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Abstract

Holzer and Holzer [HH04] proved that the Tantrix™ rotation puzzle problem with
four colors is NP-complete, and they showed that the infinite variant of this problem
is undecidable. In this paper, we study the three-color and two-color Tantrix™ rota-
tion puzzle problems (3-TRP and 2-TRP) and their variants. Restricting the number
of allowed colors to three (respectively, to two) reduces the set of available Tantrix™
tiles from 56 to 14 (respectively, to 8). We prove that 3-TRP and 2-TRP are NP-
complete, which answers a question raised by Holzer and Holzer [HH04] in the affirma-
tive. Since our reductions are parsimonious, it follows that the problems Unique-3-TRP
and Unique-2-TRP are DP-complete under randomized reductions. We also show that
the another-solution problems associated with 4-TRP, 3-TRP, and 2-TRP are NP-
complete. Finally, we prove that the infinite variants of 3-TRP and 2-TRP are unde-
cidable.

1 Introduction

The puzzle game Tantrix ™, invented by Mike McManaway in 1991, is a domino-like strat-

egy game played with hexagonal tiles in the plane. Each tile contains three colored lines
in different patterns (see Figure ). We are here interested in the variant of the Tantrix™
rotation puzzle game whose aim it is to match the line colors of the joint edges for each pair
of adjacent tiles, just by rotating the tiles around their axes while their locations remain
fixed. This paper continues the complexity-theoretic study of such problems that was initi-
ated by Holzer and Holzer [HH04]. Other results on the complexity of domino-like strategy
games can be found, e.g., in Gradel’s work [Gra90]. Ueda and Nagao [UN96] and Yato and
Seta [YS02] provided a framework for studying the problem of finding another solution of
any given NP problem when some solutions to this NP problem are already known—an ap-
proach particularly appropriate for puzzle games. Tantrix ™ puzzles have also been studied
with regard to “evolutionary computation,” see Downing [Dow05].
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Holzer and Holzer [HHO04|] defined two decision problems associated with four-color
Tantrix™ rotation puzzles. The first problem’s instances are restricted to a finite num-
ber of tiles, and the second problem’s instances are allowed to have infinitely many tiles.
They proved that the finite variant of this problem is NP-complete and that the infinite
problem variant is undecidable. The constructions in [HH04] use tiles with four colors, just
as the original Tantrix™ tile set. Holzer and Holzer posed the question of whether the
Tantrix ™ rotation puzzle problem remains NP-complete if restricted to only three colors,
or if restricted to otherwise reduced tile sets. In this paper, we answer this question in the
affirmative for the three-color and the two-color version of this problem.

For each k, 1 < k < 4, Table [l summarizes the previously known and our new results
for k-TRP, the k-color Tantrix™ rotation puzzle problem, and its variants. (All problems
are formally defined in Section [2])

|k || k-TRP is |Parsimonious? || Unique-k-TRP is || AS-E-TRP is || Inf-k-TRP is |

1{|in P in P in P decidable
(trivial) (trivial) (trivial) (trivial)

2 || NP-complete |yes DP-<?  -complete || NP-complete || undecidable
(see Cor.B6) | (see Thm. B3 || (see Cor. B.T) (see Cor.[3.8) || (see Thm. [3.9)

3 || NP-complete | yes DP-<?_ -complete || NP-complete || undecidable
(see Cor.B3) | (see Thm. B2 || (see Cor. BT (see Cor.[B) || (see Thm. 39)

4 || NP-complete | yes DP-<?_ -complete || NP-complete || undecidable
(see [HHO4]) |(see [BROT]) || (see [BROT]) (see Cor.[B3) || (see [HHO4])

Table 1: Overview of complexity and decidability results for k-TRP and its variants

Since the four-color Tantrix ™ tile set contains the three-color Tantrix™ tile set, our
new complexity results for 3-TRP imply the previous results for 4-TRP (both its NP-
completeness [HHO04| and that satisfiability parsimoniously reduces to 4-TRP [BR07]). In
contrast, the three-color Tantrix™ tile set does not contain the two-color Tantrix™ tile
set (see Figure 2in Section[2]). Thus, 3-TRP does not straightforwardly inherit its hardness
results from those of 2-TRP, which is why both reductions, the one to 3-TRP and the one
to 2-TRP, have to be presented. Note that they each substantially differ—both regarding
the subpuzzles constructed and regarding the arguments showing that the constructions
are correct—from the previously known reductions presented in [HH04, BRO7], and we will
explicitly illustrate the differences between our new and the original subpuzzles.

Our reductions will be from a boolean circuit problem, and we construct a Tantrix™
rotation puzzle that simulates the computation of such a circuit, where suitable subpuzzles
are used to simulate the wires and gates of the circuit. In particular, the previous reductions
presented in [HHO04, BRO7, BR] use McColl’s planar “cross-over” circuit with AND and
NOT gates to simulate wire crossings [McC81|] and they employ Goldschlager’s log-space
transformation from general to planar circuits [Gol77]. We take the same approach in
our construction for 2-TRP. In contrast, we simulate wire crossings in the circuit in the
construction for 3-TRP directly by a new subpuzzle called CROSS, which we will introduce
in Section B.I] and which will make our reduction for 3-TRP significantly more efficient
compared with the reduction for 3-TRP presented in a previous version of this paper [BR].
Note that using the CROSS results in a puzzle with a considerably smaller total number of
tiles that are needed to simulate a given circuit.
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Since we provide parsimonious reductions from the satisfiability problem to 3-TRP
and to 2-TRP, our reductions preserve the uniqueness of the solution. Thus, the unique
variants of both 3-TRP and 2-TRP are DP-complete under polynomial-time randomized
reductions, where DP is the class of differences of NP sets. In addition, we will show that
our parsimonious reductions for 3-TRP and 2-TRP also provide “another-solution problem
reductions” (i.e., <hsp-reductions, see Section 2.]), and so the “another-solution problems”
associated with 3-TRP and 2-TRP are also NP-complete Moreover, since 4-TRP inherits
the hardness results for 3-TRP, the another-solution problem associated with 4-TRP is
NP-complete as well. Finally, we will prove that the infinite variants of 3-TRP and 2-TRP
are undecidable, via a circuit construction similar to the one Holzer and Holzer [HHO04] used
to show that the infinite 4-TRP problem is undecidable.

We mention in passing that the present paper differs from and extends its preliminary
version [BR] in various ways. First, the proof of Theorem B2 which was only sketched
in [BR], is given here in full length, where we also display the original subpuzzles of Holzer
and Holzer [HH04] to allow comparison and where we explicitly show the differences between
the subpuzzles used in the their original construction (that provides a reduction for 4-TRP
that is not parsimonious; see [BRO7|] for a parsimonious reduction for 4-TRP) and in our
new reduction showing 3-TRP NP-complete via a parsimonious reduction. Moreover, the
proof of this result for 3-TRP presented here additionally differs from the one sketched
in [BR], since the reduction given here uses the CROSS subpuzzle, which—as explained
above—makes the reduction significantly more efficient. Second, we here provide the proof
of Theorem 3.5, which was completely omitted in [BR]. Third, Corollary 3.8 and the related
discussion of the another-solution variants of k-TRP, k € {2,3,4}, are completely new to
the current version.

This paper is organized as follows. Section [2] provides the complexity-theoretic defi-
nitions and notation used and defines the k-color Tantrix ™™ rotation puzzle problem and
its variants. Section [3.1] shows that the three-color Tantrix™™ rotation puzzle problem is
NP-complete via a parsimonious reduction. To allow comparison, the original subpuzzles
from Holzer and Holzer’s construction [HH04] are also presented in this section. Section
presents our result that 2-TRP is NP-complete, again via a parsimonious reduction. Sec-
tion 3.3l is concerned with the complexity of the unique and infinite variants of the three-
color and the two-color Tantrix™ rotation puzzle problem, and with the corresponding
another-solution problems.

2 Definitions and Notation

2.1 Complexity-Theoretic Notions and Notation

We assume that the reader is familiar with the standard notions of complexity theory,
such as the complexity classes P (deterministic polynomial time) and NP (nondeterministic
polynomial time); see, e.g., the textbooks [Pap94, [Rot05]. DP denotes the class of differences

Hnformally stated, an another-solution problem associated with an NP problem A asks, given an instance
z € A and some solutions y1,y2, ..., yn for “z € A” (i.e., the y;’s encode accepting computation paths of an
NP machine solving A on input z), whether or not there exists another solution, y € {y1,y2,...,yn}, for
“r € A See Ueda and Nagao [UN9G] and Yato and Seta [YS02] for more details and results, and also for
a discussion of why these problems are particularly important for puzzle games.



of any two NP sets [PY84]. Note that DP is also known to be the second level of the boolean
hierarchy over NP, see Cai et al. [CGHT 88, ICGH™'89).

Let ¥* denote the set of strings over the alphabet ¥ = {0,1}. Given any language
L C ¥*, ||L|| denotes the number of elements in L. We consider both decision problems
and function problems. The former are formalized as languages whose elements are those
strings in X* that encode the yes-instances of the problem at hand. Regarding the latter,
we focus on the counting problems related to sets in NP. The counting version # A of an
NP set A maps each instance z of A to the number of solutions of . That is, counting
problems are functions from »* to N. As an example, the counting version #SAT of
SAT, the NP-complete satisfiability problem, asks how many satisfying assignments a given
boolean formula has. Solutions of NP sets can be viewed as accepting paths of NP machines.
Valiant [Val79] defined the function class #P to contain the functions that give the number
of accepting paths of some NP machine. In particular, #SAT is in #P. Another class of
problems we consider are the another-solution problems (see Footnote [I] for an informal
definition and Definition 2] for the another-solution problems associated with k-TRP).

The complexity of two decision problems, A and B, will here be compared via the
polynomial-time many-one reducibility: A <b, B if there is a polynomial-time computable
function f such that for each x € ¥*, x € A if and only if f(z) € B. A set B is said to be
NP-complete if B is in NP and every NP set <},-reduces to B.

Many-one reductions do not always preserve the number of solutions. A reduction that
does preserve the number of solutions is said to be parsimonious. Formally, if A and B are
any two sets in NP, we say A parsimoniously reduces to B if there exists a polynomial-time
computable function f such that for each x € ¥*, #A(z) = #B(f(x)).

To compare two another-solution problems associated with two given NP problems,
A and B, Ueda and Nagao [UN96] introduced the following notion of reducibilityH We
say that A <Ly, B if A is parsimoniously reducible to B and, in addition, there exists a
polynomial-time computable bijective function from the set of solutions of A to the set of
solutions of B. Let AS-A and AS-B be the another-solution problems associated with A
and B (see Footnote [Il for an informal definition and, specifically, Definition 2] for the
another-solution problems associated with k-TRP). Ueda and Nagao [UN96| show that if
AS-A is NP-complete and A <hs, B, then AS-B is also NP-complete [UN96]. In particular,
AS-SAT is known to be NP-complete [YS02].

Valiant and Vazirani [VV86] introduced the following type of randomized polynomial-
time many-one reducibility: A <V, B if there exists a polynomial-time randomized algo-
rithm F and a polynomial p such that for each € ¥* if z € A then F(x) € B with
probability at least 1/p(|z|), and if x ¢ A then F(x) ¢ B with certainty. In particular, they
proved that the unique version of the satisfiability problem, Unique-SAT, is DP-complete
under randomized reductions; see also Chang, Kadin, and Rohatgi [CKR95] for further
related results.

2They call this notion “parsimonious reduction with the property (¥)” [UN96|. Yato and Seta [YS02] in-
troduce a similar notion (albeit tailored to the case of function problems), which they denote by “polynomial-
time ASP reduction.”



2.2 Variants of the Tantrix™ Rotation Puzzle Problem
2.2.1 Tile Sets, Color Sequences, and Orientations

The Tantrix™ rotation puzzle consists of four different kinds of hexagonal tiles, named Sint,
Brid, Chin, and Rond. Each tile has three lines colored differently, where the three colors of
a tile are chosen among four possible colors, see Figures [[(a)-(d). The original Tantrix™
colors are red, yellow, blue, and green, which we encode here as shown in Figures [[i(e)—(h).
The combination of four kinds of tiles having three out of four colors each gives a total of
56 different tiles.
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Figure 1: Tantrix™ tile types and the encoding of Tantrix™ line colors
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Figure 2: Tantrix™ tile sets Ty (for red and blue) and T (for red, yellow, and blue)

Since we wish to study Tantrix™ rotation puzzle problems for which the number of
allowed colors is restricted, the set of Tantrix™™ tiles available in a given problem instance
depends on which variant of the Tantrix ™™ rotation puzzle problem we are interested in. Let
C be the set that contains the four colors red, yellow, blue, and green. For eachi € {1,2,3,4},
let C; C C be some fixed subset of size i, and let T; denote the set of Tantrix™ tiles
available when the line colors for each tile are restricted to C;. For example, T, is the
original Tantrix™ tile set containing 56 tiles, and if C3 contains, say, the three colors red,
yellow, and blue, then tile set T3 contains the 14 tiles shown in Figure

Some more remarks on the tile sets are in order. First, for T3 and Ty, we require the
three lines on each tile to have distinct colors, as in the original Tantrix™ tile set. For T}
and 75, however, this is not possible, so we allow the same color being used for more than
one of the three lines of any tile. Second, note that we care only about the sequence of
colors on a tlleE where we always use the clockwise direction to represent color sequences.

3The reason for this and the resulting conventions on the tile sets stated in this paragraph is that our
problems refer to the variant of the Tantrix™™ game that seeks, via rotations, to make the line colors match



However, since different types of tiles can yield the same color sequence, we will use just
one such tile to represent the corresponding color sequence. For example, if Cy contains,
say, the two colors red and blue, then the color sequence red-red-blue-blue-blue-blue (which
we abbreviate as rrbbbb) can be represented by a Sint, a Brid, or a Rond each having one
short red arc and two blue additional lines, and we add only one such tile (say, the Rond)
to the tile set T5. That is, though there is some freedom in choosing a particular set of tiles,
to be specific we fix the tile set 75 shown in Figure Thus, we have [|T1|| = 1, ||T2]| = 8,
| T5|| = 14, and ||T4|| = 56, regardless of which colors are chosen to be in C;, 1 <i < 4.

Rond Brid Chin Sint
t1 to t3 tq ts te tr ts
bbrrrr | rrbbbb || brrbrr | rbbrbb || rbrrrb | brbbbr || bbbbbb | rrrrrr

Table 2: Color sequences of the tiles in 15

Rond Brid Chin
31 t2 t3 ty ts te t7 ts
yrrbby | ryybbr || yrrybb | ryyrbb | brrbyy || yrbybr | rbyryb | brybyr
Sint
t9 t1o t1 t12 13 1y
brbyyr | bybrry | ryrbby | rbryyb | ybyrrb | yrybbr

Table 3: Color sequences of the tiles in T3

Tables 2] and [l show the color sequences for the eight tiles in 75 and for the 14 tiles in
T3 that are presented in Figures and respectively. Tables M and [{ give the six
possible orientations for each tile in 75 and in T3, which can be described by permuting the
color sequences cyclically and where repetitions of color sequences are omitted. Regarding
the latter, note that some of the tiles in T (namely, tiles t3, t4, t7, and tg in Table []) have
orientations that yield identical color sequences due to symmetry, and so repetitions can
be omitted. In contrast, no such repetitions occur for the 14 tiles in 75 when permuted
cyclically to yield the six possible orientations (see Table [Hl).

Note that, for example, tile ¢7 from T, (see Table[]) has the same color sequence (namely,
bbbbbb) in each of its six orientations. In Section [3, we will consider the counting versions
of Tantrix™ rotation puzzle problems and will construct parsimonious reductions. When
counting the solutions of Tantrix ™ rotation puzzles, we will focus on color sequences only.
That is, whenever some tile (such as t; from 75) has distinct orientations with identical
color sequences, we will count this as just one solution (and disregard such repetitions). In
this sense, our reduction to be presented in the proof of Theorem will be parsimonious.

on all joint edges of adjacent tiles. The objective of other Tantrix™ games is to create lines and loops of
the same color as long as possible; for problems related to these Tantrix ™ game variants, other conventions
on the sets of allowed tiles would be reasonable.



Tile Orientation
Number 1 2 | 3 | 4 | 5 | 6

1 bbrrrr | rbbrrr | rrbbrr | rrrbbr | rrrrbb | brrrrb
2 rrbbbb | brrbbb | bbrrbb | bbbrrb | bbbbrr | rbbbbr
3 brrbrr | rbrrbr | rrbrrb

4 rbbrbb | brbbrb | bbrbbr

5) rbrrrb | brbrrr | rbrbrr | rrbrbr | rrrbrb | brrrbr
6 brbbbr | rbrbbb | brbrbb | bbrbrb | bbbrbr | rbbbrb
7 bbbbbb

8 rrrrrr

Table 4: Color sequences of the tiles in 75 in their six orientations

Tile Orientation
Number 1 | 2 | 3 | 4 | 5 | 6

1 yrrbby | yyrrbb | byyrrb | bbyyrr | rbbyyr | rrbbyy
2 ryybbr | rryybb | brryyb | bbrryy | ybbrry | yybbrr
3 yrrybb | byrryb | bbyrry | ybbyrr | rybbyr | rrybby
4 ryyrbb | bryyrb | bbryyr | rbbryy | yrbbry | yyrbbr
) brrbyy | ybrrby | yybrrb | byybrr | rbyybr | rrbyyb
6 yrbybr | ryrbyb | bryrby | ybryrb | bybryr | rbybry
7 rbyryb | brbyry | ybrbyr | rybrby | yrybrb | byrybr
8 brybyr | rbryby | yrbryb | byrbry | ybyrbr | rybyrb
9 brbyyr | rbrbyy | yrbrby | yyrbrb | byyrbr | rbyyrb
10 bybrry | ybybrr | rybybr | rrybyb | brryby | ybrryb
11 ryrbby | yryrbb | byryrb | bbyryr | rbbyry | yrbbyr
12 rbryyb | brbryy | ybrbry | yybrbr | ryybrb | bryybr
13 ybyrrb | bybyrr | rbybyr | rrbyby | yrrbyb | byrrby
14 yrybbr | ryrybb | bryryb | bbryry | ybbryr | rybbry

Table 5: Color sequences of the tiles in T3 in their six orientations

2.2.2 Definition of the Problems

We now recall some useful notation that Holzer and Holzer [HH04] introduced in order to
formalize problems related to the Tantrix ™™ rotation puzzle. The instances of such problems
are Tantrix ™™ tiles firmly arranged in the plane. To represent their positions, we use a two-
dimensional hexagonal coordinate system shown in Figure Bl Let T' € {11,T,73,T4} be
some tile set as defined above. Let A : Z? — T be a function mapping points in Z? to
tiles in 7', i.e., A(x) is the type of the tile located at position x. Note that A is a partial
function; throughout this paper (except in Theorem and its proof), we restrict our
problem instances to finitely many given tiles, and the regions of Z? they cover may have
holes (which is a difference to the original Tantrix ™ game).

Define shape(A) to be the set of points z € Z? for which A(x) is defined. For any two
distinct points = (a,b) and y = (c,d) in Z2, x and y are neighbors if and only if (a = c



Figure 3: A two-dimensional hexagonal coordinate system

and |b—d|=1)or (Ja—cJ]=1andb=d)or (a—c=1landb—d=1)or (a—c=—1
and b —d = —1). For any two points z and y in shape(A), A(x) and A(y) are said to be
neighbors exactly if x and y are neighbors.

We now define the Tantrix™ rotation puzzle problems we are interested in, where the
parameter k is chosen from {1,2,3,4}:

Name: k-Color Tantrix™ Rotation Puzzle (k-TRP, for short).

Instance: A finite shape function A : Z? — Tj,, appropriately encoded as a string in ¥*.

Question: Is there a solution to the rotation puzzle defined by A, i.e., does there exist
a rotation of the given tiles in shape(A) such that the colors of the lines of any two
adjacent tiles match at their joint edge?

Clearly, 1-TRP can be solved trivially, so 1-TRP is in P. On the other hand, Holzer
and Holzer [HHO4] showed that 4-TRP is NP-complete and that the infinite variant of
4-TRP is undecidable. Baumeister and Rothe [BRO7| investigated the counting and the
unique variant of 4-TRP and, in particular, provided a parsimonious reduction from SAT
to 4-TRP. In this paper, we study the three-color and two-color versions of this problem,
3-TRP and 2-TRP, and their counting, unique, another-solution, and infinite variants.

Definition 2.1 1. A solution to a k-TRP instance A specifies an orientation of each
tile in shape(A) such that the colors of the lines of any two adjacent tiles match at
their joint edge. Let SOLg Trp(A) denote the set of solutions of A.

2. Define the counting version of k-TRP to be the function #k-TRP mapping from ¥*
to N such that #k-TRP(A) = ||SoLi.trp(A)|-

3. Define the unique version of k-TRP as Unique-k-TRP = {A| #k-TRP(A) = 1}.
4. Define the another-solution problem associated with k-TRP as

AS-E-TRP = {(A,y1,---,Yn) | Y1, .., Yn € SOLg.TRP(A) and ||SOL;Trp(A)| > n}.

The above problems are defined for the case of finite problem instances. The infinite
Tantrix ™ rotation puzzle problem with k colors (Inf-k-TRP, for short) is defined exactly
as k-TRP, the only difference being that the shape function A is not required to be finite
and is represented by the encoding of a Turing machine computing A : Z? — Tj,.



3 Results

3.1 Parsimonious Reduction from SAT to 3-TRP

Theorem B.2] below is the main result of this section. Notwithstanding that our proof
follows the general approach of Holzer and Holzer [HH04], our specific construction and our
proof of correctness will differ substantially from theirs. We will provide a parsimonious
reduction from SAT to 3-TRP. Let Circuit, —-SAT denote the problem of deciding, given a
boolean circuit ¢ with AND and NOT gates only, whether or not there is a satisfying truth
assignment to the input variables of c. The NP-completeness of Circuits -SAT was shown
by Cook [Coo71]. The following lemma (stated, e.g., in [BROT]) is straightforward.

Lemma 3.1 SAT parsimoniously reduces to Circuit, —-SAT.
Theorem 3.2 SAT parsimoniously reduces to 3-TRP.

Proof. By Lemma[3.] it is enough to show that Circuit, --SAT parsimoniously reduces
to 3-TRP. The resulting 3-TRP instance simulates a boolean circuit with AND and NOT
gates such that the number of solutions of the rotation puzzle equals the number of satisfying
truth assignments to the variables of the circuit.

General remarks on our proof approach: The rotation puzzle to be constructed from
a given circuit consists of different subpuzzles each using only three colors. The color green
was employed by Holzer and Holzer [HH04] only to exclude certain rotations, so we choose
to eliminate this color in our three-color rotation puzzle. Thus, letting C'5 contain the colors
blue, red, and yellow, we have the tile set T5 = {t1,t2,...,t14}, where the enumeration of
tiles corresponds to Figure Furthermore, our construction will be parsimonious, i.e.,
there will be a one-to-one correspondence between the solutions of the given Circuits —-SAT
instance and the solutions of the resulting rotation puzzle instance. Note that part of our
work is already done, since some subpuzzles constructed in [BRO7| use only three colors
and they each have unique solutions. However, the remaining subpuzzles have to be either
modified substantially or to be constructed completely differently, and the arguments of why
our modified construction is correct differs considerably from previous work [HHO04, BRO7].

Since it is not so easy to exclude undesired rotations without having the color green
available, let us first analyze the 14 tiles in 75. For u,v € C3 and for each tile ¢; in T3,
where 1 < ¢ < 14, Table [l shows which substrings of the form wwv occur in the color sequence
of ¢; (as indicated by an e entry in row uv and column ). In the remainder of this proof,
when showing that our construction is correct, our arguments will often be based on which
substrings do or do not occur in the color sequences of certain tiles from 73, and Table
may then be looked up for convenience.

Holzer and Holzer [HH04| consider a boolean circuit ¢ on input variables x1,xa, ..., T,
as a sequence (o, qa,...,qy,) of computation steps (or “instructions”), and we adopt this
approach here. For the ith instruction, oy, we have a; = x; if 1 <i < n,andifn+1 <i<m
then we have either a; = NOT(j) or oy = AND(j, k), where j < k < 4. Circuits are
evaluated in the standard way. We will represent the truth value true by the color blue and
the truth value false by the color red in our rotation puzzle.



Rond Brid Chin Sint
w [1]2]3[4]5]6][7][8]9]10]11]12][13[14
bb||[e | e o | o ° °
rr||e | e . ° ° °
yy ||e| e L) ° °
br ° oo | o0 | 0| e ° ° °
rb || e oo | o0 | 0| e ° ° °
by || e ° oo o 0| e ° °
yb ° ° oo |0 | e ° °
ry ° ° oo | o ° ° °
yr || e ° oo |0 | e ° °

Table 6: Substrings uv that occur in the color sequences of the tiles in T3

A technical difficulty in the construction results from the wire crossings that circuits
can have. To construct rotation puzzles from planar circuits, Holzer and Holzer use Mc-
Coll’s planar “cross-over” circuit with AND and NOT gates to simulate such wire cross-
ings [McC81], and in particular they employ Goldschlager’s log-space transformation from
general to planar circuits [Gol77]. For the details of this transformation, we refer to Holzer
and Holzer’s work [HHO04].

We use a different approach to overcome the difficulty caused by wire crossings. Our
construction will employ a new subpuzzle for this purpose. Holzer and Holzer’s circuit
construction uses several cross-over circuits, and each of them consists of twelve AND and
nine NOT gates, and in addition it increases the number of instruction steps by 14. We will
avoid this blow-up by using the CROSS subpuzzle, which achieves a direct crossing of two
adjacent wires in our Tantrix™ puzzle and thus is much more efficient.

For the sake of comparison, we also present the original subpuzzles from Holzer and
Holzer’s construction ([HHO04]) in this section, with the following conventions: Tiles having
more than one possible orientation as well as tiles containing green lines will always have
a grey instead of a black edging, and modified or inserted tiles in our new subpuzzles will
always be highlighted by having a grey background. This will illustrate the differences
between our new and the previously known original subpuzzles.

Wire subpuzzles: Wires of the circuit are simulated by the subpuzzles WIRE, MOVE,
and COPY.

A vertical wire is represented by a WIRE subpuzzle, which is shown in Figure 5. The
original WIRE subpuzzle from [HHO04] (see Figure M) does not contain green but it does
not have a unique solution, while the WIRE subpuzzle from [BROT7], which is not displayed
here, ensures the uniqueness of the solution but is using a tile with a green line. In the
original WIRE subpuzzle, both tiles, a and b, have two possible orientations for each input
color. Inserting two new tiles at positions z and y (see Figure [5) makes the solution unique.
If the input color is blue, tile x must contain one of the following color-sequence substrings
for the edges joint with tiles b and a: ry, rr, yy, or yr. If the input color is red, = must
contain one of these substrings: bb, yb, yy, or by. Tile t;5 satisfies the conditions yy and
ry for the input color blue, and the conditions yb and yy for the input color red.
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The solution must now be fixed with tile y. The possible color-sequence substrings of y
at the edges joint with a and b are rr and ry for the input color blue, and yb and bb for
the input color red. Tile t13 has exactly one of these sequences for each input color. Thus,
the solution for this subpuzzle contains only three colors and is unique.

..................

)|¢ ~ (b)
¢ =

..................

(a) In: true (b) In: false (¢) Scheme

Figure 4: Original WIRE subpuzzle, see [HH04]

..................

I N N /I'N
(a) In: true (b) In: false (¢) Scheme

Figure 5: Three-color WIRE subpuzzle

The MOVE subpuzzle is needed to move a wire by two positions to the left or to the
right. The original MOVE subpuzzle from [HH04] contains only three colors but has several
solutions. One solution for each input color is shown in Figure [6 where the tiles with a
grey edging have more than one possible orientation. However, the modified subpuzzle

from |[BROT7], which is presented in Figure [1l contains also only three colors but has a
unique solution.

(a) In: true (b) In: false

Figure 6: Original MOVE subpuzzle, see [HH04]
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(a) In: true (b) In: false
Figure 7: Three-color MOVE subpuzzle, see [BROTY|
The COPY subpuzzle is used to “split” a wire into two copies. By the same arguments

as above we can take the modified COPY subpuzzle from [BRO7], which is presented in
Figure @ Figure B shows the original COPY subpuzzle from [HHO04].

Figure 9: Three-color COPY subpuzzle, see [BROT

The last subpuzzle needed to simulate the wires of the circuit is our new CROSS sub-
puzzle shown in Figure This subpuzzle has two inputs and two outputs, and it ensures

12



that the input colors will be swapped at the outputs. This subpuzzle uses only three colors
and has unique solutions for each combination of input colors.

(d) In: false, false (e) Scheme

Figure 10: CROSS subpuzzle

The CROSS subpuzzle can be subdivided into three distinct parts: the lower part con-
sisting of tiles a through k, the upper left part consisting of tiles Iy through u;, and the
upper right part consisting of tiles ls through wus.

Let us first consider the upper left part. Consider the three possible colors that can
occur at the edge of tile j joint with tile my.

Case 1: Assume that the joint edge of these two tiles is blue. One possible orientation for
tile m1 has yellow at the edge joint with tile [;. This leaves two possible orientations
for tile I1. The first one has red at the edge joint with tile n1, but ny does not contain
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the color sequence yr. The second possible orientation has yellow at the edge joint
with tile ni, but this leads to blue at the edges of tiles my and ny with tile 0;. Since
o1 does not contain the color sequence bb this is not possible either. The orientation
of tile my is now fixed with red at the edge joint with tile [;.

There are two orientations of tile /1, but they both have blue at the edge joint with
tile ny. In the analysis of the lower part we will see that both solutions are needed.
The first one has yellow at the edge joint with tile j and the second one has blue at
this edge. The orientation of tile ny is fixed with red and blue at the edges joint with
tiles my1 and [y. Tile o1 has a fixed orientation due to the color-sequence substring
br at the edges joint with tiles m; and n;. For tile p; there are two orientations left,
because this tile contains the color-sequence substring rb for the edges joint with tiles
01 and ni, twice. The first one has red at the edge joint with tile 7 and yellow at
the edge joint with tile g;. Thus, it is not posibble that tile r; has yellow at the edge
joint with tile ¢, since ¢; does not contain the color-sequence substring yy. Neither
is it possible that r; has blue at the edge joint with tile ¢q;, because this leads to
the color-sequence substring yr at the edges of tiles r; and s; with tile ;. So the
orientation of tile p; is fixed with blue at the edge joint with tile g1 and yellow at the
edge joint with tile ;. Tile ry forces the edge joint with tile g; to be red, and since sy
does not contain the color sequence yy, the orientation of tiles 1 and s is fixed with
blue at their joint edge. This immediately fixes the orientation of all other tiles, and
the output color at the left output tile will be blue.

Case 2: Now we assume that the joint edge of tiles j and mq is red. There are two possible
orientations for tile my. The first one has red at the edge joint with tile I; and blue
at the edge joint with tile mq. This is not possible because then the joint edge of
tiles [1 and nq would have to be blue, but tile n; does not contain the color-sequence
substring bb. So the orientation of tile my is fixed with blue at the edge joint with
tile [1 and yellow at the edges joint with tiles nq and o;. Since nq does not contain
the color-sequence substring yr, the orientation of tiles [; and ny is fixed with yellow
at their joint edge. The joint edge of tiles 0; and p; cannot be red, since p; does not
contain the color-sequence substring rr for the edges joint with tiles 01 and ny, so the
joint edge of tiles 01 and p; is yellow, and their orientation is fixed.

Now, there are two possible orientations for tile r;. The first one with yellow at
the edge joint with tile s; is not possible, since this would lead to the color-sequence
substring yb for tile u; at the edges joint with tiles r; and t;. So we fix the orientation
of tile r; with yellow at the edge joint with tile ¢;. This also fixes the orientation of
tile g1 with blue at the edge joint with tile s;. The edges of tile #; joint with tiles 7
and s; are both yellow, and the orientation of all other tiles is fixed. The output of
the subpuzzle’s left output tile will thus be red.

Case 3: The last possible color for the joint edge of tiles j and my is yellow. We first
assume that the edge of tile mq joint with tile Iy is blue.

There are two possible orientations for tile I;. The first one has yellow at the edge
joint with tile ny; and thus is not possible, since n; does not contain the color-sequence
substring ry. The second one has red at the edge joint with tile ny. Since the edge of
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tile mq joint with tile o7 is red, this is not possible either, because o1 does not contain
the color-sequence substring rb. So the orientation of tile m; is fixed with yellow
at the edge joint with tile [;. And since tile j does not contain the color-sequence
substring by, the orientation of tile [; is fixed as well

The given colors at the edges of tiles I; and m; immediately fix the orientation of
tiles ny and o7 with blue and yellow at the edges joint with tile p;, which contains the
color-sequence substring by only once and so has a fixed orientation as well. Now we
have the same situation as in the previous case, since the joint edge of tile p; with ry
is blue and the joint edge of p; with tile ¢ is red. As to color red at the joint edge of
tiles 7 and my this case will also result in a unique solution with the output color red
at the left output tile.

Due to symmetry the upper right part can be handled analogously with the upper left
part. All Brid and Chin tiles are the same, and the Rond is replaced by the other Rond,
and the Sint tiles are replaced by the respective other Sint tiles having a small arc of the
same color. So we obtain a symmetrical subpuzzle and similar arguments as for the upper
left part apply.

We now analyze the lower part of this subpuzzle. We first consider tiles a, b, and ¢. If
the left input is blue then there is only one possible solution to these tiles. Obviously tiles
a and ¢ must have a vertical blue line, and since tile g does not contain the color-sequence
substring by, the orientation of these three tiles is fixed with yellow at the edges of tiles
b joint with tiles ¢ and a. The orientation of tile g is fixed as well, since it contains the
color-sequence substring br only once. If the input to this part is red, we have a fixed
orientation with the color-sequence substring ry for the edges joint with tile g by similar
arguments. Note that tile g has two possible solutions left. Since tiles d, e, and f are the
same as tiles a, b, and ¢, and tile ¢ is a mirrored tile g, the same arguments hold for the
right input. To analyze the whole lower part, we will distinguish the following four possible
pairs of input colors:

o First we assume that both input colors are blue (see Figure . We have seen that
the orientation of tiles g and 7 is fixed with yellow at their edges joint with tile h,
and red at their edges joint with tiles j and k, respectively. The orientation of tile
h is fixed with red at the edges joint with tiles 7 and k, and so they are fixed with
the color-sequence substring by for the edges joint with tiles [ and m; and with the
color-sequence substring yb for the edges joint with tiles mo and lo. In the analysis
of the upper part we have seen, that both output colors will be blue in this case, as
desired.

e Now, let the right input color be blue and let the left input color be red (see Fig-
ure . The two possible colors for tile g joint with tile A are blue and red. The
color for the joint edge of tiles 7 and A is yellow, and since h contains the color-sequence
substring yxb but not yxr, where x stands for an arbitrary color (chosen among blue,
red, and yellow), the orientation of tiles g and h is fixed. This also fixes the orientation
of tiles j and k. Tile j has blue at the edges joint with tiles /1 and mq, and (as we
have seen in the analysis of the upper part) the left output color will be blue, just like
the right input color. The edges of tile £ joint with tiles mo and [y are yellow, and so
the right output color will be red, as desired.
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e The case of blue being the left input color and red being the right input color (see
Figure [10(b)) is similar to the second case. The output colors will again be the
exchanged input colors, as desired.

e The last case is that both input colors are red (see Figure . We have seen that
the two possible colors for tiles g and ¢ joint with tile h are blue and red. Obviously,
they cannot both be blue. If the joint edge of tiles g and h is blue, the joint edges of
tiles g and h with j are both yellow. This is not possible, because the combination of
blue at the joint edge of tiles j and l; and red at the joint edge of tiles j and m; is
not possible. The case of blue at the edge of tile ¢ joint with tile h is not possible due
to similar arguments for tile k and the upper right part. So the edges of tiles g and i
joint with tile A must both be red. This leads to red at the edges of tile j joint with
the upper left part, and tile k joint with the upper right part. We have already seen
that this combination leads to both output colors being red, as desired.

So we have unique solutions with the desired effect of exchanging the input colors at the
output tiles for all four possible combinations of input colors for the CROSS subpuzzle.

Gate subpuzzles: The boolean gates AND and NOT are represented by the AND and
NOT subpuzzles. Both the original four-color NOT subpuzzle from [HH04| (see Figure [IT])
and the modified four-color NOT subpuzzle from [BROT], which is not displayed here, use
tiles with green lines to exclude certain rotations. Our three-color NOT subpuzzle is shown
in Figure Tiles a, b, ¢, and d from the original NOT subpuzzle shown in Figure [0l
remain unchanged. Tiles e, f, and g in this original NOT subpuzzle ensure that the output
color will be correct, since the joint edge of e and b is always red. So for our new NOT
subpuzzle in Figure [2] we have to show that the edge between tiles 2 and b is always red,
and that we have unique solutions for both input colors.

First, let the input color be blue and suppose for a contradiction that the joint edge
of tiles b and = were blue. Then the joint edge of tiles b and ¢ would be yellow. Since x
is a tile of type t13 and so does not contain the color-sequence substring substring bb, the
edge between tiles ¢ and = must be yellow. But then the edges of tile w joint with tiles ¢
and x must both be blue. This is not possible, however, because w (which is of type t19)
does not contain the color-sequence substring substring bb. So if the input color is blue,
the orientation of tile b is fixed with yellow at the edge of b joint with tile y, and with red
at the edges of b joint with tiles ¢ and . This already ensures that the output color will
be red, because tiles ¢ and d behave like a WIRE subpuzzle. Tile x does not contain the
color-sequence substring br, so the orientation of tile ¢ is also fixed with blue at the joint
edge of tiles ¢ and w. As a consequence, the joint edge of tiles w and d is yellow, and due
to the fact that the joint edge of tiles w and x is also yellow, the orientation of w and d is
fixed as well. Regarding tile a, the edge joint with tile y can be yellow or red, but tile x
has blue at the edge joint with tile y, so the joint edge of tiles y and a is yellow, and the
orientation of all tiles is fixed for the input color blue. The case of red being the input color
can be handled analogously.

The most complicated figure (besides the CROSS) is the AND subpuzzle. The original
four-color version from [HHO4] (see Figure O3] uses four tiles with green lines and the
modified four-color AND subpuzzle from [BRO7], which is not displayed here, uses seven
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Figure 11: Original NOT subpuzzle, see
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{IND
(a) In: true (b) In: false (c) Scheme

Figure 12: Three-color NOT subpuzzle

tiles with green lines. Figure [[4] shows our new AND subpuzzle using only three colors and
having unique solutions for all four possible combinations of input colors. To analyze this
subpuzzle, we subdivide it into a lower and an upper part. The lower part ends with tile ¢
and has four possible solutions (one for each combination of input colors), while the upper
part, which begins with tile j, has only two possible solutions (one for each possible output
color). The lower part can again be subdivided into three different parts.

The lower left part contains the tiles a, b, x, and h. If the input color to this part is blue
(see Figures [14(a)| and [14(b)]), the joint edge of tiles b and z is always red, and since tile
x (which is of type t11) does not contain the color-sequence substring rr, the orientation
of tiles a and z is fixed. The orientation of tiles b and h is also fixed, since h (which is of
type t2) does not contain the color-sequence substring by but the color-sequence substring
yy for the edges joint with tiles b and z. By similar arguments we obtain a unique solution
for these tiles if the left input color is red (see Figures and . The connecting
edge to the rest of the subpuzzle is the joint edge between tiles b and ¢, and tile b will have
the same color at this edge as the left input color.

Tiles d, e, i, w, and y form the lower right part. If the input color to this part is blue
(see Figures [14(a)| and [14(c))), the joint edge of tiles d and y must be yellow, since tile y
(which is of type tg) does not contain the color-sequence substrings rr nor ry for the edges
joint with tiles d and e. Thus the joint edge of tiles y and e must be yellow, since i (which
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(d) In: false, false (e) Scheme

Figure 13: Original AND subpuzzle, see [HH04]
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(d) In: false, false (e) Scheme

Figure 14: Three-color AND subpuzzle

is of type tg) does not contain the color-sequence substring bb for the edges joint with tiles
y and e. This implies that the tiles ¢ and w also have a fixed orientation. If the input color
to the lower right part is red (see Figures [14(b)| and [14(d)]), a unique solution is obtained
by similar arguments. The connection of the lower right part to the rest of the subpuzzle is
the edge between tiles w and g. If the right input color is blue, this edge will also be blue,
and if the right input color is red, this edge will be yellow.

The heart of the AND subpuzzle is its lower middle part, formed by the tiles ¢ and g.
The colors at the joint edge between tiles b and ¢ and at the joint edge between tiles w and
g determine the orientation of the tiles ¢ and g uniquely for all four possible combinations of
input colors. The output of this part is the color at the edge between ¢ and j. If both input
colors are blue, this edge will also be blue, and otherwise this edge will always be yellow.

The output of the whole AND subpuzzle will be red if the edge between ¢ and j is
yellow, and if this edge is blue then the output of the whole subpuzzle will also be blue. If
the input color for the upper part is blue (see Figure , each of the tiles j, k, [, m,
and n has a vertical blue line. Note that since the colors red and yellow are symmetrical
in these tiles, we would have several possible solutions without tiles o, u, and v. However,
tile v (which is of type tg) contains neither rr nor ry for the edges joint with tiles k and j,
so the orientation of the tiles j through n is fixed, except that tile n without tiles o and u
would still have two possible orientations. Tile u (which is of type t2) is fixed because of
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(a) Out: true (b) Out: false (c¢) Scheme

Figure 15: Original BOOL subpuzzle, see [HH04]

its color-sequence substring yy at the edges joint with [ and m, so due to tiles o and u the
only color possible at the edge between n and o is yellow, and we have a unique solution.
If the input color for the upper part is yellow (see Figures [[4(b)—(d)), we obtain unique
solutions by similar arguments. Hence, this new AND subpuzzle uses only three colors and
has unique solutions for each of the four possible combinations of input colors.

..................

N /

(a) Out: true (b) Out: false (c¢) Scheme

Figure 16: Three-color BOOL subpuzzle

Input and output subpuzzles: The input variables of the boolean circuit are repre-
sented by the subpuzzle BOOL. The original four-color BOOL subpuzzle from [HH04| is
shown in Figure Our new three-color BOOL subpuzzle is presented in Figure [[6] and
since it is completely different from the original subpuzzle, no tiles are marked here. This
subpuzzle has only two possible solutions, one with the output color blue (if the corre-
sponding variable is true), and one with the output color red (if the corresponding variable
is false). The original four-color BOOL subpuzzle from [HHO04] (which was not modified
in [BROT]) contains tiles with green lines to exclude certain rotations. Our three-color
BOOL subpuzzle does not contain any green lines, but it might not be that obvious that
there are only two possible solutions, one for each output color.

First, we show that the output color yellow is not possible. If the output color were
yellow, there would be two possible orientations for tile a. In the first orientation, the joint
edge between a and b is blue. This is not possible, however, since ¢ (which is a Chin, namely
a tile of type tg) does not contain the color-sequence substring rr. By a similar argument
for tile d, the other orientation with the output color yellow is not possible either.

Second, we show that tile x makes the solution unique. For the output color blue, there
are two possible orientations for each of the tiles a, b, ¢, and d. In order to exclude one of
these orientations in each case, tile x must contain either of the color-sequence substrings
br or yr at its edges joint with tiles b and ¢. On the other hand, for the output color red, tile
x must not contain the color-sequence substring ry at its edges joint with b and ¢, because
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Figure 17: Original TEST subpuzzles, see [HH04]

this would leave two possible orientations for tile d. Tile t; satisfies all these conditions and
makes the solution of the BOOL subpuzzle unique, while using only three colors.

..................

(a) TEST-true (b) TEST-false (¢) Scheme
Figure 18: Three-color TEST subpuzzles

Finally, a subpuzzle is needed to check whether or not the circuit evaluates to true.
This is achieved by the subpuzzle TEST-true shown in Figure It has only one valid
solution, namely that its input color is blue. Just like the subpuzzle BOOL, the original
four-color TEST-true subpuzzle from [HHO04], which is shown in Figure and which
was not modified in [BROT], uses green lines to exclude certain rotations. Again, since the
new TEST-true subpuzzle is completely different from the original subpuzzle, no tiles are
marked here. Note that in the three-color TEST-true subpuzzle of Figure a and ¢
are the same tiles as a and b in the WIRE subpuzzle of Figure Bl To ensure that the input
color is blue, we have to consider all possible color-sequence substrings at the edges of d
joint with ¢ and a, and at the edges of b joint with a and c. For each input color, there are
four possibilities.

Assume that the input color is red. Then the possible color-sequence substrings for tile
d at the edges joint with ¢ and a are: bb, yb, yy, and by. Similarly, the possible color-
sequence substrings for tile b at the edges joint with a and ¢ are: yy, yb, bb, and by. Tile
t14 at position d excludes by and yy, while tile ¢1; at position b excludes yy and yb. Thus,
red is not possible as the input color. The input color yellow can be excluded by similar
arguments. It follows that blue is the only possible input color. It is clear that the tiles a
and ¢ have a vertical blue line. Due to the fact that neither ¢;; nor t14 contains the color-
sequence substrings rr or yy for the edges joint with tiles a and ¢, two possible solutions
are still left. The color-sequence substrings for these solutions at the edges of x joint with
c and d are ry and yr. Since tile ¢t at position x contains the former but not the latter
sequence, the TEST-true subpuzzle uses only three colors and has a unique solution.

(Note: The TEST-false subpuzzles in Figures [18(b)| and [24(e)| will be needed for a
circuit construction in Section B3] see Figure In particular, the three-color TEST-
false subpuzzle in Figure is identical to the three-color TEST-true subpuzzle from
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Figure except that the colors blue and red are exchanged. By the above argument,
the TEST-false subpuzzle has only one valid solution, namely that its input color is red.)
The shapes of the subpuzzles constructed above have changed slightly. However, by
Holzer and Holzer’s argument [HH04] about the minimal horizontal distance between two
wires and /or gates being at least four, unintended interactions between the subpuzzles do
not occur. This concludes the proof of Theorem O

Theorem immediately gives the following corollary.
Corollary 3.3 3-TRP is NP-complete.

Since the tile set T3 is a subset of the tileset Ty, we have 3-TRP <}, 4-TRP. Thus, the
hardness results for 3-TRP and its variants proven in this paper immediately are inherited
by 4-TRP and its variants, which provides an alternative proof of these hardness results for
4-TRP and its variants established in [HH04, BRO7]. In particular, Corollary 3.4l follows
from Theorem and Corollary 3.3l

Corollary 3.4 ([HHO04, BRO7]) 4-TRP is NP-complete, via a parsimonious reduction
from SAT.

3.2 Parsimonious Reduction from SAT to 2-TRP

In contrast to the above-mentioned fact that 3-TRP <}, 4-TRP holds trivially, the reduction
2-TRP <P, 3-TRP (which we will show to hold due to both problems being NP-complete,
see Corollaries [3.3] and [B.6]) is not immediatedly straightforward, since the tile set 7% is not
a subset of the tile set T3 (recall Figure [2 in Section [2). In this section, we study 2-TRP
and its variants. Our main result here is Theorem below.

Theorem 3.5 SAT parsimoniously reduces to 2-TRP.

Proof. Asin the proof of Theorem[3.2], we again provide a reduction from Circuits --SAT
but here we use McColl’s planar cross-over circuit [McC81] instead of a CROSS SubpuzzleE

We choose our color set C to contain the colors blue and red (corresponding to the
truth values true and false), and we use the tileset T5 shown in Figure To simulate a
boolean circuit with AND and NOT gates, we now present the subpuzzles constructed only
with tiles from T5.

Wire subpuzzles: We again use Brid tiles with a straight blue line to construct the
WIRE subpuzzle with the colors blue and red as shown in Figure M9 If the input color is
blue, then tiles ¢ and b must have a vertical blue line, so the output color will be blue. If
the input color is red, then the edge between a and b must be red too, and it follows that
the ouput color will also be red. Tile x forces tiles a and b to fix the orientation of the blue

Whether there exists an analogous two-color CROSS subpuzzle to simplify this construction, is still an
open question.
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line for the input color red. Since we care only about distinct color sequences of the tiles
(recall the remarks made in Section m we have unique solutions for both input colors.

Note that this construction allows wires of arbitrary height, unlike the WIRE subpuzzle
constructed in the proof of Theorem or the WIRE subpuzzles constructed in [HHO04,
BRO7], which all are constructed so as to have even height. To construct two-color WIRE
subpuzzles of arbitrary height, tile z of type tg in Figure [[9 would have to be placed on
alternating sides of tiles a, b, etc. in each level.

..................

IN {IND IN
(a) In: true (b) In: false (c¢) Scheme

Figure 19: Two-color WIRE subpuzzle

The two-color MOVE subpuzzle is shown in Figure Just like the WIRE subpuzzle,
it consists only of tiles of types t3 and tg (see Figure . For the input color blue, it is
obvious that all tiles must have vertical blue lines and so the output color is also blue. If the
input color is red, then the edge between a and b is red, too. Since neither ¢ nor d contains
the color-sequence substring bb, the blue lines of these four tiles have all the same direction.
The same argument applies to tiles e and f, and since tiles f, g, and z behave like a WIRE
subpuzzle, the output color will be red in this case. As above, since we care only about the
color sequences of the tiles, we obtain unique solutions for both input colors.

Note that Figure shows a move to the right. A move to the left can be made
symmetrically, simply by mirroring this subpuzzle.

......

(a) In: true (b) In: false (c) Scheme

Figure 20: Two-color MOVE subpuzzle

By contrast, if we were to count all distinct orientations of the tiles even if they have identical color
sequences, we would obtain two solutions each for tiles a and b, and six solutions for tile x, which gives a
total of 24 solutions for each input color in the WIRE subpuzzle. However, as argued in Section 2.2.1] since
our focus is on the color sequences, we have unique solutions and thus a parsimonious reduction from SAT
to 2-TRP.
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(a) In: true (b) In: false (¢) Scheme

Figure 21: Two-color COPY subpuzzle

The last subpuzzle needed to simulate the wires of the boolean circuit is the COPY
subpuzzle in Figure 211 This subpuzzle is akin to the subpuzzle obtained by mirroring the
MOVE subpuzzle in both directionsﬁ so similar arguments as above work. Again, since we
disregard the repetitions of color sequences, we have unique solutions for both input colors.

Gate subpuzzles: The construction of the NOT subpuzzle presented in Figure B2 is
similar to the corresponding subpuzzle with three colors (see Figure [I2)). Tiles b and d in
the two-color version allow only two possible orientations of tile ¢, one for each input color.
The first one has blue at the edge joint with a and, consequently, red at the edge joint
with e; the second possible orientation has the same colors exchanged. Since tiles e, f, and
x behave like a WIRE subpuzzle, the output color will “negate” the input color, i.e., the
output color will be blue if the input color is red, and it will be red if the input color is blue.
Tile x fixes the orientation of tiles f and e and the orientation of tile a is fixed by tile b.
We again obtain unique solutions, since we focus on color sequences.

......

(a) In: true (b) In: false (c) Scheme

Figure 22: Two-color NOT subpuzzle

SWe here say “is akin to...” because the COPY subpuzzle in Figure B1] differs from a true two-sided
mirror version of MOVE by having a tile of type t3 at position y instead of a ts as in position x. Why? By
the arguments for the MOVE subpuzzle, tile z already fixes the orientation of tiles a through k£ but not of [
(if the input color is red, see Figure . The orientation of tile [ is then fixed by a t3 tile at position y,
since obviously a tg would not lead to a solution. However, it is clear that an argument analogous to that
for the MOVE subpuzzle shows that all blue lines (except that of g in Figure have the same direction.
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(e) Scheme

Figure 23: Two-color AND subpuzzle

The AND subpuzzle is again the most complicated one. To analyze this subpuzzle, we
subdivide it into three disjoint parts:

1. The first part consists of the tiles a through g, z1, and z,. Tiles a through f and zo
form a two-color NOT subpuzzle, and tile g passes the color at the edge between tiles
f and g on to the edge between tiles g and r. So the negated left input color will be
at the edge between tiles g and r. Tile z; fixes the orientation of tile g to obtain a
unique solution for this part of the subpuzzle.

2. The second part is formed by the tiles h through ¢, and z3. This part is made from a
two-color NOT and a two-color MOVE subpuzzle to negate the right input and move
it by two positions to the left, which both are slightly modified with respect to the
NOT in Figure 22l and the MOVE in Figure

First, the minor differences between the move-to-the-left analog of the MOVE subpuz-
zle from Figure 20l and this modified MOVE subpuzzle as part of the AND subpuzzle
are the following: (a) tile z3 is positioned to the right of tiles ¢ and u and not to their
left, and (b) z3 is a t3 tile, whereas the tile at position z in Figure is of type tg.
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However, it is clear that the orientation of the blue lines of tiles [ through ¢ is fixed
by tile k, and z3 enforces u and ¢ to have the same direction of blue lines.

Second, the minor difference between the NOT from Figure 22/ and this modified NOT
subpuzzle as part of the AND subpuzzle is that tile m is not of type tg (as is the z in
Figure 22]) but of type t3, since the modified NOT and MOVE subpuzzles have been
merged. These changes are needed to ensure that we get a suitable height for this
part of the AND subpuzzle. However, it is again clear that the orientation of the blue
lines of tiles [ through ¢ is fixed by tile k.

3. Finally, the third part, formed by the tiles r through x, behaves like a two-color
subpuzzle simulating a boolean NOR gate, which is defined as =(a V ) = —a A —f.
The two inputs to the NOR subpuzzle come from the edges between g and r and
between ¢ and u.

If the left input color (at the edge between g and r) is red, then tiles s and z; ensure
that the edge between r and t will also be red. If the left input color is blue, then the
edge between r and t will be blue by similar arguments, and since tile ¢ is of type t3,
it passes this input color on to its joint edge with v in both cases. The right input
to the upper part (at the edge between ¢ and u) is passed on by tile u to the edge
between u and v.

Now, we have both input colors at the edges between ¢ and v and between u and v.
If both of these edges are red (see Figure , then tile w enforces that the edge
between v and x will be blue. On the other hand, if one or both of v’s edges with ¢
and u are blue, then v’s short blue arc must be at these edges, which enforces that the
color at the edge between v and x will be red. Finally, tile z passes the color at the
edge joint with tile v to the output. With the negated inputs of the first and second
part, this subpuzzle behaves like an AND gate, i.e., as a whole this subpuzzle simulates
the computation of the boolean function AND: —(—a V =f5) = ~—a A =8 =a A S.

Again, since we care only about the color sequences of the tiles, we obtain unique solutions
for each pair of input colors.

..................

(a) BOOL Out: true (b) BOOL Out: false (c) BOOL Scheme
IN NG IN
(d) TEST-true (e) TEST-false (f) TEST Scheme

Figure 24: Two-color BOOL and TEST subpuzzles
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Input and output subpuzzles: The input variables of the circuit are simulated by the
subpuzzle BOOL. Constructing a subpuzzle with the only possible outputs blue or red is
quite easy, since all tiles except t7 and tg satisfy this condition. Figures 24)a)—(c) show our
two-color BOOL subpuzzle. Note that tile x ensures the uniqueness of the solutions.

The last step is to check if the output of the whole circuit is true. This is done by the
subpuzzle TEST-true shown in Figure 24)(d), which sits on top of the subpuzzle simulating
the circuit’s output gate. Since tile 7 contains only blue lines, the solution is unique.

(Note: The subpuzzle TEST-false in Figure will again be needed in Section [3.3] see
Figure It has only red lines, so the input is always red and the solution is unique.) 0

Theorem immediately gives the following corollary.

Corollary 3.6 2-TRP is NP-complete.

3.3 Complexity of the Unique, Another-Solution, and Infinite Variants
of 3-TRP and 2-TRP

Parsimonious reductions preserve the number of solutions and, in particular, the uniqueness
of solutions. Thus, Theorems and imply Corollary [3.7] below that also employs
Valiant and Vazirani’s results on the DP-hardness of Unique-SAT under <%,,-reductions
(which were defined in Section [2]). The proof of Corollary B7] follows the lines of the proof
of [BRO7, Theorem 6], which states the analogous result for Unique-4-TRP in place of
Unique-3-TRP and Unique-2-TRP.

Corollary 3.7 1. Unique-SAT parsimoniously reduces to the problems Unique-3-TRP
and Unique-2-TRP.

2. Both Unique-3-TRP and Unique-2-TRP are DP-complete under <%, -reductions.
We now turn to the another-solution problems for k-TRP.

Corollary 3.8 1. For each k € {2,3,4}, SAT <L, k-TRP.
2. For k €{2,3,4}, AS-k-TRP is NP-complete.

Proof. In Sections[3.Iland[3.2] we showed a parsimonious reduction from Circuit, —-SAT
to 3-TRP and 2-TRP. To prove the first part of this corollary, we have to show (see
Section 2.1]) that there is a polynomial-time computable function bijectively mapping the
solutions of any given Circuits —-SAT instance C' to the solutions of the A-TRP instance
corresponding to C, for each k € {2,3,4}. However, note that a satisfying assignment to the
variables of the circuit C' immediately gives the solution for the BOOL subpuzzles according
to our reduction for k-TRP, see the proof of Theorem (for k = 2), of Theorem (for
k = 3), and of the result presented for 4-TRP in [BRO7|] (for k& = 4).

In each case, our circuit is constructed as a sequence of steps, so the solutions for the
BOOL subpuzzles determine the color at the input for all subpuzzles at the next step,
and so on. Since all subpuzzles have unique solutions we can construct a solution to our
puzzle in polynomial time from bottom to top using the parsimonious reductions mentioned
above. Now, given the assignment of the variables, we just have to place the tiles of the
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Figure 25: Two choices for the ith layer of the infinite circuit for Inf-2-TRP and Inf-3-TRP

single subpuzzles according to the determined solution and so specify their orientation.
Conversely, if we have a solution of a resulting k-TRP instance for k € {2,3,4}, the output
colors at the BOOL subpuzzles gives the corresponding satisfying assignment to the variables
of the circuit.

To prove the second part of Corollary B.8], note that AS-SAT is NP-complete [YS02], and
since the parsimonious reduction from SAT to Circuit, —-SAT provides a bijective transfor-
mation between these problems’ solution sets, AS-Circuit, -SAT is also NP-complete. It
follows immediately, that the problems AS-3-TRP and AS-2-TRP are NP-complete. Fur-
thermore, AS-4-TRP inherits the NP-completeness result from AS-3-TRP. u

Holzer and Holzer [[IH04] proved that Inf-4-TRP, the infinite Tantrix™ rotation puzzle
problem with four colors, is undecidable, via a reduction from (the complement of) the
empty-word problem for Turing machines. The proof of Theorem below uses essentially
the same argument but is based on our modified three-color and two-color constructions.

Theorem 3.9 Both Inf-2-TRP and Inf-3-TRP are undecidable.

Proof. The empty-word problem for Turing machines asks whether the empty word, A,
belongs to the language L(M) accepted by a given Turing machine M. By Rice’s Theo-
rem [Ric53], both this problem and its complement are undecidable. To reduce the latter
problem to either Inf-2-TRP or Inf-3-TRP, we do the following. Let M; denote the simu-
lation of a Turing machine M for exactly ¢ steps. Then, M; accepts its input if and only if
M accepts the input within ¢ steps.

We employ another circuit construction that will be simulated by a Tantrix™ rotation
puzzle. First, two wires are initialized with the boolean value true. Then, in each step, we
use either the circuit shown in Figure or the one shown in Figure The former
circuit is chosen in step ¢ if A ¢ L(M;), and the latter one is chosen in step i if A € L(M;).
To transform this circuit into an Inf-£-TRP instance, where k is either two or three, we use
the TEST-true subpuzzle from either Figure or Figure rotated by 180 degrees
and with the “IN” tile becoming an “OUT” tile, in order to initialize both wires with the
input true. Then we substitute the single layers of the circuit by the subpuzzles described
above, step by step, always choosing either the circuit from Figure @ (where TEST-true
is the subpuzzle from Figure if k = 3, or from Figure 24(d)| if & = 2), or the circuit
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from Figure 25(b)| (where TEST-false is the subpuzzle from Figure if £ =3, or from
Figure 24(e)|if k£ = 2).

Since both wires are initialized with the value true, it is obvious that the constructed
subpuzzle has a solution if and only if A ¢ L(M). Note that the layout of the circuit is
computable, and our reduction will output the encoding of a Turing machine computing first
this circuit layout and then the transformation to the Tantrix ™™ rotation puzzle as described
above. By this reduction, both Inf-2-TRP and Inf-3-TRP are shown to be undecidable. [

4 Conclusions

This paper studied the three-color and two-color Tantrix'™ rotation puzzle problems,

3-TRP and 2-TRP, and their unique, another-solution, and infinite variants. Our main
contribution is that both 3-TRP and 2-TRP are NP-complete via a parsimonious reduc-
tion from SAT, which in particular solves a question raised by Holzer and Holzer [HHO04].
Since restricting the number of colors to three and two, respectively, drastically reduces the
number of Tantrix™ tiles available, our constructions as well as our correctness arguments
substantially differ from those in [HH04, BROT7]. Table[in Section [I] shows that our results
give a complete picture of the complexity of k.-TRP, 1 < k < 4. An interesting question
still remaining open is whether the analogs of k-TRP without holes still are NP-complete.
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