prop〉 holds. Afterwards, 〈true〉 S1 〈A〉 is
checked.1 If the result is true, correctness of the proof rule yields that 〈true〉 S1‖S2 〈Prop〉
holds. Otherwise, the counterexample is analysed. A spurious counterexample leads
to a refinement of the verification process, a valid counterexample to the refutation of
〈true〉 S1‖S2 〈Prop〉. This is illustrated in Figure 3.5.

Next, we put assume-guarantee reasoning into our context by translating both rules,
(B-AGR) and (P-AGR), into the semantic domain of CSP-OZ. Subsequently, we show their
soundness.

3.3 Assume-Guarantee Reasoning for CSP

Since our application of assume-guarantee reasoning lies in the domain of CSP-OZ
specifications, we need to translate the previously identified proof rules into our context
and show their correctness. Fortunately, as already explained in Chapter 2, CSP-OZ

1In terms of an LTS, true corresponds to the empty language.
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specifications can be translated into semantic equivalent CSP processes. Therefore, it is
sufficient to consider the semantic domain of CSP.

Verification properties can mainly be classified into two categories [OL82]: safety and
liveness properties. Safety properties follow the principle of

“ Nothing bad will ever happen! ”

meaning that a violation of a safety property is given by a finite counterexample. In
contrast, liveness properties can be described by

“ Something good will eventually happen! ”

describing that at some point, the property will be satisfied, not allowing to contradict a
liveness property by a finite counterexample.

Our decomposition approach focuses on safety properties. This allows us to move
to the domain of the CSP trace semantics instead of the more discriminating failures-
divergences semantics: as explained in [Weh00] and [OW05], in contrast to liveness
properties dealing with deadlock or livelock freedom, when dealing with safety properties,
the CSP traces model is sufficient. An approach for verifying liveness properties in the
context of compositional reasoning is, for instance, given in [CGK97]. According to this,
the learning-based approach, as explained in the previous section, is also considering
safety properties.

By translating assume-guarantee proof rules into the CSP traces model, a logical triple
〈A〉 S 〈Prop〉 becomes a trace refinement condition Prop vT A‖S which is by definition
equivalent to traces(A‖S) ⊆ traces(Prop).

We need to be more precise and consider the respective alphabets of A, S and Prop. Here,
the alphabet of the assumption depends on the particular proof rule: for the basic rule,
(B-AGR), αA = (X2 ∪ Y) ∩ X1 whereas for the parallel rule, (P-AGR), αA = (X1 ∩ X2) ∪ Y.
Setting αS = X, αProp = Y and αA = Σ, the condition becomes

Prop vT (A Σ‖ X S) \ (Events \ Y),

where the right hand side processes need to be restricted to the alphabets of the left hand
side processes by using hiding.

Figures 3.6 and 3.7 specify rules (B-AGR) and (P-AGR), rephrased in terms of CSP
trace refinement, where we additionally set αS1 = X1 and αS2 = X2.

We take a closer look at the third premise of rule (P-AGR): in comparison to the work
[CGP03], the authors move from the domain of labelled transitions system (LTS) to finite
state machines (FSM) [BGP03] and construct the complement co M of a FSM M to denote
the third premise of rule (P-AGR) by

L(co A1‖co A2) = ∅

However, it is impossible to construct a CSP process co P for some process P, accepting
the complement of its language. This is based on the fact that the set of traces of a CSP
process is always prefix-closed whereas its complement is not. Thus, co P does not exist
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A vT S1 \ (Events \ Σ)

Prop vT (A Σ‖ X2 S2) \ (Events \ Y)

Prop vT (S1 X1‖ X2 S2) \ (Events \ Y)

Figure 3.6: Rule (B-AGR) rephrased in
terms of CSP trace refinement

Prop vT (A1 Σ‖ X1 S1) \ (Events \ Y)

Prop vT (A2 Σ‖ X2 S2) \ (Events \ Y)

(A1 2 A2) vT RunΣ

Prop vT (S1 X1‖ X2 S2) \ (Events \ Y)

Figure 3.7: Rule (P-AGR) rephrased in
terms of CSP trace refinement

and we use the equivalent2 condition L(A1)C ∩ L(A2)C = ∅. In our semantic domain of
the CSP traces model, this means traces(A1)C ∩ traces(A2)C = ∅. We will now show that
(A1 2 A2) vT RunΣ and traces(A1)C ∩ traces(A2)C = ∅ are equivalent, implying that rule
(P-AGR) corresponds to rule 1 from [BGP03].

Lemma 3.3.1. (Correspondence between rule (P-AGR) and rule 1 from [BGP03])
Let A1 and A2 be two CSP processes over the alphabet Σ. Then,

(A1 2 A2) vT RunΣ

holds, if, and only if,

traces(A1)C ∩ traces(A2)C = ∅.

Proof.

(A1 2 A2) vT RunΣ

⇔ traces(A1 2 A2) = traces(RunΣ) (Definition of RunΣ)
⇔ traces(A1 2 A2) = Σ∗ (Definition of traces(RunΣ))
⇔ traces(A1 2 A2)C = ∅
⇔ (traces(A1) ∪ traces(A2))C = ∅ (Definition of traces for external choice)
⇔ traces(A1)C ∩ traces(A2)C = ∅

2

Next, we give a small example illustrating the application of rule (B-AGR).

3.3.1 Application Example: Elevator System

Figure 3.8 defines a CSP specification of a simple elevator system. It consists of two
processes Elevator and User. The overall system is defined as the parallel composition of
both processes, synchronising on the intersection of their alphabets

X1 := {req floor, req close,move, stop, req open}

and

X2 := {req floor, enter, req close, req open, leave}.
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Elevator c= req floor→ req close→ move→ stop→ req open→ Elevator

User c= req floor→ enter→ User 2

req close→ User 2

req open→ leave→ User

System c= Elevator X1‖ X2 User

Figure 3.8: CSP specification of a simple elevator system

The property, which we want to verify, is given as follows: a user entering the elevator
(enter) will always lead to him leaving (leave) the elevator. As a CSP process, we write:
Prop c= enter→ leave→ Prop. Let Y := {enter, leave} denote the alphabet of the property.
Based on the definition of [CGP03], we get

Σ = (X2 ∪ Y) ∩ X1 = {req floor, req close, req open}.

In order to show that

Prop vT (Elevator X1‖ X2 User) \ (Events \ Y)

holds, we can apply rule (B-AGR) by defining

A c= req close→ A 2 req floor→ A′

A′ c= req close→ A′ 2 req open→ A

Then, both premises of the rule are satisfied, that is, traces(Elevator)� Σ ⊆ traces(A)
and traces(A Σ‖ X2 User)� Y ⊆ traces(Prop) hold.

3.3.2 Soundness of Assume-Guarantee Proof Rules

After translating both rules, (B-AGR) and (P-AGR), into our setting of CSP, we need to
show their soundness. In his bachelor’s thesis, Wonisch [Won08] integrated the approach
of [CGP03] into a framework for compositional reasoning about CSP processes, which he
implemented by using the CSP model checker FDR2 as the teacher. For that purpose, he
showed the following soundness theorem for rule (B-AGR):3

Theorem 3.3.2. (Soundness of basic proof rule)
Let S1, S2 and Prop be CSP processes. Let X1,X2,Y be alphabets, and let A be a CSP process

2This is based on L(A)C = L(co A) and L(A‖B) = L(A) ∩ L(B).
3We omit dealing with the technical aspect of X-freedom.
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defined over the alphabet Σ = (X2 ∪ Y) ∩ X1. Then, the following proof rule is sound:

A vT S1 \ (Events \ Σ)

Prop vT (A Σ‖ X2 S2) \ (Events \ Y)

Prop vT (S1 X1‖ X2 S2) \ (Events \ Y)

(3.1)

Proof. See [Won08], Theorem 1. 2

We will now correspondingly show soundness of the parallel proof rule (P-AGR).

Theorem 3.3.3. (Soundness of parallel proof rule)
Let S1, S2 and Prop be CSP processes. Let X1,X2,Y be alphabets such that Y ⊆ X1 ∪ X2, and
let A1,A2 be CSP processes defined over the alphabet Σ = (X1 ∩ X2) ∪ Y. Then, the following
proof rule is sound:

Prop vT (A1 Σ‖ X1 S1) \ (Events \ Y)

Prop vT (A2 Σ‖ X2 S2) \ (Events \ Y)

(A1 2 A2) vT RunΣ

Prop vT (S1 X1‖ X2 S2) \ (Events \ Y)

(3.2)

Proof. Let

t ∈ traces((S1 X1‖ X2 S2) \ (Events \ Y)).

We need to show t ∈ traces(Prop). The definition of traces for hiding ([Ros98]) yields the
existence of

s ∈ traces(S1 X1‖ X2 S2),

such that t = s� Y. Moreover, since s is defined over X1 ∪ X2 and by applying the definition
of traces(P X‖ Y Q) ([Ros98]), for u1 := s�X1 and u2 := s�X2, we get ui ∈ traces(Si). Mainly
corresponding to the correctness proof of the basic assume-guarantee rule, [Won08], we
will now show:

(i) s� (Σ ∪ X1) ∈ traces(A1 Σ‖ X1 S1) or (*)
s� (Σ ∪ X2) ∈ traces(A2 Σ‖ X2 S2), (**)

(ii) (*)⇒ t′1 := s′1� Y ∈ traces(Prop) and t′1 = t,

(iii) (**)⇒ t′2 := s′2� Y ∈ traces(Prop) and t′2 = t,

where both, (∗) and (∗∗) lead to the conclusion t ∈ traces(Prop).
For property (i), let s′i := s� (Σ ∪ Xi). We first deduce

s′1� Σ = (s� (Σ ∪ X1))� Σ = s� Σ and
s′2� Σ = (s� (Σ ∪ X2))� Σ = s� Σ.
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Based on the third premise and the fact that s�Σ ∈ traces(RunΣ) by definition of RunΣ,
we have s� Σ ∈ traces(A1 2 A2). Thus, either s� Σ ∈ traces(A1) or s� Σ ∈ traces(A2) holds.
Second, we get

s′1� X1 = (s� (Σ ∪ X1))� X1 = s� X1 = u1 and
s′2� X2 = (s� (Σ ∪ X2))� X2 = s� X2 = u2,

with u1 ∈ traces(S1). Both combined: if s�Σ = s′1�Σ ∈ traces(A1), we use s′1�X1 ∈ traces(S1)
to deduce s′1 ∈ traces(A1 Σ‖ X1 S1). Otherwise, we get s′2 ∈ traces(A2 Σ‖ X1 S2). This
concludes the proof of (i).

Next, we show (ii), (iii) is analogous. If (*) holds, t′1 := s′1� Y ∈ traces(Prop) follows
immediately from the first premise. We are left to show t′1 = t:

t′1
= s′1� Y (Definition of t′1)
= (s� (Σ ∪ X1))� Y (Definition of s′1)
= s� ((Σ ∪ X1) ∩ Y) (Definition of trace projection)
= s� (((X1 ∩ X2) ∪ Y ∪ X1) ∩ Y) (Definition of Σ)
= s� Y
= t (Definition of t)

This concludes the proof. 2

The following example [Sch09] shows that the restriction Σ = (X1 ∩ X2) ∪ Y is indeed
required.

Example 3.3.4. Let S1 = a→ a→ Stop, S2 = b→ b→ Stop and

Prop = (a→ a→ Stop) 2 (b→ b→ Stop).

Thus, we get X1 = {a}, X2 = {b} and Y = {a, b}. Now assume Σ = ∅ and A1 = A2 = Stop.
Then, all three premises of the parallel rule are satisfied:

• We get (Stop ∅‖ {a} S1) = a→ a→ Stop and thus Prop vT a→ a→ Stop.

• Also, (Stop ∅‖ {b} S2) = b→ b→ Stop and therefore Prop vT b→ b→ Stop.

• Finally, Run∅ =T Stop, hence (Stop 2 Stop) vT Run∅.

However, Prop vT (a→ a→ Stop {a}‖ {b} b→ b→ Stop) does not hold as Prop does not
allow the trace 〈a, b, a, b〉 which (a→ a→ Stop {a}‖ {b} b→ b→ Stop) is able to conduct.
In case of Σ = (X1 ∩ X2) ∪ Y = {a, b}, the third premise becomes

(Stop 2 Stop) vT Run{a,b},

which is clearly not satisfied.

Summing up, we have shown the applicability of the proof rules (B-AGR) and (P-AGR)
in the semantic domain of CSP. This allows us to apply compositional reasoning, based
on the following decomposition approach in our context. Moreover, we can evaluate the
efficiency of different decompositions by using the CSP model checker FDR2 [For05].
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3.4 Related Work

Model checking and (automated) compositional verification of specifications, written
in (integrated) formal methods, is extensively researched. We give a brief overview on
recent works, mainly in the context of our employed methods.

Model Checking for Formal Methods: In order to allow model checking of a software
system, it needs to be specified in some formal language.

Leuschel examines LTL model checking [LMC01] for CSP by using the model
checker FDR2 [For05]. In [SW05], Smith and Wildman consider model checking
of Z specifications by translating Z into the input language of the model checker
SAL [BGL+00]. Derrick et al. also investigate Z model checking by using SAL in
[DNS08]. Smith deals with model checking Object-Z specifications with respect to
temporal logic formulae in [KS01].

CSP-Z model checking is researched in [MS01]. Model checking CSP-OZ specifi-
cations by again using FDR2 is described in [FW99]. We use this approach in our
implementation framework.

Compositional Verification for Formal Methods: Compositional verification has its
early application within the scope of model checking in [EDK89] and later in
[GL91, CGP99]. Proof rules for verifying real time system have been developed in
[CMP94]. In the context of UML, compositional verification (and model checking)
of embedded real time systems is, for instance, investigated in [SGT+03]. By
defining a formal semantics for a domain specific subset of the UML, the authors
allow themselves to reason about individual software components instead of the
complete system.

In our context, Winter and Smith [WS03] deal with compositional verification for
Object-Z. They analyse the class structure of an Object-Z specification and argument
about restricted environments, allowing for the definition of a compositional proof
rule. Modular reasoning of Object-Z is also investigated by Griffiths [Gri97, Gri98].

In [MG07], Moffat and Goldsmith examine compositional reasoning for CSP by
identifying and showing several proof rules with respect to some CSP operators and
certain structures of the overall system. Compositional reasoning for CSP is also
analysed in [Moo90].

Compositional verification for integrated formal methods has extensively be re-
searched in the context of CSP||B [ST02]. Amongst other works [ST04, ST05],
Evans, Schneider and Treharne investigated how to decompose specifications into
so-called chunks [STE05]. For Event-B, Butler [But09] described how to decompose
specifications for independent refinement checks.

Assume-Guarantee Reasoning: Assume-guarantee reasoning was first introduced in
[FP78, Jon83] and further developed in [Pnu84]. Several variants being applied
in different domains, such as assumption-commitment for synchronous message



54 3 Background: Compositional Reasoning

passing [MC81] and rely-guarantee for shared-variable concurrency [Jon83], exist.
All of them can be subsumed under the roof of the assume-guarantee paradigm.

The book [dRHH+01] gives a profound overview on compositional reasoning and
the assume-guarantee paradigm in particular.

Automated Compositional Reasoning: Ever since the introduction of compositional
reasoning, one of the major goals is to fully automate this verification process. The
idea to automatically generate assumptions in the context of assume-guarantee
reasoning was first proposed in [GPB02].

Learning assumptions for compositional reasoning was introduced in [CGP03] and
initially with respect to the basic proof rule (B-AGR). The following paper [BGP03]
extended the idea to symmetric proof rules, such as rule (P-AGR). Apart from
these authors, several other articles investigate this particular field of research:
[GP08] contains a selection of articles on learning techniques for automated assume-
guarantee reasoning. Nam and Alur [AMN05, NA06, Nam07] investigate L∗-based
learning of assumption in the context of symbolic model checking. In the same
context, the article [APR+01] presents a SAT-based technique for lazy learning of
assumptions. Several articles concentrate on the optimisation of the L∗ algorithm
to more effectively compute the assumptions [GGP07, GMF07, CS07, CS08].

Besides the application of learning in the area of model checking, the L∗ algorithm
is used in several other software verification domains. For instance, in [CCST05],
the authors use assumption learning in the context of simulations. Alur et al.
[AČMN05] tackle synthesis of interface specifications based on learning. In the
context of black box checking, that is, verifying a software system without a model,
L∗ is used to learn an unknown system [GPY02].
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As previously stated, we focus on decomposing specifications, allowing for an effi-
cient application of compositional reasoning. To this end, we analyse a specification’s
dependence structure by means of its dependence graph, as defined in Chapter 2.

The following core chapter presents the correctness criteria and the definitions for
the decomposition of CSP-OZ specifications. Before going into the technical details, we
start by outlining our approach in Section 4.1. Section 4.2 defines and illustrates the
fragmentation of a dependence graph, denoted as cut. The fragmentation is based on
certain correctness criteria, resulting in the decomposition of the specification itself, as
introduced in Section 4.3. A special case of the definition will be illustrated by means of
the case study from Chapter 2. Additionally, Section 4.4 introduces a second, smaller case
study, exemplifying the general case of a decomposition. In the final section, we discuss
related work.

In order to facilitate an illustrative and fluent description of the approach, we postpone
most of the correctness proofs to the next chapter.
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4.1 Overview

Compositional verification follows a “divide and conquer” approach: to cope with the
state explosion problem, a local verification with respect to the components of a software
model is applied.

However, as already stated in Section 3.2.2, two major obstacles complicate the
application of compositional verification and particularly assume-guarantee reasoning.

First, the technique is only applicable if the overall model is composed of at least two
components. If this is not the case, the model needs to be decomposed, without changing
its observable behaviour.

Less evident, second, a decomposition itself does not always lead to an effective
application of compositional verification. Disadvantageous decompositions may still
cause large state spaces during model checking. We will deal with the aspect of classifying
decompositions in Chapter 6.

In this chapter, we construct decompositions of specifications written in CSP-OZ, pre-
serving the specification’s semantics in the domain of the CSP traces model. As the
dependence graph comprises the complete dependence structure of a specification S, our
strategy primarily targets the distribution of the DG. Henceforward, S itself is decomposed
such that the resulting specification parts S1 and S2 correspond to the generated segments
of the DG.

A distribution of the DG is accomplished on the level of its operation nodes. Correctness
criteria refer to the control flow and thus to CSP operator nodes as well. In order to
fragment the DG into two subgraphs, we define a set C ⊆ op(N), which serves as the link
between them. We will call this set a cut motivated by the intuition that it identifies the
line(s) of intersection of the graph. The set of cut nodes is common to both subgraphs
and, consecutively, to both specification parts. From the specification point of view, the
cut serves as the interface, that is, the synchronisation alphabet, between the specification
parts S1 and S2.

Figure 4.1 illustrates the individual steps of our approach.

Computation of the DG, ¬: Given a specification S, we first compute its dependence
graph DGS = (N,−→DG), as introduced in Chapter 2. We mainly focus our considera-
tions on its set of operation nodes.

Identification of the Cut, : Next, we identify a cut of the dependence graph: a set of
operation nodes, yielding a correct fragmentation of the DG (represented by grey
nodes in the figure). In Section 4.2, we present the definition of a cut along with
the correctness criteria for the segmentation.

Fragmentation of the DG, ®: Determining the set of cut nodes and distributing the set
of operation nodes results in two subgraphs. The cut itself is represented in both
subgraphs.

Decomposition of the Specification, ¯: The fragmentation of the DG leads to the defi-
nition of the two specification parts of S, S1 and S2. Section 4.3 precisely defines
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Figure 4.1: Cut identification, fragmentation of the dependence graph and decomposition
of the specification

the decomposition and introduces the additional constructs required to ensure the
(trace) equivalence of S and S1 ‖ S2.

Next, we introduce our definition of a cut along with the criteria which need to be
satisfied such that the observable behaviour of the specification is preserved. We illustrate
the definitions and criteria on several small examples and especially on our case study.
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4.2 Cut of a Dependence Graph

Before we introduce the definition of a valid cut of a dependence graph, we start with
identifying its fragmentation with respect to two sets of operation nodes. Correctness
criteria on the fragmentation consecutively lead to the definition of the cut. Since most
of our definitions are not restricted to the dependence graph, we introduce them for
arbitrary graphs and subsequently apply them in our specific context.

4.2.1 Fragmentation of the Control Flow Graph

We are interested in identifying two different subgraphs of the DG. In particular, these
subgraphs should not arbitrarily intersect. Thus, we need to define different segments of
the graph which are disjoint.

The control flow graph comprises all nodes of the dependence graph and defines the
workflow and the dynamic behaviour of a specification. Therefore, we will define a
fragmentation of the control flow graph alone instead of considering the dependence
graph. Subsequently, the data flow needs to be evaluated to verify that a corresponding
fragmentation of the DG is correct.

In general, the technique needs to deal with all different kinds of nodes and edges.
However, the subsequent distribution of nodes refers to operation nodes, which is sufficient
in our context: we do not distribute the set of CSP operator nodes. This will be achieved
in Section 4.3, where we define a projection of a CSP process with respect to a set of
events.

Figure 4.2: Illustration of Definition 4.2.1

First, the following definition determines all nodes reachable from one set of nodes N1

not intersecting with another set of nodes N2.

Definition 4.2.1. (Interval from N1 to N2)
Let G = (N,−→) be a graph, and let N1,N2 ⊆ N. Then,

N1
to−→ N2 := {n’ ∈ N | ∃ n ∈ N1, π ∈ pathG(n, n’) • π ∩ N2 = ∅} \ N1.
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The interval excludes both, N1 and N2, as illustrated in Figure 4.2. Intuitively, it can
be regarded as the set of nodes “between” N1 and N2. Note that both, N1 and N2, are
allowed to be empty.

The previous definition allows us to divide the set of nodes of a graph into several
subsets (or phases, as we call them). Next, we introduce the fragmentation of the CFG,
which is defined with respect to two sets of operation nodes, C1 and C2:

Definition 4.2.2. (Fragmentation of the control flow graph)
Let CFGS = (N,−→) be the control flow graph of a specification S, and let C1,C2 ⊆ op(N).
Moreover, let

StartNodes := {start.P | P ∈ LCSP}

and

start1 := ({start} to−→ C1) ∩ StartNodes.

A fragmentation of (the set of operation nodes of) CFGS with respect to a tuple (C1,C2) is a
set of three phases Ph1, Ph2 and Ph3 defined as

1.) Ph1 := (({start} to−→ C1) ∩ op(N)) ∪ {init}, (Phase 1)

2.) Ph2 := (C1
to−→ C2) ∩ op(N), (Phase 2)

3.) Ph3 := (C2
to−→ start1) ∩ op(N). (Phase 3)

C1 and C2 serve as the two lines of intersection for the graph. The first phase Ph1

contains all operation nodes before the first line of intersection. We add the unique
init-node of the specification to Ph1, comprising the set of initial predicates.

The second phase includes the set of operation nodes between both lines of intersection.
Finally, the third phase comprises the set of operation nodes behind the second line of
intersection. A first correctness criterion will exclude that any two of the five sets have a
common element.

Intuitively, one would expect Ph3 := (C2
to−→ ∅) ∩ op(N). However, we need to

“stop” adding nodes to Ph3 after reaching a recursive call back to Ph1. Otherwise, our
subsequently defined correctness criteria on a fragmentation would rule out allowed
recursive calls. Therefore, we define a set start1, comprising all nodes start.X occurring
before the first line of intersection. This specific point will become clearer in the next
section.

In the general case of a cut, as introduced in Section 4.2.3, we use the previous
definition as follows: we determine two sets of operation nodes, namely C1 and C2, which
will from now be called the first cut and the second cut. The definition results in five
disjoint sets of operation nodes Ph1, C1, Ph2, C2 and Ph3. Henceforth, we will refer to
Ph1, Ph2 and Ph3 as the phases of a fragmentation, whereas C1 and C2 will be referred to
as its cut sets.

The following lemma states that a fragmentation of the CFG is always complete in the
sense that no nodes are left out:
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Lemma 4.2.3. (Completeness of Fragmentation)
Let CFGS = (N,−→) be the control flow graph of a specification S, and let (C1,C2) be a
fragmentation. Then,

Ph1 ∪ C1 ∪ Ph2 ∪ C2 ∪ Ph3 = op(N).

Proof. The left-to-right inclusion is obvious. For the opposite inclusion, let n ∈ op(N).
Based on the definition, the special init-node is an element of Ph1. Moreover, as any CFG
node is reachable from the unique start-node, there exists π ∈ pathCFG(start, n). Without
loss of generality let π = 〈start, n1, . . . , nk〉 and nk = n.

If n ∈ Ph1, we immediately deduce the right-to-left inclusion. Otherwise, π ∩ C1 6= ∅
holds. n ∈ C1 would again conclude the proof. If n 6∈ C1, there exists an index 1 ≤ l1 < k
such that nl1 ∈ C1. Since n is reachable from nl1 , either n ∈ Ph2 or, otherwise, there exists
nl2 ∈ C2 for some l1 < l2 ≤ k. If l2 = k, we have shown n ∈ C2. In the opposite case, we
deduce that n is reachable from C2 which either leads to n ∈ Ph3 or to π ∩ start1 6= ∅
based on the definition of Ph3. In this case, we infer that there exists some l3 > l2
and nl3 ∈ start1. Here, l3 6= l2 since l2 ∈ op(N) and l3 ∈ StartNodes. Hence, the path
〈start, . . . , nl3〉 contains at least three different nodes nl1 , nl2 and nl3 .

Reapplication of the previous ideas now starting in nl3 yields a sequence of nodes
which continuously traverses the CFG through its five fragments. As the length of the
sequence increases with every cycle, but never leaves the set Ph1 ∪ C1 ∪ Ph2 ∪ C2 ∪ Ph3,
it eventually reaches n, yielding the right-to-left inclusion. 2

Figure 4.3: Fragmentation of the DG

Figure 4.3 illustrates the fragmentation. As already mentioned, we do not deal with
nodes of cf(N) here. Thus, all boxes denote operation nodes. Besides, nodes of Ph1 and
Ph3 have the same colour, since both segments will be assigned to the same component
in Section 4.3. Hence, we will mostly not distinguish between Ph1 and Ph3.
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Since the definition of the fragmentation cannot be arbitrary, we need to specify
additional correctness constraints. These criteria coarsely describe the following aspects:

Criterion 1 – disjointness: All fragments are disjoint.

Criterion 2 – no crossing: The lines of intersection (cut sets) are not circumvented by
data dependence edges.

Criterion 3 – no reaching back: Paths of the CFG have to comply to the ordering of
the fragments.

Criterion 4 – all-or-none: The set of operation nodes corresponding to the same schema
must not be distributed over different fragments.

We give a detailed definition of the correctness criteria next.

4.2.2 Correctness Criteria for the Fragmentation

In order to define a correct fragmentation of the DG and ultimately a correct decomposition
of the specification, several correctness criteria need to be satisfied. If possible, a criterion
will again be defined for arbitrary graphs.

Most of the criteria will rule out specific edges of the DG with respect to the fragmenta-
tion. We illustrate these edges by means of a recurrent figure. Recall that nodes of the
cut sets and phases are always operation nodes, that is, elements of op(N).

Criterion 1: disjointness

As a first and straightforward correctness criterion, we require that all segments resulting
from the graph fragmentation are pairwise disjoint. Intuitively, this is motivated by the
fact that we aim at a partitioning of the dependence graph. We recall the set theoretical
definition for disjointness:

Definition 4.2.4. (disjointness)
Let G = (N,−→) be a graph, and let N1,N2 ⊆ N. Then, N1 and N2 satisfy disjointness, if,
and only if, N1 and N2 are disjoint, that is, N1 ∩ N2 = ∅.

The definition of a cut will comprise the condition that Ph1, C1, Ph2, C2 and Ph3

are pairwise disjoint. Based on the construction of the different phases, this constraint
is particularly related to CFG paths, as it excludes several edges between the different
segments. For instance, as Ph1 and Ph2 have to be disjoint, a direct edge from a node
of Ph2 to a node of Ph1 is impossible: the definition of Ph2 yields that the target node
would be an element of (Ph1 ∩ Ph2).

Figure 4.4 illustrates that CFG edges with the source node in Ph3 (Ph2) and the target
node in Ph2 (Ph1) are not allowed. Note that edges in the opposite direction are already
ruled out by definition of the fragmentation. Further note that we intentionally allow
edges connecting nodes of Ph3 and Ph1. This substantiates the definition of Ph3.
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Figure 4.4: Disallowed control flow edges based on disjointness

Criterion 2: no crossing

The second correctness criterion tackles the previously described aspect of a cut identifying
the lines of intersection of the dependence graph. Since it is generally impossible to
decompose the graph into two completely independent (that is, unconnected) subgraphs,
the cut needs to serve as the link between them. Intuitively, this link should not be
evaded when switching from one subgraph to the other. Therefore, paths of the DG

Swapper
. . .

main
c= store b→ move a→

move b→ Skip

. . .

effect store b
∆(tmp)

tmp′ = b

effect move b
∆(a)

a′ = tmp

store_b

move_b

move_a

...

...

tmp' = b

a' = tmp

Figure 4.5: Motivation for the correctness criterion no crossing

must not circumvent the cut. Based on our fragmentation of the CFG and the criterion
disjointness, we implicitly ensure this for control flow edges. However, we also need
to guarantee that data dependence edges do not evade the cut as well: on the level of
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the underlying specification, the set of operation schemas of the cut defines the interface
between both resulting specification parts. If the behaviour of the specification parts
depends on each other, these shared operations are responsible for preserving the mutual
influence. This will be achieved by using them as transmitters for the correct values of
modified state variables. If a data dependence circumvents the cut, it would be impossible
to transmit the influence of one component on the other.

As an example, recall the small specification for a number swapper from Chapter 2,
Figure 2.8. The modification of tmp within store b and the reference to tmp within move b
yields a direct data dependence from the first to the latter operation node. Choosing the
set {move a} as the set of cut nodes is not reasonable: the modified value of tmp cannot
be transmitted. In this case, the data dependence edge circumvents the cut as illustrated
in Figure 4.5.

In general, we have to disallow data dependence edges connecting the different
fragments of the dependence graph if neither of the involved nodes is an element of
the cut. These edges cross the cut in the sense that there exists a direct link between
different sides of the cut. This motivates the following definition of a predicate called
no crossing, which we will subsequently use with respect to (Ph1 ∪ Ph3) and Ph2:

Definition 4.2.5. (no crossing)
Let G = (N,−→) be a graph, and let N1,N2 ⊆ N. Then, noCr(N1,N2, G), if, and only if,

@n1 ∈ N1 @n2 ∈ N2 • n1 −→ n2 ∨ n2 −→ n1

This condition will be called no crossing between N1 and N2.

For the definition of the cut, we require noCr((Ph1 ∪ Ph3),Ph2, DDGS). The disallowed
data dependence edges are illustrated in Figure 4.6.

Figure 4.6: Disallowed data dependences based on no crossing
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Criterion 3: no reaching back

The next constraint needs to be defined with respect to the DG of a specification since
here, we explicitly need to refer to operation nodes and CSP operator nodes.

First, we consider the control flow graph and its fragmentation: the two lines of
intersection, namely C1 and C2, dissect the graph into several fragments. We require that
paths of the control flow graph need to comply to the ordering of the segments as follows:
any path of the CFG starts in start and either remains in Ph1 or subsequently reaches C1.
Consecutively, the path remains in the respective segment or advances to either Ph2 or
directly to C2. Next, the path may reach Ph3 ∪ Ph1 or immediately C1. Following up on
this, all paths need to comply with the ordering Ph1,C1,Ph2,C2,Ph3, possibly repeated.
Phases are potentially skipped in between.

Thus, we generally allow the control flow to advance with respect to the ordering of
the segments or to remain in a segment. However, a path must not directly return to a
previous fragment.

Swapper
. . .

main
c= store b→ move a→

move b→ main

. . .

effect store b
∆(tmp)

tmp′ = b

effect move a
∆(b)

b′ = a

store_b

move_b

move_a

...

...

tmp' = b

  b' = a

Figure 4.7: Motivation for the correctness criterion no reaching back

The application of the following criterion is two-folded: besides the fact that paths of
the control flow graph should comply with the ordering of its segments, we also consider
data dependences. For them, the motivation for this constraint is similar to no crossing,
which already excludes a skipping of the cut sets. In addition, we need to exclude data
dependences, returning to a previous segment.

Recall the example from Figure 2.8 with a small modification: we replace Skip with
a recursive call of main. The modification of b within move a and the reference to b
within store b yields a direct data dependence from the first to the latter operation node.
Choosing the sets {store b} and {move b} as the sets of cut nodes is not reasonable: in
this case, the data dependence edge reaches back to the first cut as illustrated in Figure



4.2 Cut of a Dependence Graph 65

4.7. The modified value of b cannot be transmitted in between.

Figure 4.8: Disallowed edges based on no reaching back

It is sufficient to disallow edges reaching back to a cut segment: control flow edges
reaching back from the cut to the previous phase are already excluded by definition
of the fragmentation and the criterion disjointness. Moreover, corresponding data
dependences do not need to be excluded. Figure 4.8 shows the additionally disallowed
edges of the DG.

In order to formally express that a CFG path or a data dependence edge must not
return to a previous segment, we define a predicate no reaching back which inputs two
sets of operation nodes: the first set denotes the source nodes, the second set the target
nodes. Data dependence edges must not connect the first to the latter set of nodes, the
same needs to hold for control flow edges. As CFG paths from one operation node to
another possibly comprise CSP operator nodes in between, we need to rule out those
paths from the first to the latter set of nodes without operation nodes in between. Recall
that

n
•−→ n’, if, and only if, (∃π ∈ pathCFG(n, n’) • π ∩ op(N) = {n, n’}).

Definition 4.2.6. (no reaching back)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let N1,N2 ⊆ op(N).
Then, noRB(N1,N2, DGS), if, and only if,

∀ n1 ∈ N1 • (@n2 ∈ N2 • n1
•−→ n2 ∧ @n’2 ∈ N2 • n1999K n’2)

This condition will be called no reaching back from N1 to N2.

The definition will be instantiated as

noRB(Ph2,C1, DGS) ∧ noRB((Ph1 ∪ Ph3),C2, DGS).
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Criterion 4: all-or-none

The last correctness criterion restricts the distribution of the set of operation nodes of the
DG. Definition 2.3.4 introduced a labelling function l, mapping an operation node on its
schema name. In our decomposition, we have to require that for any operation schema
op ∈ Op, all corresponding nodes opi are assigned to the same graph fragment.

Intuitively, this condition is necessary, since schemas corresponding to operation nodes
occurring in the cut are generally modified. For the different cut sets C1 and C2, this
modification can differ. Moreover, schemas occurring outside of the cut remain unchanged.
A distribution of {opi ∈ op(N) | l(opi) = op} over at least two different segments would
require a duplication of the schema which is undesirable and technically infeasible.

The following predicate defines this all-or-none law – it will subsequently be used
with respect to the cut sets C1,C2 and the complement of C1 ∪ C2:

Definition 4.2.7. (all-or-none)
Let G = (N,−→) be a graph, and let N1,N2 ⊆ N. Then, AoN(N1,N2, G), if, and only if,

N1 ⊆ N2 ∨ N1 ⊆ (N \ N2)

This condition will be called all-or-none law for N1 relative to N2.

This completes the definition of the correctness criteria. They will consecutively be
used to define a cut, that is, a correct fragmentation of the DG, and subsequently the
decomposition of a specification.

4.2.3 Definition of a Cut

The previously introduced correctness criteria along with Definition 4.2.2 immediately
lead to the first of two core definitions of this thesis, the definition of a cut:1

Definition 4.2.8. ([General] Cut of the DG)
Let DGS = (N,−→DG) be the dependence graph and CFGS = (N,−→) the control flow graph
of a specification S, respectively. A fragmentation C = (C1,C2) of the CFG according to
Definition 4.2.2 is called a (valid) cut of the DG, if, and only if, the following correctness
criteria are satisfied:

Criterion 1 (disjointness): The following five sets are pairwise disjoint:

• Ph1, Ph2, Ph3, (phases)

• C1, C2. (cut sets)

Criterion 2 (no crossing):

noCr((Ph1 ∪ Ph3),Ph2, DDGS), (no crossing between different components)

1In the following definition, allowing a cut set to be empty does not pose a problem: if C1 = ∅, the
fragmentation either yields a trivial decomposition or a contradiction to the criterion disjointness.
C2 = ∅ will subsequently be identified as a special case of the cut definition.
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Criterion 3 (no reaching back):

• noRB(Ph2,C1, DGS) and (no reaching back to first cut set)

• noRB((Ph1 ∪ Ph3),C2, DGS), (no reaching back to second cut set)

Criterion 4 (all-or-none): For all operation nodes op ∈ Op:

• AoN(l−1[{op}],C1, DGS) and (no cut-distribution of nodes

• AoN(l−1[{op}],C2, DGS). associated to one operation)

We ultimately aim at the definition of two specification parts S1 and S2, resulting
from the decomposition of the dependence graph of S. The previous definition of a cut
identifies a fragmentation of the set of operation nodes of the dependence graph in the
following way: the unification of C1 and C2 together with Ph3 and Ph1 yields the set of
operations of the first component S1. Accordingly, C1 and C2 together with Ph2 constitute
the second component S2. This is illustrated in Figure 4.9. Operations corresponding to
the first cut set identify the link from S1 to S2, whereas the second cut set determines the
opposite link. The precise definition of S1 and S2 will be given in Section 4.3.

Figure 4.9: Fragmentation of the set of operation nodes in general case

In order to establish a well-defined fragmentation of the original dependence graph and
thus well-defined specification components, CSP operator nodes need to be considered
as well. In Section 4.3, we will determine the CSP parts of the components S1 and S2,
resulting from a projection of the CSP part of S onto the specific sets of operation schemas.
This definition will provide a correct distribution of the CSP operators and thus, operator
nodes of the DG.

Figure 4.10 shows all allowed edges of the DG. Dotted edges depict data dependences,
whereas solid edges represent a unification of both, control flow edges and data depen-
dences.

As we introduced C1 as the first line of intersection and C2 as the second, we need to
substantiate that C2 is located behind C1. The following lemma shows that our definition
indeed matches with the intuition. It states that there are no direct CFG paths from the
second cut to the first cut – any such path needs to proceed over Ph1 via a recursive call.
Recall that

start1 := ({start} to−→ C1) ∩ StartNodes.
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Figure 4.10: Assignment of DG edges to the subgraphs

Lemma 4.2.9. (No direct CFG paths from second to first cut)
Let DGS = (N,−→DG) be the DG of a specification S and let (C1,C2) be a cut of the DG. Then,
the following holds:

∀ c1 ∈ C1, c2 ∈ C2 • (π ∈ pathCFG(c2, c1)⇒ π ∩ start1 6= ∅).

Proof. Assume the opposite: let π ∈ pathCFG(c2, c1) with c2
π−→ c1 and π ∩ start1 = ∅.

In this case, by definition of Ph3, the node c1 ∈ (Ph3 ∩ C1) violates Definition 4.2.8,
correctness criterion disjointness. 2

Since the CFG of a specification may include recursive calls, yielding paths from Ph2 back
to Ph1, we generally need to identify two lines of intersection. The first subgraph thus
contains nodes located before the first cut (Ph1) as well as nodes located behind the second
cut (Ph3). We will now additionally consider a special case of the segmentation, which
corresponds to the definitions of [MWW08].

Assume that the dependence graph of a specification can be fragmented in such a way
that there are no paths from Ph2 back to Ph1. Intuitively, this means that recursion can
only occur within the same phase. In particular, such a DG does not incorporate “outer”
recursive calls in the sense that a path reaching Ph2 never returns to the start-node.

In this case, the dependence graph can reasonably be segmented into two subgraphs
without the need for a second line of intersection: the first subgraph contains the nodes
before the sole line of intersection and the second subgraph the nodes behind it, whereas
both subgraphs include the cut set.

In this specific case, we call the dependence graph sequential based on the possibility
to fragment it without outer recursion. The now simplified fragmentation is illustrated in
Figure 4.11. This leads to the following definition:

Definition 4.2.10. (Single Cut)
Let C = (C1,C2) be a cut. We call C a single cut, if, and only if, C2 = ∅.
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Figure 4.11: Fragmentation of the set of operation nodes in the special case

In the case of a single cut, we synonymously write C and C1. The restriction C2 = ∅
incorporates several repercussions. First of all, the fragmentation yields Ph2 = (C1

to→
∅)∩op(N) from which we can deduce that no CFG paths from Ph2 back to C1 are allowed
at all. Moreover, no paths from Ph2 to Ph1 can exist. Finally, Ph3 = ∅ holds. We will
summarise and proof these claims in the following lemma:

Lemma 4.2.11. (Properties of single cut)
Let C be a single cut. Then, the following holds:

1. Ph2 = (C1
to−→ ∅) ∩ op(N),

2. ∀ n ∈ Ph2, n’ ∈ C1 • pathCFG(n, n’) = ∅,

3. ∀ n ∈ Ph2, n’ ∈ Ph1 • pathCFG(n, n’) = ∅,

4. Ph3 = ∅,

Proof:

1. Obvious. X

2. Assume that there exist n ∈ Ph2, n’ ∈ C1 such that π ∈ pathCFG(n, n’). We distinguish
two cases for π: if π∩Ph1 = ∅, there exist some nodes l ∈ Ph2,m ∈ C1 of π such that

l
•−→ m. This yields a contradiction to the correctness criterion no reaching back.

Otherwise, let m be the first node of π which is an element of Ph1. Then, π
either reaches m via some direct edge from Ph2, violating the correctness criterion
disjointness (m ∈ Ph2 ∩ Ph1). Otherwise, there is an indirect connection via C1,
which again violates no reaching back at some point within π. X

3. Now assume there exist some n ∈ Ph2, n’ ∈ Ph1 such that π ∈ pathCFG(n, n’).
According to the previous case, second part, this path violates one of the correctness
criteria disjointness and no reaching back. X

4. Since, in particular, ∅ to→ M = ∅ for any set M, we immediately deduce the equation.
X 2

Table 4.1 summarises the differences between a general cut and a single cut. Based on
our case study from Chapter 2, we consecutively illustrate the definition for the special
case of a single cut.
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General Cut Single Cut

Number of Cut Sets two one

disjointness
Ph1,C1,Ph2,C2,Ph3

are pairwise disjoint
Ph1,C1,Ph2

are pairwise disjoint

First Subgraph
comprises
Ph1, C1, C2 and Ph3

comprises
Ph1 and C1

Second Subgraph
comprises
C1, Ph2 and C2

comprises
C1 and Ph2

Allowed Recursion
within one segment,
between Ph3 and Ph1

within one segment

Table 4.1: Comparison between the general cut and the single cut

4.2.4 Candy Machine Revisited: Cut of the Dependence Graph

Chapter 2 introduced the specification CandyMachine. We illustrate the previous defini-
tions of a fragmentation and a cut by means of this particular example. The example
complies to the general restrictions for a single cut and thus allows a demonstration of
the special case. Section 4.4 additionally illustrates the general case.

Here, we will neglect three specific data dependences, namely the three initial data
dependences originating from the Init predicate items = 〈 〉 to the respective operation
nodes order, term and deliver. The reason why we are allowed to do this will precisely
be given in Section 4.3.7, where we will deal with the neglect of specific initial data
dependences. Intuitively, these dependences originate from a predicate restricting a
variable which is never modified or referenced in any of the schemas pay, payout, abort
and switch. We will show that the source of this dependence can safely be moved to the
second subgraph.

We start the illustration of the cut definition with the fragmentation of the CFG,
according to Definition 4.2.2. Figure 2.9 from Section 2.3.2 depicts the control flow graph
of the candy machine. Let C1 := {switch} and, according to the definition of a single cut,
C2 := ∅. This leads to the following fragmentation:

Ph1 = {pay, payout, abort},

C1 = {switch} and

Ph2 = {select, order, term, deliver}.

For showing that this fragmentation satisfies the constraints of Definition 4.2.8, recall
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the DG of the candy machine specification as given in Figure 2.13, and consider the four
correctness criteria for the decomposition:

Criterion 1 (disjointness): Ph1, C1 and Ph2 are disjoint. In particular, this is due to
the non-existent recursive calls from Ph2 to Ph1.

Criterion 2 (no crossing): In case we neglect the previously identified initial data
dependences, noCr(Ph1,Ph2, DDGS) holds. No data dependences connect a node of
Ph1 and Ph2.

Criterion 3 (no reaching back): noRB(Ph2,C1, DGS) holds as well. There are no CFG
paths or data dependences originating from Ph2 targeting {switch}.

Criterion 4 (all-or-none): Obvious, since there are no multiple occurrences of an opera-
tion within the CSP part of CandyMachine.

The fragmentation based on C1 = {switch} thus yields a valid (single) cut. This is
illustrated in Figure 4.12. The left hand side depicts the first subgraph, and the right
hand side displays the second subgraph. Note that for the reduced parts of the graphs,
we applied a simplification on the sets of CSP operators and control flow edges. The
precise definition of the modified CSP part is given in the next section.
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Figure 4.12: Cut of the dependence graph for the candy machine

This concludes the illustration of a (single) cut. So far, we considered the dependence
graph of a specification which represents its dependence structure. We defined the cut of
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the DG, separating it into two parts. Next, we need to transfer the fragmentation of the
graph DGS to the decomposition of the specification S.

4.3 Decomposing CSP-OZ Specifications

A cut of the dependence graph of a specification S as defined in the previous section
determines a fragmentation of the DG, resulting in several clusters of nodes. This
segmentation serves as the cornerstone for the identification of two specifications S1 and
S2, representing a correspondent decomposition of S.

S
I [interface definition]
main [CSP part]
State [Object-Z part: state schema]
Init [Object-Z part: initial state schema]
enable op [Object-Z part: enable-schemas]
effect op [Object-Z part: effect-schemas]

Figure 4.13: Constituents of a CSP-OZ class specification

In this section, we transfer the previous definitions from the graph level to the spec-
ification level. Again, we do not distinguish between specifications consisting of one
and several classes. The decomposition of a specification is defined with respect to
the fragmentation of the DG and is thus independent of the class structure. Therefore,
throughout this thesis, we will synonymously refer to class and specification.

Recall the structure of a CSP-OZ class specification as given in Figure 4.13. At first, we
have to identify the different constituents of S1 and S2, namely its interface definition,
its CSP part and its Object-Z part. Subsequently, we assemble both specifications by
identifying a synchronisation alphabet A, employed for the definition of S1 ‖A S2. The
construction has to make sure that S and S1 ‖A S2 have the same observable behaviour.

A first fingerpost for the definition of S1 and S2 is directly given by the fragmentation
of the DG: the sets of operation nodes corresponding to C1 and C2 take the role of
connecting the different specification parts where C1 is responsible for preserving the
influence of S1 on S2 whereas C2 identifies the opposite link. Additionally, the cut is the
basis for the definition of the synchronisation alphabet A. Moreover, nodes of Ph1,Ph2

and Ph3 represent the operations local to S1 (Ph1,Ph3) and S2 (Ph2). This is illustrated
in Figure 4.14.

In order to construct two well-defined specifications Si, i ∈ {1, 2}, we start with a first,
intermediate definition of a decomposition in Section 4.3.1, where we need to deal with
the following subtasks:

Definition of the Interfaces of Si: Identifying the set of operations of a component, the
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Figure 4.14: Correspondence between graph nodes and specification operations

fragmentation of the dependence graph immediately yields the set of channel
declarations of Si.

Definition of the CSP Parts Si.main: According to its interface, the CSP part of Si needs
to be restricted to the component’s set of channels. For that purpose, we define a
projection of the original CSP part on the remaining operations of a component,
according to [Brü08].

Definition of the State Schemas of Si: One of the decisive aspects for an effective ap-
plication of compositional reasoning is the size of the state space of the involved
components. As the set V of state variables of a specification’s Object-Z part deter-
mines the size of the Object-Z state space, the sets S1.V and S2.V necessarily need
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to be smaller than S.V. Hence, we need to identify two subsets of S.V, forming the
sets of required state variables for the specification parts. Additionally, we need to
deal with the state invariants of the state schema.

Definition of the Initial State Schemas Si.Init: Following up on the restriction of the
sets of state variables, we accordingly need to restrict the original initial state
schema. Moreover, an optimisation for this definition, as already indicated in the
last section, will be given in Section 4.3.7.

Definition of the Operation Schemas for Si: According to the definition of the set of
channels, we use the fragmentation of the dependence graph in order to identify
the sets of operation schemas of a component. The determination of their respective
declaration parts and predicate parts is straightforward.

Definition of the Synchronisation Alphabet: The definition of both specification parts
leads to the overall system S1 ‖A S2. The assembly requires a definition of the
synchronisation alphabet A.

Carrying out the previous considerations will result in two well-defined specifications
S1 and S2 and an assembly of S1 and S2 into S1 ‖ S2. However, the pure definition of two
specification parts, resulting from a cut, is insufficient. Additionally, we need to preserve
the behaviour of the specification. To this end, we have to modify part of the generated
components, mainly by adding parameters to some operations:

Preservation of Data Dependences: Even though we do not allow data dependences
to circumvent the cut based on the correctness criterion no crossing, we still
have to transmit the allowed influence of one on the other specification part. Data
dependences may indeed target the set of cut operation nodes as well as originate
from them. From a specification level, this means that modifications of state
variables within one component influence state variables of the other component.
In order to preserve these dependences, we introduce additional transmission
parameters, passing the relevant state variable modifications of one to the other
component. Section 4.3.2 deals with this aspect.

Preservation of CSP Part: The definition of the CSP parts for S1 and S2 based on a
projection does not automatically yield an equivalence of the original CSP part and
the CSP part of S1 ‖ S2. In particular, the synchronisation of both CSP processes
may introduce additional sequences of events which are infeasible for the original
specification. For ensuring the equivalence of both, the CSP parts of S and S1 ‖ S2,
we introduce additional address parameters, ensuring a correct synchronisation of
both resulting CSP processes in Section 4.3.3.

Renaming of Events: Based on the introduction of additional parameters to some of
the specification’s channels, S and S1 ‖ S2 are solely equivalent modulo different
channel types. In Section 4.3.4, we introduce an event renaming relation, linking
the modified to the original channels.
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These are the crucial aspects which we will deal with in the upcoming sections. We
proceed in two steps: first, in Section 4.3.1, we introduce a decomposition of S with
respect to a cut into two well-defined specification parts S1 and S2. Subsequently, we
modify the decomposition to achieve a thorough decomposition by modifying part of
the components elements. The complete definition of the thorough decomposition of
S into S1 and S2 will be given in Section 4.3.5, incorporating all the definitions and
considerations of the previous sections. After illustrating the approach on our candy
machine specification in Section 4.3.6, Section 4.3.7 gives an improvement for the
decomposition by pointing out an optimisation for dealing with initial state predicates.

4.3.1 Intermediate Definition of the Decomposition

The current section stepwise introduces the different constituents of two specifications S1

and S2, resulting from a valid cut of DGS. As of now, we are interested in developing a well-
defined decomposition. Some of the subsequent definitions are marked as intermediate,
as the corresponding specification elements will later by modified to ensure a semantics-
preserving decomposition.

We start the definition of the components S1 and S2 by identifying their respective
interfaces and CSP parts. In order to bridge the gap between the set of operation nodes,
resulting from a cut and the corresponding set of operations, we use Definition 2.3.4:

Definition 4.3.1. (Sets of operations of components)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. The sets of operation schemas for the decomposition of S are defined as

• Op1 := l[(Ph1 ∪ Ph3) \ {init}],

• Op2 := l[Ph2],

• OpC1 := l[C1] and

• OpC2 := l[C2].

We let OpC := OpC1 ∪ OpC2 .

We exclude init from the definition since we will separately deal with the initial state
schema. It is important to note that in general, Op1 and Op2 are not disjoint, as a multiple
occurrence of an operation may lead to one occurrence being assigned to Ph1 ∪ Ph3 and
another to Ph2. However, the three sets OpC1 , OpC2 and Op1 ∪ Op2 are indeed disjoint
based on the correctness criterion all-or-none.

Next, we deduce the interfaces of the components S1 and S2 from the previous defini-
tion, where I|O denotes the restriction of the interface I on the operations of O:

Definition 4.3.2. (Interfaces of components, intermediate definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. The interfaces for the decomposition of S into S1 and S2 are defined as

• S1.I := I|(Op1∪OpC) and (Interface for S1)
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• S2.I := I|(Op2∪OpC). (Interface for S2)

This definition will slightly be adapted in Section 4.3.3, based on the introduction of
additional parameters to the channels.

For determining the CSP parts of Si, the process S.main is restricted on the sets of
events corresponding to the component’s sets of operations. To this end, we define the
projection of a CSP process on a subset of its events according to [Brü08]. The definition
also applies, if the specification is composed of several classes:

Definition 4.3.3. (Projection of CSP processes, [Brü08])
Let P be the right-hand side of a CSP process definition and E ⊆ Events. The projection of P
on E, denoted by P|E, is inductively defined:

1. Skip|E := Skip and Stop|E := Stop,

2. (e→ P)|E :=

{
P|E, e 6∈ E
e→ P|E, otherwise,

3. (P ◦ Q)|E := (P|E) ◦ (Q|E) for ◦ ∈ {; , |||,2,u},

4. (P ||A Q)|E := (P|E) ||A∩E (Q|E).

According to [Brü08], we can apply several simplifications to the resulting CSP pro-
cesses. Such a modification is, for instance, given by replacing a process equation P c= P
by P c= Stop or P c= (P ◦ Q) with P c= Q for ◦ ∈ {2,u}. Note that an equation P c= P
introduces divergence [Ros98] into the overall process, that is, an infinite loop without
an execution of an external event. In the semantic model of traces, replacing it with
P c= Stop does not influence the behaviour of the process. For more details, see [Brü08].

This definition of the projection allows us to inductively define the processes S1.main
and S2.main. As the definition is applied with respect to a set of events, we use the
extension sets of the respective sets of operations.

Definition 4.3.4. (CSP parts of components, intermediate definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. The CSP parts for the decomposition of S into S1 and S2 are defined as

• S1.main := S.main|{|Op1|}∪{|OpC|} and (CSP part for S1)

• S2.main := S.main|{|Op2|}∪{|OpC|}. (CSP part for S2)

Again, due to the additional parameters, the CSP parts of the components will slightly
be modified in Section 4.3.4 by introducing a renaming function.

Next, we define the Object-Z parts of S1 and S2. We have to identify their state schemas,
initial state schemas and operation schemas.

The state schema of S comprises a set of state variables S.V with their respective types,
along with a possibly empty set of state invariants. In order to define the state schemas
of S1 and S2, we first identify two subsets of S.V. By setting
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• S1.V := all(Op1 ∪ OpC1) and

• S2.V := all(Op2 ∪ OpC2),

we restrict both state schemas to those variables which are referenced or modified in at
least one of the component’s local operations or operations of one specific cut set. Not
adding OpC1 and OpC2 to both sets will become clearer when we define the predicate
parts of the operations and when we deal with transmitting the state space modification
between the components in Section 4.3.2. Note that we do not additionally refer to
variables occurring in S.Init.

As a consequence of invariants influencing the execution of any operation, according
to the previous definition, variables occurring in some invariant need to be represented
in both, S1.V and S2.V. This is implicitly guaranteed by the normalisation as introduced
in Section 2.3.3, attaching all state invariants to any effect-schema.

For the complete definition of Si.State, we will use Definition 2.2.1:

Definition 4.3.5. (State schemas of components)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. The state schemas for the decomposition of S into S1 and S2 are defined over

• S1.V := all(Op1 ∪ OpC1) and

• S2.V := all(Op2 ∪ OpC2),

as

• S1.State := {s� (S1.V) | s ∈ S.State} and

• S2.State := {s� (S2.V) | s ∈ S.State}.

Next, we are concerned with the initial state schema of a class, that is, the decom-
position of S.Init into S1.Init and S2.Init. The question arises of how to deal with
predicates referring to elements of both, S1.V and S2.V.

Consider some initial state predicate p(x, y) with x being assigned to S1.V \ S2.V and y
being assigned to S2.V \ S1.V. The predicate can neither be assigned to S1.Init nor to
S2.Init, since one of the specific variables is not an element of the respective component.
However, an elimination of the predicate is infeasible, since the relation between x and y
would get lost.

Therefore, a simple restriction of S.Init onto predicates dealing with Si.V is insuffi-
cient. The general definition of the initial state schemas of S1 and S2 will refer to S.Init
and use an existential quantification for a subset of S.V. This leads to the following
definition:

Definition 4.3.6. (Init schemas of components)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. Furthermore, let (S.V \ S1.V) = {v1, . . . , vn} and let S1.V = {w1, . . . ,wm}. The initial
state schemas for the decomposition of S into S1 and S2 are defined as
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• S1.Init := ∃ v1, . . . , vn • S.Init and

• S2.Init := ∃w1, . . . ,wn • S.Init.

Both Init-predicates are well-defined, that is, all free variables occurring in Si.Init
are elements of its respective sets of state variables Si.V. Note that for the initial state
schema of S2, shared variables, that is, elements of S1.V ∩ S2.V, are also quantified: these
variables are already restricted in the first specification part.

We use the following abbreviation: variables not occurring in the initial state schema
will not be quantified. Precisely, if p is a predicate referring to variables x1, . . . , xk,

∃ y1, . . . , ym • p(x1, . . . , xk)

is abbreviated by

∃ z1, . . . , zn • p(x1, . . . , xk),

where {z1, . . . , zn} = {x1, . . . , xk} ∩ {y1, . . . , ym}. Moreover, we omit trivially satisfied
predicates as, for instance, ∃ v • v = n with n ∈ tv.

Recall the abstract example from before: the initial state predicate p(x, y) will be
changed to ∃ y • p(x, y) for S1.Init and to ∃ x • p(x, y) for S2.Init. A proof of the
adequateness of this definition will be given in Chapter 5. In addition, Section 4.3.7
indicates that a subset of a specification’s initial data dependences does not need to be
considered when it comes to validating the correctness of a cut.

We remain to define the declaration parts and predicate parts of the component’s
operations. For local operations to Si, we simply keep the original definition as-is. For
the set of cut operations, we solely keep the predicate parts in one of the specifications
parts. In order to ensure corresponding types, we always need to preserve the original
declaration parts. Precisely:

Definition 4.3.7. (Operation schemas of components, intermediate definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. The operation schemas for the decomposition of S into S1 and S2 are defined as

S1.op :=

{
S.op, op ∈ (Op1 ∪ OpC1),
[S.op.dec | true], op ∈ OpC2 .

S2.op :=

{
S.op, op ∈ (Op2 ∪ OpC2),
[S.op.dec | true], op ∈ OpC1 .

Again, this definition needs to be modified, when we are dealing with data dependences
between both components. Finally, we unify all the previous definitions into one, the
intermediate decomposition of S into two components S1 and S2:
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Definition 4.3.8. (Decomposition with respect to a cut, intermediate definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. Let

Op1,Op2,OpC1 ,OpC2 ,OpC

be defined according to Definition 4.3.1. The (intermediate) decomposition of S with
respect to (C1,C2) into S1 and S2 is defined as

S1

S1.I [according to Definition 4.3.2]
S1.main [according to Definition 4.3.4]
S1.State [according to Definition 4.3.5]
S1.Init [according to Definition 4.3.6]
S1.op [according to Definition 4.3.7]

S2

S2.I [according to Definition 4.3.2]
S2.main [according to Definition 4.3.4]
S2.State [according to Definition 4.3.5]
S2.Init [according to Definition 4.3.6]
S2.op [according to Definition 4.3.7]

The system generated from the components is defined as the parallel composition of
both classes, synchronising on the set of cut events, that is,

S1 ‖{|OpC|} S2.

In Section 4.3.6, we carry out the decomposition for the candy machine. For a stepwise
illustration of the decomposition on a simpler example, we consider a trivial CSP-OZ
specification for subsequently increasing three natural numbers l, m and n as given in
Figure 4.15. The set C = {change m} defines a valid single cut. We get

• Op1 := {change l},

• Op2 := {change n} and

• OpC := {change m}.

The intermediate definition of the components Increaser1 and Increaser2 is given in
Figure 4.16. The overall system is defined as

Increaser1 ‖{|change m|} Increaser2.

Note that currently, Increaser2.change m is empty. Moreover, the generated initial state
predicates can be simplified:
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Increaser
chan change l : [x! : N] chan change m : [y! : N] chan change n : [z! : N]

main
c= change l?x→ change m?y→ change n?z→ Skip

l,m,n : N
Init
l > n

effect change l
∆(l)
x! : N

l′ = l + 1 ∧ x! = l′

effect change m
∆(m)
y! : N

m′ = l + 1 ∧ y! = m′

effect change n
∆(n)
z! : N

n′ = m + 1 ∧ z! = n′

Figure 4.15: Simple CSP-OZ specification for increasing two natural numbers

Increaser1

chan change l : [x! : N]
chan change m : [y! : N]

main
c= change l?x→

change m?y→ Skip

l,m : N
Init
∃n : N • l > n

effect change l
∆(l); x! : N

l′ = l + 1 ∧ x! = l′

effect change m
∆(m); y! : N

m′ = l + 1 ∧ y! = m′

Increaser2

chan change m : [y! : N]
chan change n : [z! : N]

main
c= change m?y→

change n?z→ Skip

m,n : N

Init
∃ l : N,m : N • l > n

effect change n
∆(n)
z! : N

n′ = m + 1 ∧ z! = n′

Figure 4.16: Intermediate decomposition of Increaser

• ∃n : N • l > n⇔ l > 0 and

• ∃ l : N,m : N • l > n ≡ true, respectively.

This completes the intermediate definition of the different constituents of the com-
ponents, resulting in a well-defined decomposition of S. In an optimum way, the de-
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composition results in two completely independent specification parts S1 and S2. In this
case, the previously given intermediate decomposition is final in the sense that no further
modification is required. In the context of assume-guarantee reasoning, this is preferable,
as no supplemental constructs need to be added, ensuring that the size of the components
remains rather small.

However, two completely independent specification parts are far from realistic. This
would, for instance, require the cut to split a graph into two unrelated pieces, not sharing
any ingoing and outgoing data dependences. Along with that, any branching within the
control flow graph would have to be assigned to one component.

In order to ensure a universally valid decomposition in our context, the introduction of
additional parameters and an event renaming is required. These extensions are given
next, yielding a modification of the previously as intermediate marked definitions.

4.3.2 Preservation of the Data Dependences

As a first step, we are interested in preserving the original data flow, that is, the state
space modifications. In particular, both components sharing the same state variables
requires that a modification within one component is visible to the other component.
Even though it is impossible that data dependences circumvent the set of cut operations
based on the criterion no crossing, they can indeed target the cut and originate from
it, thus causing mutual influence between both components, based on the data flow.
Figure 4.17 again illustrates the fragmentation of a specification’s dependence graph.

Figure 4.17: Possible data dependences targeting the cut and originating from the cut
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Dotted edges denote data dependences between two operation nodes, where the schema
corresponding to the source node modifies a certain state variable, and the target schema
references a variable. Nodes highlighted in grey depict schemas which modify one and
reference another state variable.

The crucial edges are the ones originating from a cut operation and targeting an
operation in the subsequent phase or the other cut: they represent variables modified in
one specification part (within a cut schema and possibly before as well) and referenced
in the other. These modifications must be preserved to not refer to inconsistent values.

In the example Increaser, a particular sequence of two data dependences conforms to
this specific problem: the schema change l modifies the variable l, the schema change m
references l and modifies m and change n references m. This sequence of state mod-
ifications is not reflected in the decomposition of Increaser as given in the last sec-
tion. For an illustration, assume that initially, l = 3, m = 2 and n = 1 holds. Table
4.2 denotes the state valuations of Increaser during the processing of the event trace
〈change l.4, change m.5, change n.6〉. Additionally, assuming the same initial state, the
corresponding traces of the components are given.

Trace of Increaser Trace of Increaser1 Trace of Increaser2

〈(l = 3,m = 2,n = 1), 〈(l = 3,m = 2),
change l.4, change l.4,

(l = 4,m = 2,n = 1), (l = 4,m = 2), 〈(m = 2,n = 1),
change m.5, change m.5, change m.2,

(l = 4,m = 5,n = 1), (l = 4,m = 5), 〉 (m=2,n = 1),
change n.6, change n.3,

(l = 4,m = 5,n = 6)〉 (m = 2,n = 3)〉

Table 4.2: Comparison of two traces for Increaser and its components

As the modification of m depends on l and is no longer represented in Increaser2,
the value of m is inconsistent after the operation change m took place. This incon-
sistency is in particular visible to the outside, as the parameter value of the event
change m has changed from 5 to 2. Even worse, this inconsistency is propagated
to the value of n as well. The inconsistency changes the behaviour of the original
specification as the trace 〈change l.4, change m.5, change n.6〉 cannot be restored within
Increaser1 ‖{|change m|} Increaser2. Since we are interested in the equivalence of traces of
events the specification and its decomposition may perform, this inconsistency must be
prohibited.

The set of cut operations serves as the (sole) link between both specification parts,
and any influence of one component on the other must be transmitted via the cut. A
correspondence of the values of shared variables between both components is achieved
by the introduction of additional parameters. The type of a cut operation is possibly
extended based on this set of transmission parameters, each representing one specific
shared state variable modified in one and referenced in the other specification part.



4.3 Decomposing CSP-OZ Specifications 83

Precisely, these parameters are outputs to the modifying specification part and inputs to
the referencing component, while transmitting the values of the respective state variables.

First, we have to clarify which variables actually need to be transmitted, that is, which
variables exert influence from one on the other component. The following definition
identifies two sets of state variables, namely the ones which need to be transmitted via
the first cut set and the second cut set:

Definition 4.3.9. (Cut variables)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. The modifications of n ∈ op(N) influencing X ⊆ op(N) are defined as

Vn
X = {v ∈ S.V | ∃ n’ ∈ X • n

dd
999K(v) n’ ∨ n

ifdd
999K(v) n’}.

The sets of cut variables for the decomposition of S into S1 and S2 are given by

• CV(C1) :=
⋃

n∈C1
Vn

(Ph2∪C2) and

• CV(C2) :=
⋃

n∈C2
Vn

(Ph1∪Ph3∪C1).

v ∈ CV(C1) holds, if there exists a (direct- or interference-) data dependence by reason
of v originating from the first set of cut operations and targeting an operation from
Ph2 or C2. CV(C2) is analogously defined. The definition is complete in the sense that
all variables exerting influence from one on the other component are included: the
correctness criterion no crossing ensures that data dependences must not circumvent
the set of cut nodes.

As we need to refer to operation schemas instead of operation nodes when adding
transmission parameters to an operation, we set

Vop
X =

⋃
n∈l−1(op) Vn

X

and let

CV1 := Vop
(Ph2∪C2) and CV2 := Vop

(Ph1∪Ph3∪C1).

Even though we might have different sets of cut variables for n, n’ ∈ l−1(op), the definition
is reasonable: the correctness criterion all-or-none ensures that two different operation
nodes corresponding to one operation schema must not be distributed over a cut set and
its complement.

The previous considerations lead to the following, final definition for the operation
schemas of S1 and S2:

Definition 4.3.10. (Operation schemas of components, final definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. For CV1 = {v1, . . . , vn} and CV2 = {w1, . . . ,wm}, let

op.tr in1 = trv1? : tv1 ; . . . ; trvn? : tvn , op.tr in2 = trw1? : tw1 ; . . . ; trwm? : twm ,
op.tr out1 = trv1 ! : tv1 ; . . . ; trvn ! : tvn , op.tr out2 = trw1 ! : tw1 ; . . . ; trwm ! : twm .
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The operation schemas for the decomposition of S into S1 and S2 are defined as

S1.op :=
S.op, op ∈ Op1,

[S.op.delta; S.op.dec; op.tr out1 | op.pred ∧
∧

v∈CV1
trv! = v′], op ∈ OpC1 ,

[∆(w1, . . . ,wm); S.op.dec; op.tr in2 |
∧

w∈CV2
w′ = trw?], op ∈ OpC2 .

S2.op :=
S.op, op ∈ Op2,

[∆(v1, . . . , vn); S.op.dec; op.tr in1 |
∧

v∈CV1
v′ = trv?], op ∈ OpC1 ,

[S.op.delta; S.op.dec; op.tr out2 | op.pred ∧
∧

w∈CV2
trw! = w′], op ∈ OpC2 .

The declaration parts of all cut operations are extended by additional transmission
parameters. For the influence of S1 on S2, we add predicates trv! = v′ for each cut variable
v ∈ CV1 to the first cut set and corresponding predicates v′ = trv? to the second. We
proceed accordingly for variables of S2 influencing S1. The delta lists of the receiving
operations need to comprise all modified cut variables. Figure 4.18 illustrates the concept
of these parameters. In Chapter 5, we will show that this technique is sufficient to restore
the data flow of a specification in its decomposition.

Figure 4.18: Illustration of the transmission parameters

In our example, due to the data dependence change m
dd
999K(m) change n, the state

variable m is a cut variable of change m. Thus, we add one transmission param-
eter trm to change m, serving as an output to Increaser1.change m and an input to
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Increaser1

chan change l : [x! : N]
chan change m : [y! : N; trm! : N]

main
c= change l?x→

change m?y?trm → Skip

l,m : N
Init
∃n : N • l > n

effect change l
∆(l)
x! : N

l′ = l + 1 ∧ x! = l′

effect change m
∆(m)
y! : N; trm! : N

m′ = l + 1 ∧ y! = m′ ∧ trm! = m′

Increaser2

chan change m : [y! : N; trm? : N]
chan change n : [z! : N]

main
c= change m?y?trm →

change n?z→ Skip

m,n : N
Init
∃ l : N • l > n

effect change m
∆(m)
trm? : N

m′ = trm?

effect change n
∆(n)
z! : N

n′ = m + 1 ∧ z! = n′

Figure 4.19: Decomposition of Increaser, modified according to Definition 4.3.10

Increaser2.change m. The modified decomposition is shown in Figure 4.19. Note that we
have to modify the specification’s interfaces and CSP parts as well. We deal with this
aspect in Section 4.3.4.

This modification fixes the previously identified inconsistency as shown in Table 4.3.
Next, we deal with the reconstitution of the control flow of the original specification
within its decomposition. The underlying concept similarly uses additional parameters.

Trace of Increaser Trace of Increaser1 Trace of Increaser2

〈(l = 3,m = 2,n = 1), 〈(l = 3,m = 2),
change l.4, change l.4,

(l = 4,m = 2,n = 1), (l = 4,m = 2), 〈(m = 2,n = 1),
change m.5, change m.5, change m.5,

(l = 4,m = 5,n = 1), (l = 4,m = 5), 〉 (m=5,n = 1),
change n.6, change n.6,

(l = 4,m = 5,n = 6)〉 (m = 5,n = 6)〉

Table 4.3: Comparison of two traces of Increaser and its components after modification
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4.3.3 Preservation of the Control Flow

The fact that one specification part influences the other one due to its data flow is
quite intuitive. Additional to that and less obvious, the intermediate decomposition and
reassembly can also cause a modification of the original control flow of a specification.
For instance, it is possible that the CSP part of S1 ‖ S2 allows for additional traces, thus
causing a violation of the trace equivalence between S and S1 ‖ S2.

As the problem of preserving the control flow of a specification is solely related to the
CSP part of a specification, we entirely omit dealing with the Object-Z part in this section.

Restoring the Original Synchronisation

First, we will deal with ensuring a correct synchronisation between S1 and S2. In order to
illustrate the general problem, we give a small example.

Example 4.3.11. Let S be a specification over a set of events {a, b, c, d, e}, and let

S.main := (a→ c→ d→ Skip) 2 (b→ c→ e→ Skip).

Let C = {c} be a valid single cut yielding

• S1.main := (a→ c→ Skip) 2 (b→ c→ Skip) and

• S2.main := (c→ d→ Skip) 2 (c→ e→ Skip).

Let tr := 〈a, c, e〉. Then, tr ∈ traces(S1.main ‖{c} S2.main) but tr 6∈ traces(S.main).

The example points out the following: Definition 4.2.8 allows the cut sets to contain
several nodes with the same operation name - for n1, n2 ∈ Ci, the equation op = l(n1) =
l(n2) is possible. Let us denote two different occurrences of op within the CSP part of a
specification by op1 and op2.

In the decomposition of the specification, op1 and op2 occur in both parts, S1 and
S2. Obviously, a synchronisation of op must be restricted to originally corresponding
occurrences of op, that is, S1.op1 should be synchronised with S2.op1 and, accordingly,
S1.op2 with S2.op2.

However, the synchronisation alphabet can no longer distinguish between these dif-
ferent occurrences. Therefore, non-corresponding instances of operations can be syn-
chronised as well. This can particularly lead to additional traces for the CSP part of
S1 ‖ S2.

In our example, the event c occurs twice within S.main and thus twice in S1.main
and S2.main. A synchronisation of c within S1.main ‖ S2.main can either result in the
joint execution of corresponding occurrences, namely S1.c1 synchronising with S2.c1 and
S1.c2 synchronising with S2.c2, as shown on the left hand side of Figure 4.20, or to an
invalid synchronisation of S1.c1 with S2.c2 and S1.c2 with S2.c1, as shown on the right
hand side of the same figure. The latter synchronisation triggers the previously identified
path 〈a, c, e〉, which is invalid for S.main.

In Section 2.2.1, we introduced simple parameters [Fis00, Fis97] which can be re-
stricted by both, the CSP part and the Object-Z part of a specification. This specific type
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Figure 4.20: Synchronisation of events for external choice

of parameters will be used to define a set of additional address parameters to operations
with a multiple occurrence in the cut. In our case, they will solely be restricted by the CSP
part, and they do not occur in the Object-Z part of a component. We will modify the CSP
parts of S1 and S2 by fixing the values for some of these parameters. As a synchronisation
of two instances of an operation is only possible if their extension sets are not disjoint,
differently fixed parameters can prevent a false synchronisation.

We illustrate the outcome of this extension on the previous example. For the event c,
we will use one address parameter p1 of type {1, 2} and redefine

• S1.main := (a→ c.1→ Skip) 2 (b→ c.2→ Skip) and

• S2.main := (c.1→ d→ Skip) 2 (c.2→ e→ Skip).

A synchronisation of c1 with c2 over different components is now impossible.
In general, if no parallel composition is involved in a process, one additional address

parameter is sufficient to separate two different occurrences of an operation from each
other. However, when dealing with parallel composition, synchronising the operation
under interest, one parameter is no longer adequate, since it would exclude part of the
originally allowed synchronisation.

Recall Example 4.3.11 after replacing the external choice operator with ‖{c}. We get

S1.main := (a→ c→ Skip)
‖{c} (b→ c→ Skip),

S2.main := (c→ d→ Skip)
‖{c} (c→ e→ Skip).
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In this case, a joint synchronisation of the event c within S1.main ‖{c} S2.main is
allowed. This requires us to add two fresh parameters, not affecting each other, with one
of them subsequently restricted for one branch of the parallel composition and the other
one restricted for the other branch.

Summarising, we need to preserve and neither extend nor restrict the original synchro-
nisation structure of S within S1 ‖ S2. The following definitions especially need to ensure
that only corresponding instances of operations can be synchronised between S1 and S2.

In order to find a general solution for this problem by identifying a correct addressing
extension for any process, including nesting of different types of branching, we recursively
traverse its CFG with respect to any operation schema with multiple occurrence in the
cut. An algorithm yielding a correct synchronisation is given in Section 5.1. To this end,
we outline the general strategy. In addition, we define and show the required conditions
on a correct addressing, which are realised by the algorithm. The algorithm proceeds as
follows:

Traversing the CFG: Starting with the unique start-node, we recursively traverse the
CFG of the process S.main. Let op ∈ Op be the current operation under interest.

Initial parameter: Initially, we use one address parameter p1 of type {1}. The type of
any parameter can be extended throughout the traversal.

Active Parameters: Any branch of the CFG has one dedicated, active address parameter.
The underlying idea is that this parameter possibly needs to be assigned with a
specific value to prevent a false synchronisation within the associated branching.
Initially, p1 is declared active for the sole initial branch and assigned with the value
1. All assigned values are possibly modified during an execution of the algorithm.
Besides, one parameter can be active for more than one branch.

No Branching: In case we proceed over a CFG operator which does not introduce
branching, no changes to the parameters are committed.

Branching for cfop ∈ {extch, intch, interleave, parX} and op 6∈ X: Branching without par-
allel composition of the operation under interest can lead to two occurrences of
op within the cut, which need to be separated. In this case, the currently active
parameter is declared active for both, the left and right branch. For the left branch,
we keep the originally assigned value whereas for the right branch, we increase it
by one, and we add the new value to the parameter’s type. This ensures that an
operation occurring in both branches cannot wrongly be synchronised.

Branching for parX and op ∈ X: Branching with a synchronisation of op possibly leads
to two occurrences of op, which still need to be able to be synchronised. In this
case, the active parameter pi, which belongs to the branch entering the parallel
composition, can no longer be used: it may already be used to prevent a wrong syn-
chronisation within a previous branching. The algorithm introduces two additional,
fresh parameters pi+1 and pi+2. The first parameter is declared active for the left
branch, the second parameter is declared active for the right branch. As we solely
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restrict each parameter on one side, a synchronisation of occurrences within the left
branch and the right branch is always possible, independent of further restrictions
of pi+1 and pi+2.

Figure 4.21 illustrates the two different cases for branching.
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Figure 4.21: Addressing extension for CFG branching

In order to exemplify the necessity for introducing additional parameters in the case of
a parallel composition and to clarify the general idea, we give an example. Figure 4.22
shows an extract of a possible control flow graph, for which we consider one operation
b, element of a valid cut. The CFG proceeds over an external choice, followed by a
parallel composition with b being synchronised and, finally, a two-sided external choice.
As b occurs multiple times in the cut, an addressing extension is required. Based on our
strategy, we introduce three additional parameters:

• p1 is responsible for ensuring that no false synchronisation with respect to the outer
external choice is possible, that is, b1 must not be synchronised with any element of
{b2, b3, b4, b5}. This is achieved by fixing p1 to the value of 1 for the left branch and
to 2 for the right branch.

• p2 is responsible for excluding a wrong synchronisation within the left inner external
choice, that is, between b2 and b3.

• p3 forbids a synchronisation within the right inner external choice, that is, between
b4 and b5.

• Finally, p2 and p3 are indeed necessary to ensure that any two elements of {b2, b3}
and {b4, b5} can still be synchronised.
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Figure 4.22: Addressing extension for nested branching

Having illustrated and exemplified our general strategy, we now give the details on the
addressing extension. Based on the criterion all-or-none, all occurrences of an operation
have to be assigned to one cut set, which we denote by Ci.

We define two conditions on a parameter extension and subsequently show that they
are sufficient to preserve the synchronisation structure of S within S1 ‖ S2. Here, we omit
dealing with the original parameters of an operation op, since they are irrelevant for the
subsequent proof. Both conditions correspond to the previously identified different cases
for branching with and without a synchronisation of op.

In Definition 2.2.6, we introduced partial events. As the CSP part of a specification
may restrict the set of simple parameters of an operation, any occurrence of an operation
within the CSP part is a partial event. Subsequently, opp denotes an arbitrary partial event
for the channel op.

Definition 4.3.12. (Conditions for correct addressing extension)
Let CFGS = (N,−→) be the control flow graph of a specification S, and let C = (C1,C2) be a
cut. Furthermore, let op ∈ OpC such that op occurs at least twice in either C1 or C2. Let opk

denote an arbitrary occurrence of the operation op within CFGS and opk
p its corresponding

occurrence within S.main. The address requirements for a correct synchronisation are given
by the following two conditions, which need to hold for any i 6= j:
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Branching without Synchronisation: If opi and opj are located inside different branches
of either an external choice operator, internal choice operator, interleaving operator or
a parallel composition operator parX with op 6∈ X, opp needs to comprise one parameter
p1 such that its type includes x, y ∈ N with x 6= y. This parameter is fixed to x for opi

p

and to y for opj
p in both, S1.main and S2.main :

opi
p becomes opi

p.x and opj
p becomes opj

p.y.

This corresponds to the left hand side of Figure 4.21.

Branching with Synchronisation: If opi sd
L999K opj, the (partial) event opp needs to com-

prise two parameters p1 and p2, such that the type of p1 includes x ∈ N and the type
of p2 includes y ∈ N for arbitrary x, y. The first parameter is fixed to x for opi

p whereas
the second parameter is fixed to y for opj

p in both, S1.main and S2.main :

opi
p becomes opi

p.x?p2 and opj
p becomes opj

p?p1.y.

This corresponds to the right hand side of Figure 4.21.

We give an intuitive description of these conditions. Example 4.3.11 illustrated that
two different occurrences of an operation can spuriously be synchronised over different
branches of an external choice operator. This problem can correspondingly occur for any
CSP operator, which introduces branching into the CFG. In order to prevent this from
happening, the first condition uses a parameter p1 for the respective operation, which is
differently fixed in both branches. Thus, a wrong synchronisation is no longer possible,
as the extension sets of the partial events are now disjoint. If any two occurrences of the
same operation were not allowed to synchronise beforehand, our addressing extension
ensures an empty intersection of their extensions, not allowing for a synchronisation
afterwards.

Additionally, we have to ensure that a previous synchronisation is not excluded due
to our extension. Here, the second condition requires that for any parallel composition
including op, two additional parameters are introduced, which can subsequently be
restricted for their corresponding branch without influencing a synchronisation over both
branches.

In order to restore the original synchronisation structure of a specification by the
introduction of additional address parameters, we need to precisely state when two
occurrences of the same operation were previously allowed to synchronise. Beforehand,
we define a condition, stating that a certain synchronisation dependence can be realised
by means of the underlying CSP process: there indeed exist traces, leading to the joint
execution of both events. From now on, we let foot(tr) denote the last element of the
CSP trace tr according to [Sch99].

Definition 4.3.13. (Realisation of synchronisation dependence)
Let op ∈ Op such that opi

p and opj
p, i 6= j, are two different occurrences of op within the CSP

part of S. Let opi and opj denote their corresponding nodes of CFGS such that opi sd
L999K opj.
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For the CFG node parX being responsible for opi sd
L999K opj, let P1 and P2 denote the CSP

processes corresponding to the first branch and the second branch of parX within CFGS,
respectively. If

∃ tr1 ∈ traces(P1), tr2 ∈ traces(P2) •
(tr1� X = tr2� X) ∧ (foot(tr1) = opi

p) ∧ (foot(tr2) = opj
p),

we say that the synchronisation dependence connecting opi
p and opj

p can be realised.

For two events to allow for synchronisation, their corresponding operation nodes of
the CFG must be connected via a synchronisation dependence which can be realised. In
addition, the intersection of the extension sets of the partial events corresponding to
these nodes is non-empty. All conditions combined ensure that opi and opj can indeed
synchronously be executed.

Definition 4.3.14. (Allowed synchronisation)
Let op ∈ Op such that opi

p and opj
p, i 6= j, are two different occurrences of op within the CSP

part of S. Let opi and opj denote their corresponding nodes of the CFG. We say that opi
p and

opj
p allow for synchronisation within S, if, and only if,

a) opi sd
L999K opj within the CFG of S,

b) opi sd
L999K opj can be realised,

c) {| opi
p |} ∩ {| opj

p |} 6= ∅.

Before proving the correctness of the conditions of the previous definition, we show
the following property: if two nodes x, y of are not located in different CFG branches
attached to the same node, they have to be connected by a CFG path.

Lemma 4.3.15. (Non-opposite branching requires CFG path)
Let CFGS = (N,−→) be the CFG of a specification S. For any node cfop ∈
{extch, intch, par, interleave}, let fst(cfop) denote one branch and snd(cfop) the other branch
of cfop, before reaching the join-node uncfop. For any n, n’ ∈ cf(N), if

@cfop ∈ {extch, intch, par, interleave} •
(n ∈ fst(cfop) ∧ n′ ∈ snd(cfop)) ∨ (n ∈ snd(cfop) ∧ n′ ∈ fst(cfop)),

either n
∗−→ n′ or n′

∗−→ n.

Proof. Let cfop1, cfop2 denote the innermost operators with n, n′ being located inside one
of their respective branches. In case that a node is not located inside of any branching,
cfop1 = cfop2 = start. Thus, we do not separately need to deal with start.

Case 1: cfop1 = cfop2 Based on the assumption, n and n′ have to be located in the same
branch of the operator. As we chose cfopi to be the innermost branching, n and n′

are both located on the sole path from cfopi to n or from cfopi to n′, dependent on
which node is visited first.
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Case 2: cfop1 6= cfop2 Based on the assumption, there is not outer operator cfopo with n
and n′ being located in different branches of cfopo. Therefore, for i 6= j, either cfopi

terminates before cfopj, yielding a path from one node to the other one via uncfopi.
Otherwise, cfopi is located inside of cfopj, also yielding a CFG path from one node
to the other one. 2

The following theorem shows that the previously identified conditions on an addressing
extension are sufficient.

Theorem 4.3.16. (Definition 4.3.12 ensures correct synchronisation of S1 and S2)
Let CFGS = (N,−→) be the control flow graph of a specification S, and let C = (C1,C2) be
a cut. For any op ∈ OpC with multiple occurrence within the CFG and CSP part of S, let
both conditions of Definition 4.3.12 be satisfied. Then, the original horizontal synchroni-
sation structure of S is preserved within S1 ‖ S2, whereas no additional synchronisation is
introduced. Precisely, for opi

p 6= opj
p:

(1) Possible synchronisation for duplicated nodes:
S1.opi

p and S2.opi
p allow for synchronisation in S1 ‖ S2.

(2) Original synchronisation is preserved within S1 and S2:
If S.opi

p and S.opj
p allow for synchronisation in S, then S1.opi

p [S2.opi
p] and S1.opj

p

[S2.opj
p] allow for synchronisation in S1 [S2].

(3) Original synchronisation is preserved within S1 ‖ S2:
If S.opi

p and S.opj
p allow for synchronisation in S, then S1.opi

p [S1.opj
p] and S2.opj

p

[S2.opi
p] allow for synchronisation in S1 ‖ S2.

(4) No additional synchronisation within S1:
If S.opi

p and S.opj
p do not allow for synchronisation in S, then S1.opi

p and S1.opj
p do

not allow for synchronisation in S1.2

(5) No additional synchronisation within S1 ‖ S2:
If S.opi

p and S.opj
p do not allow for synchronisation in S, then S1.opi

p [S2.opi
p] and

S2.opj
p [S1.opj

p] do not allow for synchronisation in S1 ‖ S2.

Proof. Assume that both conditions of Definition 4.3.12 hold. In case we refer to opi
p, opj

p,
we implicitly assume i 6= j. We show the respective properties by applying the conditions
from the definition:

(1) S1.opi
p and S2.opi

p result from a duplication of S.opi
p. Let us denote the corresponding

CFG nodes within the CFG of S1 ‖ S2 by opi
1 and opi

2. We have to show all three
conditions of Definition 4.3.14.

2Note that both events might indeed allow for synchronisation within S2. This does not pose a problem as
in this case, a synchronisation over the cut would have to involve all four events S1.opi

p, S1.opj
p, S2.opi

p

and S2.opj
p which is impossible if S1.opi

p and S1.opj
p cannot be synchronised.
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a) Starting from parOpC
, there exist paths parOpC

π−→ opi
1 and parOpC

π′−→ opi
2. π and

π′ do not share any additional nodes, as parOpC
is the outermost operator of the

CFG for S1 ‖ S2. This ensures the conditions on a synchronisation dependence, as
given in Definition 2.3.6. X

b) This dependence can be realised: for the traces tr and tr′ corresponding to the
paths π and π′, the equation tr�OpC = tr′�OpC holds. Traces restricted on the set
of cut operations are preserved by the projection of the CSP process S.main on
Si.main, as cut events occur in both, S1 and S2, and as Definition 4.3.3 does not
modify the structure of a process. X

c) Additionally, since we refer to two nodes corresponding to the same node of CFGS,
and since the addressing extension is identical for both, S1.main and S2.main, the
inequality {| S1.opi

p.add |} ∩ {| S2.opi
p.add |} 6= ∅ trivially holds for any possible

addressing extension add. X

(2) Assume that opi
p and opj

p allow for synchronisation in S. Again, we show all three

conditions for allowed synchronisation of Si.opi
p and Si.opj

p.

a) By assumption, opi and opj are connected via a synchronisation dependence in S,
and both nodes are elements of Ci. Corresponding to the previous case, they are
still connected via a synchronisation dependence in S1 and in S2, as Definition
4.3.3 does not modify the branching structure of a process. X

b) Let parX be responsible for the synchronisation dependence between opi
p and opj

p,
and let tr and tr′ be the traces realising the dependence. Then, tr� X = tr′� X. As
both paths are correspondingly projected within Si.main, we get

(tr� (Opi ∪ OpC))� X = (tr′� (Opi ∪ OpC))� X.

Thus, the synchronisation dependence can be realised. X

c) Finally, the second condition on correct addressing results in opi
p being replaced

by opi
p.x?p2 and opj

p being replaced by opj
p?p1.y in both, S1 and S2, for some

x, y ∈ N. This implies

{| opi
p.x. |} ∩ {| opj

p. .y |} 6= ∅

based on the assumption

{| opi
p |} ∩ {| opj

p |} 6= ∅.X

(3) Assume that opi
p and opj

p allow for synchronisation in S.

a) According to (1), we get two paths π and π′ in the CFG of S1 ‖ S2, which start
in parOpC

and reach the respective occurrences of opi and opj without additional
shared nodes, thus yielding a synchronisation dependence. X

b) This dependence can be realised: the projection of S.main on OpC yields the
same traces within S1.main and S2.main. X
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c) Finally, in correspondence to the previous case,

{| opi
p.x. |} ∩ {| opj

p. .y |} 6= ∅.X

(4) Assume that opi and opj do not allow for synchronisation in S due to a violation of
conditions a), b) or c):

a): In either case, a missing synchronisation dependence cannot be introduced due
to the projection. X

b): Let parX be responsible for the synchronisation dependence between opi
p and opj

p.
Let P1 and P2 denote the CSP processes corresponding, to the first and second
branch of parX . Then, there are no traces tr1 ∈ traces(P1) and tr2 ∈ traces(P2),
such that tr1� X = tr2� X. As op ∈ OpC, the projection of the CSP process S.main
on S1.main preserves the original traces with respect to X: no events of Op2

can be involved, thus ensuring that the synchronisation dependence cannot be
realised within S1.main. X

c): {| opi
p |} ∩ {| opj

p |} = ∅ is preserved by the addressing extension. X

(5) Again assume that one of three conditions for allowed synchronisation is violated:

a): We distinguish between two cases:

Case 1: Both nodes are located inside different branches of either an external
choice-, internal choice- or interleaving operator or a parallel composition
operator parX with op 6∈ X. The first condition on correct addressing results
in opi

p being replaced by opi
p.x and opj

p being replaced by opi
p.y, x 6= y, within

S1.main and S2.main. Thus, even though both nodes are possibly connected
via a newly added synchronisation dependence within the CFG of S1‖S2, the
events S1.opi

p.x and S2.opj
p.y do not allow for synchronisation according to

Definition 4.3.14, since {| opi
p.x |} ∩ {| opj

p.y |} = ∅ holds. The same holds
for S1 and S2 switched.

Case 2: The premise of case 1 does not hold. A parallel composition with op
being synchronised is impossible, as there is no synchronisation dependence
connecting both nodes. Thus, branching is ruled out. Based on Lemma
4.3.15, there exists a CFG path π starting in opi and reaching opj (opposite
direction accordingly). This path does not include any operation nodes
outside of Ci since otherwise, the cut would be left and re-entered, causing
a violation of the correctness criterion no reaching back. In particular, for
any two paths parOpC

π1−→ opi and parOpC

π2−→ opj, the traces tr, tr1 and tr2

corresponding to the paths π, π1 and π2 yield tr1� OpC 6= tr2� OpC, as opj
p

is an element of the latter but not the first trace. This violates that the
synchronisation dependence can be realised. The same holds for S1 and S2

switched. X

b): Again, let parX be responsible for the synchronisation dependence between opi
p

and opj
p. A violation of the possible realisation of a synchronisation dependence
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yields that there are no tr1 ∈ traces(P1) and tr2 ∈ traces(P2) such that tr1� X =
tr2� X. In particular, as op ∈ (OpC ∩ X), a synchronisation of op within S1 ‖ S2

would have to involve all four occurrences of op. However, according to (4,b.),
the projection of S.main preserves the traces with respect to X up to reaching
the cut within S1.main. Thus, opi

p and opj
p are not allowed to synchronise within

S1. A diagonal synchronisation between opi
p and opj

p is impossible as well, as the
synchronisation dependence cannot be realised due to S1. X

c): A violation of Condition c) is trivially preserved within S1 ‖ S2. X 2

Figure 4.23 illustrates the allowed and forbidden synchronisations due to the three
conditions of the lemma. A solid line depicts an allowed synchronisation, whereas a
dotted lines depicts the opposite.
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Figure 4.23: Illustration of Theorem 4.3.16

Separating Operations Shared between Op1 and Op2

Another aspect which we have to deal with tackles the fact that in general, Op1 and Op2

are not disjoint. This can lead to one operation being assigned to both, S1 and S2. We
need to ensure that the projection of a CSP process correctly eliminates the subset of
occurrences of an operation which are no longer part of the respective component. A
projection, keeping the set of all occurrences, is generally insufficient:

Example 4.3.17. Let S.main := a → b → a → Skip and C = {b} be a valid (single)
cut. Then, the first occurrence of a should be an element of S1.main whereas the second
one should be an element of S2.main. A projection of S.main on {a, b} would result in
S1.main = S2.main = S.main and is therefore infeasible.
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As Op1 and Op2 are not disjoint, we need to separate the occurrences of an operation
op ∈ Op1 ∩ Op2 within S1 from the ones within S2. Corresponding to the previous
section, we will use one additional address parameter p1 : {1, 2} for any operation with
its occurrences distributed over Op1 and Op2. The parameter is fixed to 1 for occurrences
within S1 and accordingly fixed to 2 for occurrences within S2.

For the event a of Example 4.3.17, we get

• S1.main := a.1→ b→ Skip and

• S2.main := b→ a.2→ Skip.

Defining the Sets of Events for S1 and S2

Based on the additional parameters and their restrictions, the overall system definition
needs to be adapted. First, we observe the following:

• For any op 6∈ OpC, there exist one (if op ∈ (Op1 ∩ Op2)) or zero additional address
parameters. For simplification, we will denote this possible additional parameter by
p1. [v] denotes that the value of the parameter p1 is set to v, if the parameter exists.

• For op ∈ OpC, any number of parameters is possible. However, for the set of cut
operations, all possible extensions of operations need to be represented in the
synchronisation alphabet. This is due to the correctness criterion all-or-none and
the fact that the respective addressing is identical for both, S1 and S2.

Both observations allow for the following definition:

Definition 4.3.18. (Event sets of components)
Let DGS = (N,−→DG) be the control flow graph of a specification S, and let C = (C1,C2) be
a cut, yielding the four sets Op1,Op2,OpC1 and OpC2 , now possibly comprising additional
address parameters. The event sets for the decomposition of S into S1 and S2 are given by

E1 :=
⋃

op∈Op1
{| op. [.1] |}, E2 :=

⋃
op∈Op2

{| op. [.2] |},

EC1 := {| OpC1 |}, EC2 := {| OpC2 |}
where "_" denotes the original parameters of the channel. Let EC := EC1∪EC2 , ES1 := E1∪EC
and ES2 := E2 ∪ EC.

The following lemma describes that all events shared between S1 and S2 are elements
of EC:

Lemma 4.3.19. (Common events of S1 and S2 solely occur in the cut)
Let E1, E2 be defined according to Definition 4.3.18. Then:

E1 ∩ E2 = ∅.

Proof. Assume that there exists e ∈ (E1 ∩ E2). Then, e ∈ {| op |} holds for some
op ∈ (Op1 ∩ Op2). Based on the addressing extension for shared operations, op is thus
extended by one address parameter of type {1, 2}. Either this value is set to 1 implying
e 6∈ E2 or to 2 implying e 6∈ E1, contradiction. 2
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4.3.4 Renaming for the Decomposition

The previous section introduced additional parameters to operations of S1 and S2, required
to ensure an equivalent data flow and control flow between S and S1 ‖ S2. These
parameters modify the original types of the channels of S. In our correctness proof, which
is given in Chapter 5, we thus show that S and S1 ‖ S2 are equivalent modulo different
channel types. As we need to refer to the precise sets of events of a specification, we will
from now on write ES to denote the set of events of a specification S.

For describing the difference between ES and ESi , we introduce

• a function f , mapping a channel of S on the corresponding channel within Si, now
comprising additional parameters and

• two event renaming relations RC1 : ES → ES1 and RC2 : ES → ES2 , applied on the
process S.main, in order to determine S1.main and S2.main.3

We start with the function f mapping channels of S on channels of Si. It implicitly
defines a corresponding extension of the declaration parts of the Object-Z schemas,
now additionally containing transmission parameters.4 According to the notation for
transmission parameters, let

op.add = add1 : r1; . . . ; addk : rk

denote the set of address parameters of an operation op, and let

op.orig = p1d1 : s1; . . . ; pldl : sl

with di ∈ {?, !, ε} (where ε denotes the empty decoration used for simple parameters) the
set of original parameters of op, as defined within the interface of S:

Definition 4.3.20. (Renaming of channels)
Let S be a specification, and let C = (C1,C2). The channel renaming for the decomposition
of S into S1 and S2 is given by

f(op : [op.orig]) =


op : [op.orig; op.tr in1; op.add], op ∈ OpC1 ,

op : [op.orig; op.tr in2; op.add], op ∈ OpC2 ,

op : [op.orig; op.add], otherwise.

Note that, in the last case, op.add comprises zero or one address parameter whereas
in the other cases, the amount is indefinite. Further note that we never leave out any
original parameters, as the types of the shared operations have to coincide.

3Note that in CSP-OZ, according to [Fis00], and in contrast to pure Z, renaming of CSP processes is not
restricted to functions – relations can be used as well.

4As address parameters are not restricted by the Object-Z part, we omit them in the declaration parts of
Object-Z schemas.
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Next, we introduce two renaming relations, determining two processes, which are
subsequently used for the definition of S1.main and S2.main. For an operation op ∈ Op,
we let

op.tr in = tr1? : t1; . . . ; trn? : tn

denote the additional transmission parameters of an arbitrary operation. Moreover, let ai
denote the possibly fixed value of the address parameter addi according to the restriction
of address parameters. The following event renaming is relational, as it maps an event on
a set of events. We simply write op?p to denote the set {op.x | x : tp}. This notation is
motivated by the equivalence between op?p→ P and 2x:tp

op.x→ P.

Definition 4.3.21. (Renaming of events)
Let S be a specification, and let C = (C1,C2). The (relational) event renaming for the
decomposition of S into S1 and S2 is given by

RC1 : ES → ES1 and RC2 : ES → ES2 ,

defined as

RC1(op.x) :=


op.x.1, op ∈ (Op1 ∩ Op2) \ (OpC1 ∪ OpC2),
op.x?tr1 . . .?trn.a1 . . . ak, op ∈ OpC ∧| l−1(op) |> 1,
op.x?tr1 . . .?trn, op ∈ OpC ∧| l−1(op) |= 1,
op.x, otherwise

and

RC2(op.x) :=


op.x.2, op ∈ (Op1 ∩ Op2) \ (OpC1 ∪ OpC2),
op.x?tr1 . . .?trn.a1 . . . ak, op ∈ OpC ∧| l−1(op) |> 1,
op.x?tr1 . . .?trn, op ∈ OpC ∧| l−1(op) |= 1,
op.x, otherwise.

Graphically explained, the renaming introduces additional transmission and address
parameters to the original events, if required. For operations not represented in the cut,
no transmission parameters are introduced. Shared operations of Op1 and Op2 receive
one address parameter fixed to 1 and 2, respectively, whereas local operations to one
specification do not receive any additional parameters. For the cut, we introduce a
possibly empty set of transmission parameters. For the address parameters, we separate
operations with multiple occurrence in the cut from the ones with single occurrence: the
first operations receive additional address parameters, whereas the latter ones do not.

The previous definitions allow us to give the final definitions for the interfaces and CSP
parts of S1 and S2. We start with a modification of Definition 4.3.2, which now takes the
channel renaming f into account:

Definition 4.3.22. (Interfaces of components, final definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. Let f be the channel renaming function according to Definition 4.3.20. The interfaces
for the decomposition of S into S1 and S2 are defined as
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• S1.I := f(I)|(Op1∪OpC) and (Interface for S1)

• S2.I := f(I)|(Op2∪OpC). (Interface for S2)

In order to modify the CSP parts of the components according to Definition 4.3.4, we
apply the event renaming on main. Note that the following holds for any renaming
relation R ([Sch09]):

(e→ P)JRK = e′ : R(e)→ PJRK.

Definition 4.3.23. (CSP parts of components, final definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. Let RC1 and RC2 be the event renaming relations according to Definition 4.3.21. The CSP
parts for the decomposition of S into S1 and S2 are defined as

• S1.main := (S.mainJRC1K)|ES1
and (CSP part for S1)

• S2.main := (S.mainJRC2K)|ES2
. (CSP part for S2)

In Figure 4.19, we implicitly modified the channel change m of Increaser after the
introduction of one transmission parameter. As address parameters are not required for
the decomposition, the specification’s decomposition is final.

Summarising the previous definition, we are now able to give the final definition for
the thorough decomposition of S into S1 and S2.

4.3.5 Definition of the Decomposition

After ensuring a correct data flow within S1 ‖ S2 based on the introduction of additional
transmission parameters and ensuring a correct control flow based on additional ad-
dress parameters, we finally give the definition of the thorough decomposition of S into
components S1 and S2 by modifying Definition 4.3.8:

Definition 4.3.24. (Decomposition with respect to a cut, final definition)
Let DGS = (N,−→DG) be the dependence graph of a specification S, and let C = (C1,C2) be a
cut. Let

Op1,Op2,OpC1 ,OpC2 ,OpC

be defined according to Definition 4.3.1. The decomposition of S with respect to (C1,C2)
into S1 and S2 is defined as

S1

S1.I [according to Definition 4.3.22]
S1.main [according to Definition 4.3.23]
S1.State [according to Definition 4.3.5]
S1.Init [according to Definition 4.3.6]
S1.op [according to Definition 4.3.10]
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S2

S2.I [according to Definition 4.3.22]
S2.main [according to Definition 4.3.23]
S2.State [according to Definition 4.3.5]
S2.Init [according to Definition 4.3.6]
S2.op [according to Definition 4.3.10]

The system, generated from the components, is defined according to Definition 4.3.8
as the parallel composition of both classes, synchronising on the set of cut events:

S1 ‖EC S2.

For the remainder of this thesis, we let ES′ := ES1 ∪ ES2 and Op′ := Op1 ∪ Op2 ∪ OpC.
The following theorem states the main result of this thesis. The correctness proof will be
shifted to the next chapter.

Theorem 4.3.25. (Correctness of the decomposition)
Let S be a specification, and let C = (C1,C2) be a cut, yielding a decomposition into S1 and
S2 according to Definition 4.3.24. Then, the following holds:

S =T (S1 ||EC S2)JR′K, (4.1)

where R′ : ES′ → ES is defined as

R′(op.x.t1 . . . tn.a1 . . . ak) := op.x

with ti denoting the values for the possible transmission parameters of op and ai the values
for its possible address parameters.

Based on several lemmas and some additional prearrangements, the proof is given in
Chapter 5, Section 5.6. The next section illustrates the decomposition on our case study
of a candy machine. It is based on the single cut C := {switch}.

4.3.6 Candy Machine Revisited: Decomposition

Recall the main case study of this thesis, the specification of a candy machine, as given in
Figure 2.3. We already identified the set C := {switch} to be a valid single cut in Section
4.2.4.

First, the definition for Ph1,C1 and Ph2 yields

• Op1 = {pay, payout, abort},

• OpC = {switch} and

• Op2 = {select, order, term, deliver}.

The projections of S.main on the remaining sets of events,
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• S1.main := S.main|{|pay,payout,abort,switch|} and

• S2.main := S.main|{|switch,select,order,term,deliver|},

lead to

CandyMachine1

[. . . ]

main
c= pay?coin→ main 2 Payout 2 switch→ Skip

Payout c= payout?coin→ Payout 2 abort→ Skip

[. . . ]

CandyMachine2

[. . . ]

main
c= Skip 2 switch→ Select

Select c= (select?ca→ (Select 2 Order)) 2 Deliver
Order c= order→ Select

Deliver c= deliver?ca→ Deliver 2 term?rest→ Skip

[. . . ]

after applying several simplifications. For the sets of state variables of CandyMachine1

and CandyMachine2, we get

• S1.V = {sum, paid, credits} and

• S2.V = {credits, items, selected}.

S1.V and S2.V determine the respective state schemas. The initial state schemas are given
by

S1.Init = ∃ selected : Candies, items : seq Candies •
(sum = 0 ∧ paid = 〈 〉 ∧ items = 〈 〉)

≡ (sum = 0 ∧ paid = 〈 〉)

and

S2.Init = ∃ sum : N, paid : seq Coins, credits : N •
(sum = 0 ∧ paid = 〈 〉 ∧ items = 〈 〉)

≡ items = 〈 〉.

In order to determine the operation schemas of the components, we first need to
compute the set of cut variables with respect to C1 = {switch}. The operation schema
switch modifies three different variables, namely sum, credits and paid. However, only
one of them is subsequently referenced: credits. Based on the three data dependences by
reason of credits,
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• switch
dd
999K(credits) select,

• switch
dd
999K(credits) order and

• switch
dd
999K(credits) term,

we get CV1 = {credits}. Therefore, switch needs to be extended by one additional
transmission parameter trc : N. We are now able to define CandyMachine1.switch and
CandyMachine2.switch:

CandyMachine1

[. . . ]
enable switch
sum ≥ 2

effect switch
∆(sum, credits, paid); trc! : N

sum′ = 0 ∧ paid′ = 〈 〉
credits′ = sum ∧ trc! = credits′

CandyMachine2

[. . . ]
enable switch effect switch

∆(credits); trc? : N

credits′ = trc?

As the sole cut operation switch only occurs once in the specification, no address
parameters are required. We remain to apply the renaming of the channel switch and all
of its occurrences within S.main, according to the introduction of the sole transmission
parameter. The final decomposition is depicted in Figures 4.24 and 4.25.

When dealing with the identification of reasonable decompositions, Chapter 6 intro-
duces a bigger case study, consisting of several classes and requiring address parameters
as well as transmission parameters.

4.3.7 Improvement of the Decomposition

Up to now, we defined a valid decomposition of a specification, based on a fragmentation
of its dependence graph. The given correctness criteria exclude invalid decompositions,
thus restricting the set of possible decompositions.

In Section 4.3.1, we defined a restriction of the initial state schema of S on the possible
initial valuations of the generated components S1 and S2. The implementation of our
decomposition approach is based on this specific definition and needs to take any initial
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CandyMachine1

chan pay : [coin? : Coins] chan payout : [coin! : Coins]
chan abort chan switch : [trc! : N]

main
c= pay?coin→ main 2 Payout 2 switch?trc → Skip

Payout c= payout?coin→ Payout 2 abort→ Skip

sum, credits : N
paid : seq Coins

Init
sum = 0
paid = 〈 〉

enable pay
sum + 2 ≤ Max

enable payout
paid 6= 〈〉

enable abort
paid = 〈〉 ∧ sum = 0

enable switch
sum ≥ 2

effect pay
∆(sum, paid)
coin? : Coins

sum′ = sum + coin?
paid′ = paida 〈coin?〉

effect payout
∆(sum, paid)
coin! : Coins

sum′ = sum− coin! ∧ paid′ = tail paid
coin! = head paid

effect switch
∆(sum, credits, paid); trc! : N

sum′ = 0 ∧ paid′ = 〈 〉
credits′ = sum ∧ trc! = credits′

Figure 4.24: Decomposition of the candy machine, first component

data dependence into account. The definition can, however, slightly by altered and
improved.

The specification CandyMachine comprises an initial state predicate items = 〈 〉, which
forms the source of three initial data dependences:

• init
idd
999K(items) term, based on enable term = [items = 〈 〉],

• init
idd
999K(items) deliver, based on (amongst others) enable term = [items 6= 〈 〉] and

• init
idd
999K(items) order, based on effect order comprising item′ = (itemsa 〈selected〉).

We identified {switch} as a valid single cut in Sections 4.2.4 and 4.3.6 due to the fact
that all of these three initial data dependences do not violate the correctness criterion
no crossing. The reason is as follows: the variable items is never modified or referenced
in any operation schema of Op1 ∪ OpC. In particular, items 6∈ S1.V. Therefore, items
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CandyMachine2

chan switch : [trc? : N] chan select : [ca? : Candies] chan order
chan deliver : [ca! : Candies] chan term : [rest! : N]

main
c= Skip 2 switch?trc → Select

Select c= (select?ca→ (Select 2 Order)) 2 Deliver
Order c= order→ Select

Deliver c= deliver?ca→ Deliver 2 term?rest→ Skip

credits : N
items : seq Candies
selected : Candies

Init
items = 〈 〉

enable order
credits ≥ price(selected)

enable select
credits ≥ 1

enable deliver
items 6= 〈〉

enable term
items = 〈〉

effect switch
∆(credits)
trc? : N

credits′ = trc?

effect order
∆(items, credits)

items′ = itemsa 〈selected〉
credits′ = credits− price(selected)

effect select
∆(selected)
ca? : Candies

selected′ = ca?

effect deliver
∆(items)
ca! : Candies

items′ = tail items
ca! = head items

effect term
∆(credits)
rest! : N

credits′ = 0
rest! = credits

Figure 4.25: Decomposition of the candy machine, second component

does not influence the behaviour of S1 at all. In this case, the respective initial state
predicate can completely be eliminated from S1.Init and the corresponding initial data
dependence can safely be neglected.

Indeed, this elimination of an initial data dependence is only possible for corresponding
predicates not being related to the variables of S1 at all. These observations serve as the
basis for the following definitions.

First, when explicitly dealing with predicates within a CSP-OZ specification, we do not
refer to the single top-level predicate of an operation but rather to its atomic sub-predicates.
This is according to [Brü08]. For op ∈ Op, the set Atoms(op) depicts the set of all atomic
predicates such that the conjunction of all these predicates yields the predicate part of op.
We use the same notation for the initial state schema:∧

p∈Atoms(op.pred) p = op.pred and
∧

p∈Atoms(Init) p = Init.
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Next, we define an equivalence relation on S.V and a closure set of a state variable with
respect to this relation. Let vars(p) denote the set of state variables, occurring in the
predicate p:

Definition 4.3.26. (Initial closure of state variables)
Let S be a specification. We define an equivalence relation R over (S.V × S.V) by5

R := {(x, y) | ∃ a ∈ Atoms(Init) • x, y ∈ vars(a)} ∪ IdS.V .

For any x ∈ S.V, the initial closure of x is inductively defined as the set InitClos(x), satisfying
the following two conditions:

• x ∈ InitClos(x),

• y1 ∈ InitClos(x) ∧ (y1, y2) ∈ R ⇒ y2 ∈ InitClos(x).

R relates any two state variables such that there exists an atomic predicate within
Init containing both variables. The initial closure of a state variable x is the set of all
state variables, directly or indirectly influencing x within the initial state schema.

Example 4.3.27. Let S be a specification, S.V = {x, y, z} with all elements of type N, and
let S.Init = (x > 2) ∧ (x < y) ∧ (z > 5). Then, R = {(x, y), (y, x)} ∪ Id{x,y,z}. This yields
InitClos(z) = {z} and InitClos(x) = InitClos(y) = {x, y}.
Now let S.Init = (x = y) ∧ (y = z). Then, R = {(x, y), (y, x), (y, z), (z, y)} ∪ Id{x,y,z}. This
yields InitClos(x) = InitClos(y) = InitClos(z) = {x, y, z}.

These considerations do not influence Definition 4.3.6. The correctness proof in Chapter
5 shows the following: we can safely neglect all initial data dependences originating from
an atomic predicate a, such that InitClos(x) ⊆ (S2.V \ S1.V) for all x ∈ vars(a).

In our specific case, InitClos(items) = {items} and {items} ⊆ (S2.V \ S1.V) holds. Thus,
the three previously identified initial data dependences originating from items = 〈 〉 can
indeed be neglected, justifying the correctness of the cut {switch}. In particular, the
predicate items = 〈 〉 is already removed from CandyMachine2.Init by applying our
definition for a decomposition and further simplifications on CandyMachine2.Init.

We pointed out an optimisation for the decomposition in the following sense: some data
dependences do not need to be considered when the correctness criterion no crossing
is validated. Thus, a larger set of valid decompositions is possible.

4.4 Decomposition for the General Case: Number Swapper

We recall the small case study of a number swapper from Chapter 2 and slightly adapt it
as displayed in Figure 4.26: the specification swaps two natural numbers a and b with a
initially possessing the value 1 and b continuously receiving a new value as an input. The
protocol starts by inputting the new value for b, subsequently swaps both numbers and
outputs the new value of b. As Swapper.main restarts, the specification does not allow
for the definition of a single cut.

5For any set X, we let IdX denote the identity on X, that is, IdX := {(x, x) | x ∈ X}.
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Swapper
chan input : [in? : N]
chan store b,move a,move b
chan result : [out! : N]

main
c= input?in→ store b→ move a→ move b→ result?out→ main

a, b, tmp : N
Init
a = 1

effect input
∆(b)
in? : N

b′ = in?

effect store b
∆(tmp)

tmp′ = b

effect move a
∆(b)

b′ = a

effect move b
∆(a)

a′ = tmp

effect result
out! : N

out! = b

Figure 4.26: CSP-OZ specification for swapping two numbers, extended

A valid (general) cut for this specification is given by (C1,C2) with C1 = {store b} and
C2 = {result}. The definition yields

• Op1 = {input},

• OpC1 = {store b},

• Op2 = {move a,move b} and

• OpC2 = {result}.

For the sets of state variables, we get

• S1.V = {b, tmp} and

• S2.V = {a, b, tmp}.

The initial state schemas are given by

S1.Init = ∃ a : N • (a = 1) ≡ true,
S2.Init = ∃ b : N, tmp : N • (a = 1) ≡ a = 1.
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Swapper1

chan input : [in? : N] chan store b : [trtmp! : N] chan result : [out! : N]

main
c= input?in→ store b?trtmp → result?out→ main

b, tmp : N
effect result
out! : N

effect store b
∆(tmp); trtmp! : N

tmp′ = b ∧ trtmp! = tmp′

effect input
∆(b); in? : N

b′ = in?

Figure 4.27: Decomposition of the number swapper, first component

Swapper2

chan store b : [trtmp? : N] chan move a,move b chan result : [out! : N]

main
c= store b?trtmp → move a→ move b→ result?out→ main

a, b, tmp : N
Init
a = 1

effect store b
∆(tmp); trtmp? : N

tmp′ = trtmp?

effect move a
∆(b)

b′ = a

effect move b
∆(a)

a′ = tmp

effect result
out! : N

out! = b

Figure 4.28: Decomposition of the number swapper, second component
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As InitClos(a) = {a} and {a} ⊆ (S2.V \ S1.V), the initial data dependence init
idd
999K(a)

move a is not cut-crossing. Based on the data dependence store b
dd
999K(tmp) move b, we

get CV1 = {tmp}, necessitating one transmission parameter trtmp. As the operation result
does not modify any state variable, CV2 = ∅ holds. No addressing extension is required,
thus leading to the final decomposition as given in Figures 4.27 and 4.28.

The correctness property on the specification as described in Figure 4.29 models that
the value received by input corresponds to the output value of result in the next iteration
of the protocol. Model checking this property with FDR2 yields its validity for Swapper as
well as Swapper1 ‖{|store b,result|} Swapper2.

Prop = 2j∈N(input.j→ result.1→ P(j))

P(j) = 2k∈N(input.k→ result.j→ P(k))

Figure 4.29: Correctness requirement for Swapper

4.5 Related Work

The technique proposed in this chapter targets the manual decomposition of a given spec-
ification into two components. These subsystems are used in a compositional verification
framework which is based on two assume-guarantee proof rules. The approach is closely
related to several works, with some of them described next.

The dependence analysis, as given in Section 2.3, is based upon the methodology by
Brückner [Brü08] for slicing CSP-OZ specifications. Besides applying a similar analysis of
a specification, slicing does not decompose a given specification but rather eliminates
irrelevant parts from it. These irrelevant specification elements depend on a certain
property under interest, the slicing criterion. A correct decomposition in our context is
independent of the verification properties. The decomposition approach is more closely
related to program chopping [RR95]: chopping is likewise based on the analysis of a
(program) dependence graph and tries to identify program points affecting a certain
target node based on a specific source node.

Several works in the context of formal specifications present techniques for decom-
posing a given system into several components. Recently, Butler [But09] sketched a
technique for composing Event-B models and decomposing them into sub-models. Here,
events can be split, without allowing common variables to different machines. Similar to
our approach dealing with transmission parameters, shared parameters are used to pass
the influence of one to another machine. The technique is not applied in the context of
compositional verification, but rather in the scope of model refinements. In the context
of CSP||B and for separate checking of divergence freedom of a model, Evans, Schneider
and Treharne [STE05] developed a methodology to decompose CSP||B specifications
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into smaller subsystems, called chunks. They can consist of a set of CSP processes or
contain B machines as well. The decomposition is conducted by examining the existing
subsystems and parallel components of a CSP||B specification.

The technique closest to ours is the one by Alur and Nam [NA06, AMN05, Nam07]
dealing with assume-guarantee-based reasoning in the context of symbolic model check-
ing. Using symbolic transition systems (STS) as the semantic model, the authors fully
automatically decompose and verify a system. A decomposition of a STS yields a set of
symbolic modules, now comprising additional boolean input- and output variables which
are similar to our transmission parameters. The choice of the decomposition is carried out
by an automatic partitioning of the set of boolean variables of the STS and it is based on
an equal distribution of the set of variables along with a minimisation of required inputs
and outputs. The approach is also based on the L∗ algorithm, using a generalised version
of rule (B-AGR) in the validation process. In their semantic domain solely dealing with
boolean variables, the authors do not incorporate a dependence analysis based on data
flow and control flow, and they do not tackle communication and synchronisation aspects
of a specification. The decomposition is based on one particular heuristic which does not
take the alphabet size of the assumption into account. As the decomposition is performed
automatically, it is impossible to lead the framework to a superior decomposition by hand
which does not satisfy the constraints for an equal distribution and minimisation.

Another related work discusses the usefulness of assume-guarantee reasoning. The
authors investigate the possible decompositions of a program specified as a labelled
transition system, based on several case studies and model checkers [CAC06]. The results
show that assume-guarantee reasoning outperforms monolithic verification in only a few
cases. Two conclusions can be drawn from this work: assume-guarantee reasoning is
not in general more effective than direct model checking. Moreover, its effectiveness
highly depends on the choice of the decomposition. The authors state that analysts need
some guidance to identify those decompositions which are indeed less time- and memory
consuming. Chapter 6 will provide some theory on how this can be achieved.

Beforehand, the next chapter will show correctness of our approach by particularly
proving Theorem 4.3.25.
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The previous chapter introduced a technique on how to decompose a given CSP-OZ
specification into two components, based on an analysis of the specification’s dependence
graph. Theorem 4.3.25 states the main result of this thesis: in our semantic domain of
the CSP traces model, the original specification and its decomposition are trace-equivalent.
The result is essential and ensures the following: for a property P, specified as a CSP
process,

(P vT S)⇔ (P′ vT (S1 ‖EC S2)).

Here, we need to refer to a process P′, resulting from the process P after a renaming
with respect to the set of all additional parameters. Recall that S1 and S2 already
comprise transmission parameters and address parameters according to Section 4.3.4.
P′ vT (S1 ‖ S2) can be deduced from A vT S1 and P′ vT (A ‖ S2) within the compositional
learning framework, introduced in Chapter 3. Thus, correctness of the compositional
proof rules (B-AGR) and (P-AGR) along with Theorem 4.3.25 yield the overall correctness
of our approach.

Correctness of (B-AGR) and (P-AGR) were already shown in Chapter 3. The verification
of Theorem 4.3.25 will be carried out in the present chapter. The main strategy for
the proof uses the compositional semantics of CSP-OZ specifications in terms of CSPZ
according to Figure 2.7: the traces of a CSP-OZ specification S are given by

traces(S.main‖ESS.OZ).

Figure 5.1 illustrates the individual proof steps. Precisely, we show:
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Figure 5.1: Illustration of the steps of the correctness proof

Correctness for the CSP Part, Section 5.2: Based on the compositional semantics of
CSP-OZ, S =T (S.main ‖ES S.OZ) holds. In order to refer to the individual parts of
the components Si, we first need to decompose the CSP part and show that the
original CSP part is trace equivalent to its decomposition modulo the (inverse)
renaming relation, that is,

S.main =T (S1.main ‖EC S2.main)JR′K.

Correctness for the OZ Part, Section 5.3: Accordingly, we have to show correctness for
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the decomposition of the Object-Z part. However,

S.OZ =T (S1.OZ ‖EC S2.OZ)JR′K

does not hold in general: traces of the Object-Z part alone do not adhere to the
CSP part. We need to take the orderings of events with respect to the CSP part into
account and show S.OZ =T (S1.OZ ‖EC S2.OZ)JR′K for the set of traces conforming to
the CSP part.

Distributivity of Inverse Renaming, Section 5.4: After showing the individual correct-
ness of both decompositions, we have to distribute the inverse renaming relation R′

over the parallel composition ES. Thus, we show

(S1.main ‖EC S2.main)JR′K] ‖ES (S1.OZ ‖EC S2.OZ)JR′K =T
((S1.main ‖EC S2.main) ‖ES′ (S1.OZ ‖EC S2.OZ))JR′K.

Redistribution of CSP Processes, Section 5.5: Now being able to refer to Si.main and
Si.OZ without the need for considering the renaming, we have to swap S2.main
and S1.OZ to step from the parallel composition of the CSP parts and Object-Z parts
to the parallel composition of the components S1 and S2. We show

(S1.main ‖EC S2.main) ‖ES′ (S1.OZ ‖EC S2.OZ) =T
(S1.main ‖ES1

S1.OZ) ‖EC (S2.main ‖ES2
S2.OZ),

which subsequently leads to the overall conclusion, as Si =T (Si.main ‖ESi
Si.OZ)

holds.

Before getting under way with the individual proof steps, Section 5.1 presents an
algorithm, which satisfies the requirements for correct addressing. Afterwards, we show
correctness of the decomposition of the CSP part and the Object-Z part in Sections 5.2 and
5.3, respectively. The correctness for the distributivity of the inverse renaming is given in
Section 5.4, followed by a lemma, stating the possible redistribution of CSP processes
within a context-specific parallel composition in Section 5.5. The chapter concludes with
the proof of Theorem 4.3.25, now joining together all the individual proof steps.

5.1 Ensuring Correct Synchronisation

In order to ensure an equivalent control flow of the original specification and its de-
composition, Section 4.3.3 introduced the concept of address parameters. In particular,
Definition 4.3.12 presented two conditions on these additional parameters and Theorem
4.3.16 showed that they are sufficient to preserve the original control flow.

In this section, we define an algorithm, realising both conditions of Definition 4.3.12.
The algorithm was successfully implemented in Java as part of a diploma thesis [Her09]
focusing on the integration of the decomposition approach into Syspect [Sys06], a graph-
ical modelling environment for CSP-OZ. In this thesis, the algorithm will be presented in
pseudo code.
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The root procedure inputs the control flow graph of a specification S along with the set
of operations Op′ := Op1 ∪ Op2 ∪ OpC. It computes the modified interfaces Si.I and CSP
processes Si.main, according to Definition 4.3.22 and Definition 4.3.23, respectively.

For CFGS = (N,−→) being the CFG of the specification under interest, let n denote an
arbitrary node of the CFG and, in case that n introduces branching, unn its corresponding
join node. For any op ∈ Op, we do not denote the original type, but solely refer to the
additional address parameters.

procedure ADDRESSMAIN(CFGS,Op′)
for each (op ∈ (Op1 ∩ Op2) \ OpC)

do



op← op : [p1 : {1, 2}] for the definition of Si.I

if (opi ∈ (Ph1 ∪ Ph3)) do
opi

p ← opi
p.1 for the definition of S1.main

if (opj ∈ Ph2) do
opj

p ← opj
p.2 for the definition of S2.main

for each (op ∈ OpC1 such that l−1(op) > 1) do ADDRESSCUT(op,C1)
for each (op ∈ OpC2 such that l−1(op) > 1) do ADDRESSCUT(op,C2)

Figure 5.2: Algorithm for the address extension: procedure ADDRESSMAIN

The algorithm comprises four different procedures. The root procedure ADDRESSMAIN

is given in Figure 5.2. It first processes over all shared operations of S1 and S2, which are
not located in a cut set. Their corresponding occurrences need to be separated, and they
are addressed by one parameter, according to Section 4.3.3.

procedure ADDRESSCUT(op,Ci)
global Decl(op)← {p1 : {1}}
global Val(op) ← ∅
comment: ADD modifies Decl(op) and Val(op)

ADD(start, op, 〈p1 = 1〉,Ci, false)
MODIFYCUT(op,Decl(op),Val(op))

Figure 5.3: Algorithm for the address extension: procedure ADDRESSCUT

The procedure ADDRESSCUT, depicted in Figure 5.3, is successively called for all opera-
tions op with multiple occurrence in either C1 or C2. For each operation, ADDRESSCUT

holds two global lists:

• Decl(op) comprises the set of additional address parameters of op with their corre-
sponding types. Initially, Decl(op) holds one parameter of type {1}. The set is used
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for the definition of the interfaces Si.I.

• Val(op) contains a set of tuples (opj
p, values), where values is a sequence of valuations

pi = vi with vi, denoting the restriction of the address parameter of pi for the specific
occurrence opj

p of op within S.main. Initially, the set is empty. Val(op) is used to
define the renaming of Si.main.

ADDRESSCUT calls the core procedure ADD, which recursively traverses the CFG and
modifies the global variables Decl(op) and Val(op). This procedure will be explained
below.

procedure MODIFYCUT(op,Decl(op),Val(op))
let {p1 : t1, . . . , pk : tk} = Decl(op) in
op← op : [p1 : t1; . . . ; pk : tk] for the definition of S1.I and S2.I
for each (opj

p, values) ∈ Val(op) do
let (if (〈pi = wi〉 in values) then vi = wi else vi =?pi) in
opj

p ← opj
p.v1. . . . .vk for the definition of S1.main and S2.main

Figure 5.4: Algorithm for the address extension: procedure MODIFYCUT

After the procedure ADD terminated, ADDRESSCUT calls a procedure MODIFYCUT

(Figure 5.4) which inputs the respective operation and both sets, Decl(op) and Val(op).
MODIFYCUT carries out the actual modification of S.I and the renaming of S.main,
according to the results of ADD. In particular, the interfaces Si.I are modified based on
the parameter declarations within Decl(op). Each occurrence opj

p of op within S.main is
modified with respect to the tuple (opj

p, values). Here, address parameters pi are either
restricted by pi = wi or remain unrestricted, if values does not comprise a restriction on
pi.

Finally, the core procedure ADD, as shown in Figure 5.5, proceeds as follows. It
traverses the CFG and inputs five parameters.

• The first parameter n denotes the current node visited by the procedure. For the
initial call of ADD, this node is the unique start-node of the CFG.

• The second parameter op denotes the operation under interest.

• As ADD keeps track of all parameter valuations a subsequent occurrence of op
needs to adhere to, the third parameter comprises the current restrictions for
the address parameters. Initially, according to the singleton of initial parameters,
values = 〈p1 = 1〉. Corresponding to the explanations of Section 4.3.3, the last
element of values denotes the currently active parameter and its actual restriction.

• Parameter four identifies the cut set, corresponding to the occurrence of op.
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procedure ADD(n, op, values,CS, cutVisited)
case (n = termi.X ∧ succ(termi.X) = ∅) ∨ n = stopi then exit

case n ∈ {skipi, seqi, calli.X, ret.X} ∨ (n = termi.X ∧ succ(termi.X) 6= ∅)
then ADD(succ(n), op, values,CS, cutVisited)

case n = start.P then
if (start.P already visited) then exit
else ADD(succ(n), op, values,CS, cutVisited)

case n ∈ op(N)

then



if (n 6∈ CS and cutVisited = false)
then ADD(succ(n), op, values,CS, cutVisited)
if (n 6∈ CS and cutVisited = true) then exit
if (n ∈ CS)

then


if (@i • n = opi)
then ADD(succ(n), op, values,CS, true)

else
{

Val(op)← Val(op) ∪ {(opi
p, values)}

ADD(succ(n), op, values,CS, true)

case ((n = pariX ∧ op 6∈ X) ∨ (n ∈ {extchi, intchi, interleavei}))

then



if (CS = Cc ∧ unni is located behind or inside of Cc)
then let last values = 〈pk = j〉 in
Decl(op)← (Decl(op) \ {pk : {1, . . . , l}} ∪ {pk : {1, . . . , l + 1}})
comment: Note that j ≤ l but not necessarily j = l.

ADD(succ one(n), op, values,CS, cutVisited)
ADD(succ two(n), op, (front values)a 〈pk = l + 1〉,CS, cutVisited)
else ADD(unni, op, values,CS, cutVisited)

case (n = pariX ∧ op ∈ X)

then



if (CS = Cc ∧ unpariX is located behind or inside of Cc)
then let {p1 : t1, . . . , pk : tk} = Decl(op) in
Decl(op)← Decl(op) ∪ {pk+1 : {1}, pk+2 : {1}}
ADD(succ one(n), op, valuesa 〈pk+1 = 1〉,CS, cutVisited)
ADD(succ two(n), op, valuesa 〈pk+2 = 1〉,CS, cutVisited)
else ADD(unpari, op, values,CS, cutVisited)

case (n = uncfopi)

then
{

if (uncfopi already visited) then exit
else ADD(succ(n), op, values,CS, cutVisited)

Figure 5.5: Algorithm for the address extension: procedure ADD
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• Finally, a fifth parameter, initially assigned to false, specifies if ADD has already
reached the respective cut set.

The general idea of ADD is to carry over and realise the requirements on a correct
addressing from Definition 4.3.12. The procedure recursively traverses the CFG. As
already explained, ADD has side effects on the global variables Decl(op) and Val(op): it
continuously adds address parameters (in case of parallel composition with op being
synchronised) and modifies their values (in case of any other branching).

Precisely, in case of n not having any successor node, the procedure stops. If n is
an element of {skipi, seqi, calli.X, ret.X, termi.X} with the latter node being followed by a
ret-node, the procedure is recursively called for the sole successor node.

Termination of the algorithm is achieved by the fact that n = start.P only leads to a
recursive call if start.P was not already visited before. Otherwise, the respective call of
ADD terminates. Note that for simplification, our pseudo code-algorithm does not explicitly
keep track of the already visited nodes. This can obviously be achieved by adding a global
variable.

Next, if n is an operation node of the CFG, a case differentiation is required: if n
does not correspond to an operation of the cut set, the procedure either continues (if
the traversal did not reach the cut set yet) or terminates (in the opposite case, as this
signalises that the cut set is left). Accordingly, if n does not represent an occurrence of the
operation under interest, the procedure is called for its successor node. In the final case
of n = opi for some i, the current tuple (opi

p, values) is stored in Val(op). This assignment
signalises the modification of opi

p within the procedure MODIFYCUT.
The first core case of the procedure handles the case of branching without synchronisa-

tion of op. Here, the type of the currently active parameter pk is modified according to
the first case of Definition 4.3.12. Precisely, it is extended by one additional value within
Decl(op). Additionally, the restriction of pk within one branch is preserved, whereas it
is assigned with the new value within the other branch. An additional if-clause ensures
that the branching indeed reaches the cut set under interest and does not terminate
beforehand. Otherwise, the procedure simply steps over the branching.

In the second core case, the algorithm deals with parallel composition with op being
synchronised. According to the second case of Definition 4.3.12, we introduce two
additional address parameters, with one of them restricted for the first and the other one
for the second branch. This is carried out in this specific case of the procedure: Decl(op)
is extended by two additional parameters of initial type {1}, whereas Val(op) is extended
by two additional tuples, denoting the initial restrictions for the first and second branch,
respectively. The procedure is recursively called for both branches. Again we use an
if-clause to prevent proceeding of branching, terminating before the cut set.

The final case deals with joining of branching. Here, we again simply proceed with the
node’s successor. However, as a join node has two incoming edges, we need to ensure
that we only proceed once with the node’s sole successor.

We will now substantiate the termination and correctness of the algorithm.

Proposition 5.1.1. (Termination of ADDRESSMAIN)
The algorithm ADDRESSMAIN terminates for any control flow graph.
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Proof (Sketch). Obviously, we solely need to show termination of ADD. Let π be a path
of the CFG of an arbitrary specification. We distinguish two cases:

1. π is a finite path. In accordance to the definition of the CFG, the final node of the
path is either termi.X or stopi. However, in both cases, ADD terminates, according
to the first case.

2. π is an infinite path. Thus, the path must contain a cycle„ since the CFG’s set of
nodes is finite. According to the definition of the CFG and our explanations from
Section 2.3.2, the sole possibility for cycles are combinations of call.Pi and start.P
for some process P. However, in case the algorithm visits start.P for the second time,
it again terminates. 2

Proposition 5.1.2. (Correctness of ADDRESSMAIN)
The algorithm ADDRESSMAIN satisfies both conditions of Definition 4.3.12.

Proof (Sketch). We recall both conditions from Definition 4.3.12.

Branching without Synchronisation: If opi and opj are located inside different branches
of either an external choice operator, internal choice operator, interleaving operator or
a parallel composition operator parX with op 6∈ X, opp needs to comprise one parameter
p1, such that its type includes x, y ∈ N with x 6= y. This parameter is fixed to x for opi

p

and to y for opj
p in both, S1.main and S2.main :

opi
p becomes opi

p.x and opj
p becomes opj

p.y.

Let opi and opj be two according nodes. Consider the first of the two core cases of
ADD: it applies for opi and opj and thus, opi

p and opj
p will be addressed according to

this case. The addressing sets the value of the parameter pk to the value l in one
and to the value l + 1 in the other branch. Any further branching preserves the
inequality of both values. Thus, pk satisfies the first condition of the definition.

Branching with Synchronisation: If opi sd
L999K opj, the (partial) event opp needs to com-

prise two parameters p1 and p2, such that the type of p1 includes x ∈ N and the type of
p2 includes y ∈ N for arbitrary x, y. The first parameter is fixed to x for opi

p, whereas
the second parameter is fixed to y for opj

p in both, S1.main and S2.main :

opi
p becomes opi

p.x?p2 and opj
p becomes opj

p?p1.y.

Let opi and opj be two according nodes. Consider the second of the two core
cases of ADD: opi

p and opj
p will be addressed according to this case as both nodes

are located in different branches of a parallel composition pariX with op ∈ X. Two
additional parameters pk+1, pk+2 are introduced, with one of them fixed for opi

p and

the other one fixed for opj
p (initially by 1 and possibly modified later on). Therefore,

the second condition of the definition is satisfied as well. 2

This completes the definition of the algorithm and the motivation for its termination
and correctness. The following sections carry out the individual steps of the proof of
Theorem 4.3.25.
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5.2 Correctness for the CSP Part

The operational semantics of CSP-OZ allows for a compositional proof of Theorem 4.3.25
in the following sense: we show that the individual decompositions of the CSP part
S.main and the Object-Z part S.OZ are semantics-preserving in the domain of the CSP
traces model. Subsequently, and by using some additional properties, we combine both
results to deduce the overall correctness of the decomposition.

For both, the CSP part and the Object-Z part, we will show semantic equivalence
modulo renaming. This means, that we relate the original events from ES to events from
ES′ , now possibly comprising transmission parameters and address parameters.

In this section, the correctness proof of the CSP part is conducted. We have to show

S.main =T (S1.main ‖EC S2.main)JR′K,

that is, the proof will show the equivalence of both CSP processes, factoring out the
different parameter extensions.1 At first sight, this particular proof step seems to be rather
easy, as the CSP process S.main is one-to-one reflected in the CFG of a specification.

However, as a first obstacle, the set of traces of S.main does not correspond to the set
of paths of the CFG: in general, the first set is strictly larger due to possible interleaving.
This complicates the proof, as reasoning with respect to the specification’s CFG becomes
impractical.

Another difficulty arises from the projection of CSP processes and traces according to
Definitions 4.3.3 and 2.2.8, respectively. Unfortunately, their definitions do not satisfy the
law

traces(P|X) = traces(P)� X

when we are dealing with parallel composition of processes. As we need to bridge the
gap between both definitions, this particularly complicates dealing with this individual
operator.

Before carrying out the actual correctness proof of the decomposition of the CSP part,
we start with some related properties.

5.2.1 Properties of the Decomposition: CSP Part

Showing correctness of the decomposition of the CSP part requires several properties,
which the actual correctness proof uses. They are given next.

Disallowed Distribution of Initial Branching Events

A first property describes that in case of branching within the CFG, the initial events (see
Definition 2.2.9) of both branches are never distributed over E1 and E2, that is, over the
sets of local events for the components:

1We explicitly deal with the renaming relation in Section 5.4.
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Lemma 5.2.1. (No distribution of initial events)
For ◦ ∈ {2,u, ‖S, ‖| }, let P = Q1 ◦ Q2 be a process, occurring within S.main . Then, for
any valid decomposition of S according to Definition 4.3.24:

(initials(Q1) ∩ Ei) 6= ∅⇒ (initials(Q2) ∩ Ej) = ∅,

for i 6= j, and vice versa.

Proof. Without loss of generality, assume that e1 ∈ (initials(Q1)∩E1) and that there exists
some e2 ∈ (initials(Q2) ∩ E2), yielding e2 ∈ Ph2 for the corresponding DG node. Based on
the definition for Ph1 and e1 ∈ E1, there exists a path π, such that

start
π−→ e1

and π ∩ C1 = ∅. Obviously, any prefix of this path does not intersect with C1 as well. Let
π′ denote the prefix, leading from start to the binary operator ◦. As e2 ∈ initials(Q2), the
path π′ can be extended to a path π2 not comprising any additional nodes from op(N):

start
π2−→ e2 corresponding to start

π′−→ cfop
•−→ e2,

and π2 ∩ C1 = ∅. We deduce that e2 ∈ (Ph1 ∩ Ph2), contradicting the correctness
criterion disjointness for a valid cut. 2

The lemma basically states that a branching introduced within a certain phase yields
that all initial events of both branches are represented in this specific phase or the
subsequent cut set. Figure 5.6 shows one instance of a disallowed distribution of initial
events. Here, ◦ = extch, and the violation occurs with respect to the first cut set.

Figure 5.6: Illustration of a violation of
Lemma 5.2.1

Figure 5.7: Illustration of a violation of
Lemma 5.2.2

Disallowed Split of Synchronisation

A rather obvious property is the following: in case that two operation nodes are connected
by a synchronisation dependence, they must not be distributed over different elements of
{(Ph1 ∪ Ph3),C1,Ph2,C2}:
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Lemma 5.2.2. (No split of synchronisation)
Let CFGS = (N,−→) be the control flow graph of a specification S, and let (C1,C2) be a cut.
Let D = {(Ph1 ∪ Ph3),C1,Ph2,C2}. Then:

n
sd
L999K n’⇒ (∀M ∈ D • n ∈ M ⇔ n’ ∈ M)

Proof. As n and n’ are connected by a synchronisation dependence, both nodes have the
same operation name: l−1(n) = l−1(n’) holds. The correctness criterion all-or-none rules
out that both nodes are either distributed over both cut sets or over one cut set and one
phase. We remain to show that both nodes must not be distributed over (Ph1 ∪ Ph3) and
Ph2. However, if this was the case, the connecting synchronisation dependence would
violate no crossing. 2

A possible violation of the lemma, with two synchronised nodes distributed over Ph1

and Ph2, is illustrated in Figure 5.7.

Redistribution of Processes for Binary Operators

Next, we show a property which we will use throughout the actual proof. The property
states that we can redistribute the component processes with respect to the parallel
composition ‖EC and all binary operators, that is, ◦ ∈ {2,u, o9, ‖S, ‖| }. Precisely, for
P = (T ◦ U), Ti = T|ESi

and Ui = U|ESi
, Figure 5.8 illustrates our proof strategy for

S.main being composed of two processes. The top-down-equivalence will be shown in
the following lemma.

Figure 5.8: Illustration of the CSP correctness proof of binary operators

The subsequent lemma uses the LTS semantics of CSP according to Definition 2.2.11.
Here, we will refer to the firing rules or CSP [Ros98], which determine the set of possible
transitions and thus the labelled transition system of a process. In addition to the set of
possible events a process may perform, we need to deal with τ -transitions, symbolising
invisible events.

In our semantic domain of the CSP traces model, we apply several simplifications: first
of all and according to [Brü08], we do not distinguish between the processes Stop and
Div. This is justified by the fact that both processes are incapable of performing any
event, and they are thus trace equivalent. Furthermore, we do not consider the special
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event X, signalising termination of a process. As a consequence, we do not separate
the processes Skip and Stop. The LTS semantics makes use of an additional symbol Ω,
denoting the end state of the transition system. Here, we do not separately deal with this
symbol and rather refer to the corresponding process Stop. These considerations allow
us to simplify and restrict some of the CSP firing rules.

Lemma 5.2.3. (Redistribution of CSP processes within the decomposition)
Let P = (T ◦ U) for ◦ ∈ {2,u, o9, ‖| , ‖S} be a reachable state of the LTS of S.main. Then,

(T1 ‖EC T2) ◦ (U1 ‖EC U2) =T (T1 ◦ U1) ‖EC (T2 ◦ U2)

for ◦ 6= ‖S and

(T1 ‖EC T2) ‖S (U1 ‖EC U2) =T (T1 ‖S∩ES1
U1) ‖EC (T2 ‖S∩ES2

U2),

where Ti = T|ESi
and Ui = U|ESi

, i ∈ {1, 2}.

Proof. As we are interested in trace equivalence, external choice and internal choice can
equally be treated. Moreover, being a special case of parallel composition with an empty
synchronisation alphabet, we do not explicitly need to deal with interleaving.

The method of proof, which we choose here, is (weak) bisimilarity [Mil89]: if we can
show that the labelled transition systems of the left hand side and the right hand side
of the equation are bisimilar, we can deduce their trace equivalence [Pnu85]. In the
following, let op.x.t.a indicate an event of ES′ with the valuations for

• the original parameters according to x,

• the transmission parameters according to t and

• the address parameters according to a.

Subject to the individual operator we refer to, we define a weak bisimulation

R = {(A,B) | A = (C1 ‖EC C2) ◦ (D1 ‖EC D2),B = (C1 ◦ D1) ‖EC (C2 ◦ D2)} ∪ R′,

and we show that (T1 ‖EC T2) ◦ (U1 ‖EC U2) and (T1 ◦ U1) ‖EC (T2 ◦ U2) are the initial
states of R. Here, Ci ∈ LCSP (Di ∈ LCSP) denotes any reachable state within the labelled
transition system of Ti (Ui), and R′ denotes a case-specific extension of R.

Based on the definition of bisimulation, we have to show two directions:

(1) If (A,B) ∈ R and A e−→ A′ for e ∈ ES′ ∪ {τ}, then there exists some B′ such that

B ê−→ B′ and (A′,B′) ∈ R.

(2) If (A,B) ∈ R and B e−→ B′ for e ∈ ES′ ∪ {τ}, then there exists some A′ such that

A ê−→ A′ and (A′,B′) ∈ R.
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Here, we let P ê−→ P′ stand for

P τ−→ . . .
τ−→ Pk

e−→ Pk+1
τ−→ . . .

τ−→ P′,

that is, P transits into P′ by e, possibly surrounded by additional τ -transitions. We show
the property for ◦ ∈ {2, o9, ‖S} and we construct the bisimulation relations R with respect
to the individual binary operator, instantiating ◦. In any case, we separate between both
required conditions (1) and (2). Within the individual proofs, we additionally distinguish
between (A,B) ∈ R′ and (A,B) 6∈ R′, and we need to consider τ -transitions.

External Choice: For the case of external choice, we extend the relation R by defining

R′ := IdLCSP ∪ {(A,B) | A = (C1 ‖EC C2),B ∈ X1} ∪
{(A,B) | A = (D1 ‖EC D2),B ∈ X2},

for

X1 := {(C1 ‖EC (C2 2 D2)) | initials(D2) ⊆ EC} ∪
{((C1 2 D1) ‖EC C2) | initials(D1) ⊆ EC},

and

X2 := {(D1 ‖EC (C2 2 D2)) | initials(C2) ⊆ EC} ∪
{((C1 2 D1) ‖EC D2) | initials(C1) ⊆ EC},

where again, Ci ∈ LCSP (Di ∈ LCSP) denotes any reachable state within the labelled
transition system of Ti (Ui). Here, IdLCSP := {(P, P) | P ∈ LCSP}, depicting the
identity on LCSP. We do not explicitly deal with (A,B) ∈ IdLCSP , as in this case, the
bisimulation diagram can trivially be completed.

(1) (A,B) ∈ R′ and A e→ A′.

τ -case: Let A τ−→ A′. We start with the case of (A,B) ∈ R′. If

(C1 ‖EC C2) τ−→ (C′1 ‖EC C′2),

according to the firing rules for parallel composition, the transition is
either performed by C1 or C2. We consider the first case, the other case is
analogous. Then, C′2 = C2. From C1

τ−→ C′1, we get

C1 ‖EC (C2 2 D2) τ−→ C′1 ‖EC (C2 2 D2)

as well as

(C1 2 D1) ‖EC C2
τ−→ (C′1 2 D1) ‖EC C2

The following bisimulation diagram illustrates this case. X
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A = (C1 ‖EC C2) τ−→ (C′1 ‖EC C′2) = A′

|
...

R R

|
...

B = (C1 ‖EC (C2 2 D2)) τ−→ (C′1 ‖EC (C′2 2 D2)) = B′

Next, we consider A τ−→ A′ and (A,B) 6∈ R′. τ -transitions do not resolve an
external choice. For the case of C1 performing τ , based on the firing rules
for external choice and parallel composition, the bisimulation diagram
can be completed as follows. The other cases are similar. X

A = ((C1 ‖EC C2) 2 (D1 ‖EC D2)) τ−→ ((C′1 ‖EC C2) 2 (D1 ‖EC D2)) = A′

|
...

R R

|
...

B = ((C1 2 D1) ‖EC (C2 2 D2)) τ−→ ((C′1 2 D1) ‖EC (C2 2 D2)) = B′

op-case: Next, let A
op.x.t.a−→ A′. For the case of (A,B) ∈ R′, let A = C1 ‖EC C2 and

A
op.x.t.a→ A′. Obviously, any of the processes from X1 can simulate op.x.t.a,

resulting in two R′-related processes, since the comprised external choice
solely extends the set of possible steps, independent of any restriction on
initials(Di). The case A = D1 ‖EC D2 and X2 is analogous. X

A = (C1 ‖EC C2)
op.x.t.a−→ (C′1 ‖EC C′2) = A′

|
...

R R

|
...

B = (C1 ‖EC (C2 2 D2))
op.x.t.a−→ (C′1 ‖EC (C′2 2 D2)) = B′

Now consider the case (A,B) 6∈ R′, that is,

A = (C1 ‖EC C2) 2 (D1 ‖EC D2).

Then, either C1 ‖EC C2
op.x.t.a→ A′ or D1 ‖EC D2

op.x.t.a→ A′. Without loss of
generality, we assume the first. Two separate cases have to be considered:

op.x.t.a ∈ EC: Then, C1 and C2 have to synchronise on the execution of
op.x.t.a. Thus,

C1
op.x.t.a→ A′1 and C2

op.x.t.a→ A′2

for some A′ = A′1 ‖EC A′2, again based on the firing rules of the
operational semantics of CSP. This yields that

(C1 2 D1)
op.x.t.a→ A′1 and (C2 2 D2)

op.x.t.a→ A′2
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and therefore,

((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a→ (A′1 ‖EC A′2).

As both successor states are identical, they are related by R′. The
bisimulation diagram for this case is given next. X

A = ((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a−→ (A′1 ‖EC A′2) = A′

|
...

R R

|
...

B = ((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a−→ (A′1 ‖EC A′2) = B′

op.x.t.a 6∈ EC: Then, either, but exactly one of the four components can
execute op.x.t.a. Without loss of generality, let this component be C1.

((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a−→ A′

yields

(C1 ‖EC C2)
op.x.t.a−→ A′.

We get C1
op.x.t.a−→ C′1 for some process C′1, such that A′ = (C′1 ‖EC C2).

Furthermore,

(C1 2 D1)
op.x.t.a−→ C′1

and thus,

((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a−→ (C′1 ‖EC (C2 2 D2)).

Finally, initials(D2) ⊆ EC holds: as op.x.t.a ∈ initials(C1 ‖EC C2), the
set of initial events of D1 ‖EC D2 and therefore the one of D2 needs to
be a subset of ES1 due to Lemma 5.2.1. D2 being a reachable state of
U|ES2

yields initials(D2) ⊆ EC, as no events from E1 are possible. Thus,

((C′1 ‖EC C2), (C′1 ‖EC (C2 2 D2))) ∈ R′,

which concludes this case. X

A = ((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a−→ (C′1 ‖EC C2) = A′

|
...

R R

|
...

B = ((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a−→ (C′1 ‖EC (C2 2 D2))) = B′
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(2) For the reverse direction, let (A,B) ∈ R and B e→ B′.

τ -case: Again, we start with B τ→ B′. For the case of R′, consider

(C1 ‖EC (C2 2 D2)) τ−→ (C1 ‖EC (C2 2 D′2)),

that is, D2
τ−→ D′2. First, as initials(D2) ⊆ EC, the process D2 can solely

perform synchronised events with C1. However, a synchronisation between
C1 and D2 is impossible due to Theorem 4.3.16, (5). Therefore, D2 is
incapable of performing any event within C1 ‖EC (C2 2 D2). This allows us
to simulate the τ -transition by (C1 ‖EC C2) τ−→ (C1 ‖EC C2). In any other
case, including (A,B) 6∈ R′, we apply the exact same rules and ideas of
the forward direction. X.

op-case: In the case of (A,B) ∈ R′, we solely consider B = (C1 ‖EC (C2 2 D2))

- the other three cases are accordingly shown. Let B
op.x.t.a→ B′. Again,

it is impossible that D2 performs any event within C1 ‖EC (C2 2 D2).
Furthermore, any (local or synchronised) step of Ci can be simulated by
C1 ‖EC C2. X

B = (C1 ‖EC (C2 2 D2))
op.x.t.a−→ (C′1 ‖EC (C′2 2 D2)) = B′

|
...

R R

|
...

A = (C1 ‖EC C2)
op.x.t.a−→ (C′1 ‖EC C′2) = A′

Now let B = ((C1 2 D1) ‖EC (C2 2 D2)). Here, both sides need to
synchronise on op.x.t.a. Again, two cases need to be considered:

op.x.t.a ∈ EC: Then, there exist B′1, B′2 such that

(C1 2 D1)
op.x.t.a→ B′1 and (C2 2 D2)

op.x.t.a→ B′2

for some B′1, B′2 and B′ = (B′1 ‖EC B′2). Based on Theorem 4.3.16,
(5), a synchronisation between C1 and D2 or C2 and D1 is impossible,
as C and D were unable to synchronise before the decomposition.
Therefore, without loss of generality, we deduce C1

op.x.t.a→ B′1 and

C2
op.x.t.a→ B′2. Following up,

(C1 ‖EC C2)
op.x.t.a→ (B′1 ‖EC B′2)

and thus,

((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a→ (B′1 ‖EC B′2).

As both successor states are identical, they are R-related. X
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B = ((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a−→ (B′1 ‖EC B′2) = B′

|
...

R R

|
...

A = ((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a−→ (B′1 ‖EC B′2) = A′

op.x.t.a 6∈ EC: Again, exactly one of the four components executes op.x.t.a,
which we assume to be C1. From

((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a−→ B′

we get

(C1 2 D1)
op.x.t.a−→ C′1

for some process C′1 such that B′ = (C′1 ‖EC (C2 2 D2)). From this, we

get C1
op.x.t.a−→ C′1 and thus,

(C1 ‖EC C2)
op.x.t.a−→ (C′1 ‖EC C2).

This yields

((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a−→ (C′1 ‖EC C2).

Finally, again based on Lemma 5.2.1, we get initials(D2) ⊆ EC and

((C′1 ‖EC C2), (C′1 ‖EC (C2 2 D2))) ∈ R′.X

B = ((C1 2 D1) ‖EC (C2 2 D2))
op.x.t.a−→ (C′1 ‖EC (C2 2 D2)) = B′

|
...

R R

|
...

A = ((C1 ‖EC C2) 2 (D1 ‖EC D2))
op.x.t.a−→ (C′1 ‖EC C2) = A′

Sequential Composition: Here, R′ = IdLCSP .

(1) Let (A,B) ∈ R and A e→ A′ for

A = ((C1 ‖EC C2) o
9 (D1 ‖EC D2)).

τ -case: A τ→ A′ yields that C1 = Skip and C2 = Skip, based on the firing
rule for sequential composition and thus, A′ = (D1 ‖EC D2). Therefore,

C1
o
9 D1

τ−→ D1 and C2
o
9 D2

τ−→ D2,

yielding ((C1
o
9 D1) ‖EC (C2

o
9 D2)) τ2

−→ (D1 ‖EC D2). Both successor states
are related by IdLCSP , that is, R′. X
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((C1 ‖EC C2) o
9 (D1 ‖EC D2)) τ−→ (D1 ‖EC D2)

|
...

R R

|
...

((C1
o
9 D1) ‖EC (C2

o
9 D2)) τ̂−→ (D1 ‖EC D2)

op-case: Let A
op.x.t.a→ A′. Two cases need to be considered:

op.x.t.a ∈ EC: If (C1 ‖EC C2)
op.x.t.a→ A′, we have

A′ = ((C′1 ‖EC C′2) o
9 (D1 ‖EC D2))

for some C′i ∈ LCSP and thus,

C1
op.x.t.a→ C′1 and C2

op.x.t.a→ C′2,

from which can stepwise deduce

((C1
o
9 D1) ‖EC (C2

o
9 D2))

op.x.t.a→ ((C′1 o
9 D1) ‖EC (C′2 o

9 D2)).

((C1 ‖EC C2) o
9 (D1 ‖EC D2))

op.x.t.a−→ ((C′1 ‖EC C′2) o
9 (D1 ‖EC D2))

|
...

R R

|
...

((C1
o
9 D1) ‖EC (C2

o
9 D2))

op.x.t.a−→ ((C′1 o
9 D1) ‖EC (C′2 o

9 D2))

If (D1 ‖EC D2)
op.x.t.a→ A′, both, C1 and C2, need to have terminated, thus

requiring C1 = Skip, C2 = Skip, and we proceed analogously. X

((Skip ‖EC Skip) o
9 (D1 ‖EC D2))

op.x.t.a−→ ((Skip ‖EC Skip) o
9 (D′1 ‖EC D′2))

|
...

R R

|
...

((Skip o
9 D1) ‖EC (Skip o

9 D2))
op.x.t.a−→ ((Skip o

9 D′1) ‖EC (Skip o
9 D′2))

op.x.t.a 6∈ EC: In this case, again, either C1 ‖EC C2 or D1 ‖EC D2 perform
op.x.t.a, where the latter requires (C1 ‖EC C2) = Skip. The proof
is straightforward and according to the previous proof steps. The
bisimulation diagram for the first case, where we assume that C1

performs op.x.t.a, is given next. X
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((C1 ‖EC C2) o
9 (D1 ‖EC D2))

op.x.t.a−→ ((C′1 ‖EC C2) o
9 (D1 ‖EC D2))

|
...

R R

|
...

((C1
o
9 D1) ‖EC (C2

o
9 D2))

op.x.t.a−→ ((C′1 o
9 D1) ‖EC (C2

o
9 D2))

(2) Let (A,B) ∈ R and B e→ B′ for B = ((C1
o
9 D1) ‖EC (C2

o
9 D2)).

τ -case: Let B τ→ B′. Then, without loss of generality, (C1
o
9 D1) τ−→ D1,

based on the firing rule for sequential composition. We deduce that
(C1 ‖EC C2) τ−→ (Skip ‖EC C2) holds. The bisimulation diagram is given
next. X

((C1
o
9 D1) ‖EC (C2

o
9 D2)) τ−→ ((Skip o

9 D1) ‖EC (C2
o
9 D2))

|
...

R R

|
...

((C1 ‖EC C2) o
9 (D1 ‖EC D2)) τ−→ ((Skip ‖EC C2) o

9 (D1 ‖EC D2))

op-case: Let B
op.x.t.a→ B′. Again, there are two separate cases:

op.x.t.a ∈ EC: Theorem 4.3.16, (5), ensures that a synchronisation within
(C1

o
9 D1) ‖EC (C2

o
9 D2) can only occur between C1 and C2 or between

D1 and D2. In case that D1 and D2 synchronise on op.x.t.a, C1 and C2

are equivalent to Skip. The remainder of this particular proof step
is straightforward. We give the bisimulation diagram for the C-case
next. X

((C1
o
9 D1) ‖EC (C2

o
9 D2))

op.x.t.a−→ ((C′1 o
9 D1) ‖EC (C′2 o

9 D2))

|
...

R R

|
...

((C1 ‖EC C2) o
9 (D1 ‖EC D2))

op.x.t.a−→ ((C′1 ‖EC C′2) o
9 (D1 ‖EC D2))

op.x.t.a 6∈ EC: From the structure of the process (C1
o
9 D1) ‖EC (C2

o
9 D2),

we know that Ci terminates before Di. In addition, we have to show
that C2 terminates before D1, which implies that C1 terminates before
D2. Based on that, in order to complete this case, we may safely
use C1 = Skip and C2 = Skip, in case that Di performs op.x.t.a 6∈
EC. Assume that D1 performs op.x.t.a 6∈ EC. Then, by definition,
either op.t.x.a ∈ l[Ph1] or op.t.x.a ∈ l[Ph3]. In the first case, as C
terminates before D and based on the definition of Ph1, the process C
is completely assigned to Ph1. Thus, due to αC2 ⊆ ES2 , C2 can only
perform synchronised events with C1, which need to happen prior to
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op.x.t.a. In the latter case, the set of events for C2 are executed before
any event of l[Ph3], again yielding the termination of C2 prior to D1.
The bisimulation diagram for a sole step of D1 is given next. X

((Skip o
9 D1) ‖EC (Skip o

9 D2))
op.x.t.a−→ ((Skip o

9 D′1) ‖EC (Skip o
9 D2))

|
...

R R

|
...

((Skip ‖EC Skip) o
9 (D1 ‖EC D2))

op.x.t.a−→ ((Skip ‖EC Skip) o
9 (D′1 ‖EC D2))

Parallel Composition: Again, R′ = ∅. For the case of parallel composition, weak
bisimilarity of the processes

A = (C1 ‖EC C2) ‖S (D1 ‖EC D2) and

B = (C1 ‖S∩ES1
D1) ‖EC (C2 ‖S∩ES2

D2)

has to be shown. First, we consider the case of a τ -transition for both directions.

(1) Let (A,B) ∈ R and A τ−→ A′. This case is immediate based on the rules for
promoting τ -transitions within a parallel composition. X

(2) For B τ−→ B′, we proceed analogously.

For either A
op.x.t.a−→ A′ or B

op.x.t.a−→ B′, several cases need to be separated, making
a case differentiation over all cases rather tedious. As most of these cases refer
to the transition laws for CSP, corresponding to the applications for the external
choice and sequential composition, we precisely deal with the decisive cases and
only sketch the straightforward cases.

Figure 5.9 shows the different cases, which need to be considered for A or B
performing op.x.t.a. These are:

(a) op.x.t.a ∈ (S ∩ EC),

(b) op.x.t.a ∈ (S ∩ E1),

(c) op.x.t.a ∈ (S ∩ E2),

(d) op.x.t.a ∈ (EC \ S),

(e) op.x.t.a ∈ (E1 \ S) and

(f) op.x.t.a ∈ (E2 \ S).

For the bisimulation proof, there is one decisive case for both directions. We give
the intuitive ideas first:

• A = (C1 ‖EC C2) ‖S (D1 ‖EC D2) performing an event from S \ EC might cause
a wrong synchronisation between C2 and D1 or C1 and D2. However, as the
event is either an element of E1 or E2 but never an element of both sets, this is
impossible.
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(f)(e)

(d)

(a)(b) (c)

E
1

E
2

S

E
C

Figure 5.9: Case differentiation for Lemma 5.2.3, parallel composition

• B = (C1 ‖S∩ES1
D1) ‖EC (C2 ‖S∩ES2

D2) performing an event from EC \ S might
cause a wrong synchronisation between C2 and D1 or C1 and D2 as well.
Here, Theorem 4.3.16 shows that the addressing extension prevents this from
happening.

Next, we show the bisimilarity conditions for all six cases:

op.x.t.a ∈ (S ∩ EC): Independent of Condition (1) or (2), all four processes C1,
C2, D1 and D2 have to synchronise on op.x.t.a. Showing both conditions is
immediate, based on applying the firing rules for CSP. X

op.x.t.a ∈ (S ∩ E1): For implication (1), assume that

((C1 ‖EC C2) ‖S (D1 ‖EC D2))
op.x.t.a−→ ((C′1 ‖EC C′2) ‖S (D′1 ‖EC D′2)).

Based on op.x.t.a ∈ E1, the synchronisation must be performed by C1 and D1.
Thus, C′2 = C2, D′2 = D2 and (C1 ‖S∩ES1

D1)
op.x.t.a−→ (C′1 ‖S∩ES1

D′1). This yields

((C1 ‖S∩ES1
D1) ‖EC (C2 ‖S∩ES2

D2))
op.x.t.a−→ ((C′1 ‖S∩ES1

D′1) ‖EC (C2 ‖S∩ES2
D2)),

as op.x.t.a 6∈ EC.

((C1 ‖EC C2) ‖S (D1 ‖EC D2))
op.x.t.a−→ ((C′1 ‖EC C2) ‖S (D′1 ‖EC D2))

|
...

R R

|
...

((C1 ‖S∩ES1
D1) ‖EC (C2 ‖S∩ES2

D2))
op.x.t.a−→ ((C′1 ‖S∩ES1

D′1) ‖EC (C2 ‖S∩ES2
D2))

Implication (2) is straightforward. X
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op.x.t.a ∈ (S ∩ E2): Analogous to the previous case. X

op.x.t.a ∈ (EC \ S): Here, implication (1) is straightforward. For implication (2),
let

((C1 ‖S∩ES1
D1) ‖EC (C2 ‖S∩ES2

D2))
op.x.t.a−→ ((C′1 ‖S∩ES1

D′1) ‖EC (C′2 ‖S∩ES2
D′2)).

Theorem 4.3.16 yields that only C1 and C2 or D1 and D2 are able to synchronise.
We assume the first, thus yielding D′1 = D1 and D′2 = D2. We get (C1 ‖EC

C2)
op.x.t.a−→ (C′1 ‖EC C′2) and finally

((C1 ‖EC C2) ‖S (D1 ‖EC D2))
op.x.t.a−→ ((C′1 ‖EC C′2) ‖S (D1 ‖EC D2)). X

((C1 ‖S∩ES1
D1) ‖EC (C2 ‖S∩ES2

D2))
op.x.t.a−→ ((C′1 ‖S∩ES1

D1) ‖EC (C′2 ‖S∩ES2
D2))

|
...

R R

|
...

((C1 ‖EC C2) ‖S (D1 ‖EC D2))
op.x.t.a−→ ((C′1 ‖EC C′2) ‖S (D1 ‖EC D2))

op.x.t.a ∈ (E1 \ S): Independent of Condition (1) or (2), exactly one of the four
processes needs to perform op.x.t.a, which is straightforward. X

op.x.t.a ∈ (E2 \ S): Analogous to the previous case. X

2

5.2.2 Correctness of the Decomposition: CSP part

Finally, we show correctness for the decomposition of S.main by using the results from
the previous sections. Again, we use weak bisimulation as the method of proof: we
construct a weak bisimulation relation, comprising tuples

(P, PJRC1K|ES1
‖EC PJRC2K|ES2

),

where P denotes any reachable state of the LTS of S.main. As we show trace equivalence
modulo the renaming by transmission parameters and address parameters, we accordingly
show bisimilarity not explicitly denoting the renaming.2 For simplification, we let PR
denote PJRCK.

In the theorem, we will use a lemma from [Brü08], namely Lemma 6.1.2. It relates the
possible transitions of a CSP process to transitions of a projection of this process. Next,
we state the main theorem of this section:

Theorem 5.2.4. (Correctness of the decomposition: CSP part)
Let S be a specification, and let C = (C1,C2) be a cut, yielding a decomposition into S1 and
S2, according to Definition 4.3.24. Then, the following holds:

S.main =T (S1.main ‖EC S2.main)JR′K.
2As a matter of course, the renaming is solely syntactically neglected. We still have to use the properties of

the additional parameters, as they ultimately ensure the correctness of the decomposition.
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Proof: We show that S.main and S1.main ‖EC S2.main are the initial states of a weak
bisimulation

R := {(P, PR|ES1
‖EC PR|ES2

) | P ∈ LCSP reachable state of LTS of S.main, PR = PJRCK}.

Again, we need to show two implications:

(1) If (P, PR|ES1
‖EC PR|ES2

) ∈ R and P
op.x−→ P′ for op.x ∈ ES [P τ−→ P′], then there exists

some Q′, such that

(PR|ES1
‖EC PR|ES2

)
ôp.x.t.a−→ Q′ [(PR|ES1

‖EC PR|ES2
) τ̂−→ Q′]

for some op.x.t.a ∈ ES′ and (P′,Q′) ∈ R.

(2) If (P, PR|ES1
‖EC PR|ES2

) ∈ R and

(PR|ES1
‖EC PR|ES2

)
op.x.t.a−→ Q′ [PR|ES1

‖EC PR|ES2
) τ−→ Q′],

then there exists some P′, such that P
ôp.x−→ P′ for op.x ∈ ES [P τ̂−→ P′] and (P′,Q′) ∈ R.

For the first implication, it is sufficient to show that op.x.t.a ∈ ES′ exists.

(1): First, let P τ−→ P′. Based on the firing laws for CSP, a τ -transition is preserved by a
renaming as well as hiding. Thus, we immediately get

(PR|ES1
‖EC PR|ES2

) τ−→ (P′R|ES1
‖EC P′R|ES2

).

Now let P
op.x−→ P′ for op.x ∈ ES. First, assume that P is composed of two parallel

processes, with op being synchronised. Based on Theorem 4.3.16, (2) and (3), if P
performs a synchronised step, the process PR can accordingly perform this step, as
the renaming preserves the synchronisation structure. Thus, we do not separately
need to deal with this particular structure of P. Next, we have to distinguish
between three cases for op.x:

op.x ∈ EC: In this case, we apply the first property of Lemma 6.1.2, [Brü08]. For
e ∈ E, it states that performing e for P and P|E leads to corresponding successor
states Q and Q|E:

(P e−→ Q ∧ e ∈ E)⇒ P|E
e−→ Q|E.

In our context and based upon the previous observation, the property yields

PR|ES1

op.x.t1.a1−→ P′R|ES1
and PR|ES2

op.x.t2.a2−→ P′R|ES2

for some op.x.ti.ai ∈ ES′ . In order to deduce that PR|ES1
and PR|ES2

can do
a synchronous step, there needs to exist some op.t.x.a ∈ ES′ , which both
processes can perform. This is the case: the transmission parameters are not
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restricted by the CSP part at all. Thus, any values are possible for t1 and t2.
For the address parameters, Theorem 4.3.16, (1), showed that their values
are identical for both, S1.main and S2.main. We deduce that there exists
op.t.x.a ∈ ES′ , such that

(PR|ES1
‖EC PR|ES2

)
op.x.t.a−→ (P′R|ES1

‖EC P′R|ES2
)

and (P′, P′R|ES1
‖EC P′R|ES2

) ∈ R. X

op.x ∈ E1: Again, we deduce

PR|ES1

op.x.t1.a1−→ P′R|ES1
.

Based on op.x 6∈ EC and the operational semantics of CSP, we get

(PR|ES1
‖EC PR|ES2

)
op.x.t1.a1−→ (P′R|ES1

‖EC PR|ES2
).

By using the firing rule for CSP hiding and op.x 6∈ E2, we deduce that

PR|ES2

τ−→ P′R|ES2

and thus,

(PR|ES1
‖EC PR|ES2

)
̂op.x.t1.a1−→ (P′R|ES1

‖EC P′R|ES2
).

Again, (P′, P′R|ES1
‖EC P′R|ES2

) ∈ R. X

op.x ∈ E2: Analogous to the second case. X

P
op.x−→ P′

|
...

R R

|
...

(PR|ES1
‖EC PR|ES2

)
ôp.x.t.a−→ (P′R|ES1

‖EC P′R|ES2
)

(2): Let

(PR|ES1
‖EC PR|ES2

)
op.x.t.a−→ Q′

for some op.x.t.a ∈ ES′ . We show that there exists P′ ∈ LCSP, such that P
op.x−→ P′ and

Q′ = (P′R|ES1
‖EC P′R|ES2

),

by induction on the structure of P.
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(PR|ES1
‖EC PR|ES2

)
op.x.t.a−→ (P′R|ES1

‖EC P′R|ES2
) = Q′

|
...

R R

|
...

P
ôp.x−→ P′

Induction Basis: Let P = e→ Q for some e ∈ ES and Q ∈ LCSP. Based on Definition
4.3.3, we have

(e→ Q)|E :=

{
Q|E, e 6∈ E,
e→ Q|E, otherwise.

We have to distinguish between three cases:3

RC(e) ⊆ EC: Based on (e→ P)JRK = e′ : R(e)→ PJRK ([Sch09]),

(PR|ES1
‖EC PR|ES2

) = ((e′ : RC1(e)→ QR|ES1
) ‖EC (e′′ : RC2(e)→ QR|ES2

)).

As (PR|ES1
‖EC PR|ES2

)
op.x.t.a−→ Q′, we get op.x.t.a ∈ (RC1(e) ∩ RC2(e)). Thus,

e = op.x. Moreover,

(PR|ES1
‖EC PR|ES2

)
op.x.t.a−→ (QR|ES1

‖EC QR|ES2
),

as both processes have to synchronise on op.x.t.a ∈ EC. Obviously, P e−→ Q
holds, and finally, (Q,QR|ES1

‖EC QR|ES2
) ∈ R. X

RC(e) ∈ E1: Let e′ = RC(e). In this case,

(PR|ES1
‖EC PR|ES2

) = ((e′ → QR|ES1
) ‖EC QR|ES2

) =: X,

as the projection eliminates e′ for the right hand side of the parallel
composition. In case that op.t.x.a = e′ holds, the process X switches to
QR|ES1

‖EC QR|ES2
, and we reside in the first case. However, we need to

show that X must not be able to perform any other event than e′, that is,
QR|ES2

is incapable of performing a non-synchronised step. But this is the
case: from Lemma 5.2.1 and based on e′ ∈ E1, we know that the set of
initial events of QR|ES2

is a subset of ES1 and thus EC. Therefore, QR|ES2
can initially only do a synchronous step which is impossible as the sole
initial event for the parallel composition is an event from E1. X

RC(e) ∈ E2: According to the previous case. X

Induction Hypothesis: Assume that the property is shown for T and U.

3Here, we need to refer to the renaming RC as we have to distinguish between the different sets of events
which e is assigned to in the decomposition.
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Induction Step: The induction step needs to distinguish between P = T ◦ U with
◦ ∈ {2,u, o9, ‖S, ‖| }. Both choice operators have the same interpretation in
the CSP traces model. Moreover, interleaving is a special case of parallel
composition with an empty synchronisation alphabet. That leaves a case
differentiation for ◦ ∈ {2, o9, ‖S}. In any of the three cases, we apply Lemma
5.2.3. As the lemma already dealt with τ -transitions, we do not need to
consider them again.

P = T 2 U: Let

((T 2 U)R|ES1
‖EC (T 2 U)R|ES2

)
op.x.t.a−→ Q′.

Definition 4.3.3 yields

((TR|ES1
2 UR|ES1

) ‖EC (TR|ES2
2 UR|ES2

))
op.x.t.a−→ Q′.

Next, we apply Lemma 5.2.3 for the case of external choice and deduce

((TR|ES1
‖EC TR|ES2

) 2 (UR|ES1
‖EC UR|ES2

))
ôp.x.t.a−→ Q′.

Without loss of generality, the left hand side performs a (synchronous
or asynchronous) step. From the induction hypothesis, we deduce the

existence of T′, such that T
ôp.x−→ T′ and Q′ = (T′R|ES1

‖EC T′R|ES2
). The

operational semantics of CSP yields (T 2 U)
ôp.x−→ T′. X

(T 2 U)R|ES1
‖EC (T 2 U)R|ES2

op.x.t.a−→ T′R|ES1
‖EC T′R|ES2

= Q′

|
...

R R

|
...

T 2 U
ôp.x−→ T′ = P′

P = T o
9 U: Let

((T o
9 U)R|ES1

‖EC (T o
9 U)R|ES2

)
op.x.t.a−→ Q′.

Definition 4.3.3 yields

((TR|ES1
o
9 UR|ES1

) ‖EC (TR|ES2
o
9 UR|ES2

))
op.x.t.a−→ Q′

and the application of Lemma 5.2.3 for the case of sequential composition

((TR|ES1
‖EC TR|ES2

) o
9 (UR|ES1

‖EC UR|ES2
))

ôp.x.t.a−→ Q′.

First, let

((TR|ES1
‖EC TR|ES2

) o
9 (UR|ES1

‖EC UR|ES2
))

ôp.x.t.a−→ (Q′1 o
9 (UR|ES1

‖EC UR|ES2
)).
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From the induction hypothesis, we deduce the existence of T′, such that

T
ôp.x−→ T′ and

Q′1 = (T′R|ES1
‖EC T′R|ES2

).

The operational semantics of CSP yields (T o
9 U)

ôp.x−→ (T′ o
9 U). Finally,

Q′ = (T′R|ES1
‖EC T′R|ES2

) o
9 (UR|ES1

‖EC UR|ES2
),

which is equivalent to

(T′R|ES1
o
9 UR|ES1

) ‖EC (T′R|ES2
o
9 UR|ES2

),

according to Lemma 5.2.3. The latter process is equal to

(T′ o
9 U)R|ES1

‖EC (T′ o
9 U)R|ES2

,

based on Definition 4.3.3. We conclude that the successor states are R-
related. A step for the process UR|ES1

‖EC UR|ES2
is analogous, based on the

fact that in this case, TR|ES1
= Skip and TR|ES2

= Skip needs to hold. X

((T o
9 U)R|ES1

‖EC (T o
9 U)R|ES2

)
op.x.t.a−→ ((T′ o

9 U)R|ES1
‖EC (T′ o

9 U)R|ES2
)

|
...

R R

|
...

(T o
9 U)

ôp.x−→ (T′ o
9 U)

P = T ‖S U: We assume

((T ‖S U)R|ES1
‖EC (T ‖S U)R|ES2

)
op.x.t.a−→ Q′.

Applying 4.3.3 and subsequently Lemma 5.2.3 for the case of parallel
composition yields

((TR|ES1
‖EC TR|ES2

) ‖S (UR|ES1
‖EC UR|ES2

))
ôp.x.t.a−→ (Q′1 ‖EC Q′2).

Two cases for op.x.t.a have to be considered:

op.x.t.a ∈ S: The induction hypothesis yields the existence of two pro-

cesses T′ and U′, such that T
ôp.x−→ T′ and U

ôp.x−→ U′ holds for
Q′1 = (T′R|ES1

‖EC T′R|ES2
) and Q′2 = (U′R|ES1

‖EC U′R|ES2
). The opera-

tional semantics of CSP yields (T ‖S U)
ôp.x−→ (T′ ‖S U′). Finally,

Q′ = Q′1 ‖EC Q′2
= (T′R|ES1

‖EC T′R|ES2
) ‖S (U′R|ES1

‖EC U′R|ES2
),
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with the latter process being equivalent to

(T′R|ES1
‖S∩ES1

U′R|ES1
) ‖EC (T′R|ES2

‖S∩ES2
U′R|ES2

),

according to Lemma 5.2.3 and, consecutively, equivalent to

(T′ ‖S U′)R|ES1
‖EC (T′ ‖S U′)R|ES2

by Definition 4.3.3. We conclude that the successor states are R-
related. X

((T ‖S U)R|ES1
‖EC (T ‖S U)R|ES2

)
op.x.t.a−→ ((T′ ‖S U′)R|ES1

‖EC (T′ ‖S U′)R|ES2
)

|
...

R R

|
...

(T ‖S U)
ôp.x−→ (T′ ‖S U′)

op.x.t.a 6∈ S: Analogous to the previous case, except for applying the
induction hypothesis only once for either T or U. X 2

This completes the proof of the correct decomposition of the CSP part. Next, we
accordingly show correctness for the decomposition of the Object-Z part of a specification.

5.3 Correctness for the Object-Z Part

In the introduction of this chapter, we pointed out the general strategy for the correctness
proof. In particular, for showing correctness of the decomposition of a specification’s
Object-Z part, we need to take the traces of its CSP part into account:

S.OZ =T (S1.OZ ‖EC S2.OZ)JR′K

is only satisfied, if the ordering of events for the Object-Z part adheres to the sequences
of the CSP part. We illustrate this with a small example:

Example 5.3.1. Consider the following specification Simple. Its CSP part subsequently
performs three operations. The operation first assigns the value 1 to the sole state variable
x. Next, second assigns 2 to x in case that the precondition x = 1 is satisfied. Finally, third
outputs the value of x:

Simple
chan first, second chan third : [out? : N]

main
c= first→ second→ third?out→ Skip

x : N
Init
x = 0

enable second
x = 1
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effect first
∆(x)

x′ = 1

effect second
∆(x)

x′ = 2

effect third
out! : N

out! = x

The possible (single) cut EC = {| second |} leads to the following decomposition, requiring
an additional transmission parameter:

Simple1

chan first
chan second : [trx? : N]

main
c= first→

second?trx → Skip

x : N
Init
x = 0

enable second
x = 1

effect first
∆(x)

x′ = 1

effect second
trx! : N

x′ = 2 ∧ trx! = x′

Simple2

chan second : [trx? : N]
chan third : [out? : N]

main
c= second?trx →

third?out→ Skip

x : N
effect second
∆(x); trx? : N

x′ = trx?

effect third
out! : N

out! = x

Based on the CSP part of Simple, there is only one possible sequence of operations, namely
〈first, second, third〉. However, in sole regard to the specification’s Object-Z part, the ordering
〈first, third, second〉 is possible. As the introduction of transmission parameters refers to
the CFG and thus the CSP part of a specification, correct values for the state variables
cannot be ensured. In particular, the event trace 〈first, third.1, second.2〉 is an element of
traces(Simple1.OZ ‖EC Simple2.OZ), whereas 〈first, third.1, second.2〉 is not an element of
traces(Simple.OZ): in the decomposition, the value of x needs to be transmitted before third
takes place, which is not the case, if the execution of the final two events is switched.

In the following correctness proof, we refer to the LTS semantics of Object-Z, as intro-
duced in Definition 2.2.3. The proof itself requires us to reason about the intermediate
states of S.OZ, that is, its state valuations, as we are now explicitly dealing with data
dependences. However, the semantic equivalence we aim at, is trace equivalence within
the CSP traces model, disregarding states of the Object-Z part. This allows that the
valuations of the state variables within S.OZ and S1.OZ ‖EC S2.OZ are possibly inconsistent
if their values do not influence the observable behaviour of the class, that is, the traces of
the CSP part.
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In Section 5.3.2, we clarify what inconsistency between state valuations means. More-
over, we define the assumption that traces of the Object-Z part need to adhere to the CSP
part.

Beforehand, we start by showing some properties related to the decomposition of the
Object-Z part, which the actual correctness proof uses.

5.3.1 Properties of the Decomposition: Object-Z Part

Corresponding to the previous section for the CSP part, we introduce and prove some
properties of the decomposition of the Object-Z part: the first section will summarise some
characteristics of the DG, which the definition for a valid cut necessitates. Afterwards, we
show correctness of the restriction of the initial state schema and its optimisation.

No Dependences between Different Segments

A valid cut rules out several dependence edges between different segments of the DG. In
particular, edges must not reach back to a cut set or circumvent the cut.

As we continuously need to refer to the correctness criteria no reaching back and
no crossing with respect to the phases and cut sets of the fragmented DG, we will now
give a lemma, summarising possible violations of these conditions. Here, we consider
edges with the target node being at an earlier stage than the source node:

Definition 5.3.2. (Earlier stage)
Let DGS = (N,−→DG) be the DG of a specification S and let (C1,C2) be a cut. We say that
n ∈ op(N) is at an earlier stage than n’ ∈ op(N), if and only if one of the four conditions

1) n ∈ Ph1 and n’ ∈ Ph2,

2) n ∈ C1 and n’ ∈ Ph2,

3) n ∈ Ph2 and n’ ∈ Ph3,

4) n ∈ C2 and n’ ∈ Ph3

holds.

The definition is motivated by a property, which we subsequently show: if a DG node
is at an earlier stage with respect to another one, a control flow edge or data dependence
from the latter to the first node causes a violation of one of the correctness criteria
disjointness, no reaching back or no crossing:

Lemma 5.3.3. (No data dependences to an earlier stage)
Let DGS = (N,−→DG) be the DG of a specification S and let (C1,C2) be a cut. If n ∈ op(N)
is at an earlier stage than n’ ∈ op(N), there must not be a data dependence from n’ to n:
n’999K n is impossible.
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Proof. For the first and the third case of Definition 5.3.2, a data dependence n’999K n
violates the correctness criterion no crossing. For the other cases, no reaching back is
violated. 2

A corresponding lemma considering control flow edges is given next.

Lemma 5.3.4. (No control flow edges to an earlier stage)
Let DGS = (N,−→DG) be the DG of a specification S and let (C1,C2) be a cut. If n ∈ op(N)
is at an earlier stage than n’ ∈ op(N), there must not be a control flow edge from n’ to n:
n’ −→ n is impossible.

Proof. Consider the first case of Definition 5.3.2: n ∈ Ph1 and n’ ∈ Ph2. Assume that
n’ −→ n. But then, n ∈ (Ph1 ∩ Ph2), contradicting disjointness. The third case is
analogous. For the other cases, no reaching back is violated, according to Lemma 5.3.3.
2

Figure 5.10 illustrates the definition and both lemmas, where edges denote disallowed
control flow edges and data dependences.

Figure 5.10: Illustration of Definition 5.3.2 and Lemmas 5.3.3, 5.3.4

We aim at lifting Lemma 5.3.4 to paths of the CFG, that is, we want to state that the
CFG must not comprise paths connecting a node with another one from an earlier stage.
However, this is not always the case, as recursive calls from the third phase back to
the first one are possible. More generally, our correctness proof will need to distinguish
between paths returning to an earlier stage with recursion (which is possible) and without
recursion (which is impossible). This motivates the following definition:

Definition 5.3.5. (Recursion-free CFG path)
Let CFGS = (N,−→) be the CFG of a specification S, and let π ∈ pathCFG. We say that
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π is (outer-) recursion-free, if, and only if, π does not comprise two subsequent nodes
call.X ∈ Ph3 and start.X ∈ Ph1 for any X ∈ LCSP.

The following lemma bridges the gap between paths of the CFG of S and traces of the
CSP part by characterising traces of S.main without corresponding CFG paths:

Lemma 5.3.6. (CSP trace to an earlier stage requires interleaving or recursion)
Let DGS = (N,−→DG) be the DG of a specification S, and let (C1,C2) be a cut. Let n ∈ op(N)
be at an earlier stage than n’ ∈ op(N), and let n and n′ denote their corresponding occurrences
within S.main. If there exists tr ∈ traces(S.main) and indices i < j, such that tr.i = n′ and
tr.j = n, then one of the following two cases applies:

1) there exists a CFG path from n’ to n, which is not recursion-free, or

2) n and n’ are located in different branches of the CFG, attached to the same interleaving
node or parallel composition node.

Proof. We show the following: if the opposite of 1) holds, that is, if no recursion-free
CFG path from n’ to n exists, both nodes must not be connected by a CFG path at all,
based on Lemma 5.3.4. From this, we deduce that the second case needs to apply.

Assume that there exists a CFG path π from n’ to n, which is recursion-free. Let n’ ∈ Ph2

and n ∈ Ph1. According to Lemma 5.3.4, it is impossible that π proceeds from Ph2 over
C1 to Ph1 or directly from Ph2 to Ph1. Therefore, π has to proceed over C2 and Ph3 back
to Ph1, which requires a recursion within π, contradiction. The other cases are similar.

Therefore, a CFG path from n’ to n does not exist. We conclude the proof by applying
Lemma 6.1.4 from [Brü08]: two events with a subsequent execution within S.main
require a CFG path from the first to the latter node or, if such a path does not exist, they
have to be located in different branches of the CFG, attached to the same interleaving
node or parallel composition node. 2

Correctness of Init-restriction

Chapter 4, Definition 4.3.6, introduced the restriction of S.Init to determine the initial
state schemas of S1 and S2. In addition, Section 4.3.7 introduced an optimisation for the
decomposition of a specification, allowing us to neglect certain initial data dependences
when checking the correctness criterion no crossing.

In this section, we show that both, the definition and the optimisation, are correct in
the following sense, where we let V := S.V, V1 := S1.V, V2 := S2.V and i ∈ {1, 2}:

1.) for any state s ∈ S.State such that S.Init(s) holds, the restriction s� Vi ∈ Si.State
satisfies Si.Init and

2.) two states si ∈ Si.State, for which Si.Init(si) holds, can appropriately be combined
to a state s ∈ S.State such that S.Init(s) holds.

Before proving these particular properties, we introduce some notations. First, recall
that the set Atoms(S.Init) denotes the set of all atomic predicates for the initial state
schema:∧

a∈Atoms(S.Init) a = S.Init.
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For any such predicate a, let a[x/v] depict the predicate, resulting from replacing any
free occurrence of the variable x in a with the value v of type tx. Henceforth, if a is
defined over a set of state variables {x1, . . . , xn} and vi : txi , we write

(v1, . . . , vn) |= a⇔ a[xi/vi] = true .

For instance, (7, 3) |= x > y. Here, we assume an ordering on the state variables, such
that a unique mapping xi → vi is indeed possible. Moreover, we write s |= S.Init instead
of S.Init(s). Finally, let Init� V denote the Init-schema of a specification, restricting
only variables from V.

The next lemma states the first of the two properties specified above:

Lemma 5.3.7. (Correctness of Init-restriction, first part)
Let DGS = (N,−→DG) be the DG of a specification S, and let (C1,C2) be a cut, separating the
set V into V1 and V2, according to Definition 4.3.5. Then, for all states s ∈ S.State:

s |= S.Init⇒ (s� V1 |= S1.Init ∧ s� V2 |= S2.Init).

Proof. Assume s |= S.Init for some s ∈ S.State. Let (V \ V1) = {v1, . . . , vn}, and let
V1 = {w1, . . . ,wm}. We have to show

s� V1 |= ∃ v1, . . . , vn • S.Init

and

s� V2 |= ∃w1, . . . ,wm • S.Init.

Recall that, in general, V1 ∩ V2 6= ∅, and thus, (V \ V1) 6= V2. Since

S.Init =
∧

a∈Atoms(S.Init) a,

s |= S.Init is equivalent to ∀ a ∈ Atoms(S.Init) • s |= a. Let Free(a) be the set of free
state variables within a. Without loss of generality, let

Free(a) = {x1, . . . , xn, y1, . . . , ym}

for xi ∈ V1 and yj ∈ (V \ V1). Then,

S1.Init.a = ∃ y1, . . . , ym • a(x1, . . . , xn, y1, . . . , ym)

and

S2.Init.a = ∃ x1, . . . , xn • a(x1, . . . , xn, y1, . . . , ym).

We deduce

s |= a ⇔ a[xi/s.xi][yj/s.yj] = true

⇔ s� V1 |= a[yj/s.yj] and s� V2 |= a[xi/s.xi]

⇒ s� V1 |= ∃ y1, . . . , ym • a and s� V2 |= ∃ x1, . . . , xn • a

⇔ s� V1 |= S1.Init.a and s� V2 |= S2.Init.a. 2
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For the second property, we have to consider the optimisation from Section 4.3.7: as
already mentioned, we aim at neglecting several initial data dependences. These are
the ones originating from an atomic predicate a solely referring to variables x, such that
InitClos(x) ⊆ (V2 \ V1) holds. It is reasonable to neglect those dependences, because all of
these predicates remain unchanged within S2.Init, which we show next. As additionally,
state variables from V2 \ V1 are not modified within S1 at all, the initial data dependences
within DGS = (N,−→DG), originating from these predicates, no longer cause a violation of
no crossing. Note that all remaining initial data dependences must not be neglected.

Lemma 5.3.8. (Correctness of optimisation)
Let DGS = (N,−→DG) be the DG of a specification S, and let (C1,C2) be a cut, separating the
set V into V1 and V2, according to Definition 4.3.5. In addition, let

{y1, . . . , ym} = {x | InitClos(x) ⊆ (V2 \ V1)}.

Then, the initial state predicate of S restricted to {y1, . . . , ym} is equal to the initial state
predicate of S2 restricted to the same set, that is

S.Init� {y1, . . . , ym} = S2.Init� {y1, . . . , ym}.

Proof. Let InitClos(x) ⊆ (V2 \ V1). Then, for any atomic predicate a ∈ Atoms(S.Init), we
get vars(a) ⊆ (V2 \ V1). Based on

S2.Init = ∃w1, . . . ,wm • S.Init,

for V1 = {w1, . . . ,wm}, any of these atoms is preserved within S2.Init. 2

Next, we complement Lemma 5.3.7 by proving the second of the two properties,
specified above: from two states si ∈ Si.State satisfying Si.Init, we can construct
s ∈ State satisfying S.Init. For finally showing correctness of the optimisation, this
construction necessarily needs to take the previously described subset of (V2 \ V1) into
account.

Lemma 5.3.9. (Correctness of Init-restriction, second part)
Let DGS = (N,−→DG) be the DG of a specification S, and let (C1,C2) be a cut, separating the
set V into V1 and V2, according to Definition 4.3.5. Let V1 = {x1, . . . , xn},

{y1, . . . , ym} = {x | InitClos(x) ⊆ (V2 \ V1)} and
{z1, . . . , zl} = (V2 \ V1) \ {y1, . . . , ym}.

For all states of S, we use the variable ordering (x1, . . . , xn, y1, . . . , ym, z1, . . . , zl). Let
si ∈ Si.State, such that si |= Si.Init. Then, there exist ci : tzi , i ∈ {1, . . . , l}, such that for

s := (s1.x1, . . . , s1.xn, s2.y1, . . . , s2.ym, c1, . . . , cl),

s |= S.Init.
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Proof. Again, let (V \ V1) = {v1, . . . , vn}, and let V1 = {w1, . . . ,wm}. Based on the
definition of Si.Init, we have

1) (s1.x1, . . . , s1.xn) |= ∃ v1, . . . , vn • S.Init and

2) (s2.y1, . . . , s2.ym, s2.z1, . . . , s2.zl) |= ∃w1, . . . ,wm • Init.

We need to show that there indeed exist ci of type tzi , such that

S.Init[x1/s1.x1] . . . [xn/s1.xn][y1/s2.y1] . . . [ym/s2.ym][z1/c1] . . . [zl/cl]

evaluates to true. First, for all a ∈ Atoms(S.Init):

vars(a) ∩ {x1, . . . , xn, z1, . . . , zl} ∩ {y1, . . . , ym} = ∅.

This is based on Definition 4.3.26: assume the opposite, then there exists an atomic
predicate from S.Init, containing a variable y ∈ (V2\V1), such that InitClos(y) ⊆ (V2\V1)
holds. In addition, the predicate either refers to a variable x ∈ V1 or to a variable
z ∈ (V2 \ V1), for which InitClos(z) * (V2 \ V1). In both cases, we get a contradiction, as
either x itself or some z′ ∈ InitClos(z) is an element of (V1 ∩ InitClos(y)). Therefore, any
atomic predicate within S.Init is either defined over a subset of {x1, . . . , xn, z1, . . . , zl}
or a subset of {y1, . . . , ym}. s indeed satisfies S.Init: let a ∈ Atoms(S.Init) be defined
over {x1, . . . , xn, z1, . . . , zl}. As

(s1.x1, . . . , s1.xn) |= ∃ v1, . . . , vn • S.Init,

in particular,

(s1.x1, . . . , s1.xn) |= ∃ c1, . . . , cn • a

holds. Now assume that a ∈ Atoms(S.Init) is defined over {y1, . . . , ym}.

(s2.y1, . . . , s2.ym, s2.z1, . . . , s2.zl) |= ∃w1, . . . ,wm • Init

particularly implies that (s2.y1, . . . , s2.ym) |= a. As

vars(a) ∩ {x1, . . . , xn, z1, . . . , zl} ∩ {y1, . . . , ym} = ∅,

we conclude that s |= S.Init. 2

Example 5.3.10. Recall the initial state schema of the candy machine from Figure 2.3:

CandyMachine.Init = (sum = 0) ∧ (paid = 〈 〉) ∧ (items = 〈 〉).

For the valid single cut C = {switch}, we get sum, paid ∈ V1 and items ∈ (V2\V1). Obviously,
InitClos(items) ⊆ (V2 \ V1). Thus,

S.Init� {items} = S2.Init� {items} = (items = 〈 〉).

In addition, any state s = (s1.sum, s1.paid, s2.items). such that si |= Si.Init, yields
s |= S.Init.
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Note, that the previous lemmas showed the correctness of the optimisation from
Section 4.3.7 but not ultimately of the Init-restriction. It remains to be shown that the
existential quantification does not violate the initial correlation between several state
variables. For instance, one could assume that a split-up of a predicate x ≥ y into two
predicates ∃ x • x ≥ y and ∃ y • x ≥ y may cause an observable difference between S and
S1 ‖EC S2. The correctness proof of the decomposition of the Object-Z part in Section 5.3.2
will show that this is not the case, mainly by using the correctness criterion no crossing
with respect to initial data dependences.

5.3.2 Correctness of the Decomposition: Object-Z part

Next, we show correctness for the decomposition of S.OZ by using the previous results of
this section. We start by clarifying the restriction that traces of the Object-Z part need to
adhere to the ones of the CSP part. Instead of showing that

S.OZ =T (S1.OZ ‖EC S2.OZ)JR′K

holds, we show the weaker property

∀ tr such that (tr�Op) ∈ traces(S.main)�Op • (5.1)

tr ∈ traces(S.OZ)⇔ tr ∈ traces((S1.OZ ‖EC S2.OZ)JR′K),

It describes that any trace, for which we assume the ordering of operations to be
determined by the CSP part, is an element of traces(S.OZ), if, and only if, it is contained
in traces((S1.OZ ‖EC S2.OZ)JR′K).

The crucial point considering the renaming is as follows: addressing parameters are
not restricted by the Object-Z part, and we can entirely omit dealing with them. However,
we have to consider the set of transmission parameters, as they are necessary to restore
the original data flow within the decomposition. In correspondence to the correctness
proof of the CSP part and for simplification, we omit denoting the additional parameters,
which are introduced by the renaming relation.

We sketch the main strategy for showing Equation 5.1: for any trace of S.OZ, we
define a trace of S1.OZ ‖EC S2.OZ and vice versa, such that both traces are equivalent.
Recall Section 2.2.2 and the definition of Traces(S.OZ): according to the LTS semantics
from Definition 2.2.3, an Object-Z trace consists of an alternating sequence of states
and events. As we ultimately aim at showing trace equivalence with respect to the CSP
traces model, we solely have to require trace equivalence over the set traces(OZ), the
set of Object-Z traces projected on events. In particular, we will observe that the trace
equivalence with respect to Traces(S.OZ) cannot be shown: some state variables do not
need to have corresponding values within π ∈ Traces(S.OZ) and its analogon πi within
Traces(S1.OZ ‖{EC} S2.OZ).

In general, the decomposition of a specification eliminates a subset of the original set of
operations. Therefore, a trace of πi ∈ Si.OZ is a projection of a trace of π ∈ S.OZ. In order
to simplify reasoning about their correspondence and the usage of indices, we assume an
event noev, depicting stuttering [CGP99] in πi: it substitutes for any event e of π, not
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occurring in πi. Thus, both traces have a corresponding length. Furthermore, for any
noev-step in a trace, the succeeding state is identical to the one before noev, that is

s noev−→ s′ ⇒ s = s′.

When dealing with traces π ∈ Traces(S.OZ), we use si := π[i] to denote the ith state of
the trace π and ei := π.i to denote its ith event. Furthermore, we let ei = opi.ini.simi.outi.
We proceed accordingly for πi ∈ Traces(Si.OZ), where we use an additional top index.
Based on the usage of noev, we can always refer to corresponding positions within π
and πi. Summarising, traces are referred to as

π = 〈s0, e0, s1, e1, . . . 〉,
π1 = 〈s1

0, e
1
0, s

1
1, e

1
1, . . . 〉 and

π2 = 〈s2
0, e

2
0, s

2
1, e

2
1, . . . 〉.

Before carrying out the actual proof, we illustrate our general strategy and the possible
inconsistencies in the state space valuations by an example.

Example 5.3.11. Consider the extended number swapper from Figure 4.26 and its de-
composition from Figures 4.27 and 4.28. The following table compares three valid traces
π ∈ Traces(Swapper.OZ), π1 ∈ Traces(Swapper1.OZ) and π2 ∈ Traces(Swapper2.OZ). Here,
"_" denotes an arbitrary value. We choose the value 2 for the input parameter of the
operation input.

π π1 π2

〈 〈 〈
s0 : (a = 1, b = , tmp = ), s1

0 : (b = , tmp = ), s2
0 : (a = 1, b = , tmp = ),

e0 : input.2, e1
0 : input.2, e2

0 : noev,

s1 : (a = 1, b = 2, tmp = ), s1
1 : (b = 2, tmp = ), s2

1 : (a = 1,b = , tmp = ),

e1 : store b, e1
1 : store b.2, e2

1 : store b.2,

s2 : (a = 1, b = 2, tmp = 2), s1
2 : (b = 2, tmp = 2), s2

2 : (a = 1,b = , tmp = 2),

e2 : move a, e1
2 : noev, e2

2 : move a,

s3 : (a = 1, b = 1, tmp = 2), s1
3 : (b = 2, tmp = 2), s2

3 : (a = 1, b = 1, tmp = 2)

e3 : move b, e1
3 : noev, e2

3 : move b,

s4 : (a = 2, b = 1, tmp = 2), s1
4 : (b = 2, tmp = 2), s2

4 : (a = 2, b = 1, tmp = 2)

e4 : result.1, e1
4 : result. , e2

4 : result.1,

s5 : (a = 2, b = 1, tmp = 2) s1
5 : (b = 2, tmp = 2) s2

5 : (a = 2, b = 1, tmp = 2)

〉 〉 〉

As move a and move b do not occur in S1 and as input is not represented in S2, these events
are replaced by noev within π1 and π2, respectively.
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Within the decomposition, the parameter value for result is solely determined by S2.result.
Therefore, the event has an arbitrary parameter value within π1, the synchronisation ensures
that exclusively the value from π2 is possible.

Five cells are highlighted in gray: for these states, the value for b is inconsistent between
either π and π1 or between π and π2. However, these inconsistent values do not influence the
equivalence between π� ES and the joint execution of π1� ES′ and π2� ES′: in both cases, we
get

〈input.2, store b[.2],move a,move b, result.1〉,

where store b receives an additional transmission parameter within the parallel composition
of π1� ES′ and π2� ES′ .

As we will show in this section, inconsistent values for some state variables never affect
the trace equivalence in the CSP traces model.

The decomposition of S leads to a partitioning of V into V1 and V2. In the remainder of
this proof, we need to distinguish between four different sets of state variables:

V1 \ V2: the set of state variables solely represented in S1,

V2 \ V1: the set of state variables solely represented in S2,

CV := CV1 ∪ CV2: the set of cut variables, according to Definition 4.3.9,

CV := (V1 ∩ V2) \ CV: the set of remaining shared state variables.

The latter set can be characterised as the set of state variables occurring in both, S1

and S2, which are either not modified within C1 (C2) or which do not influence Ph2

(Ph3 ∪ Ph1). As we will see later, this is the sole set of state variables, for which values in
π and πi are possibly inconsistent.

We start the proof with the forward direction of Equation 5.1.

Left-to-Right Implication

Let tr ∈ traces(S.OZ), such that (tr�Op) ∈ traces(S.main)�Op. We have to show

tr ∈ traces((S1.OZ ‖EC S2.OZ)JR′K).

Let π = 〈s0, e0, s1, e1, . . . 〉 ∈ Traces(S.OZ), such that π � ES = tr holds. Recall that
ei = opi.ini.simi.outi. We proceed in three steps: based upon π, we define two traces

πi = 〈si
0, e

i
0, s

i
1, e

i
1, . . . 〉 (Step 1),

with possibly ei
j = noev for some events. Next, we inductively show

πi ∈ Traces(Si.OZ) (Step 2).

Finally, we deduce

tr = π� ES ∈ (π1� ES′ ‖EC π2� ES′)JR′K (Step 3).
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Here, we refer to the definition of [Ros98] for the parallel composition of two traces.

Step 1: For the definition of πi ∈ Traces(Si.OZ), we need to consider events and states.
Obviously, as we aim at showing equivalence within the CSP traces model, the definition
for πi on events needs to match with the trace tr, except for events replaced by noev.
This gives rise to the following definition:4

e1
j :=

{
ej.t, opj 6∈ Ph2,

noev, otherwise,
(5.2)

e2
j :=

{
ej.t, opj 6∈ (Ph1 ∪ Ph3),
noev, otherwise,

where t denotes the values for the additional transmission parameters. Note that these
are uniquely defined, based on Definition 4.3.10.

The definition of the states is more complicated. The initial states of π1 and π2 are
simply defined as the restrictions of s0 on V1 and V2, respectively:

s1
0 := s0� V1 and s2

0 := s0� V2. (5.3)

Next, we define si
k for k ≥ 1. The states for πi mostly correspond to the states of π,

restricted to the remaining set of state variables. Therefore, in most cases, we simply set
si
k := sk� Vi. However, in some cases, the state valuations do not match. This is the case,

if some modification of a state variable within π is not represented in πi, thus causing
an inconsistency between the values of the respective state variable, which is possibly
preserved afterwards.

Precisely, there are three different cases, for which the value for a state variable x
within πi must not be modified, that is si

k := si
k−1, instead of si

k := sk.

(1) In Example 5.3.11, consider the transition s2
move a−→ s3 within π. The event is replaced

by noev within π1. As the modification for b to the value 1 gets lost within the trace
for S1.OZ, setting s1

3.b to s3.b would contradict π1 ∈ Traces(S1.OZ) and is therefore
unreasonable. Instead, we have to define s1

3.b := s1
2.b – the original value is preserved

in case that an event is replaced by noev within πi.

(2) Now consider the transition s4
result.1−→ s5. As the value for b is not modified within

result, the equation s5.b = s4.b = 1 holds. The corresponding call of result within π1

does not change b as well. Therefore, we again need to preserve the (inconsistent)
value s1

4.b = 2.

(3) For the final case, assume that in the example, the predicate part of the operation
store b additionally comprises a modification of b. As store b ∈ OpC1 and as b is not a
cut variable, this modification is solely conducted in S1. The old value for b needs to
be preserved within π2.

4Here, we refer to the specific occurrence of the DG node opj corresponding to the uniquely related
occurrence opj of the operation op.
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The previous considerations motivate the following definition. Let i, j ∈ {1, 2}. For any
k ≥ 1 and x ∈ Vi, we define the value of si

k.x within πi as:

si
k.x :=


si
k−1.x, ei

k−1 = noev or
(x ∈ (V1 ∩ V2) and x 6∈ ref(opk−1) and x 6∈ mod(opk−1)) or
(x 6∈ CVj and x ∈ mod(opk−1) and ei

k−1 ∈ ECj , for j 6= i),
sk.x, otherwise.

(5.4)

The three cases for si
k−1.x correspond to the previous explanations. The definition can

be summarised as follows: any modification of x within πi results in corresponding values
sk.x and si

k.x. In any other case, the pre-state value for the variables is kept.

Step 2: In a next step, we have to show πi ∈ Traces(Si.OZ). Based on the previous
definition, the values for the state variables within π and πi are possibly diverse. However,
the following, crucial lemma shows that if some state variable x is referenced by the
operation opi

k, the pre-state value of x is identical in π and πi, that is, sk.x = si
k.x holds:

Lemma 5.3.12. (Equality of values for referenced state variables, left-to-right)
Let π ∈ Traces(S.OZ), and let πi be defined according to Equations 5.2, 5.3 and 5.4. Then:

∀n ≥ 0, ∀ x ∈ Vi,∀ opi ∈ Si.Op • x ∈ ref(opi
n)⇒ sn.x = si

n.x.

Proof. The property obviously holds for n = 0, as si
0 = s0� Vi. Let n > 0, x ∈ ref(op1

n)
and thus, x ∈ ref(opn), for some x ∈ S.State. Assume that sn.x 6= s1

n.x. The case i = 2 is
analogous. Initially, s0.x = s1

0.x holds. Therefore, there exist some 0 ≤ k < n and opk.park,
such that x ∈ mod(opk), but x 6∈ mod(op1

k). This is due to Equation 5.4: if some state
variable is modified within π1, the modification is identical for π and π1. Assume that k is
the latest such position, that is, there is no further modification of x between sk+1 and
sn. For the transition sequence 〈ek, . . . , en〉, we apply Lemma 6.1.4 from [Brü08]: either,
there exists a CFG path, connecting both corresponding DG-nodes ek and en or they are
located in different CFG branches, attached to the same interleaving node or parallel
composition node. As x is not modified in between, we deduce that there either exists
a direct data dependence (in the first case) or an interference data dependence (in the
latter case) from ek to en.

This particular dependence will now be used to deduce a contradiction. Here, several
different cases have to be considered. Figure 5.11 illustrates the current situation, where
the DG nodes corresponding to ek and en are connected by a data dependence.

As x ∈ mod(opk) and sk+1.x 6= s1
k+1.x, either e1

k = noev or e1
k ∈ EC2 according to

Equation 5.4.

e1
k = noev: In this case, the corresponding DG node ek is an element of Ph2, as only

operations corresponding to nodes from Ph2 are eliminated from S1. We need to
consider four cases for en:
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s0.x . . . sk
ek−→ sk+1.x . . . sn.x

en−→ sn+1.x

= 6= 6=

s1
0.x . . . s1

k

e1
k−→ s1

k+1.x . . . s1
n.x

e1
n−→ s1

n+1.x

Figure 5.11: Illustration of Lemma 5.3.12

en ∈ (Ph1 ∪ Ph3): The data dependence from from ek to en violates condition
no crossing. X

en ∈ C1: The data dependence from ek to en violates Lemma 5.3.3 (and particularly
condition no reaching back). X

en ∈ C2: In this case, the original predicate part of opn is eliminated for the defini-
tion of S1.opn and solely replaced by the transmission parameter predicates.
Thus, x ∈ ref(op1

n) is impossible. X

en ∈ Ph2: opn is eliminated from S1 in its entirety and again, x ∈ ref(op1
n) is

impossible. X

e1
k ∈ EC2: In particular, x 6∈ CV2 needs to hold, according to the third case of Equation

5.4.

en ∈ (Ph1 ∪ Ph3): The data dependence ek to en causes x to be contained in the set
of cut variables of EC2 , contradicting x 6∈ CV2. X

en ∈ C1: According to the previous case, as the referencing of x ∈ C1 still causes x
to be a cut variable. X

en ∈ C2: Analogous to the corresponding case for e1
k = noev. X

en ∈ Ph2: Analogous to the corresponding case for e1
k = noev. X 2

Next, we show a corresponding lemma for the values of local state variables:

Lemma 5.3.13. (Equality of values for local state variables, left-to-right)
Let π ∈ Traces(S.OZ), and let πi be defined according to Equations 5.2, 5.3 and 5.4. Let
j 6= i. Then:

∀n ≥ 0, ∀ x ∈ Vi, ∀ opi ∈ Si.Op • x ∈ (Vi \ Vj)⇒ sn.x = si
n.x.

Proof. Again, the property holds for n = 0. As x ∈ (Vi \ Vj), none of the first three cases
from Equation 5.4 ever applies: an event replaced by noev within πi is solely represented
in Sj and never refers to local variables from Si. The remaining two cases only apply for
x ∈ (V1 ∩ V2). Therefore, sn.x = si

n.x always holds. 2

The previous lemmas will be used throughout the following theorem, which shows that
πi is indeed an element of Traces(Si.OZ):
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Theorem 5.3.14. (Correctness of the decomposition: Object-Z part, first part)
Let πi be defined according to Equations 5.2, 5.3 and 5.4. Then, πi ∈ Traces(Si.OZ).

Proof. The proof is conducted by induction on the length of πi. In the induction base, we
show si

0 |= Si.Init. In the induction step, based on the assumption that 〈si
0, e

i
0, . . . , s

i
k〉 is

an element of Traces(Si.OZ), we show

si
k

ei
k−→ si

k+1,

where si
k+1 complies to the conditions of Equation 5.4.

Induction Base:

si
0 |= Si.Init directly follows from Equation 5.3 and Lemma 5.3.7.

Induction Step:

We start by considering the guard of opi
k, which needs to be satisfied. Furthermore,

the operation must be executable with parameter values corresponding to ek. Finally,
performing opi

k needs to allow for the successor state si
k+1 to comply to the conditions of

Equation 5.4.
In the following proof, we use the predicate interpretation of an enable− and effect-

schema in terms of Z:

s
op.in.sim.out−→ s′ ⇔ (enable op(s, in, sim) ∧ effect op(s, in, sim, out, s′))

Furthermore, we write s⊕t to denote that the state t overrides the state s. Precisely, for s
defined over V and t defined over a subset V′, let s⊕ t be defined over V as follows:

(s⊕ t).x :=

{
t.x, x ∈ V′,
s.x, otherwise.

Let ek = opk.ink.simk.outk. By assumption,

enable opk(sk, ink, simk) ∧ effect opk(sk, ink, simk, outk, sk+1)

holds. Besides, by using Lemma 5.3.12, we know that sk.x = si
k.x for all referenced

variables within opi
k.

Guard is Satisfied: We need to show enable opi
k(si

k, ink, simk). For opi
k = noev, there

is obviously nothing to show. Moreover, if opi
k ∈ OpCj for j 6= i, then enable opi

k =
true. In any other case, enable opi

k = enable opk holds, according to Definition
4.3.10. We deduce:
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enable opk(sk, ink, simk)
(1)⇒ enable opi

k(sk� Vi, ink, simk)
(2)⇒ enable opi

k((sk� Vi)⊕(si
k� ref(opk)), ink, simk)

(3)⇒ enable opi
k(si

k, ink, simk).

Implication (1) is due to enable opi
k = enable opk and the fact that any operation

from Si solely refers to variables from Vi. Implication (2) is due to sk = si
k on ref(opk)

(induction hypothesis and Lemma 5.3.12). The last implication, (3), follows by the
fact that non-referenced variables within enable opk do not affect the truth-value
of the associated predicate.

Operation is Executable with Compatible Successor State: We will now show

effect opi
k(si

k, ink, simk, outk, si
k+1)

by distinguishing the three cases

1. opi
k = noev,

2. opi
k ∈ OpCj for i 6= j and

3. all remaining possibilities.

opi
k = noev: Again, noev does not pose a problem, as in this case, si

k+1 = sk+1,
corresponding to Equation 5.4.

opi
k ∈ OpCj for i 6= j: In this case, the predicate part of opk is replaced by∧

w∈CVj
w′ = trw? within opi

k. We deduce:

effect opk(sk, ink, simk, outk, sk+1)
(1)⇒ effect opi

k(sk� Vi, ink, simk, outk, (sk� Vi)⊕(sk+1� CVj))
(2)⇒ effect opi

k((sk� Vi)⊕s′, ink, simk, outk, ((sk� Vi)⊕s′)⊕(sk+1� CVj))
(3)⇒ effect opi

k(si
k, ink, simk, outk, si

k⊕(sk+1� CVj)),

for

s′ := (si
k� (ref(opk) ∪ Vi \ Vj)).

The first implication is based on the fact that solely cut variables are modified
by opi

k, that is, the pre-state value needs to be kept for all remaining variables.
Moreover, as the value for the output parameters are not restricted within
opi

k, the output value outk can indeed be used. Implication (2) follows by
sk.x = si

k.x on ref(opk) and all local variables (induction hypothesis, Lemma
5.3.12 and Lemma 5.3.13). As all other variables do not affect the execution
of the operation, implication (3) is immediate.

The state si
k+1 = si

k⊕(sk+1� CVj) satisfies the conditions of Equation 5.4 for any
x ∈ V:
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x 6∈ (V1 ∩ V2): Impossible, as for opi
k ∈ OpCj , all variables occurring within opi

k
are shared variables. X

x ∈ CVj: Here, si
k+1 = sk+1, according to Equation 5.4. X

x ∈ (V1 ∩ V2) \ CVj: For x ∈ mod(opk), we get si
k+1 = si

k, according to Equation
5.4, third case. Otherwise, the variable is not modified within opk. If it is
referenced, sk = si

k, which is preserved by the operation and thus, si
k+1 =

sk+1, again matching with Equation 5.4. Otherwise, x 6∈ (mod(opk) ∪
ref(opk)), and si

k+1 = si
k matches with Equation 5.4, second case. X

All remaining cases: Now, effect opi
k = effect opk holds according to Defini-

tion 4.3.10, and we get:

effect opk(sk, ink, simk, outk, sk+1)
(1)⇒ effect opi

k(sk� Vi, ink, simk, outk, sk+1� Vi)
(2)⇒ effect opi

k((sk� Vi)⊕s′, ink, simk, outk, sk+1� Vi)
(3)⇒ effect opi

k(si
k, ink, simk, outk, (sk+1� Vi)⊕(si

k� X)),

for i 6= j,

s′ := (si
k� (ref(opk) ∪ Vi \ Vj)),

and

X := (V1 ∩ V2) \ (mod(opk) ∪ ref(opk)).

For implication (1), we use effect opi
k = effect opk. Implication (2)

follows by sk.x = si
k.x on ref(opk) and all local variables (induction hypothesis,

Lemma 5.3.12 and Lemma 5.3.13).

For the final implication, (3), we use effect opi
k = effect opk and sk.x =

si
k.x, yielding that any modification of a variable within opk is correspondingly

possible within opi
k. We are left to deal with non-modified variables: for these,

as all local state variables and referenced state variables have consistent values
in the pre-state, they have consistent values in the post state as well. The
remaining state variables are exactly those described by the set X: variables
neither modified nor referenced within opk, which are not local to Si. For
these, the pre-state value must be preserved within the post state.

Finally, the state (sk+1� Vi)⊕(si
k� X) indeed satisfies the conditions of Equation

5.4 (where only the second and fourth case can apply), as for any state variable,
the pre-state value is kept for (V1 ∩ V2) \ (ref(opk) ∪mod(opk)) and otherwise,
the value from sk+1 is used. 2

Step 3: So far, we constructed two traces πi out of π ∈ Traces(S.OZ) for which we showed
πi ∈ Traces(Si.OZ). It remains to be shown that tr = π � ES ∈ (π1� ES′ ‖EC π2� ES′)JR′K
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holds. This is an immediate deduction due to πi� ESi = tr� ESi modulo renaming and the
definition for the parallel composition of two traces ([Ros98]). This completes the proof
of the left-to-right implication.

Right-to-Left Implication

Let tr ∈ traces((S1.OZ ‖EC S2.OZ)JR′K), such that (tr � Op) ∈ traces(S.main) � Op.5 We
have to show tr ∈ traces(S.OZ). Based on tr ∈ traces((S1.OZ ‖EC S2.OZ)JR′K), there exist
πi ∈ Traces(Si.OZ), such that tr ∈ (π1� ES′ ‖EC π2� ES′)JR′K.

Again, we proceed in three steps: we define a trace

π = 〈s0, e0, s1, e1, . . . 〉

out of πi = 〈si
0, e

i
0, s

i
1, e

i
1, . . . 〉 (Step 1). In (Step 2), we inductively show π ∈ Traces(S.OZ).

Finally, we deduce tr = π� ES ∈ traces(S.OZ) (Step 3).

Step 1: For the definition of π on events, we obviously choose the events from tr:

ej := tr.j. (5.5)

For the definition of the states of tr, we start by defining s0. Here, we use the result
from Lemma 5.3.9: in the following, let V1 = {x1, . . . , xn},

VY := {y1, . . . , ym} = {x | InitClos(x) ⊆ (V2 \ V1)}

and

VZ := {z1, . . . , zl} = (V2 \ V1) \ {y1, . . . , ym}.

Furthermore, let c1, . . . , cl, with ci : tzi , such that

S.Init[x1/s1
0.x1] . . . [xn/s1

0.xn][y1/s2
0.y1] . . . [ym/s2

0.ym][z1/c1] . . . [zl/cl]

holds. Then:
s0 := (s1

0.x1, . . . , s1
0.xn, s2

0.y1, . . . , s2
0.ym, c1, . . . , cl). (5.6)

Note that we can freely choose any values ci for zi, as long as they extend s1
0.xj and

s2
0.yk to a valid initial valuation. Lemma 5.3.9 showed that such values for zi indeed

exist. Intuitively, the freedom of choice is substantiated by the fact that for the set VZ, the
initial values within S2.Init are irrelevant for the specification S2: in case that any such
variable is referenced, it must have been modified before, as otherwise, an initial data
dependence would violate the condition no crossing. Thus, these values never become
relevant within S2, and we can safely refrain from using them within s0.

5Based on the correctness for the CSP part from Section 5.2, tr can equally refer to both, traces(S.main) or
traces((S1.main ‖EC S2.main)JR′K).
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The definition for sk, k ≥ 1, is given next:

sk.x :=



s1
k.x, x ∈ (V1 \ V2),

s2
k.x, x ∈ (V2 \ V1),

s1
k.x, x ∈ (V1 ∩ V2), x ∈ (mod(op1

k−1) ∩mod(op2
k−1)),

s1
k.x, x ∈ (V1 ∩ V2), x ∈ (mod(op1

k−1) \mod(op2
k−1)),

s2
k.x, x ∈ (V1 ∩ V2), x ∈ (mod(op2

k−1) \mod(op1
k−1)),

sk−1.x, x ∈ (V1 ∩ V2), x 6∈ (mod(op1
k−1) ∪mod(op2

k−1)).

(5.7)

Summarising, for state variables local to Si, we choose the value of si
k. For shared

variables, we adopt modifications from the respective traces and keep the pre-state value,
if no modification is conducted. If a variable is modified in both traces, the modification
must be corresponding. This is based on the usage of transmission parameters, ensuring
that shared state variables must not distinctly be modified by the same operation. Thus,
for the third case, we could equally define sk.x := s2

k.x.

Step 2: In accordance with the left-to-right implication, we show a property describing
that state variables referenced by an operation opi

k always have identical values within π
and πi:

Lemma 5.3.15. (Equality of values for referenced state variables, right-to-left)
Let πi ∈ Traces(Si.OZ), and let π be defined according to Equations 5.5, 5.6 and 5.7. Then:

∀n ≥ 0, ∀ x ∈ Vi,∀ opi ∈ Si.Op • x ∈ ref(opi
n)⇒ sn.x = si

n.x.

Proof. We first show that the property holds for n = 0. For the sets V1 and VY , the states
s0 and si

0 are identically defined. This is not the case for the set VZ. However, z ∈ ref(opi
0)

would yield that ei
0 ∈ E2, as the set VZ solely comprises variables local to S2. This is

impossible: any event, which can initially be executed within a trace of S.main, is an
element of ES1 . Otherwise, the corresponding DG-node ei

0 would violate the correctness
criterion disjointness, based on ei

0 ∈ Ph2 ∩ (Ph1 ∪ C1).
Let n > 0, x ∈ ref(opi

n) and thus, x ∈ ref(opn) for some x ∈ S.State. Based on Equation
5.7, any modification conducted within πi is identical within π. This allows us to apply
the same ideas from Lemma 5.3.12 for op1

n. In particular, if x ∈ (mod(opk) \mod(op1
k))

for some opk, either op1
k = noev or it is an element of EC2 , resulting in the exact same

case differentiation as in Lemma 5.3.12.
For op2

n, we have to consider one additional case: for x ∈ VZ, we cannot assume
s0.x = s2

0.x. If x is modified somewhere in π2, the modification is identical to the one
in π, and we reside in the previous case. Now assume that x ∈ ref(opn), and x is never
modified in π2. In this case, there exists an initial data dependence from S.Init to the
corresponding DG node en. Since op2

n references x ∈ VZ, opn is an element of Op2 and
thus, en is an element of Ph2. This yields a contradiction, as the connecting initial data
dependence violates no crossing.

Figure 5.12 illustrates the proof idea of the lemma. Here, (∗) denotes that s0.x = s2
0.x

only holds for V \ VZ.
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s1
0.x . . . s1

k

e1
k−→ s1

k+1.x . . . s1
n.x

e1
n−→ s1

n+1.x

= 6= 6=

s0.x . . . sk
ek−→ sk+1.x . . . sn.x

en−→ sn+1.x

(∗) 6= 6=

s2
0.x . . . s2

k

e2
k−→ s2

k+1.x . . . s2
n.x

e2
n−→ s2

n+1.x

Figure 5.12: Illustration of Lemma 5.3.15

The corresponding lemma for local state variables is immediate:

Lemma 5.3.16. (Equality of values for local state variables, right-to-left)
Let πi ∈ Traces(Si.OZ), and let π be defined according to Equations 5.5, 5.6 and 5.7. Let
j 6= i. Then:

∀n ≥ 1, ∀ x ∈ Vi, ∀ opi ∈ Si.Op • x ∈ (Vi \ Vj)⇒ sn.x = si
n.x.

Proof. The property holds based on Equation 5.7. 2

Note that the previous property does not hold for n = 0, as the initial states do not
correspond on the set {z1, . . . , zl}. Next, we show that π is an element of Traces(S.OZ):

Theorem 5.3.17. (Correctness of the decomposition: Object-Z part, second part)
Let π be defined according to Equations 5.5, 5.6 and 5.7. Then, π ∈ Traces(S.OZ).

Proof. Again, the proof is conducted by induction on the length of π.

Induction Base:

s0 |= S.Init directly follows by Equation 5.6 and Lemma 5.3.9.

Induction Step:

Again, let ek = opk.ink.simk.outk. By assumption,

enable opi
k(si

k, in
i
k, sim

i
k) ∧ effect opi

k(si
k, in

i
k, sim

i
k, outi

k, s
i
k+1)

holds. By using Lemma 5.3.15, we know that sk.x = si
k.x holds for all referenced variables

within opi
k.

Guard is Satisfied: In order to show enable opk(sk, ini
k, sim

i
k), we start with opk ∈ Opi,

that is, opk is a non-cut operation: enable opk = enable opi
k holds according to

Definition 4.3.10. We deduce:
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enable opi
k(si

k, in
i
k, sim

i
k)

(1)⇒ enable opk(sk⊕si
k, in

i
k, sim

i
k)

(2)⇒ enable opk(sk⊕(sk� Vi), ini
k, sim

i
k)

(3)⇒ enable opk(sk, ini
k, sim

i
k).

Implication (1) is due to enable opi
k = enable opk and the fact that only variables

of Vi are referenced in enable opi
k. The second implication follows by the induction

hypothesis and Lemma 5.3.15, again using that non-referenced variables within
enable opk do not affect the truth-value of the associated predicate. The last
implication is immediate.

If we assume opk ∈ OpCi , the equation enable opk = enable opi
k holds as well,

and we proceed accordingly.

Operation is Executable with Compatible Successor State: Next, we show

effect opk(sk, ini
k, sim

i
k, outi

k, sk+1),

by distinguishing the two cases

1. opk ∈ Opi and

2. opk ∈ OpCi .

opk ∈ Opi: Here, effect opk = effect opi
k and opj

k = noev, j 6= i, according to
Definition 4.3.10. We get:

effect opi
k(si

k, in
i
k, sim

i
k, outi

k, s
i
k+1)

(1)⇒ effect opk(sk⊕si
k, in

i
k, sim

i
k, outi

k, sk⊕si
k+1)

(2)⇒ effect opk(sk⊕(sk� Vi), ini
k, sim

i
k, outi

k, sk⊕s′)
(3)⇒ effect opk(sk, ini

k, sim
i
k, outi

k, sk⊕s′),

for

s′ := (si
k+1� (ref(opk) ∪mod(opk))).

The first implication is analogous to the considerations for the enable-schema,
and the last implication is obvious. For implication (2), the value si

k+1.x can
solely be used in case that either x is correspondingly modified by opk and opi

k
or the identical pre-state values is kept. For the remaining variables, the value
sk.x needs to be used.

The state sk+1 = sk⊕s′ satisfies the conditions of Equation 5.7 for any x ∈ V:
the sole case of sk+1 and Equation 5.7 differing is x ∈ (ref(opi

k) \mod(opi
k)).

But then, sk.x = si
k.x = si

k+1.
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opk ∈ OpCi: Again, effect opk = effect opi
k, according to Definition 4.3.10.

In addition, effect opj
k for j 6= i solely comprises

∧
w∈CVj

w′ = trw?. The
proof is corresponding to the previous case, except for the fact that now,
x ∈ mod(opi

k) ∩mod(opj
k) is possible. However, in this case, the modification

is identical based on Definition 4.3.10, which corresponds to Equation 5.7,
where we choose the modification from op1

k. 2

Step 3: As π ∈ Traces(S.OZ) and π�ES = tr hold, we immediately deduce tr ∈ traces(S.OZ).
This completes the proof of the right-to-left implication and thus, the correctness proof of
the decomposition of the Object-Z part.

5.4 Correctness of the Renaming for the Decomposition

The previous sections showed correctness for the decomposition of both, the CSP part and
the Object-Z part of S. Preservation of control flow and data flow can only be achieved
by the introduction of additional parameters. One drawback of these parameters is the
required modification of the types of operations from S: equivalence of S and S1 ‖ S2 can
only be shown modulo a renaming of events.

According to Section 4.3.4, the addition of parameters requires a channel renaming f .
As the interface of a specification declares the types of operations, the set of additional
parameters is identical for the CSP part and the Object-Z part. However, according to
Section 4.3, transmission parameters are solely restricted by the Object-Z part, whereas
the restriction of address parameters is limited to the CSP part.

For the definition of the CSP parts of S1 and S2, we already introduced two renaming
relations

RC1 : ES → ES1 and RC2 : ES → ES2 .

These relations determine the possible events the CSP parts of Si can communicate,
and they fix the values for the address parameters, whereas transmission parameters
remain unrestricted. Subsequently, in case that no restriction on either the transmission
parameters or address parameters is conducted, we write ?tr and ?add, respectively. If
the number of additional parameters is irrelevant, we write op.x.t.a to denote an event of
ES′ , according to Section 5.2. Note that none of these parameters have to exist. We recall
the definitions of RC1 and RC2:

RCi(op.x) :=


op.x.i, op ∈ (Op1 ∩ Op2) \ (OpC1 ∪ OpC2),
op.x?tr.a, op ∈ OpC ∧| l−1(op) |> 1,
op.x?tr, op ∈ OpC ∧| l−1(op) |= 1,
op.x, otherwise.

The definition of Si.OZ implicitly defines two renaming relations for the Object-Z parts
as well. The roles for restricting the different types of added parameters are switched: for
an event op.x ∈ ES, the Object-Z part of Si is able to communicate any event op.x.t?add,
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as address parameters are unrestricted for the Object-Z part. Precisely, we get a renaming
relation for the Object-Z part, given as:

ROi(op.x) :=


op.x?add, op ∈ (Op1 ∩ Op2) \ (OpC1 ∪ OpC2),
op.x.t?add, op ∈ OpC ∧| l−1(op) |> 1,
op.x.t, op ∈ OpC ∧| l−1(op) |= 1,
op.x, otherwise.

The renaming needs to be considered, when it comes to showing trace equivalence
between the original system and the decomposition. We use several notations for the
combinations of the four renaming relations RC1, R

C
2, R

O
1 and RO2:

• Ri denotes the union of RCi and ROi.

• RC denotes the union of RC1 and RC2 and, accordingly, RO the union of RO1 and RO2.

• Finally, R denotes the union of all renaming relations, that is, the union of RC and
RO or, accordingly, R1 and R2.

For achieving a comparison between both, the original system and its decomposition,
we consider the – in regard of R – inverse relation R′, which removes the additional
transmission parameters and address parameters. More precisely, R′ : ES′ → ES and

R′(op.x.t.a) := op.x.

We are now able to relate S to (S1 ‖EC S2) by means of R′. Correctness for the
decomposition of the Object-Z part and the CSP part was carried out modulo R′, and we
showed the equivalences

• S.main =T (S1.main ‖EC S2.main)JR′K and

• S.OZ =T (S1.OZ ‖EC S2.OZ)JR′K for the set of traces conforming to the CSP part.

In order to facilitate reasoning about the individual component’s parts Si.main and Si.OZ,
we show that R′ can be distributed over the parallel composition operator. Precisely, we
show the following equivalence in the semantic domain of the CSP trace model:

(S1.main ‖EC S2.main)JR′K ‖ES (S1.OZ ‖EC S2.OZ)JR′K =T
((S1.main ‖EC S2.main) ‖ES′ (S1.OZ ‖EC S2.OZ))JR′K.

Here, the crucial aspect is that the synchronisation alphabet for the outer parallel compo-
sition changes from ES to ES′ , as the right hand side now synchronises over events after
the renaming took place.

We start the proof by showing a property about the composition of a general relation
and its inverse: if a relation Re is total and injective, the composition Re−1 ◦ Re is the
identity relation.



5.4 Correctness of the Renaming for the Decomposition 161

Lemma 5.4.1. (Composition law for injective and total relations)
Let Re ⊆ A× B be a relation, and let

Re−1 := {(b, a) | (a, b) ∈ Re}

be its inverse relation. If Re is total and injective, then

(Re−1 ◦ Re) = IdA.

Proof. We recall the definitions for a relation being total and injective and the one for
the composition of two relations:

• Re is total, if, and only if, ∀ a ∈ A ∃(a, b) ∈ A× B • (a, b) ∈ Re.

• Re is injective, if, and only if, ∀(a, b), (a′, b′) ∈ Re • b = b′ ⇒ a = a′.

• Re−1 ◦ Re = {(x, y) ∈ A×A | ∃ z ∈ B • (x, z) ∈ Re ∧ (z, y) ∈ Re−1}.

Based on the fact that Re is total, IdA ⊆ (Re−1 ◦ Re) holds. Now assume some (x, y) ∈
(Re−1 ◦ Re) and x 6= y. But then, there exists z ∈ B, such that (x, z) ∈ Re and (z, y) ∈ Re−1.
The definition of Re−1 yields (x, z), (y, z) ∈ Re, contradiction to Re being injective. 2

For an application of this property on our renaming relation, we show that R, RC and RO

are both, total and injective:

Lemma 5.4.2. (Properties of event renaming)
The following properties for R, RC and RO are satisfied:

a) R, RC and RO are total.

b) R, RC and RO are injective.

c) (R′ ◦ R) = (R′ ◦ RC) = (R′ ◦ RO) = IdES and for any CSP process Q:

• Q = Q′JRK for some process Q′ implies QJ(R ◦ R′)K = Q.

• Q = Q′JRCK for some process Q′ implies QJ(RC ◦ R′)K = Q.

• Q = Q′JROK for some process Q′ implies QJ(RO ◦ R′)K = Q.

Proof.

a) As the renaming relations are defined with respect to the whole set ES, we immediately
deduce this property. X

b) Immediately follows by the implication

(op1.x1.t1.a1 = op2.x2.t2.a2)⇒ (op1.x = op2.x). X

c) Based on Lemma 5.4.2, the combination of a) and b) yields

(R′ ◦ R) = (R′ ◦ RC) = (R′ ◦ RO) = IdES .

Thus, (R ◦ R′ ◦ R) = R, (RC ◦ R′ ◦ RC) = RC and (RO ◦ R′ ◦ RO) = RO. X 2
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We use these properties in the following theorem, showing the already mentioned
distributivity law for the inverse renaming. The core idea for its proof is the following:
both additional parameter types are either restricted by the decomposition’s Object-Z part
(transmission parameters) or by its CSP part (address parameters), but neither of them
by both. Therefore, if a synchronisation of some op.x between (S1.main ‖EC S2.main)
and (S1.OZ ‖EC S2.OZ) is possible after removing the additional parameters, there exists
some op.x.t.a on which both parts can synchronise beforehand: the intersection of the
newly constructed event sets of the CSP part and the Object-Z part is non-empty.

Theorem 5.4.3. (Distributivity law for inverse renaming)
The inverse renaming relation R′ distributes over the parallel composition ‖ES , that is:

(S1.main ‖EC S2.main)JR′K] ‖ES (S1.OZ ‖EC S2.OZ)JR′K =T
((S1.main ‖EC S2.main) ‖ES′ (S1.OZ ‖EC S2.OZ))JR′K.

Proof. First, note that ES = R′(ES′) holds as R is total (Lemma 5.4.2, a)) and thus, R′

is surjective. Let P := S1.main ‖EC S2.main and Q := S1.OZ ‖EC S2.OZ. We prove the
theorem by showing that (P ‖ES′ Q)JR′K and PJR′K ‖R′(ES′ )

QJR′K are the initial states of a
strong bisimulation [Mil89]

R := {(A,B) | A = (C ‖ES′ D)JR′K,B = CJR′K ‖R′(ES′ )
DJR′K},

where C depicts any reachable state within the labelled transition system of P, and D
denotes any reachable state within the labelled transition system of Q. Based on the
definition of bisimulation, we need to show two directions:

(1) If (A,B) ∈ R and B e→ B′ for e ∈ (ES ∪ {τ}), then there exists some A′, such that
A e→ A′ and (A′,B′) ∈ R.

(2) If (A,B) ∈ R and A e→ A′ for e ∈ (ES ∪ {τ}), then there exists some B′, such that
B e→ B′ and (A′,B′) ∈ R.

Based on the firing rules for CSP, renaming has no effect on τ -transitions [Ros98]. Thus,
for the τ -case, both directions are immediate.

(1): Let (A,B) ∈ R and B
op.x→ B′. Since R′(ES′) = ES, both processes CJR′K and DJR′K need

to synchronise on op.x. Based on the operational semantics of CSP, there exist
B′1,B

′
2, such that B′ = B′1 ‖R′(ES′ )

B′2 and

CJR′K
op.x−→ B′1 and DJR′K

op.x−→ B′2.

From 5.4.2, c), we deduce B′1 = B′1J(R
′ ◦ RC)K and B′2 = B′2J(R

′ ◦ RO)K. Thus,

CJR′K
op.x−→ B′1J(R

′ ◦ RC)K and DJR′K
op.x−→ B′2J(R

′ ◦ RO)K.

By applying R and the firing rule for relational renaming from [Ros98], we get

C
op.x.t1.a1−→ B′1JR

CK and D
op.x.t2.a2−→ B′2JR

OK
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for all op.x.t1.a1 ∈ RC(op.x) and op.x.t2.a2 ∈ RO(op.x). Here, we again apply Lemma
5.4.2, c), as CJ(RC ◦ R′)K = C and DJ(RO ◦ R′)K = D holds. The following observation
is the crucial point in this proof: the intersection of RC(op.x) and RO(op.x) is non-
empty, since the CSP part solely restricts the address parameters, whereas the
Object-Z part solely restricts the transmission parameters of an operation. Precisely,

• RC(op.x) = {op.x.?tr.a | a addressing extension for op} and

• RO(op.x) = {op.x.t?add | t transmission parameters for op}.
Thus, there exists some op.x.t.a ∈ (RC(op.x) ∩ RO(op.x)) on which C and D can
synchronise on. We deduce

(C ‖ES′ D)
op.x.t.a−→ (B′1JR

CK ‖ES′ B′2JR
OK).

Again applying the firing rule for relation renaming, we get

(C ‖ES′ D)JR′K
op.x−→ (B′1JR

CK ‖ES′ B′2JR
OK)JR′K,

based on R′(op.x.t.a) = op.x. Finally,

(A′,B′) = ((B′1JR
CK ‖ES′ B′2JR

OK)JR′K, (B′1J(R
′ ◦ RC)K ‖R′(ES′ )

B′2J(R
′ ◦ RO)K)) ∈ R.

The bisimulation diagram for this case is given next.

B = CJR′K ‖R′(ES′ )
DJR′K op.x−→ B′1J(R′ ◦ RC)K ‖R′(ES′ )

B′2J(R′ ◦ RO)K = B′

|
...

R R

|
...

A = (C ‖ES′ D)JR′K op.x−→ (B′1JRCK ‖ES′ B′2JROK)JR′K = A′

(2): For the second implication, assume that (A,B) ∈ R and A
op.x→ A′, that is,

(C ‖ES′ D)JR′K
op.x→ A′.

Again, based on Lemma 5.4.2, we have the identity (R ◦ R′), yielding

(C ‖ES′ D)
op.x.t.a→ A′JRK

for any op.x.t.a ∈ R(op.x). Based on the operational semantics of CSP, there need to
exist some A′1 and A′2, such that

A′JRK = A′1 ‖ES′ A′2.

Following up, we get

C
op.x.t.a→ A′1 and D

op.x.t.a→ A′2.
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Application of R′ leads to

CJR′K
op.x→ A′1JR

′K and DJR′K
op.x→ A′2JR

′K

and finally,

CJR′K ‖R′(ES′ )
DJR′K

op.x→ A′1JR
′K ‖R′(ES′ )

A′2JR
′K.

This concludes the left-to-right implication, as

(A′,B′) = ((A′1 ‖ES′ A′2)JR′K,A′1JR
′K ‖R′(ES′ )

A′2JR
′K) ∈ R

holds. 2

A = (C ‖ES′ D)JR′K op.x−→ (A′1 ‖ES′ A′2)JR′K = A′

|
...

R R

|
...

B = CJR′K ‖R′(ES′ )
DJR′K op.x−→ A′1JR′K ‖R′(ES′ )

A′2JR′K = B′

The previous theorem showed that the renaming relation can be distributed over the
parallel composition ‖ES , allowing us to reason about Si.main and Si.OZ and its parallel
composition, without considering the renaming relation.

5.5 CSP Laws for Parallel Composition

The last step in the chain of proof steps is the easiest one: we need to show that within
the parallel composition

(S1.main ‖EC S2.main) ‖ES′ (S1.OZ ‖EC S2.OZ),

S1.OZ and S2.main can be redistributed, such that the resulting parallel composition
constitutes the assembly of S1 and S2. In particular, the respective synchronisation
alphabets need to be correctly adapted.

The following lemma shows a generalisation of this property for arbitrary processes
with certain restrictions on their alphabets. Afterwards, we instantiate the lemma for our
specific case:

Lemma 5.5.1. (Redistribution of CSP processes, alphabetised parallel)
Let Pi,Qi be CSP processes and Ai,Bi alphabets. Then,

(P1 A1‖A2 P2) A1∪A2‖ B1∪B2 (Q1 B1‖ B2 Q2) = (P1 A1‖ B1 Q1) A1∪B1‖A2∪B2 (P2 A2‖ B2 Q2).
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Proof. We use rules (2.4) X‖ Y − sym

P X‖ Y Q = Q Y‖ X P

and (2.5) X‖ Y − assoc

(P X‖ Y Q) X∪Y‖ Z R = P X‖ Y∪Z (Q Y‖ Z R)

from [Ros98] and incrementally deduce the equation:

(P1 A1‖A2 P2) A1∪A2‖ B1∪B2 (Q1 B1‖ B2 Q2)

= P1 A1‖A2∪B1∪B2 (P2 A2‖ B1∪B2 (Q1 B1‖ B2 Q2)) ( X‖ Y − assoc)

= P1 A1‖ B1∪B2∪A2 ((Q1 B1‖ B2 Q2) B1∪B2‖A2 P2) ( X‖ Y − sym)

= P1 A1‖ B1∪A2∪B2 (Q1 B1‖ B2∪A2 (Q2 B2‖A2 P2)) ( X‖ Y − assoc)

= P1 A1‖ B1∪A2∪B2 (Q1 B1‖A2∪B2 (P2 A2‖ B2 Q2)) ( X‖ Y − sym)

= (P1 A1‖ B1 Q1) A1∪B1‖A2∪B2 (P2 A2‖ B2 Q2) ( X‖ Y − assoc)

2

In order to use the previous lemma in our context, we have to apply it with respect
to interface parallel. This can only be achieved, if all participating processes never
communicate outside their respective synchronisation alphabets:

Corollary 5.5.2. (Redistribution of CSP processes, interface parallel)
Let Pi,Qi be CSP processes and Ai,Bi their respective alphabets, that is, Pi never communicates
outside of Ai, and Qi never communicates outside of Bi, respectively. Then:

(P1 ‖A1∩A2 P2) ‖(A1∪A2)∩(B1∪B2) (Q1 ‖B1∩B2 Q2) =
(P1 ‖A1∩B1 Q1) ‖(A1∪B1)∩(A2∪B2) (P2 ‖A2∩B2 Q2).

Proof. Follows immediately from Lemma 5.5.1 and the fact that P ‖X∩Y Q = P X‖ Y Q
holds„ if P,Q never communicate outside X and Y ([Ros98]). 2

In the following section, the corollary will be instantiated by setting

• Pi := Si.main,

• Qi := Si.OZ,

• Ai := ESi and

• Bi := ESi .
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5.6 Proof of the Main Theorem

Finally, we show Theorem 4.3.25 by subsuming the results of the previous sections:

Theorem 5.6.1. (Correctness of the decomposition)
Let S be a specification, and let C = (C1,C2) be a cut, yielding a decomposition into S1 and
S2, according to Definition 4.3.24. Then, the following holds:

S =T (S1 ‖EC S2)JR′K,

where R′ : ES′ → ES is defined as

R′(op.x.t.a) := op.x,

with x depicting the original parameter values, t denoting the valuation for the possible
transmission parameters and a the valuation for the possible address parameters.

Proof.

S

=T S.main ‖ES S.OZ (Def. of S)

=T (S1.main ‖EC S2.main)JR′K ‖ES (S1.OZ ‖EC S2.OZ)JR′K

(Theorem 5.2.4, Theorems 5.3.14 and 5.3.17)

=T [(S1.main ‖EC S2.main) ‖ES′ (S1.OZ ‖EC S2.OZ)]JR′K (Theorem 5.4.3)

=T [(S1.main ‖ES1∩ES2
S2.main) ‖ES′ (S1.OZ ‖ES1∩ES2

S2.OZ)]JR′K (Lemma 4.3.19)

=T [(S1.main ‖ES1
S1.OZ) ‖ES1∩ES2

(S2.main ‖ES2
S2.OZ)]JR′K (Corollary 5.5.2)

=T [(S1.main ‖ES1
S1.OZ) ‖EC (S2.main ‖ES2

S2.OZ)]JR′K (Lemma 4.3.19)

=T (S1 ‖EC S2)JR′K (Def. of S1 and S2)

2

Note that an application of Lemma 5.5.2 is indeed possible, as Si.main and Si.OZ never
communicate outside of ESi .

This completes the proof of the main result of this thesis, Theorem 4.3.25. The theorem
allows us to apply the assume-guarantee-based proof rules from Chapter 3: as S and
S1 ||EC S2 are trace equivalent modulo renaming, we can safely replace S1 ‖ S2 by S in an
application of (B-AGR) and (P-AGR).

After showing correctness of our decomposition approach, the next chapter will deal
with the question on how to identify reasonable decompositions, that is, correct decompo-
sitions, which most likely result in efficient compositional verification.
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The overall goal of our decomposition technique is an application within the com-
positional verification framework, as introduced in Chapter 3. So far, we showed the
correctness of our approach: the decomposition does not change the behaviour of the
specification in terms of our semantic domain. This allows us to apply assume-guarantee-
based proof rules with respect to the decomposed system and to infer a global result for
the original system.

However, for compositional verification to have a practical impact, the technique
needs to provide an advantage over monolithic, that is, non-compositional verification.
Therefore, it is essential to evaluate the effectiveness of the decomposition as, in general,
compositional verification does not automatically result in comparatively small time and
memory consumption during model checking.

Example 6.0.2. Recall the specification of a candy machine from Figure 2.3. The set
C = {term} defines a valid (single) cut of the specification. A decomposition with respect
to C is impractical, as it results in S1 =T S. Yet, even though we consider compositional
verification, the need to deal with the full state space of S remains.1

The question is how to describe and detect reasonable decompositions. In [CAC06],
the authors investigate the usefulness of assume-guarantee reasoning by evaluating all
possible decompositions on five different case studies. The overall results are not very
encouraging as, in terms of the size of the explored state spaces, monolithic verification
often succeeds over compositional verification. This leads the authors to the following
statements:

1From now on, as a valid cut uniquely defines a decomposition, we will synonymously use both terms.
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Deciding how to partition the subsystems into S1 and S2 is not easy and can have a
significant impact on the time and memory needed for verification. [...] Thus, randomly
selecting decompositions would likely not yield a decomposition better than monolithic
verification. [CAC06]

As a possible solution to this problem, the authors recommend to investigate heuris-
tics to guide the software engineer towards the best possible decompositions: in this
case, assume-guarantee-based verification most often outperforms non-compositional
verification.

These considerations motivate the following strategy: in order to evaluate the valid de-
compositions which our technique generates, we define several context-specific heuristics,
focusing on the underlying verification framework and the definition of the decomposition
itself. These heuristics serve as the basis for a classification of all correct decompositions:
those, which are unreasonable or dominated by other ones (see Section 6.2), are no
longer considered - the remaining decompositions can be further compared by prioritising
specific heuristics.

This chapter is organised as follows: in Section 6.1, we motivate and define our context-
specific heuristics. The following section discusses an evaluation of the results by giving a
very brief introduction into the topic of multi-valued optimisation [Ehr00]. In Sections
6.3 and 6.4, respectively, we illustrate and apply the heuristics and evaluate them for the
candy machine specification and a second, slightly bigger, case study. The final sections
discuss the approach and related work.

6.1 Decomposition Heuristics

Several factors influence the effectiveness of compositional reasoning in general. In
[dRHH+01], the authors elaborate on the question of when to use a compositional
style of proof and when to use a non-compositional one. For instance, they argue that
compositional verification becomes infeasible, if a system is tightly-coupled, that is, any
decomposition will result in a lot of common elements and shared behaviour, or if the
system comprises global invariants, which cannot be split up.

Choosing the most effective decompositions cannot be established in an automatic
manner. Due to the context-specific verification frameworks, the usage of different model
checkers or the structure of the specifications and verification properties, there is no
universally optimal decomposition. However, one particular issue exerts the dominating
influence on the efficiency of compositional verification and model checking in general:
the size of the state space, which needs to be explored. Thus, according to [CAC06], we
state that one decomposition is better than another one, if the number of states explored
during model checking is comparatively smaller. We need to define heuristics, favouring
decompositions with a relatively small state space.

The evaluation of our approach will use an implementation of the learning-based
framework from Section 3.2.3 and compare it to direct model checking of the original
system. We derive our heuristics from the following two requirements:

Small Interface: The size of EC within the system S1 ‖EC S2 should be small. In general,
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the smaller the interface between both components, the less shared behaviour and
fewer communication between them, and the looser the components are coupled.
This results in a smaller number of states, which have to be explored during
model checking. In the context of AGR and according to [CS07], the smaller the
assumption alphabet, the more efficient the L∗ algorithm in the learning-based
framework from Section 3.2.3. More precisely, the number of L∗ membership
queries directly depends on the assumption alphabet, which itself closely depends
on the size of EC.

Equal Size of Components: The size of the components S1 and S2 within S1 ‖EC S2

should approximately be the same. The question of how to find a good partitioning
of a system is discussed in [Nam07]. The author argues that an even distribution
of the number of system variables over the components leads to a more effective
compositional verification. Moreover, in [GMF07], the authors state that the
execution time of the L∗ algorithm is exponential in the size of S1 and S2. If we
assume s1 to denote the size of S1 and s2 the size of S2, 2s1 + 2s2 is minimal for
s1 = s2, in case that s = s1 + s2 is fixed. This justifies the requirement that both
components should have about the same size.

Based on these two requirements, we derive four different heuristics, with one of them
related to Equal Size of Components and the remaining three based on Small Interface.
These heuristics will be given as functions, mapping a specific decomposition on a certain
value within the natural numbers. A comparatively better decomposition has a lower
value, that is, we aim at a minimisation of the function values. For each heuristic, we start
by stating the principal characteristic and give an intuitive description. Subsequently, we
introduce the mathematical definition.

6.1.1 First Heuristic: Cut Size

The first heuristic, which we call cut size, is related to the requirement that the interface
between both components should be relatively small. A small number of nodes within
the cut is preferable, as the size of EC depends on the number of corresponding operation
nodes, that is,

EC = {| OpC |} = {| l[C1] ∪ l[C2] |}

holds. This leads to the following objective for the first heuristic:

hCS: Minimise the number of cut nodes.

The fewer nodes contained in the cut, the smaller the common elements to both
specification parts and thus, the smaller the shared behaviour and the assumption
alphabet. A mathematical definition for this heuristic obviously maps a cut on its number
of elements. We summarise the first heuristic in Table 6.1.
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Notation Name of Heuristic Description Motivation

hCS cut size Minimise number of cut
nodes.

Small Interface.

Mathematical Definition

hCS(C) := #C

Table 6.1: Heuristic hCS: cut size

6.1.2 Second Heuristic: Even Distribution

The second heuristic, even distribution, targets the Equal Size of Components. In order to
measure the size of a component, we count the number of operation nodes corresponding
to S1 and S2, leading to the following objective:

hED: Minimise the difference between the number of operation nodes corresponding to S1

and S2.

Based on Definition 4.3.1, we get

• Ph1 ∪ Ph3 ∪ C1 ∪ C2 for the set of nodes according to S1 and

• Ph2 ∪ C1 ∪ C2 for the set of nodes according to S2.

The mathematical definition for the second heuristic from Table 6.2 computes the
absolute value of the difference between these sets. As the set of cut nodes is contained
in both of them, it can be neglected.

Notation Name of Heuristic Description Motivation

hED even distribution Minimise size difference be-
tween both components.

Equal Size of Com-
ponents.

Mathematical Definition

hED(C) :=| #(Ph1 ∪ Ph3)−#Ph2 |

Table 6.2: Heuristic hED: even distribution

6.1.3 Third Heuristic: Few Transmission

The final two heuristics are again related to the requirement Small Interface. In Section
4.3.2, we introduced the concept of transmission parameters to ensure a preservation of
a specification’s data flow within the decomposition. These parameters are required to
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ensure the correctness of the technique. Unfortunately, they increase the set of cut events,
that is, the set EC.

In order to measure the additional amount of cut events, we need to refer to the types
of these parameters: simply counting the number of parameters would be too coarse.
For instance, one additional parameter of type {1, . . . , 10} causes the size of EC to be
increased by the factor of 10, whereas two parameters of type {1, 2} only increase it by
the factor of 4. In order to define the third heuristic hFT, we proceed as follows:

• The number of elements of {| op |} (see Definition 2.2.5) increases by the amount
of possible parameter extensions with respect to all transmission parameters. Thus,
for any cut operation op, we compute the product over the cardinality of each
transmission parameter type.

• An operation can have multiple occurrences within the cut. Even though this is not
reflected in the size of EC, we still need to deal with it by multiplying the previous
result with the number of cut-occurrences of the operation.

• Finally, we compute the sum over the results for all cut operations.

Henceforth, tr i denote transmission parameters, and tyop
p depicts the type of the

parameter p of the operation op. We illustrate the weight computation for the third
heuristic with an example:

Example 6.1.1. Let C = {op1, op2} be a valid cut for some specification S, such that op1

occurs once, and op2 occurs twice within S.main. Let op1 comprise two transmission param-
eters of types B and {1, 2, 3}. Furthermore, let op2 comprise one transmission parameter
of type P(B). For the first operation, we get #tyop1

tr 1 ∗ #tyop1
tr 2 = 2 ∗ 3 = 6. Moreover,

#tyop2
tr 1 = 22 = 4. As op2 occurs twice within S.main, we multiply the second value by 2,

which results in the overall weight of hFT(C) = 6 + 8 = 14 for the third heuristic.

Another question is how to deal with infinite data types. One solution could be the
definition hFT(C) :=∞ in case that there exists at least one operation within C with one
transmission parameter of infinite type. However, in this case, any number of transmission
parameters of infinite types would result in the same value for the given heuristic. During
model checking, infinite data types need to be abstracted to some finite subset - either
by the model checker or the user itself. Therefore, we follow a different approach:
in our cardinal arithmetic, we assume that ∞ can be mapped to some bound MaxInf.
Based on the actual cardinality of∞ for the model checker, MaxInf can appropriately be
instantiated.

Subsuming, we require:

hFT: Minimise the amount and the type cardinality of the transmission parameters.

The third heuristic is summarised in Table 6.3. According to the previous considerations,
#tyop

p = MaxInf is possible.
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Notation Name of Heuristic Description Motivation

hFT few transmission Minimise amount and type car-
dinality of transmission pa-
rameters.

Small Interface.

Mathematical Definition

hFT(C) := let Top := (#l−1(op) ∗#tyop
tr 1 ∗ · · · ∗#tyop

tr n) in
∑

op∈l[C] Top

Table 6.3: Heuristic hFT: few transmission

6.1.4 Fourth Heuristic: Few Addressing

In correspondence to transmission parameters, Section 4.3.3 introduced the concept of
address parameters to preserve the control flow within the decomposition. Again, these
parameters increase the size of EC.

Contrary to transmission parameters, address parameters never have an infinite type.
Thus, we can precisely determine the weight for these parameters, motivating separate
measurements for both parameter types. We introduce a new heuristic, which mainly
corresponds to the previous one, and we set the following objective:

hFA: Minimise the amount and the type cardinality of the address parameters.

Notation Name of Heuristic Description Motivation

hFA few addressing Minimise amount and type car-
dinality of address parame-
ters.

Small Interface.

Mathematical Definition

hFA(C) := let Aop := (#l−1(op) ∗#tyop
ad 1 ∗ · · · ∗#tyop

ad n) in
∑

op∈l[C] Aop

Table 6.4: Heuristic hFA: few addressing

The mathematical definition for this heuristic corresponds to the one for few trans-
mission, except that now #tyop

p = MaxInf is impossible. In the definition, ad i denote
address parameters.

6.2 Evaluation of Decomposition Heuristics

The previous section introduced several individually defined heuristics, which are possibly
conflicting with each other. In order to evaluate the set of valid decompositions (or
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solutions, as we will call them in the context of this chapter), the joint application
of all heuristics is required. This obviously results in a trade-off between the specific
requirements for good decompositions: for instance, assigning a high priority to heuristic
hED will result in a set of cuts with potentially high value for heuristic hCS. The general
problem is well known as the task of multi-objective optimisation [Ehr00, Zel74].

Besides this trade-off and despite allowing the specific heuristics to be scaled and thus
prioritised, some decompositions or solutions can be neglected entirely. These are the
ones for which one resulting component is on the scale of the original specification:
here, compositional verification needs to deal with at least the same state space as
non-compositional one.

Definition 6.2.1. (Unreasonable decomposition)
Let S be a CSP-OZ class specification, and let C denote the set of all valid cuts of S. We say
that C ∈ C is unreasonable, if, and only if,

Ph1 ∪ Ph3 ∪ C = op(N) or Ph2 ∪ C = op(N).

Regarding our heuristics, we immediately deduce that a decomposition is unreasonable,
if, and only if, the sum over the values for the heuristics hCS and hED is equal to the size
of all operation nodes of the DG:

Lemma 6.2.2. (Connection between unreasonable decompositions and heuristics)
Let S be a CSP-OZ class specification, and let C denote the set of all valid cuts of S. C ∈ C is
unreasonable, if, and only if,

hCS(C) + hED(C) = #op(N).

Proof. Immediate: any operation node is uniquely assigned to one of the sets Ph1, Ph2,
Ph3 and C. Furthermore, hCS(C) = #C and hED(C) =|#(Ph1 ∪ Ph3)−#Ph2 | holds. 2

Unreasonable decompositions will generally not be considered within our evaluation. For
the further restriction of the set of valid cuts, we reason about dominated decompositions.
Intuitively, they are outmatched by some other decomposition in any heuristic. In the
context of multi-objective optimisation, the remaining solutions are called Pareto-optimal
[Par71]. We will introduce the definition for our context, where we refer to the one from
[DW04]. Let h1, . . . , h4 denote the heuristics, as introduced in Section 6.1:

Definition 6.2.3. (Weakly dominated decomposition [DW04])
Let S be a CSP-OZ class specification, and let C denote the set of all valid cuts of S. We say
that C ∈ C is (weakly) dominated by C′ ∈ C (with respect to {h1, h2, h3, h4}), if, and only if,

(∀ i ∈ {1, 2, 3, 4} • hi(C′) ≤ hi(C)) ∧ (∃ i ∈ {1, 2, 3, 4} • hi(C′) < hi(C)).

We illustrate the definition by an example.

Example 6.2.4. Recall the candy machine specification from Section 2.2.1. Both, C =
{switch, abort} and C′ = {switch} denote valid cuts. For the evaluation of the different
heuristics, we get:
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hCS(C) = 2 hCS(C′) = 1
hED(C) = 2 hED(C′) = 1
hFT(C) = MaxInf hFT(C′) = MaxInf
hFA(C) = 0 hFA(C′) = 0

Here, hFT(C) = hFT(C′) = MaxInf, due to one transmission parameter of type N. As
hi(C′) ≤ hi(C) for any of the four heuristics and as strictly smaller holds for the first two,
{switch, abort} is weakly dominated by {switch}.

Independent of the scaling, a weakly dominated cut never achieves the relatively best
results. In the implementation of our decomposition approach, solutions dominated by
other ones will thus accordingly be marked and can be suppressed. Note that even if
highly unlikely, a dominated solution might still be the most efficient one. This is due to
the respective property under interest, the specific characteristics of the model checker
and the general nature of a heuristic approach, which is experience-based and only points
the direction.

For the remaining near-optimal solutions, no general classification is possible. Yet, an
elimination of all dominated cuts results in a smaller set of possible decompositions,
which can then be further interpreted, according to the priority for each heuristic.

6.3 Candy Machine Revisited: Evaluation of Cuts

Next, we are interested in the evaluation of the set of all valid cuts of a specification
based on our heuristics. We recall the case study of a candy machine from Chapter 2.
Here, we restrict ourselves to the special case of a single cut from Definition 4.2.10 due to
two reasons:

• The set of all possible general cuts is too large for an effective comparison.

• Defining two different cut sets is impractical, as the specification does not comprise
any outer recursion.

Subsuming, there are 26 valid (single) cuts, which are depicted in Table 6.5. We
additionally denote if the respective cut is, according to Definitions 6.2.1 and 6.2.3,
non-reasonable or weakly dominated by another one.

No. Cut Reasonable? Non-Dominated?
1 {abort, deliver, order, pay, payout, select, switch} No No
2 {abort, deliver, order, payout, select, switch, term} No Yes
3 {abort, deliver, order, payout, select, switch} Yes No
4 {abort, deliver, order, payout, select, term} No Yes
5 {abort, deliver, order, select, switch, term} No Yes
6 {abort, deliver, order, select, switch} Yes No
7 {abort, deliver, order, select, term} No Yes
8 {abort, deliver, payout, term} No Yes
9 {abort, deliver, term} No Yes
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10 {abort, order, pay, payout, select, switch} No No
11 {abort, order, payout, select, switch} Yes No
12 {abort, order, select, switch} Yes Yes
13 {abort, pay, payout, switch} No No
14 {abort, payout, switch} Yes No
15 {abort, payout, term} No Yes
16 {abort, payout} No Yes
17 {abort, switch} Yes No
18 {abort, term} No Yes
19 {abort} No Yes
20 {deliver, order, select, switch, term} No Yes
21 {deliver, order, select, switch} Yes No
22 {deliver, order, select, term} No Yes
23 {deliver, term} No Yes
24 {order, select, switch} Yes No
25 {switch} Yes Yes
26 {term} No Yes

Table 6.5: Set of valid cuts for the candy machine

Even though the set of valid cuts is rather large, only two solutions are reasonable and
non-dominated. These are {abort, order, select, switch} and {switch}. In Chapter 7, we
will compare both cuts.

6.4 Case Study: Two Phase Commit Protocol

In order to further illustrate and exemplify our decomposition technique, we introduce
a second case study: a specification of the Two-Phase-Commit Protocol (TPCP) [BHG87,
dRHH+01]. The purpose of the protocol is to guarantee consistency of N local sites (or
pages) of a distributed database. Instructed by a coordinator process, the protocol results
in either all pages committing their transaction or all pages aborting it. The basic system
structure and communication is illustrated in Figure 6.1. As the name says, the protocol
works in two phases:

Phase 1 - Commit-Request: The protocol starts with the coordinator process informing
all participating pages about a request to commit the current transaction. Next,
all pages execute the transaction and send a vote to the coordinator, dependent on
whether the local transaction succeeded (YES) or failed (NO). The coordinator
collects the votes and decides to either COMMIT, in the case that all votes agree on
YES, or to ABORT the transaction. Figure 6.2 illustrates the workflow of phase one
for the coordinator and, for simplification, for one instance of Page.

Phase 2 - Commit: The coordinator informs all pages about the decision. All participat-
ing sites behave accordingly: an abort leads to an undo of the transaction, while
a commit leads to completion. In any case, the sites output the result and send an
acknowledgement to the coordinator. An illustration is given in Figure 6.3.
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Figure 6.1: Illustration of the Two Phase Commit Protocol

Page.main

Coord.main

Page.PhaseTwo

Coord.PhaseTwo

YES, 
NO

request

request

execute vote

vote decide

Figure 6.2: Phase one of the Two Phase Commit Protocol

Let N be the number of pages participating in the protocol, and let Votes and Trans be
the following two base types:

Votes == {YES,NO}
Trans == {COMMIT,ABORT}

Here, Votes represents the possible votes of the pages, dependent on whether the
transaction succeeded or not, whereas Trans describes the actual decision to either
commit or abort the transaction.

The specification, as given in Figure 6.4, is the CSP-OZ class for the central coordinator.
The ordering of events within the CSP part corresponds to Figures 6.2 and 6.3.

For the Object-Z part, the class’ state space comprises two variables: decC of type Trans,
for holding the final decision and votes of type P Votes, for storing the votes of the different
pages. The operation vote comprises an input parameter of type Votes, and its value is
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COMMIT, 
ABORT

Page.PhaseTwo

Coord.PhaseTwo

Page.Result

Skip

Skip

inform
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Skipacknowledge

acknowledgeresult

resultcomplete

undo

Figure 6.3: Phase two of the Two Phase Commit Protocol

Coord
chan request chan vote : [vo? : Votes] chan decide
chan inform : [in! : Trans] chan acknowledge

main
c= ‖| 0<i≤N(request→ Skip);
‖| 0<i≤N(vote?vo→ Skip); decide→ PhaseTwo

PhaseTwo c= ‖| 0<i≤N(inform?in→ Skip);
‖| 0<i≤N(acknowledge→ Skip)

decC : Trans
votes : P Votes

Init
decC = ABORT

effect request
∆(votes)

votes′ = ∅

effect vote
∆(votes)
vo? : Votes

votes′ = votes ∪ {vo?}

effect inform
in! : Trans

in! = decC

effect decide
∆(decC)

if (NO ∈ votes) then decC′ = ABORT else decC′ = COMMIT

Figure 6.4: Two Phase Commit Protocol: Coord specification

added to the set votes. decide evaluates the set by assigning decC to ABORT in case that
at least one page votes with NO and to COMMIT otherwise. Finally, inform sends the
evaluation result to all participating pages by using an output parameter of type Trans.

The class Coord operates in parallel with N instantiations of the class Page, as given in
Figure 6.5. The state space of the Object-Z part of Page holds two variables decP of type
Trans, corresponding to Coord.decC, and stable of type B, for representing a successful
(true) or unsuccessful (false) execution of the transaction. execute nonderministically
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Page
chan request chan execute chan vote : [vo! : Votes]
chan inform : [in? : Trans] chan undo chan complete
chan result : [r! : Trans] chan acknowledge

main
c= request→ execute→ vote?vo→ PhaseTwo

PhaseTwo c= inform?in→ Result
Result c= (undo→ result?r→ acknowledge→ Skip

2 complete→ result?r→ acknowledge→ Skip)

decP : Trans
stable : B

Init
decP = ABORT
stable

effect execute
∆(stable)

stable′ ∈ {true, false}

effect vote
vo! : Votes

stable⇒ vo! = YES
¬stable⇒ vo! = NO

effect inform
∆(decP)
in? : Trans

decP′ = in?

enable complete
decP = COMMIT

effect result
r! : Trans

r! = decP

enable undo
decP = ABORT

Figure 6.5: Two Phase Commit Protocol: Page specification

assigns a value to stable, dependent on which vote decides to either vote YES or NO. inform
receives the decision to commit or abort the transaction, after which the specification
either conducts a rollback (undo) or a permanent write (complete). Finally, the result of
the transaction is communicated.

The full system is specified as

System = Coord‖I( ‖| 0<i≤NPage),

where I = {| request, vote, inform, acknowledge |} denotes the synchronisation alphabet
for both classes.

Again, we are interested in an evaluation of the set of all valid cuts. For simplicity, we
again solely deal with single cuts. Independent of the number of pages, 42 valid cuts
can be identified. These are given in Table 6.6, where an operation name is abbreviated
by its first four letters. Whether a certain cut is dominated by another one depends on
the value of N. Thus, within the following table, we assume N ≥ 3. Overall, there exist
9 reasonable and non-dominated cuts for the specification of the Two Phase Commit
Protocol.
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No. Cut Reasonable? Non-Dominated?
1 {ack, comp, deci, exec, info, resu, undo, vote} No No
2 {ack, comp, deci, info, resu, undo, vote} No No
3 {ack, comp, deci, info, resu, undo} No No
4 {ack, comp, info, resu, undo} No No
5 {ack, comp, resu, undo} No No
6 {ack, comp, resu} No No
7 {ack, resu, undo} No No
8 {ack, resu} No Yes
9 {ack} No Yes
10 {comp, deci, exec, info, requ, resu, undo, vote} No No
11 {comp, deci, exec, info, requ, undo, vote} No No
12 {comp, deci, exec, info, requ, vote} No No
13 {comp, deci, exec, info, resu, undo, vote} Yes No
14 {comp, deci, exec, info, undo, vote} Yes No
15 {comp, deci, exec, info, vote} Yes No
16 {comp, deci, info, resu, undo, vote} Yes Yes
17 {comp, deci, info, resu, undo} Yes Yes
18 {comp, deci, info, undo, vote} Yes No
19 {comp, deci, info, undo} Yes Yes
20 {comp, deci, info, vote} Yes No
21 {comp, deci, info} Yes No
22 {comp, info, resu, undo} Yes Yes
23 {comp, info, undo} Yes Yes
24 {comp, info} Yes Yes
25 {deci, exec, info, requ, undo, vote} No No
26 {deci, exec, info, requ, vote} No No
27 {deci, exec, info, undo, vote} Yes No
28 {deci, exec, info, vote} Yes No
29 {deci, exec, requ, vote} No No
30 {deci, exec, vote} Yes No
31 {deci, info, undo, vote} Yes No
32 {deci, info, undo} Yes No
33 {deci, info, vote} Yes No
34 {deci, info} Yes No
35 {deci, vote} Yes Yes
36 {exec, requ, vote} No No
37 {exec, requ} No No
38 {exec, vote} Yes No
39 {info, undo} Yes Yes
40 {info} Yes Yes
41 {requ} No No
42 {vote} Yes No

Table 6.6: Set of valid cuts for the TPCP
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Some of the valid cuts are unreasonable. For instance, the decomposition corresponding to
{acknowledge} results in an equal size of the first component and the original specification.

It is interesting to note that some cuts, which one would intuitively expect to result
in a decomposition effective for compositional reasoning, are dominated and thus ruled
out. One example is the cut {vote}, which is dominated by {inform}. Dependent on the
number of pages N, we get

hCS({vote}) = 2 ∗ N hCS({inform}) = 2 ∗ N
hED({vote}) = 6 ∗ N + 1 hED({inform}) = 2 ∗ N − 1
hFT({vote}) = 8 ∗ N hFT({inform}) = 4 ∗ N
hFA({vote}) = 2 ∗ N3 hFA({inform}) = 2 ∗ N3

The values for hFA and hCS are identical. However, {inform} results in a distribution of
the set of operation nodes closer to an even distribution than the one for {vote}. Addition-
ally, {vote} requires one transmission parameter of cardinality # P Votes = 4, reflecting
the variable Coord.votes, whereas {inform} sufficiently uses one additional parameter of
cardinality #Trans = 2, corresponding to Page.decP within the decomposition.

In contrast to the specification of a candy machine, the evaluation does not yield a
small set of possible solutions. A thorough evaluation and comparison of the remaining
set of reasonable and non-dominated cuts will be conducted in Chapter 7, where we
introduce our implementation framework and give the experimental results for both case
studies.

6.5 Discussion

As the name implies, a heuristic approach, setting up context-specific rules-of-thumb,
cannot be expected to precisely and completely cover all aspects of the underlying
problem, neither can it generate a single optimal solution. Hence, we keep the approach
as least restrictive as possible by still guiding the engineer to head into the right direction.

First, our aim for introducing the described heuristics is a classification of the set
of valid cuts or decompositions of a specification. Even though the implementation of
our approach focusses on the model checker FDR2, we do not define the heuristics by
exploiting its specific characteristics. By doing so, we keep the approach independent of a
specific model checker.

Second, in contrast to the slicing technique, as introduced in [Brü08], we do not
consider the property under interest. As the alphabet of the generated assumption during
learning not only depends on the set of cut events but also on the set of events occurring
in the verification property, it could be reasonable to integrate the alphabet of the property
as well. However, we choose not to do so, as we want to keep the decomposition approach
independent of a certain verification property.

Finally, the previously introduced heuristics can be applied in any compositional
verification setting – they are not limited to the learning based framework, which we
consider. This is due to the fact that we try to keep the state space of the decomposition
(and thus the interdepences between both components) small, which is a reasonable
strategy, independent of any compositional verification framework.
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Yet, the following question remains: why do the previously defined heuristics most
likely result in a set of practical solutions?

We investigated the different possibilities, causing a large state space, which needs to
be explored during model checking. Here, we referred to two certain paradigms, which
are generally valid for compositional verification [CAC06, dRHH+01, GL91, CGP03]: a
strong connection between both components results in a high memory consumption
and an increased run-time during verification. In addition, large components cause
a large state space, which needs to be built up during model checking. The previous
heuristics are closely related to both paradigms, as they investigate the definition of
our decomposition technique and evaluate different possibilities to keep the cohesion
between the components and their individual state spaces relatively small.

The different heuristics cannot be seen as equally important for any kind of specification.
In addition, they conflict with each other. For instance, often, the larger the cut size for a
decomposition, the smaller the size difference between both components, simply because
the cut is neglected for the second heuristic.

Therefore, the actual evaluation of the set of valid decompositions must not be restricted
to the specific values, given by the mathematical definitions of the heuristics. In fact, as
we will see in Chapter 7, our implementation framework allows the user to prioritise
certain heuristics by computing the weighted sum over all values.

However, in order to not mislead the user, several solutions can be neglected. We
discussed this topic in Section 6.2: an evaluation of valid decompositions comparatively
worse than other ones, that is, weakly dominated ones, is unnecessary. The same applies
to unreasonable decompositions.

Summarising, the approach presented in this chapter automatically restricts the set of
valid solutions as much as possible. This is done by eliminating those decompositions,
which are impractical with respect to our heuristics or the generated state space size.
Due to the nature of a heuristics-based approach, human intervention is still required
for an evaluation of the remaining set of valid decompositions. However, this set is
comparatively small in relation to the set of all valid cuts.

6.6 Related Work

Several works from different areas investigate heuristic approaches to cope with the
state explosion problem during model checking. The work closest to ours is presented
in [Nam07]. For learning-based compositional verification for models, described as
symbolic transition systems (STS), the author chooses to partition a given system into
several components, based on an algorithm for hypergraph partitioning [KK99]. The
approach follows the general idea for an even distribution of the state variables of the
STS and also aims at a minimisation of the interdependences between the components.
The decomposition is performed fully automatically, not allowing the user to guide the
framework to a potentially better partitioning, not complying to the static requirements.
In addition, the author does not consider the control flow or a dependence analysis, and
the approach does not take the alphabet of the generated assumptions into account.
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In order to cope with the state explosion problem during model checking of systems
already composed of several components, in [SLU89], the authors present several alterna-
tive heuristic rules to reduce the state space of the system, focusing on the LTS semantics
of a system. The work presented in [TJ02] follows a similar approach by, for instance,
developing heuristics to fusion states or transitions or eliminating redundant states.

In the context of the L∗ algorithm, in [GP09], the authors present a strategy for
interface generation of software components. They implemented their approach for Java
PathFinder (JPF) [NAS], a verification framework for Java byte code. Based on their
learning framework for interface specifications, the authors also implemented assume-
guarantee reasoning in JPF. JPF itself uses different search heuristics for an effective
identification of possible bugs, eventually complementing compositional verification.

Further away from our approach, Dirks and Olderog [OD08] investigate the specifi-
cation and the model checking of real-time systems. In their semantic domain, the first
author developed an approach for heuristics-based planning and model checking [Die05].
Another heuristics-based approach, in order to more efficiently direct a model checker
to potential counterexamples, is directed model checking [ESB+09]. Edelkamp et. al
investigate directed model checking for SPIN [Hol03].

Multicriteria optimisation is an extensively researched area with a lot of different
textbooks and articles giving a profound overview and insight on the topic [Ehr00, DW04,
SNT85]. We concentrate on the definition of Pareto-optimality which was introduced in
[Par71] and we restrict ourselves to discrete optimisation, that is, we do not consider real
values within our heuristics.

This concludes the current chapter. The next chapter will introduce the implementation
of our approach, including the modelling, the heuristics-based decomposition of a system
and a subsequent direct or learning-based compositional verification. In addition, we
evaluate the non-dominated and reasonable decompositions for both case studies and
provide some significant experimental results.
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The previous chapters introduced an approach for the decomposition of formal spec-
ifications, allowing for an application of compositional verification. Furthermore, we
presented several heuristics for a classification of all valid decompositions. In order
to substantiate our method and to measure its effectiveness, the technique has been
implemented, and several case studies have been evaluated.

The present chapter describes the implementation framework for the theory of the
previous chapters. Section 7.1 introduces Syspect [Sys06], a graphical modelling envi-
ronment for CSP-OZ specifications, developed by the research group “Correct System
Design” in Oldenburg. By using one of our case studies, we give a short overview on
Syspect’s different diagram types for modelling different aspects of a specification. The
following Section 7.2 presents our context-specific extensions, realised to integrate the
decomposition approach into Syspect. In the last section, the experimental results for
three case studies, the candy machine from Section 2.2, the Two Phase Commit Protocol
from Section 6.4 and the number swapper from Section 4.4, are given. We measure the
different optimal and reasonable cuts by comparing direct model checking with FDR2
and compositional (learning-based) model checking. Finally, we discuss the results and
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draw some conclusions: some context-specific characteristics for good decompositions
are pointed out, and we comment on when the application of our technique most likely
results in a speed-up of model checking.

7.1 Syspect

The underlying platform for the implementation of our decomposition approach is the
System Specification Tool (Syspect, [Sys06]). Syspect is a graphical and UML-based
modelling environment for specifications, written in the integrated formalism CSP-OZ-DC
[Hoe06]. By extending the language of CSP-OZ with the formalism Duration Calculus (DC)
[ZH04], CSP-OZ-DC additionally allows to reason about real time aspects of a software
model. Within this thesis, we do not consider DC. However, as CSP-OZ is naturally
embedded into CSP-OZ-DC by simply declaring the DC-part to be empty, we can use
Syspect to model CSP-OZ specifications as well.

Syspect has been developed within a student project, carried out at the research group
“Correct System Design” in Oldenburg. The basis for their work is a specific UML profile
for CSP-OZ, described in [MORW08]. A UML model can then be translated into a CSP-OZ
specification. One focus for the definition of the UML model is the choice of a suitable
subset of the UML, which is expressive enough to represent a significant part of CSP-OZ.
In order to achieve this, the profile uses three different diagrams of the UML, namely

• class diagrams,

• state machines and

• component diagrams.

Next, we will shortly introduce the Syspect representation of the different diagram
types by modelling the specification of the Two Phase Commit Protocol from Section 6.4.
For a more detailed introduction into Syspect and the underlying UML profile, we refer
to [Sys06, MORW08, Brü08].

7.1.1 Class Diagrams

In order to describe the static behaviour of a system specification, UML class diagrams
[Obj05] can be used. Such a diagram comprises the specification’s classes including their
attributes: data variables (according to the state variables of the Object-Z part of a class)
and methods (corresponding to the operations of the CSP-OZ class). Additionally, the def-
inition of relationships between classes is possible: for the purpose of connecting classes
and class-interfaces, different associations, such as aggregation or composition, can be
used. These relationships represent the specification’s composition- and synchronisation
structure.

For the specification of the Two Phase Commit Protocol, the class diagram contains both
classes Coord and Page. An interface ISyncCoordPage describes the set of synchronised
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operations of both classes. One additional class System is defined, representing the
composition of Coord and Page, without defining additional attributes.

Figure 7.1 displays a screenshot of Syspect, showing the class diagram of the TPCP
within the Syspect class diagram editor.

Figure 7.1: Syspect class diagram for the TPCP

Within a certain class, its set of variables and operations can be defined. The types of
the variables and the behaviour of an individual operation can be described within the
associated property view. In our example, both base types Votes and Trans are represented
by B, the set of boolean variables. Figure 7.2 shows the property view, associated with
the operation Page.inform.

Figure 7.2: Syspect property view for the operation Page.inform
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7.1.2 State Machines

UML state machines are defined for representing the CSP parts of the individual classes of
a CSP-OZ specification. Transitions of a state machine are labelled with an event corre-
sponding to the associated class, or they are unlabelled for representing non-determinism.
States are either

• ordinary states, representing a CSP process,

• initial states, representing the specific initial process main,

• final states, representing successful termination, that is, the process Skip, or

• complex states, containing a number of regions for modelling concurrency, that is,
interleaving of several processes in terms of CSP.

In order to describe (non-deterministic- or deterministic-) choice, branching can be
used.

Figure 7.3: Syspect state machine for the class Page of TPCP

For the TPCP, there are two state machines, one corresponding to Page.main and one
describing Coord.main. Figure 7.3 shows the state machine for Page.main. As the process
Coord.main comprises interleaving of several processes, complex states are required.
Here, we set N := 2, that is, the specification comprises two instances of class Page.
Therefore, two regions are used, corresponding to the processes

‖| i∈{1,2}(op→ Skip)

for op ∈ {request, vote, inform, acknowledge}. The according state machine is given in
Figure 7.4.



7.1 Syspect 187

Figure 7.4: Syspect state machine for the class Coord of TPCP

7.1.3 Component Diagrams

The component diagram of a specification complements the class diagram and describes
the composition and instantiations of its different constituents. Intuitively, it represents
the overall system composition, that is,

System = Coord‖I( ‖| i∈{1,2}Page)

for the overall specification of the TPCP in the case of N = 2. Complementary to the
class diagram, the number of instances of Page is specified, along with the associations
between all class instances, based on the interface connections.

Figure 7.5 shows the component diagram for the Two Phase Commit Protocol. It
describes that both instances of Page synchronise with the sole instance of Coord via the
interface ISyncCoordPage. Conjointly, this synchronisation yields the System-class.

7.1.4 Export to CSP-OZ

Syspect provides an export functionality for the translation of an UML model into a
CSP-OZ representation of the model. Here, a translation into various formats can be
carried out. In this thesis, we are solely concerned with the LATEX-export of a CSP-OZ
specification: Syspect allows the generation of LATEX mark-up, conforming to [ISO00] and
the style file csp-oz.sty, as documented in [Fis99]. Within our verification framework,
the export will be further processed and translated into the input language of the model
checker FDR2.
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Figure 7.5: Syspect component diagram for the TPCP

7.2 Decomposition Framework for Syspect

After a brief introduction into Syspect, we will now describe the various additional
features and extensions of Syspect, which have been developed in order to provide tool
support for our decomposition technique. Namely, we present

• an implementation for the decomposition of a specification, based on the selection
and validation of a (single) cut, the fragmentation of the specification’s dependence
graph and the subsequent decomposition of the specification itself, both according
to Chapter 4 (Section 7.2.1),

• a mass validation framework to efficiently compute the set of all valid cuts, sort-
ing out unreasonable and (weakly) dominated decompositions and scaling the
remaining decompositions, based on the definitions from Chapter 6 (Section 7.2.2),

• an integration of the model checker FDR2 [For05] into Syspect, including a compiler
from the Syspect export to the input language of FDR2, along with an interface to
an implementation of the learning-based compositional verification framework as
presented in Chapter 3 (Section 7.2.3) and

• a counterexample analysis for visualising error traces, possibly generated by FDR2,
within the Syspect model (Section 7.2.4).

Figure 7.6 sketches the overall workflow. Given a Syspect specification of the software
model, a user can choose

• to generate the dependence graph of a specification, manually select a cut and – in
case of a valid cut – accordingly decompose the specification or
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Figure 7.6: Toolchain for the verification framework

• initiate a computation of the set of all valid cuts, evaluate them with respect to our
heuristics, select a specific cut and accordingly decompose the specification or

• not to decompose the specification at all.

As a next step, an export and subsequent compilation of the (decomposed) specifica-
tion to the input language of the model checker FDR2 can be carried out. Afterwards,
either compositional model checking or direct model checking can be applied, addi-
tionally requiring the definition of the verification property under interest. A possible
counterexample is visualised within the Syspect model.

Next, we give a survey over the specific extensions of Syspect. We close this section
with a more detailed description of the verification framework by using UML activity
diagrams [Obj05].

7.2.1 Decomposition Plug-In

In Chapter 4, we defined a cut of a dependence graph, yielding a decomposition of the
underlying specification. The foundation for the corresponding integration into Syspect
is the decomposition plug-in, developed by Klaus Herbold as part of his diploma thesis
[Her09]. The plug-in can optionally be used within Syspect, allowing the user to visualise
the dependence graph of a specification and select a set of operation nodes. Afterwards,
the selected cut-candidate is validated against the different correctness criteria from Sec-
tion 4.2.2. To this end, the decomposition plug-in comprises the selection and validation
of a single cut. In case of an invalid cut, the responsible set of violations is displayed.
Otherwise, the user can proceed to decompose the specification. The decomposition is
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Figure 7.7: Screenshot of a selected invalid cut

carried out by applying the definitions from Section 4.3 and the addressing algorithm
from Section 5.1.

Figure 7.7 shows a screenshot of an excerpt of the DG of the Two Phase Commit
Protocol, as it is displayed within Syspect. For illustration purposes, we refer to the
specification solely comprising one instance of the class Page. The visualisation builds up
on the implementation of Brueckner’s definition of the DG, which was carried out within
the slicing plug-in, developed by Sven Linker [Brü08]. The graph is defined according to
our modifications of the DG, as given in Section 2.3.4.

In general, a user can interact with the displayed DG and select a set of operation
nodes. In the example, as displayed in the screenshot, the single node Coord.decide is
selected. According to the correctness criteria, {Coord.decide} does not define a valid
(single) cut: no nodes within the DG of Page are selected. Thus, its set of operation nodes
is assigned to Ph1, and several synchronisation edges, connecting nodes from the DGs of
Page and Coord, violate the correctness criterion no crossing. In line with the selected
cut, these violations are indicated.

In the event of the selection of a valid cut, the validity is displayed, and a further
decomposition with respect to the cut can be carried out. Here, several options are
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Figure 7.8: Screenshot of the decomposition options after selection of a valid cut

possible. Figure 7.8 displays the dialogue box after the selection of the correct single
cut {Coord.inform, Page.inform}. The various options regarding the export and model
checking will be explained in Section 7.2.3. A decomposition of S results in LATEX mark-
up for S1 ‖ S2, which can then further be processed. In order to generate a valid
decomposition, transmission parameters and addressing parameters are added.

Within the plug-in, several features and optimisations are implemented. For instance,
according to the correctness criterion all-or-none from Section 4.2.2, either all or no
nodes with the same operation name have to be contained in a cut. Thus, to facilitate
a cut selection, in case that a user picks an operation node, all correspondingly named
nodes are automatically selected. For more details on the implementation, we refer to
[Her09].

7.2.2 Mass Validation

The previous section introduced the general functionality of the Syspect decomposition
plug-in. A user can select and deselect operation nodes within a specification’s DG, until
he identified a valid cut, for which he chooses to carry out a decomposition.



192 7 Implementation and Experimental Results

The larger the DG of a specification, the more tedious becomes a manual search for
a cut. Moreover, according to Chapter 6, a valid cut must not automatically yield a
decomposition suitable for an application of compositional reasoning.

In order to facilitate the choice of a valid cut and to guide the user to a decomposition
most likely outmatching the original model in terms of model checking run-times, Meik
Piepmeyer developed an extension of the decomposition plug-in, called the mass valida-
tion framework. Within his diploma thesis [Pie10], he mainly investigated the following
question.

Given the DG of a specification, how can the set of all valid cuts efficiently be computed?

This question particularly becomes relevant if the DG comprises a large set of operation
nodes: assuming #op(N) = k, the number of cut-candidates is 2k. Piepmeyer showed
that the general problem of identifying all valid cuts is NP-complete [Coo71]. However,
he developed and implemented several strategies and algorithms to efficiently validate a
set of operation nodes against the various correctness criteria. One of his strategies uses
a SAT solver [PBG05].

Additionally, Piepmeyer implemented the different heuristics from Chapter 6, along
with the identification of all unreasonable and dominated cuts. In the latter case, one of
the dominating cuts is displayed. Unreasonable cuts and dominated cuts can be removed
from the set of all valid cuts, and the remaining cuts can be scaled according to the
different heuristics.

Figure 7.9 shows a screenshot of the mass validation framework after choosing to
compute all valid cuts for the TPCP for three instances of Page. Unreasonable cuts are
marked with a minus, whereas a plus signalises reasonable cuts. In addition, optimal cuts
are indicated by a small histogram. Furthermore, the amounts of valid cuts, optimal cuts
and reasonable cuts are displayed. According to the results of Chapter 6, the amount of
cuts which are both, optimal and reasonable, is equal to 9.

In order to further classify the set of optimal and reasonable cuts, to this end, the
weighted sum over all heuristics is used as the scaling function. In the example, in case
that all heuristics are equally rated, {inform} obtains the smallest value.

After scaling the different heuristics to identify a subjectively optimal cut, the user can
proceed to decompose the specification and model check the result. For more details on
the mass validation, see [Pie10].

7.2.3 Model Checking with FDR2 and the CSPLChecker

Following up on the selection of a valid cut and a corresponding decomposition of
the model, we aim at an evaluation of direct model checking in comparison to the
compositional one. The decomposition approach of this thesis is not restricted to a
particular model checker. Yet, we require an existing translation from CSP-OZ to the
respective input language.

In order to evaluate the effectiveness of our theory, we choose the CSP model checker
FDR2 (Failure Divergence Refinement [For05]), developed by Formal Systems (Europe)
Ltd. Several reasons substantiate this choice. First, FDR2 is the most commonly used
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Figure 7.9: Screenshot of the mass validation framework

CSP model checker: at the time of writing his book [Ros98], Roscoe called it the chief
proof and analytic tool for CSP, and this fact did not change over the recent years. Second,
Wonisch [Won08] implemented the assume-guarantee-based learning framework based
upon FDR2. Finally, FDR2 is well suited for our purpose, due to an already existing
translation from CSP-OZ to the input language of FDR2 [FW99].

The tool inputs process specifications, written in a machine-readable dialect of CSP,
called CSPM. As the underlying verification concept, FDR2 uses refinement checks: given
two CSP-processes S and Prop, the refinement Prop v S can be evaluated within CSP’s
different semantic models. In this thesis, we are solely concerned with checking trace
inclusion and do not consider any other refinement checks. For more details on FDR2,
we refer to [Ros98, For05], with the latter reference comprising a full documentation of
FDR2 along with the syntax of CSPM.

Already, several works investigated a translation from either CSP-OZ or a related
formalism to the input language of FDR2. For instance, in [MS01], the authors present
a translation from CSP-Z to CSPM. In her diploma thesis and simultaneously to the
development of Syspect, Stamer [Sta06] investigated a translation to CSPM for models



194 7 Implementation and Experimental Results

N = {1 ,2}

pages = card (N)

PROP = PC( pages )

PC(0) = ||| x :N @ ( complete −> SKIP )
PC( i ) = vote . t rue −> PC( i−1)

[] vote . f a l s e −> PU( i−1)

PU(0) = ||| x :N @ (undo −> SKIP )
PU( i ) = vote ? j −> PU( i−1)

SPEC = (S_1
[ {| request , execute , vote , decide , inform |} ||

{| inform , undo complete , r e s u l t , acknowledge |} ]
S_2)

\ {| request , execute , decide , inform , r e s u l t , acknowledge |}

a s s e r t PROP [T= SPEC

Figure 7.10: Correctness requirement for the TPCP in terms of CSPM

specified in the UML profile for CSP-OZ [MORW08]. Obviously, such a translation has
certain limits: it is clearly restricted by the expressiveness of the input language of the
model checker. Moreover, as CSP-OZ exemplary allows to use infinite and underspecified
data types, such as basic type definitions, a translation is limited to a subset of the
integrated formalism.

In our context, we target the translation of the Syspect-LATEX-export to CSPM. As part
of his work as a student assistant, Wonisch implemented a corresponding compiler. The
translation builds up on the definition from [FW99] and thus, the CSPZ semantics, as
given in Section 2.2.4. Some of the accomplishments in the compiler development include
the support to translate finite sequences and various mathematical tool kit functions,
along with axiomatic definitions.

Some restrictions have to be applied in order to model the different case studies within
Syspect and to allow for a translation to CSPM. For the case study of a candy machine,
we require sequences of finite length, for which we define a corresponding constant.
For specifying the Two Phase Commit Protocol, both base types are mapped to B. For
a translation of the Syspect export, a user needs to specify the maximal value for an
element of Z. By default, this value is set to 5, meaning that Z is mapped onto the set
{−5, . . . , 5} within the CSPM-script (and, accordingly, N mapped onto {0, . . . , 5}). The
maximal integer is consistently used within the mass validation framework, where we
implicitly set MaxInf to this specific value.

Besides the actual specification, model checking additionally requires a verification
property. Currently, the user manually needs to define this property in terms of CSPM.
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Figure 7.11: Compilation from LATEX to CSPM

Moreover, he needs to declare an assertion, specifying the individual trace refinement
under investigation. Figure 7.10 defines a CSP process Prop, specifying a correctness
requirement Prop for the TPCP. Intuitively, the property states:

“ If, and only if, at least one page votes NO, all pages will undo the transaction. ”

More technically, the process PC(i) allows for i votes (and thus Prop for N votes, where
N = 2) and - if the control flow has not left the process before - an amount of N subsequent
events complete. As soon as one vote has the value NO, PC switches to a process PU. PU(i)
also allows for i votes, independent of the parameter value, but always terminates with
undos. Thus, as soon as one event vote.NO occurs, the final events of PROP will be undo.

Subsequently to the definition of the property, we define an assertion, stating that the
individual specification SPEC refines the property PROP. Here, we additionally need to
consider the respective decomposition we are dealing with: in the example, we evaluate
the decomposition with respect to the cut {inform}. Thus, SPEC needs to be accordingly
defined.

Figure 7.11 illustrates the compilation framework. First, the export is preprocessed,
mainly to adapt CSP-OZ-DC specific syntax according to the one for CSP-OZ. Subsequently,
the CSPM-code for the specification, including the one for the verification property, is
generated.

Recall the different options for exporting and verifying a specification against a certain
requirement, as displayed in Figure 7.8. In order to apply non-compositional model
checking, the first option can be selected, yielding a direct verification of Prop vT S. In
this case, S is not decomposed at all. In any of the following options, the specification is
decomposed according to the selected cut. Here, the second option again initiates direct
model checking, this time to prove or contradict Prop vT (S1‖S2), whereas the last option
solely exports the resulting specification to CSPM.

For the remaining options, compositional verification based on the learning-based
approaches from [CGP03] and [BGP03] can be carried out. As part of his bachelor’s
thesis, Wonisch [Won08] implemented the approach by using the CSP model checker
FDR2 as the teacher. The tool is called CSPLChecker [Won] and supports an assumption
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Figure 7.12: Screenshot of the CSPLChecker

generation, according to the learning frameworks for both assume-guarantee proof rules,
(B-AGR) and (P-AGR) (see Section 3.3). Various optimisations as, for instance, different
caching strategies, are implemented. During and after model checking, several statistics,
such as the amount of membership queries or equivalence queries, can be displayed. For
direct model checking with FDR2, the CSPLChecker is likewise called, forwarding the
FDR2 output and showing several statistics.

The screenshot of the CSLChecker from Figure 7.12 shows the verification result for
the decomposition of the TPCP. The decomposition is carried out with respect to the
cut {inform}, model checking refers to the property from Figure 7.11. At run-time, six
intermediate assumptions are generated, the second one is displayed on the bottom left
hand side. Overall, model checking takes approximately two seconds. The tool can freely
be downloaded [Won], a more detailed description can be found in [Won08].

7.2.4 Counterexample Analysis

Independent of a direct call of FDR2 or a compositional verification, model checking a
specification against a requirement possibly results in a counterexample. Such an error
trace comprises a sequence of events, constituting a violation of the respective verification
property. As part of the CSPLChecker output, this trace is displayed within the Syspect
console. However, a purely textual representation of a counterexample is difficult to
analyse. In particular, recovering the counterexample within the model can become
tedious.

In order to guide the user to the specific behaviour of the model which violates the
verification property, Micus [Mic10] developed an additional extension to Syspect, the
countertrace plug-in. By evaluating the textual representation of a counterexample and
linking it back to the specification’s state machines, the error trace is visualised within
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Figure 7.13: Screenshot of the counterexample visualisation

the Syspect model.
Consider a modification of the verification property from Figure 7.10: if we replace

pages = card(N) by pages = card(N)+1, for N = 1, a verification will result in
the following error trace:1

tr = 〈request, execute, vote.false, decide, inform.false, undo〉.

This is due to the fact that Prop requires the execution of two votes before the first
undo, which is clearly impossible for the TPCP with one instance of Page.

tr comprises events, solely executed by one class, along with synchronised events
between the classes Coord and Page. A visualisation of tr thus requires its events to be
distributed over both state machines.

Figure 7.13 shows a screenshot of the visualisation of the error trace tr within both state
machines. Here, the synchronised operation inform is selected, yielding the corresponding
state machine triggers to be highlighted in red. Along with this, a visualisation of the
complete error trace is possible.

Up to now, only the CSP part of the specification is analysed. In case there is more
than one visualisation of the error trace, all of them are displayed. More details on the
countertrace plug-in can be found in [Mic10].

1Recall, that Votes and Trans are mapped onto B.
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7.2.5 Overall Workflow

After introducing the several context-specific extensions of Syspect, we concludingly
assemble and summarise them. Figure 7.14 shows the decomposition framework by using
an UML activity diagram [Obj05].

Given a specification S and a property P, a user can either choose to apply direct model
checking or compositional verification. In the first case, S is exported to LATEX-mark-up
(Syspect export plug-in, Section 7.1.4) and both, S and P are translated into a CSPM-script
(CSPM-export, Section 7.2.3). Here, P is simply forwarded, as it is already specified in the
input language of FDR2. In the latter case, S is decomposed into some S1 ‖ S2 - either by
using the manual choice of a cut (Section 7.2.1) or the mass validation framework (Section
7.2.2), both realised within the Syspect decomposition plug-in. The property P possibly
needs to be adapted to some property P′, according to the respective decomposition: P′

needs to comply to the specification in terms of transmission parameters and address
parameters. Along with that, a modified assertion now refers to the decomposed system.
Again, a compilation of S1 ‖ S2 and P′ can be carried out, resulting in corresponding
CSPM-code.

Next, the actual model checking takes place. Direct, FDR2-based, model checking
with respect to S or S1 ‖ S2 is generally possible. Compositional verification using the
CSPLChecker (Section 7.2.3) requires the system to be composed of two components.
This is clearly the case for S1 ‖ S2 and, if S itself is already assembled of two parts, for S
as well. In any case, if the model checking yields an error trace, the counterexample is
visualised within the Syspect model (Syspect countertrace plug-in, Section 7.2.4).
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7.3 Experimental Results

Within this thesis, we specified several case studies, serving as an illustration of the main
concepts, definitions and algorithms. The present section provides the experimental
results for three specifications: the candy machine from Section 2.2, the Two Phase
Commit Protocol from Section 6.4 and the number swapper from Section 4.4. In order to
evaluate our approach, the examples have been specified within Syspect, decomposed
and exported, after which the run-times during model checking were investigated. For
all three case studies, we stepwise enlarged the size of the specification, namely, by
increasing the maximal value for Z and, for the Two Phase Commit Protocol, the amount
of participating pages. This allows us to estimate how the approach scales with an
increasing size of the model.

We start this section with an overview on the technical conditions for our evaluation.
Afterwards, we separately analyse the candy machine, the TPCP and the number swapper,
and we draw some first conclusions. Finally, we discuss the evaluation results.

7.3.1 Overview

In order to accomplish an experimental evaluation of our approach, we analysed our case
studies on a Dell PC, equipped with an Intel Core 2 Duo CPU, 4 GB RAM and openSUSE
Linux 11.1. Besides that, we used Syspect version 1.4.0 with an integration of the various
extensions, as described in Section 7.2. For model checking, we employed FDR in version
2.83.

All case studies have been modelled within Syspect. The tool is available from its public
subversion directory [Cor], the various extensions and the case studies along with the
corresponding exports are freely accessible from [Res].

We provide some more background information on the conducted experimental studies.

• Up to now, the implementation of our approach within Syspect does not allow
for a decomposition with respect to a general cut. Thus, for the case study of
the number swapper, we manually decomposed the model, before proceeding
with model checking. For the remaining case studies, we evaluated those sets of
decompositions, which correspond to the set of optimal and reasonable single cuts,
as given in Chapter 6.

• According to the two different proof rules, (B-AGR) and (P-AGR), we used two
learning strategies, which will from now on be called basic reasoning (BR) and
parallel reasoning (PR). In general, an assertion must be formed as Prop vT (S1 ‖
S2), where S1 denotes the first component of the decomposed system and S2 the
second.

• Some manual modifications of the export were necessary to achieve a fair compar-
ison between the model checking results for the different systems. For instance,
parameters were ordered such that the original ones are denoted first, followed by
address parameters and transmission parameters.
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• Instead of comparing the sizes of the generated state spaces during model checking,
we choose to compare verification run-times along with the amount of equivalence
queries and membership queries during learning. This is owed to the model checker
FDR2, not allowing for the computation of the size and visualisation of the overall
state space, generated during model checking. In fact, it is possible to display the
state space of the final generated transition system. However, in order to compare
the amount of states constructed and visited during model checking, the transition
systems of the intermediate processes would have to be considered as well. In our
context, comparing run-times along with the amount of the different L∗-queries, is
a satisfactory way of an evaluation.

• In general, we specified verification properties, which turn out to be valid for the
respective specification. Model checking is carried out, until either the system ran
out of memory or the verification result is true.

Besides direct model checking of the original system and compositional, learning-based
verification of the decomposition, we also evaluated direct model checking with respect
to our generated decompositions. Therefore, our evaluation will investigate run-times for
three different systems:

Original System: Given a specification S and a requirement Prop, we consider direct
model checking of Prop vT S.

Decomposed System, no AGR: For a valid decomposition of S into S1 ‖ S2, we investi-
gate direct model checking of Prop vT (S1 ‖ S2).

Decomposed System, AGR based on Learning: For a valid decomposition of S into
S1 ‖ S2, model checking of Prop vT (S1 ‖ S2) with respect to the proof rules
(B-AGR) and (P-AGR) is examined.

Section 7.3.5 will comment on the most likely reasons for the verification results. Next,
we present the experimental results for the three investigated examples in detail.

7.3.2 Verification Results for the Candy Machine

Our experimental evaluation starts with the specification of a candy machine, as defined
in Section 2.2. In Chapter 6, we already filtered all valid (single) cuts according to the
criteria unreasonable (Definition 6.2.1) and dominated (Definition 6.2.3). The remaining
two cuts are

• C1 := {switch} and

• C2 := {abort, order, select, switch}.

Therefore, we will investigate three different systems: the undissected candy machine
specification and two decompositions, according to the single cuts C1 and C2. Direct
model checking is conducted for all three systems. In addition, for both decomposed
systems, we consider basic reasoning and parallel reasoning.
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PROP = Paying (0)

Paying ( i ) = ( i f ( i+2 <= MAX) then P( i ) e l s e C o l l e c t i n g ( i ) )

P( i ) = [] j : Coins @ ( pay . j −> Paying ( i+j ) )

C o l l e c t i n g ( i ) = ( i f i >= 0 then D( i ) e l s e STOP)

D( i ) = C( i ) [] Terminate ( i )

C( i ) = d e l i v e r .CHOC −> C o l l e c t i n g ( i−1)
[] d e l i v e r . COOKIE −> C o l l e c t i n g ( i−2)
[] d e l i v e r . CRISPS −> C o l l e c t i n g ( i−3)

Terminate ( i ) = term . i −> SKIP

SPEC = (S_1
[ {| abort , pay , payout , swi tch |} ||

{| de l i ve r , order , s e l e c t , switch , term |} ]
S_2)

\ {| payout , abort , switch , s e l e c t , order |}

a s s e r t PROP [T= SPEC

Figure 7.15: Correctness requirement for the candy machine in terms of CSPM

The verification property, which we consider, is the one defined in Figure 2.6. Rephrased
in terms of CSPM, the property is denoted in Figure 7.15. Here, we additionally need to
to disallow the usage of integer values greater than MAX and smaller than 0, which is
specified within the property. The definition also contains an assertion for the decomposed
system with respect to the cut {switch}.

In the following, we scale the size of the evaluated model by increasing the maximal
integer value MaxInf within the CSPM-code. Precisely, MaxInf equal to n means that
Z is mapped to {−n, . . . ,n} whereas N is mapped to {0, . . .n}. The value for MaxInf
determines a corresponding value for the constant Max (see Section 2.2.1).

We denote the run-times in seconds and, in case of learning, the membership queries
and equivalence queries. The amount of equivalence queries is identical to the number of
generated intermediate assumptions during learning.

The symbol (*) indicates that the memory limit was exceeded during model checking,
causing FDR2 to cancel the verification process with the message std::bad alloc.
In addition, (-) denotes that the respective verification was not conducted, as model
checking for the same system already failed for a smaller value of MaxInf. Finally, n/a
denotes that compositional verification was not applicable, as the original system is not
composed of two components.
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Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None <1 n/a n/a n/a n/a n/a n/a
{switch} <1 <1 1 8 1 8 6
{abort, order, select, switch} <1 <1 1 20 5 16 2000

(a) Results for MaxInf = 1

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None 17 n/a n/a n/a n/a n/a n/a
{switch} <1 2 3 25 7 18 448
{abort, order, select, switch} 53 62 2 188 1916 92 156K

(b) Results for MaxInf = 2

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None (*) n/a n/a n/a n/a n/a n/a
{switch} 12 107 5 88 162 23 944
{abort, order, select, switch} (*) (*) (-) (-) (*) (-) (-)

(c) Results for MaxInf = 3

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None (-) n/a n/a n/a n/a n/a n/a
{switch} 183 (*) (-) (-) 3044 25 1527
{abort, order, select, switch} (-) (-) (-) (-) (-) (-) (-)

(d) Results for MaxInf = 4

Table 7.1: Experimental results for the candy machine

The improvement from Section 4.3.7, allowing for a neglect of specific initial data
dependences, was not yet implemented in Syspect. Therefore, the cut {switch} is not
indicated as a valid cut. In order to cope with this problem, we removed the initial
predicate items = 〈 〉 from the model and manually re-added it within the CSPM-code.

Finally, we give the experimental evaluation for the candy machine specification. Table
7.1 displays the results for MaxInf = 1 to MaxInf = 4. Most importantly, in case that
the machine did not exceed its memory limit, we denote the amount of seconds until
the verification terminated with the result true. DC indicates direct model checking, and,
as already mentioned, BR and PR indicate basic reasoning and parallel reasoning. The
number of equivalence queries and membership queries are given in the columns marked
with EQ and MQ, respectively. For MaxInf = 5, the two remaining evaluations for the cut
{switch} lead to an out-of-memory exception.
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It turns out that direct model checking of the original system can only be carried
out for MaxInf ∈ {1, 2}. The same applies for the cut C2 = {abort, order, select, switch},
independent of monolithic or compositional verification. For this specific cut, run-times
are even worse compared to model checking of the undissected model. The best results are
achieved for the cut C1 = {switch}. Quite surprisingly, direct model checking outperforms
the compositional one.

Summing up, due to the decomposition of the model, we can verify the investigated
property on larger systems. Even though learning-based reasoning already outperforms
monolithic verification of the original system, the best results are achieved for direct
model checking of the decomposed systems according to one specific cut. This particularly
shows that effective model checking for a decomposed system not automatically requires
compositional, assume-guarantee-based strategies. We will further elaborate on these
particular results in Section 7.3.5.

7.3.3 Verification Results for the Two Phase Commit Protocol

The next case study under investigation is the Two Phase Commit Protocol, specified in
Section 6.4. Again, we only consider the set of optimal and reasonable cuts, as given
in Table 6.6. In order to refer to the different cuts, we occasionally use the according
numbers from the respective table. We verify the system against the property, given in
Figure 7.10.

According to Section 6.4, there are nine optimal and reasonable cuts. As already argued,
a heuristics-based approach solely points the direction, but it does not automatically
determine the (set of) qualified cut(s). Instead of comparing all nine cuts, we filter the
set by further analysing its elements:

• The cuts numbered as 24 and 39 result in two symmetric decompositions, which
only differ in the two different operation names undo and complete. Therefore, we
select one of these cuts for the evaluation, namely the one numbered as 39, that is,
{inform, undo}.

• The sole reason why the cut {complete, inform, result,undo} does not dominate
the cuts numbered as 16 and 17, is the value for the heuristic even distribution.
However, as the first cut is a subset of the latter two cuts, the difference appears
simply due to a shift of node(s) into the cut. Clearly, this does not improve the
decomposition, and we solely consider the first of these three cuts.

• The same argument applies in case we compare the cuts numbered as 23 and 19
with {inform, undo}.

The remaining four (single) cuts will be evaluated. These are

• C1 := {inform},

• C2 := {vote, decide},

• C3 := {inform, undo} and
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• C4 := {complete, inform, result, undo}.

Along with them, we will also consider the dominated cut C5 := {vote}: even though
this cut seems to be a sensible one, our heuristics reject it. In order to draw some
further conclusions on the plausibility of the heuristics, we exemplify an evaluation of a
dominated cut on C5.

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None <1 4 9 464 5 33 973
{inform} <1 2 6 194 16 28 4050
{vote, decide} <1 2 5 230 3 16 464
{inform, undo} <1 76 11 5011 29 28 6611
{complete, inform, result, undo} <1 308 16 18K 2 5 416
{vote} <1 4 3 226 7 13 976

(a) Results for two pages

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None <1 19 14 1071 25 52 3248
{inform} 7 10 8 567 192 52 38K
{vote, decide} <1 11 7 933 9 23 1875
{inform, undo} 7 1459 21 38K 567 61 97K
{complete, inform, result, undo} 5 8449 23 148K 8 6 1403
{vote} 1 43 4 1218 40 19 4265

(b) Results for three pages

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None 17 319 18 1839 6807 67 46K
{inform} 3657 42 10 1251 1970 83 205K
{vote, decide} 47 52 9 2672 74 29 5040
{inform, undo} 3142 (*) (-) (-) (*) (-) (-)
{complete, inform, result, undo} 1796 (*) (-) (-) 781 7 3614
{vote} 57 336 6 4721 161 20 10K

(c) Results for four pages

Table 7.2: Experimental Results for the TPCP, first part

Tables 7.2 and 7.3 show the evaluation results for the TPCP, comprising two to seven
pages. The table is correspondingly configured to the one for the candy machine, and it
uses the same symbol to indicate an out-of-memory failure during model checking. As
the specification itself is composed of two components Coord and Pages, we can apply
compositional verification for the original system as well.
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The evaluation yields the following results: first of all, direct verification for the
undissected system and for the decompositions according to C2 and C5 can be carried
out for an amount of five pages, before the memory limit exceeded. For the remaining
decompositions, direct verification is only possible for an amount of four pages.

Compositional verification results in comparatively worse run-times for two and three
pages. However, the larger the model, the more effective becomes compositional reason-
ing and, in particular, basic reasoning. The best results are achieved for the decomposition
according to C2, that is, {vote, decide}. Here, model checking can be carried out for up to
seven pages, before the memory limit exceeds. Regarding the dominated cut {vote}, it is
outmatched by basic reasoning with respect to the cuts {inform} and {vote, decide}. Thus,
even though one might intuitively assume {vote} to declare a better decomposition than
{vote, decide}, the heuristics prove this conjecture wrong. A more detailed discussion will
be part of Section 7.3.5.

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None 926 8696 23 2926 (*) (-) (-)
{inform} (*) 571 12 2342 (*) (-) (-)
{vote, decide} 3584 241 11 6174 11K 35 11K
{inform, undo} (*) (-) (-) (-) (-) (-) (-)
{complete, inform, result, undo} (*) (-) (-) (-) (*) (-) (-)
{vote} 4220 1877 7 11K 10K 17 20K

(a) Results for five pages

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None (*) (*) (-) (-) (-) (-) (-)
{inform} (-) (*) (-) (-) (-) (-) (-)
{vote, decide} (6 pages) (*) 1738 13 12K (*) (-) (-)
{vote, decide} (7 pages) (-) 5846 15 22K (-) (-) (-)
{inform, undo} (-) (-) (-) (-) (-) (-) (-)
{complete, inform, result, undo} (-) (-) (-) (-) (-) (-) (-)
{vote} (*) (*) (-) (-) (*) (-) (-)

(b) Results for six and seven pages

Table 7.3: Experimental Results for the TPCP, second part

Summing up, contrary to the evaluation results for the candy machine, direct verifica-
tion of the decomposed system results in higher run-times than basic reasoning. Moreover,
basic reasoning performs significantly better than parallel reasoning. The example shows
that assume-guarantee-based compositional verification can indeed lead to a significant
speed-up during model checking.
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PROP = [] j : Nat @ ( input . j −> r e s u l t .1 −> P( j ) )
P( j ) = [] k : Nat @ ( input . k −> r e s u l t . j −> P(k) )

SPEC = (S_1
[ {| input , storeB , r e s u l t |} ||

{| storeB , moveA , moveB , r e s u l t |} ]
S_2)

\ {|moveA , moveB , s toreB |}

a s s e r t PROP [T= SPEC

Figure 7.16: Correctness requirement for the number swapper in terms of CSPM

7.3.4 Verification Results for the Number Swapper

The final case study under investigation is the (extended version of the) number swapper
from Section 4.4, defined in Figure 4.26. Here, due to the specific recursive structure of
the CSP part, a decomposition with respect to a single cut is impossible. Moreover, based
on the different data dependences, there is only one reasonable general cut, namely
C = (C1,C2), for C1 = {store b} and C2 = {result}. Thus, we manually decomposed the
specification according to C, and we compared run-times for direct verification of the
original system and the decomposed system with the ones for compositional verification
of the decomposed system.

In order to carry out the model checking, we refer to the verification property, as given
in Figure 4.29. Rephrased in terms of CSPM with an additional assertion in regard of the
decomposed system, the property is specified in Figure 7.16. It states:

“ The parameter value, received by input, corresponds to the output value of result in the
next iteration of the protocol. ”

According to the experimental evaluation of the candy machine, we scale the specifica-
tion by stepwise increasing the maximal integer value MaxInf. The individual results are
given in Tables 7.4 and 7.5, respectively.

Compositional reasoning, particularly with respect to the proof rule (B-AGR), results
in drastically worse run-times than non-compositional one. The comparison between
direct verification of the original system and the decomposed one mainly yields a draw.
Thus, for this case study, decomposing the specification does not yield an advantage over
model checking of the undissected system.

7.3.5 Discussion

In this section, we evaluated three case studies, and we compared direct model checking
with the compositional one with diverse results:
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Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None <1 n/a n/a n/a n/a n/a n/a
{store b}, {result} <1 26 22 2740 3 32 591

(a) Results for MaxInf = 1

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None <1 n/a n/a n/a n/a n/a n/a
{store b}, {result} <1 249 40 15K 13 57 2243

(b) Results for MaxInf = 2

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None <1 n/a n/a n/a n/a n/a n/a
{store b}, {result} <1 1888 66 56K 58 97 5883

(c) Results for MaxInf = 3

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None 1 n/a n/a n/a n/a n/a n/a
{store b}, {result} 1 11K 98 155K 230 147 12K

(d) Results for MaxInf = 4

Cut DC BR PR
sec sec EQ MQ sec EQ MQ

None 3 n/a n/a n/a n/a n/a n/a
{store b}, {result} 3 62K 136 355K 779 207 25K

(e) Results for MaxInf = 5

Table 7.4: Experimental results for the (extended) number swapper, first part

1.) For the specification of a candy machine, direct model checking based on the cut
{switch} outmatches learning-based verification along with direct verification of the
original system.

2.) Regarding the Two Phase Commit Protocol, the learning-based method performs best,
particularly for the decompositions according to the cuts {vote, decide} and {inform}.

3.) The evaluation of the final case study, the number swapper, showed that a decompo-
sition of the system does not always improve the run-times during model checking in
a significant way.
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Cut DC / PR DC / PR DC / PR DC / PR
MaxInf = 6 MaxInf = 7 MaxInf = 8 MaxInf = 9

None 10 23 52 108
{store b}, {result} 10 / 2498 24 / 7209 52 / 19K 10 / (-)

(a) Results for MaxInf ∈ {6, 7, 8, 9}

Cut DC DC DC
MaxInf = 10 MaxInf = 11 MaxInf = 12

None 209 379 (*)
{store b}, {result} 207 372 (*)

(b) Results for MaxInf ≥ 10

Table 7.5: Experimental results for the (extended) number swapper, second part

A summary of the results is given in Table 7.6. They will lead us to some context-specific
conjectures, which we will discuss next. In order to draw some conclusions and develop
an intuition on when decomposing a system plus applying compositional verification
might pay off, we investigate the specific model checker FDR2 and the structure of the
different case studies. Note that the following interpretations and considerations are
mostly educated guesses and conjectures: neither can we precisely estimate the model
checking procedure of FDR2, nor can we draw detailed and irrefutable conclusions from
a heuristics-based technique.

Verification Technique Case Study

Candy Machine TPCP Number Swapper

Direct, original system - - +
Direct, decomposition + - +
Compositional, decomposition ◦ + -

Table 7.6: Summary of the experimental results

General Conclusions

Based on the experimental results, we discuss some general observations. First, we
experienced that the order of both components within the assertion is relevant for basic
reasoning and – due to the nature of the symmetric proof rule – irrelevant for parallel
reasoning. For basic reasoning, model checking of Prop vT (S1 ‖ S2) generally performed
better than the one of Prop vT (S2 ‖ S1). The previous tables thus always refer to the
case of Prop vT (S1 ‖ S2).

Next, we observed that two particular criteria were most relevant for the measured
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run-times of model checking. The first one is related to the additional address- and
transmission parameters: parameters of high cardinality significantly increase the run-
times. As the type of transmission parameters is arbitrary, decompositions without
transmission parameters or, at least, transmission parameters of small type-cardinality
should be favoured. As a second, closely related criterion, the amount of cut nodes highly
influences the duration of model checking. For our case studies, we experienced that
cuts with a size of more than two nodes generally lead to comparatively bad results.
As both criteria determine the number of events, which have to be synchronised in the
decomposition, both observations substantiate the claim from Section 6.1: the interface
between both components needs to be small.

Another observation is related to the specific model checker we used for the evalua-
tion: the behaviour of FDR2 in the context of the learning based approach is generally
non-deterministic, and it is nearly impossible to draw conclusions on how the amount
of membership queries and equivalence queries can be reduced [Won08]. For instance,
a reordering of the specification’s parameters changes the number of intermediate as-
sumptions. However, there is no general rule which orderings should generally be
favoured.

Regarding the comparison of parallel reasoning and basic reasoning, basic reasoning
mostly outmatched the parallel one. This might be related to the specific case studies
which we investigated: the candy machine and the Two Phase Commit Protocol can be
seen as sequential systems without outer recursion, thus favouring the specific sequential
structure of the rule (B-AGR). Yet, for the case study of the number swapper, even though
parallel reasoning performed better that the basic one, run-times were significantly higher
compared to direct model checking. This raises doubts on the usefulness of parallel
reasoning in general.

Finally, we want to substantiate the claim that not only the final transition graph,
generated during model checking, is relevant for the number of explored states. We
illustrate this by an example.

Example 7.3.1. Let us consider the following simple CSP-OZ specification.

Simple
chan a, b, c

main
c= a→ b→ c→ Skip

a guard, b guard, c guard : B
Init
a guard, b guard, c guard = true

enable a
a guard = true

enable b
b guard = true

enable c
c guard = true

effect a
∆(a guard)

a guard′ = false

effect b
∆(b guard)

b guard′ = false

effect c
∆(c guard)

c guard′ = false
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The CSP process of the class solely allows for the trace 〈a, b, c〉. For the Object-Z part, any
ordering of operations is possible, as long as each operation is only called once. Thus, in
order to analyse the specification, the parallel composition of the two transition systems

• c // •
•

b 33hhhhhhh c
++VVVVVVV
• b // •
• c // •

• a // • b // • c // • and •

a
=={{{{{{{{ b //

c

!!CC
CC

CC
CC

•
a 44iiiiiii
c

**UUUUUUU

• a // •
• b // •

•
a 33hhhhhhh b

++VVVVVVV
• a // •

needs to be computed (without denoting the state variables of the Object-Z part). Even
though the transition system of the overall process is identical to the one for the CSP part,
the much bigger transition system of the Object-Z part must be computed as well before the
parallel composition can be carried out.

Now assume we decompose the specification based on the valid single cut C = {b}. In this
case, the transition system for the first component is a parallel composition of

• b // •
• a // • b // • and •

a 44iiiiiii
b

**UUUUUUU

• a // •

For the transition system of the second component, the event b is simply replaced by the
event c. The final transition systems for the original specification and the decomposed one
are identical and according to the one of the original CSP part. However, the size of the
intermediate system differs: for the original system, there are 19 states and 18 transitions,
the decomposed systems needs to cope with only 16 states and 12 transitions. Thus, (direct)
model checking with respect to the original model needs to explore more states than the
compositional one.

The example particularly shows that direct model checking of a decomposed system
can indeed outmatch direct model checking of the original specification. This can be the
case if the decomposition results in smaller intermediate transition systems due to, for
instance, a significant reduction of interleaving or an effective distribution of the set of
state variables.

Evaluation Analysis: Candy Machine

We quote some further case-study-specific observations, and we start by analysing the
results for the candy machine. The state space of the specification particularly comprises
two sequences paid and items. Even though FDR2 supports the specification of sequences,
generating the set over all possible sequences of finite length n for some specific data
type with cardinality k results in kn elements. This is further substantiated by the fact
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that FDR2 mainly applies explicit model checking techniques and generally needs to deal
with the full state space of a system.

Consider the decomposition of the specification with respect to the cut {switch}, as
given in Section 4.3.6. It results in a distribution of the state variables paid and items
over both components – paid is assigned to CandyMachine1, and items is assigned to
CandyMachine2. Thus, the individual state spaces of the Object-Z parts of the specification
are significantly smaller than the state space of the original system. Hence, it is most
likely that model checking with respect to C1 = {switch} performs comparatively better
than the one for the original system.

Regarding the cut C2 = {abort, order, select, switch}, the corresponding decomposition
requires a transmission parameter of type seq Candies. In addition, the number of cut
nodes is equal to four. Thus, model checking with respect to C2 leads to comparatively
poor results.

Yet, the question remains why direct model checking outperforms the compositional
one. As already mentioned, the performance of learning-based compositional reasoning
depends on the number of intermediate assumptions. According to [Won08] and due to
the black-box character of FDR2, it seems quite difficult to pre-estimate this number.

Evaluation Analysis: Two Phase Commit Protocol

In [dRHH+01], the motivation for introducing and specifying the Two Phase Commit
Protocol is its particular structure, allowing for an appliance of the Communication-Closed-
Layers law (CCL) [EF82]. Our way of decomposing a specification is one particular way
of adopting the CCL, which leads to a transformation of a specification with a distributed
or concurrent structure – such as the parallel composition of several processes – to a
sequential or layered structure, consisting of several phases.

The evaluation of this specific case study shows that the structure of the TPCP facilitates
an application of compositional techniques. In particular, the protocol itself consists of
two phases, which are nearly independent.

Quite surprisingly, the cut yielding the minimal run-times during model checking is
C = {vote, decide}. Figures 7.17 and 7.18 show the decomposition of the specification
according to C. In order to address specific instances of Page1 and Page2, we adopt
CSP-OZ’s concept of constant parameters ([Fis00]).

This specific cut reflects the loose connection between the commit-request-phase and
the commit-phase: the corresponding decomposition only requires one transmission
parameter of type Trans = {COMMIT,ABORT} for the operation decide. This parameter
represents the final decision to either commit or abort a transaction and thus, the point of
intersection between both phases. As decide only occurs once within the specification, this
parameter of type cardinality 2 is only used once as well. Contrary, the cut {vote} requires
a transmission parameter of type P Votes for the operation vote. Thus, the cardinality of
the type of this operation is larger than the one for the parameter of decide. Moreover
and more importantly, vote occurs once in each instance of Page and N times within Coord.
This requires the transmission parameter to be added to all N occurrences within Coord.
Therefore, even though the cut C5 = {vote} only comprises one operation schema, model
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Coord1

chan request chan decide : [trdecC! : Trans]
chan vote : [vo? : Votes; add1 : {1 . . .N}; add2 : {1 . . .N}]
main

c= ‖| 0<i≤N(request→ Skip);
‖| 0<i≤N(vote?vo.i?add2 → Skip); decide?trdecC → Skip

decC : Trans
votes : P Votes

effect request
∆(votes)

votes′ = ∅

effect vote
∆(votes)
vo? : Votes

votes′ = votes ∪ {vo?}

effect decide
∆(decC)
trdecC! : Trans

if (NO ∈ votes) then decC′ = ABORT
else decC′ = COMMIT
trdecC! = decC′

Coord2

chan vote : [vo? : Votes; add1 : {1 . . .N}; add2 : {1 . . .N}]
chan acknowledge chan decide : [trdecC? : Trans] chan inform : [in! : Trans]

main
c= ‖| 0<i≤N(vote?vo.i?add2 → Skip); decide?trdecC → PhaseTwo

PhaseTwo c= ‖| 0<i≤N(inform?in→ Skip);
‖| 0<i≤N(acknowledge→ Skip)

decC : Trans
Init
decC = ABORT

effect inform
in! : Trans

in! = decC

effect decide
∆(decC)
trdecC? : Trans

decC′ = trdecC?

Figure 7.17: Decomposition of the TPCP: Coord specification

checking needs to cope with comparatively more events than the one of the decomposition
according to {vote, decide}. Figure 7.19 illustrates the predominance of {vote, decide}.

Similarly, for the decomposition with respect to the cut C1 = {inform}, one additional
transmission parameter of type Trans is required, and inform occurs multiple times within
the specification. The larger the amount of pages, the more occurrences of vote and
inform and thus, the more cut events for C1 and C5. This is reflected in the evaluation
results: the larger the model, the better performs {vote, decide} in comparison to the
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Page1(i : {1 . . .N})
chan request chan execute
chan vote : [vo! : Votes; add1 : {1 . . .N}; add2 : {1 . . .N}]
main

c= request→ execute→ vote?vo?add1.i→ Skip

stable : B
Init
stable

effect execute
∆(stable)

stable′ ∈ {true, false}

effect vote
vo! : Votes

stable⇒ vo! = YES
¬stable⇒ vo! = NO

Page2(i : {1 . . .N})
chan vote : [vo? : Votes; add1 : {1 . . .N}; add2 : {1 . . .N}]
chan inform : [in? : Trans] chan undo chan complete
chan result : [r! : Trans] chan acknowledge

main
c= vote?vo?add1.i→ PhaseTwo

PhaseTwo c= inform?in→ Result
Result c= (undo→ result?r→ acknowledge→ Skip

2 complete→ result?r→ acknowledge→ Skip)

decP : Trans
Init
decP = ABORT

effect inform
∆(decP)
in? : Trans

decP′ = in?

effect result
r! : Trans

r! = decP

enable complete
decP = COMMIT

enable undo
decP = ABORT

Figure 7.18: Decomposition of the TPCP: Page specification

other cuts.

Still, within the mass validation framework, the cut {inform} receives the minimal
value, if we set an equal weight for all heuristics. This is due to the comparatively smaller
values for the heuristics cut size and even distribution. The example substantiates to
offer a possibility of scaling the different heuristics: a higher weight for few transmission
will cause {vote, decide} to pass {inform} in terms of the overall value.
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Figure 7.19: Justification for predominance of cut {vote, decide}

Evaluation Analysis: Number Swapper

The results for the number swapper showed that the decomposition of a system does not
generally lead to a significant improvement in regard of model checking run-times. In this
specific case, the structure of the system does not allow for a decomposition beneficial for
compositional verification: the CSP part of the specification itself comprises five events
and only allows for a general cut. Thus, one of the components inevitably comprises
four events. Moreover, store b requires an additional transmission parameter, increasing
the size of the interface between both components. In conclusion, learning-based model
checking results in poor run-times.

Still, by decomposing the number swapper, the structure of the specification is mainly
maintained. There is no advantage in the application of direct model checking of the
original system over direct model checking of the decomposed system.

Summary

The evaluation results for the different case studies of this thesis highly differ. Summing
up, we can conclude that there is no universal best strategy which type of verification one
should choose. Still, we identified some rules-of-thumb for when to apply which strategy:
in general, applying the decomposition technique can be promising, if the underlying
system can be distributed in a reasonable way. This can either mean a split-up of the CSP
part into two phases without a large intersection between both parts (as, for instance,
the Two Phase Commit Protocol and the cut {vote, decide}) or a reasonable distribution
of its set of state variables (as, for instance, the candy machine and the cut {switch}).

The decomposition approach will not always be beneficial. In particular, if the system
is tightly coupled, a decomposition might not significantly reduce run-times during
(compositional) verification. However, the technique is generally applicable and for none
of the case studies did direct model checking of the original system perform best. Even
though one of our case studies represents a tightly coupled system, direct model checking
of its decomposition results in run-times, which are comparable to the ones for the model
checking of the undissected system.
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The present chapter concludes this thesis with a summary. Subsequently, we discuss
some topics for future research.

8.1 Summary

Within this thesis, we introduced a decomposition technique for software models, specified
in an integrated formalism. The primary motivation for this approach arose from the
major challenge of automated software verification: the state explosion problem. In order
to allow model checking to scale to complex systems, appropriate measures need to be
taken. Compositional verification is one possible way of dealing with the state explosion.
The technique follows a “divide and conquer” approach: instead of verifying the system
as a whole, the components of the system are independently verified. An appropriate
combination of the verification results yields the correctness of the system. Compositional
reasoning avoids the state explosion problem to a certain extent, if the overall state space
of the components is comparatively smaller than the one of the original system.

After a short introduction to the topic, Chapter 2 provided background information
on the modelling and the analysis of software models. First, we surveyed the field of
integrated formal methods. Next, we presented the syntax and the semantics of the
underlying integrated formalism of this thesis, CSP-OZ, and we exemplified it by means of
a case study. Furthermore, a dependence analysis for CSP-OZ specifications was introduced.
Here, we defined the specification’s dependence graph, reflecting the control flow and the
data flow of a software model. The dependence graph provides the basis for a further
analysis and, eventually, a decomposition of a specification.

The second background chapter, Chapter 3, focussed on strategies for the automated
verification of a software model and, in particular, compositional verification. We provided
an overview on related and complementary techniques to cope with the state explosion
problem. The assume-guarantee paradigm of compositional reasoning was introduced,
along with two inference proof rules. Both proof rules are applied within our implementa-
tion framework, and they use the L∗ algorithm for an automatic detection of intermediate
assumptions during model checking.

The first core chapter of this thesis, Chapter 4, described the actual decomposition of a
CSP-OZ specification. The general idea for the approach is the definition of a cut of the
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specification’s dependence graph. In order to ensure the validity of the decomposition,
that is, the semantic equivalence of the decomposed system and the original system,
a cut needs to comply with four correctness criteria. We separated the general case
from the specific case of a single cut, mainly to allow a certain class of systems to be
decomposed in a more effective way. Subsequently, we defined a model’s decomposition
with respect to a valid cut. In order to guarantee the equivalence between the original
and the decomposed system, additional modifications of the resulting components had
to be introduced. Mainly, these modifications required the introduction of additional
parameters in order to restore the specification’s original control flow and data flow.

Chapter 5 showed correctness of the decomposition technique in terms of the trace
equivalence of the original and the generated model. The proof employed the opera-
tional semantics of CSP-OZ. We compositionally showed the correctness of both, the
decomposition of the CSP part and the one of the Object-Z part. For the CSP part, we
showed bisimilarity of the considered CSP processes, taking into account the additional
address parameters within the CSP part of the decomposition. For the correctness proof of
the Object-Z part, we showed trace equivalence by explicitly constructing the respective
transition paths and by using transmission parameters. Finally, both individual results
were used to deduce the overall correctness of the decomposition, additionally requiring
several CSP-related laws for renaming and for a redistribution of CSP processes.

As the validity of a decomposition does not automatically yield a system for which
model checking can effectively be carried out, Chapter 6 introduced several context-
specific heuristics to measure the quality of a decomposition. A classification of all valid
cuts is carried out in two steps: first, all unreasonable and dominated cuts are sorted out.
Second, the remaining cuts can be scaled, according to the heuristics.

Finally, Chapter 7 evaluated the approach on three case studies. As the underlying
platform, we chose the UML-based modelling environment Syspect and the CSP model
checker FDR2. In order to integrate the decomposition technique into the existing
framework, several extensions to Syspect were carried out. We compared run-times for
direct and compositional model checking for the original systems and the decompositions.

In summary, within this thesis, we developed a technique to effectively apply composi-
tional verification for software models, specified in an integrated formalism. We mainly
answered the following two questions:

1. How can we determine the set of all valid decompositions of a specification?

2. How can these decompositions be classified and measured regarding their effective-
ness for compositional model checking?

We further implemented the approach by integrating it into an existing tool for the
modelling and the analysis of software specifications. Based on the results obtained, we
observed that the decomposition technique can lead to a considerable speed-up of both,
compositional verification and direct verification.
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8.2 Future Work

The present work opened several perspectives and ideas for future research, which we
will discuss next. Particularly, we detail some further extensions and some possibilities on
how to combine the approach of this thesis with complementary techniques.

Target Area of Application: The decomposition technique of this thesis has been carried
out with respect to the integrated formal method CSP-OZ. Yet, the approach presents
the major benefit of being independent from a specific formalism: the theory
of Chapter 4 used the (program) dependence graph (DG) of a specification in
order to decompose a software model. DGs are a commonly-used and language-
independent way of representing a software system [HR92]. Thus, the technique
can be transformed to fit to any language with an underlying dependence graph
representation for its models. The general idea behind the decomposition of the
model in terms of restoring the original control flow and the data flow can be used
accordingly. The correctness criteria need to be adapted, according to the context
specific semantic model and the equivalence requirements.

Semantic Model: As the semantics of CSP-OZ are given in terms of CSP alone [Fis00],
our correctness proof referred to the semantic domain of CSP. Within the general
context of learning-based model checking of safety properties, we were interested
in analysing the observable behaviour of a specification. This allowed us to restrict
ourselves to the semantic model of traces, that is, the sequences of communication
events: the trace semantics is sufficient for showing the observable equivalence
of two systems [CGP03, Weh00]. In order to analyse liveness properties as, for
instance, deadlock or livelock freedom, the decomposition technique could as well
be extended to the more discriminating failures-divergences model of CSP. This
semantic model additionally takes the refusals of events and infinite sequences of
internal actions into account. The extension would require a modification of the cor-
rectness proof and, possibly, some additional correctness criteria in order to ensure
the failure-divergence equivalence of the original system and its decomposition.

Evaluation with ProB: An evaluation of the decomposition technique was carried out
by using the CSP model checker FDR2. The choice was justified by several aspects,
which were given in Section 7.2.3. In order to realise a more profound analysis,
as a meaningful measure, the approach could be evaluated for a second model
checker. Recently, ProB [Leu], an animator and model checker for the B-Method
[Abr96], was extended to support CSPM as the input language [LF08]. Thus, an
implementation of the learning framework from Chapter 3 for ProB and a further
comparison of evaluation results for ProB and FDR2 could be advisable.

Weakening of Correctness Criteria: One correctness criterion for a valid fragmentation
of the DG states that data dependences must not circumvent the set of cut operations.
The criterion was justified by the fact that the influence from one specification part
on the other one needs to be preserved. Our decomposition approach ensured this
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by using transmission parameters. A possible weakening of the cut definition could
be a neglect of this criterion. In this case, transmission parameters would have to
be used for state variables which are modified before the cut as well. In general,
these considerations result in a trade-off between, on the one hand, the growing
amount of valid cuts and, on the other hand, the more complex evaluation of the
set of all valid cuts. Yet, we observed that a large set of additional parameter values
considerably slows down model checking, raising doubts on whether this strategy
is a way to success.

Recursive Learning: Previous works [GGP07, PGB+08] extended the learning frame-
work to systems with an arbitrary number of components. Here, the specification
is stepwise decomposed, using a recursive application of the learning algorithm.
Wonisch already integrated the method into the CSPLChecker [WW09]. His ex-
tension allows to recursively apply both assume-guarantee-based proof rules with
respect to a specific split-ratio and systems which are parallel composed of n com-
ponents. The theory of our thesis implicitly supports the recursive decomposition of
a system, as the two resulting specification components are CSP-OZ specifications
as well. In order to integrate this extension into Syspect, a re-import of the decom-
posed model and, in particular, a computation of the respective dependence graphs
is necessary.

Arbitrary Amount of Cut Sets: According to Definition 4.2.8, a general cut refers to
two cut sets, and it yields a fragmentation of the DG into two parts. Clearly,
this approach might be extended to an arbitrary amount of lines of intersection,
yielding a decomposition of a model into a corresponding number of components.
However, within this thesis, we restricted ourselves to two cut sets: as previously
explained, the approach supports a recursive decomposition, already allowing for
a decomposition into an arbitrary amount of components without the need to
generalise and further complicate Definition 4.2.8.

Combination with other Techniques: Another motivation for the re-import of a CSP-OZ
class specification into Syspect is given by the possibility to combine two techniques,
the slicing approach from [Brü08] and the decomposition method of this thesis:
if the verification requirement is at hand, an obvious strategy is to first slice the
original model with respect to the given requirement, re-import the slice and
decompose it according to our technique. Moreover, the presented technique is
generally compatible to other approaches to the state explosion problem.

Decomposition Implementation: Chapter 7 presented the implementation of the de-
composition approach within the UML-based modelling tool Syspect. Here, several
future extensions are possible, mainly for closing the gaps between the theory and
the implementation and for facilitating the tool handling.

• Implementation of General Cut Theory: The implementation of the decompo-
sition technique within Syspect is currently restricted to the special case of a
single cut. In order to allow the tool to support the decomposition of arbitrary
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specifications, an extension of the according plug-in is required. Here, the
main aspect to deal with is to allow the definition of two separate cut sets,
with each of them complying to the implemented theory for one cut set.

• Implementation of Decomposition Improvement: In Section 4.3.7, we discussed
an improvement of the decomposition approach in terms of reducing the set
of initial data dependences. This optimisation is not yet implemented within
Syspect and thus, several valid cuts are currently rejected. An implementation
of this improvement, dependent on the respective specification, would lead to
larger set of valid cuts.

• Modelling of Verification Properties: Currently, a manual specification of verifi-
cation properties in terms of CSPM is required. As a facilitation, a modelling of
the system requirements as a transition system is imaginable. Such an editor
could be similar to the existing Syspect state machine editor.

• Extension of Counter Trace Plug-In: Section 7.2.4 introduced the countertrace
plug-in, a Syspect extension for visualising counterexamples. Currently, the
analysis only considers the CSP part of a specification. Thus, the set of detected
error traces is possibly too large. An additional analysis of the Object-Z part
would yield an exact counterexample analysis.

• Elimination of System Classes: As a more technical aspect, the LATEX-export of a
Syspect specification, comprising more than one class, requires the definition
of an additional class for describing the overall system composition. These
classes may be replaced by a simple CSP process, as they comprise an empty
Object-Z part. In order to speed-up model checking, the definition of the
overall system within Syspect should be given by a CSP process instead of a
CSP-OZ class.





Glossary of Symbols

CSP-OZ (Section 2.2)

S.I the interface definition of a specification S

S.Events the global set of events of a specification S

S.OZ the Object-Z part of a CSP-OZ specification S

S.main the CSP part of a CSP-OZ specification S

Object-Z part (Section 2.2)

State the state schema of OZ

Init the initial state schema of OZ

Op the set of operation schemas of OZ

enable op the precondition of the operation schema op

effect op the effect of the the operation schema op

op.delta the delta list of the operation schema op

op.dec the parameter declaration part of the operation schema op

op.pred the predicate part of the operation schema op

In(op) the set of possible values for the input parameters of op

Simple(op) the set of possible values for the simple parameters of op

Out(op) the set of possible values for the output parameters of op

ref(op) the set of referenced variables of the operation schema op

mod(op) the set of modified variables of the operation schema op

all(op) the union of the sets of referenced and modified variables of op

s� V the state s, projected onto the set of state variables V

MOZ the labelled transition system of OZ

Traces(OZ) the set of traces of the Object-Z part

π[i] the i-th state of π ∈ Traces(OZ)

π.i the i-th event of π ∈ Traces(OZ)

traces(OZ) the set of traces of OZ, projected onto events

traces(OZ)�Op the set of traces of OZ, projected onto operation names
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CSP part (Section 2.2)

Skip termination

Stop deadlock

a→ P a then P

P1 2 P2 P1 external choice P2

P1 u P2 P1 internal choice P2

P1 ‖A P2 P1 parallel on A P2

P1 A1‖A2 P2 P1 parallel on A1, A2 P2

P1 ‖| P2 P1 interleave P2

P1 \ A P hide A

PJRK P renamed by R (relational renaming )

main the initial CSP process of a CSP-OZ specification

LCSP the set of all CSP terms

MCSP the labelled transition system of main

tr� E the restriction of the trace tr on events in E

traces(main)�Op the set of traces of main, projected onto operation names

tr.i the i-th event of the trace tr

initials(P) the initial events of the process P

foot(tr) the last event of the trace tr

P|E the projection of the process P on events in E

P vT Q Q is a trace refinement of P

P =T Q P and Q are trace equivalent

αP the alphabet of the process P

{| C |} the extension set for the set of channels C

cp a partial event for the channel c
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Dependence Graphs (Section 2.3)

DGS = (N,−→DG) the dependence graph of a specification S

CFGS = (N,−→) the control flow graph of a specification S

DDGS = (op(N), 999K) the data dependence graph of a specification S

op(N) the set of operation nodes of a dependence graph

cf(N) the set of CSP operator nodes of a dependence graph

−→ a control dependence
dd
999K a direct data dependence
dd
999K(v) a direct data dependence by reason of v
idd
999K an initial data dependence
sd
L999K a synchronisation dependence
sdd
999K a synchronisation data dependence
ifdd
999K an interference data dependence
ifdd
999K(v) an interference data dependence by reason of v

pathDG / CFG the paths of the DG / CFG

pathDG / CFG(n, n’) the paths of the DG / CFG from n to n’

succ(n) the sole successor of the node n

succ one(n) the first successor of the node n

succ two(n) the second successor of the node n

Compositional Reasoning (Sections 3.2 and 3.3)

(B-AGR) the basic assume-guarantee proof rule

(P-AGR) the parallel assume-guarantee proof rule

(C-AGR) the circular assume-guarantee proof rule

L(A) the language of the assumption A, given as a DFA

L(A)C the complement of the language L(A)

Σ∗ the set of finite words over Σ

Σω the set of infinite words over Σ
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Cut of a Dependence Graph (Section 4.2)

C = (C1,C2) a (general) cut of a dependence graph

C = (C1,∅) a single cut of a dependence graph

Phi the i-th phase of a fragmentation of a dependence graph

N1
to−→ N2 the interval of nodes from N1 to N2 of a dependence graph

disjointness the first correctness constraint on a valid cut

no crossing the second correctness constraint on a valid cut

no reaching back the third correctness constraint on a valid cut

all-or-none the fourth correctness constraint on a valid cut

Decomposition of a Specification (Section 4.3)

S1 the first component of a decomposition of S

S2 the second component of a decomposition of S

CV the set of cut variables

op.orig the set of original parameters of the operation op

op.add the set of address parameters of the operation op

op.tr in the set of transmission parameters of the operation op,
decorated with “?”

op.tr out the set of transmission parameters of the operation op,
decorated with “!”

Opi the set of local operation schemas of the component Si

OpC the set of cut operation schemas

Op′ the union Op1 ∪ Op2 ∪ OpC

ESi the set of events of the component Si

ES′ the union ES1 ∪ ES2

RC the (relational) event renaming for a decomposition of S

R′ the inverse renaming relation

InitClos(x) the initial closure of the state variable x
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Correctness Proof (Chapter 5)

noev a special event to denote stuttering

CV the shared state variables, excluding cut variables

s⊕t the state t overrides the state s

Decomposition Heuristics (Section 6.1)

hCS the heuristic for minimising the cut size

hED the heuristic for minimising the size difference

hFT the heuristic for minimising the transmission

hFA the heuristic for minimising the addressing

Predicate Logic

Free(p) the set of free variables occurring in the predicate p

p[x/a] the predicate p with all free occurrences of x
replaced with a

Atoms(p) the set of atomic sub-predicates of the predicate p

vars(p) the set of variables occurring in the predicate p

Miscellaneous

IdX the identity on X, that is, the set {(x, x) | x ∈ X}
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[ESB+09] S. Edelkamp, V. Schuppan, D. Bošnački, A. Wijs, A. Fehnker, and H. Aljazzar. Survey
on directed model checking. pages 65–89, 2009.

[Fis97] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In Formal Methods for Open
Object-Based Distributed Systems (FMOODS’97), volume 2, pages 423–438. Chapman
& Hall, 1997.

[Fis99] C. Fischer. Printing CSP-OZ documents with latex; documentation for csp-oz.sty.
Technical report, University of Oldenburg, 1999.

[Fis00] C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ to
Java. PhD thesis, University of Oldenburg, 2000.

[FMS01] A. Farias, A. Mota, and A. Sampaio. Java translator from CSP-Z to CSPM notation.
http://www.di.ufpe.br/~acf/translator/CSPZtoCSPM.html, 2001.

[For05] Formal Systems (Europe) Ltd. Failure divergence refinement: FDR2 user manual.
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf, 2005.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Systems,
pages 319–349, 1987.

[FP78] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta Informatica,
9(2), 1978.

[FW99] C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR. In
IFM, pages 315–334, 1999.

[Gal04] D. Galin. Software quality assurance. Pearson Education Limited, Harlow, England,
2004.

[GGP07] M. Gheorghiu, D. Giannakopoulou, and C. S. Pǎsǎreanu. Refining interface alphabets
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