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Abstract. The prey-predator pursuit problem is a generic multi-agent
testbed referenced many times in literature. Algorithms and conclusions
obtained in this domain can be extended and applied to many particular
problems. In first place, greedy algorithms seem to do the job. But when
concurrence problems arise, agent communication and coordination is
needed to get a reasonable solution. It is quite popular to face these
issues directly with non-supervised learning algorithms to train prey and
predators. However, results got by most of these approaches still leave a
great margin of improvement which should be exploited.
In this paper we propose to start from a greedy strategy and extend
and improve it by adding communication and machine learning. In this
proposal, predator agents get a previous movement decision by using a
greedy approach. Then, they focus on learning how to coordinate their
own pre-decisions with the ones taken by other surrounding agents. Fi-
nally, they get a final decission trying to optimize their chase of the prey
without colliding between them. For the learning step, a neuroevolution
approach is used. The final results show improvements and leave room
for open discussion.
Keywords: Multi-agent systems, communication, coordination, neuroevo-
lution

1 Introduction

The Predator-prey problem (or pursuit domain) is a well-known testbed for
multi-agents systems. It consists of world where a group of agents (called preda-
tors) aim to chase and surround another agent (called prey) that tries to evade
them [1]. The goal of predator agents is to surround (capture) prey without
touching it (i.e. occuping the adjacent cells), whilst the goal of the prey, as
expected, is not to be captured.

This problem has been adressed many times in literature. Initially, Korf [7]
proposed a greedy without inter-agent communication. His approach was to use
a fitness function that combined 2 forces: each predator was ”attracted” by
the prey and ”repelled” from the closest other predator. This solution keeped
predators away from other predators while they got closer to the prey; the idea
was to chase the prey arranging predators in an stretching circle. Korf concluded
that the pursuit domain was easily solved with local greedy heuristics.



A great number of alternatives have emerged since Korf’s. Haynes and Sen
[3] used genetic programming to evolve coordinated predators. Haynes compared
differences between communicating and non-communicating predators with re-
spect to their success in capturing the prey. He also co-evolved predators and
the prey and found that a prey following a straight, diagonal line in an infinite
world was never captured unless it was slower than its pursuers. This demon-
strated that for certain instantiations of the domain, Korf’s heuristic was not
enough. Next, Chainbi et al. [2] used petri nets to coordinate predators while
solving concurrency problems between them. Tan [10] used Reinforcement Learn-
ing to improve cooperation in three ways: (1) sharing instantaneous information
(sensation, action, rewards obtained), (2) sharing episodes of instantaneous in-
formation, and (3) sharing learnt policies. Tan showed that agents learn faster
when they learn cooperatively than when they learn individually. Later, Jim and
Giles [4] proposed a genetic algorithm and multi-agent communication through
a blackboard. A really interesting alternative was proposed by Katayama et al.
[5]. They developed a way to integrate Analytic Hierarchy Process (AHP) into
a Profit-Sharing algorithm. They gave primary knowledge to agents when they
start their learning process. As they say, it does not seem reasonable to con-
tinue giving “hints” to grown agents that have developed their own knowledge,
so Katayama et al. proposed a way to progresively stop providing “hints” to
agents.

Despite the great number of proposed solutions, there is still room for im-
provements in different instantiations of the pursuit domain. As Tan stated in
his work [10], coordination algorithms or protocols tested under the pursuit do-
main may easily be ported to other autonomous agents domains in general. This
paper presents a new proposal for improving cooperation between predators in
the pursuit domain. The idea presented here is to mix the efficiency of greedy
approaches with two coordination proposals: a simple sight notice protocol and
an evolutionary coordination system based on Neuroevolution [8]. Results show
that this is a promising approach that develops a very efficient coordination
mechanism, with still room for more improvements.

2 The Pursuit Domain

Stone&Veloso [9] considered the pursuit domain to be a toy problem with respect
to multi-agent systems. However, it is an interesting start point because it is
easy to understand, easy to play around with and difficult to master. Moreover,
it is still popular because it is possible to create many different instances with
different types of handycaps. The most classical environment consisted of a finite,
discrete, grid world where 4 predators tried to capture 1 prey and agents were
only allowed to move to orthogonally adjacent cells (i.e. north, south, east or
west). In this environment, agents moved sequentially and two agents were not
allowed to be on the same cell.

As Stone&Veloso stated [9], that classical environment could be varied by
changing the size and shape of the world, the legal moves, the concurrency on



agent movements, the size of agent’s field of vision (FOV) in cells, the pres-
ence of objects, the definition of capture, the behaviour of the prey/s and the
way predators communicate or not. Among this characteristics, we find three of
them to be key for the environment to be challenging enough: using a toroidal
world, restricting perception of agents to their FOV and making predators move
concurrently.

Proposed characteristics could be simulated inside Kok&Vlassis’ Pursuit Do-
main Package (PDP)[6]. PDP is a software package that simulates a pursuit
domain environment. It lets modifying the parameters previously mentioned to
instantiate different experimental scenarios. Concretelly, PDP was tuned for the
purposes of our research to reflect some exact characteristics that are described
as follows: (1) Toroidal world with a discrete, orthogonal grid of squared cells,
(2) Availability for the agents to move to every adjacent cell each turn (9 pos-
sible options), (3) Concurrency in the execution and movement of predators,
(4) Limited FOV for agents in the world affecting all agent sensors, (5) Agent’s
capability to communicate with other agents inside FOV, (6) Programability of
prey behahiour, (7) Selection of the capture method; in our case, 4 predators
occuping the 4 orthogonally adjacent cells (i.e. north, sourth, east and west).

Defined this way, PDP has some challenges to face. As we stated before, the
three most remarkables ones are: (1) Concurrency lets predator move to the same
cell in the same timestep (i.e. they collide). If this occurs, colliding predators are
penalized by replacing them randomly. (2) FOV makes exploration necessary,
and (3) the toroidal world removes the possibility of cornering the prey.

3 Methodology

Initially, Korf [7] considered a solution quite simple yet effective. The approach
was to consider an “attractive” force which pushed predators towards the prey.
The method was to calculate this force as fitness function for each of the possible
cells to go next, and finally select the most attractive one. This solution had
the problem that predators piled up and disturbed themselves; then, it turned
difficult to achieve the final surrounding capture position. Korf overcomed this
problem considering a “repulsive” force which pushed each predator away from
the nearest other predator. With this new force, predators attacked the prey
more jointly, not piling themselves up.

The reduced number of cycles that predators took to capture the prey with
Korf’s method seemed good enough not to consider the necessity of improving
it. However, the differences between the environment used by Korf and new
environments like PDP [6] lead to reconsider it. For instance, Korf reported
that his algorithm captured the prey in 119 cycles in average. The experiments
we have run in the most similar conditions possible to Korf’s inside PDP take
366 cycles in average. In this case, which is the best one for Korf, the toroidal
world and the collisions between agents multiply time to capture the prey by 3.
When conditions get worse, namely when the FOV of predators is reduced, the



performance of Korf’s approach deteriorates exponentially, as it is shown in the
left graph of figure 2.

This means that it is necessary to extend Korf’s algorithm to deal with the
new issues of the environment. One possible way to extend it is to reconsider the
way Korf treated atractive and repulsive forces between agents. In his proposal,
predators were atracted by the prey and repelled by the nearest other predator.
This leads to situations where one predator may be repelled directly against
other predator, resulting in a collision. Then, the first approach to take is to
make predators repel from all other predators. Equation 1 shows the fitness
function used to do this. This function depends on the (x, y) coordinates of
the cell and calculates distances from that cell to prey location (Xp, Yp) and
to other n predators locations (Xi, Yi) using Manhattan Distance d(x, y, x′, y′).
To balance the relative amount of repulsive forces against the atractive one, a
scale constant k is added. We will call Extended Korf, or ExtKorf for short, to
the algorithm which works like Korf’s but with the fitness function shown by
equation 1.

f(x, y) = d(x, y, Xp, Yp) − k
n∑

i=1

d(x, y, Xi, Yi) (1)

The Extended Korf algorithm dramatically outperforms results of the Korf
algorithm. The main reason for this is that it reduces collisions between predators
by an order of magnitude, thus avoiding penalties. Results supporting this are
shown and explained in section 4 (see figure 2).

3.1 Cascading Sight Notice (CSN)

In the environment where Korf did his experiments, communication between
agents were not necessary, as he demonstrated. The main reason was that his
agents were able to see the whole world at once. But, the more we limit the FOV
of the predators the more they need to get more information to efficiently capture
the prey. When predators have a reduced FOV, most of the times happens that
when some predators have found the prey, others are still wandering around.
This delay in founding the prey could be avoided if the predators were able to
effectively tell where the prey is to others when they had found it.

Consider that an agent located at x, y and having a FOV of n cells means that
the agent is only able to perceive what happens in the cells {(x′, y′)/x − n <=
x′ <= x + n, y − n <= y′ <= y + n}. Take into account that this refers to
sensing in general, and not seeing in particular. Therefore, an agent is only able
to communicate with other agents being inside its FOV. Moreover, agents never
know their global location, nor global coordinates of other agents. They are only
aware of the relative location other agents are with respect to them.

In strict sense, the probability of a predator indefinitely not finding the prey
in this conditions is not 0, and that is definitely a problem to overcome. But
communication is not as simple as telling others directly where the prey is;
there is no way to do that. In order to communicate where the prey is, we



propose a simple protocol called Cascading Sight Notice (CSN). The idea is that
a predator P seeing the prey Y has to communicate the relative location of Y
that P is perceiving to each other predator P i that P can see (i.e. P i is inside
the FOV of P ). Then, each P i not seeing Y could locate it by listening to P .
P i will then be aware of the relative location of P with respect to P i and also
aware of the relative location of Y with respect to P . So, P i is able to calculate
the relative location of Y with respect to P i by adding the vectors of the two
relative locations it knows. Then, when P i has located the prey, P i resends this
new relative location to other predators in its FOV. The cycle continues until no
predator is hearing or hearing predators already know where prey is (see figure
1).

Fig. 1. a) Two predators with FOV 3 seeing each other, predator 1 seeing the prey. b)
Predator 2 can figure out prey location from message of predator 1. c) Predators 1, 2
and 3 can figure out prey location, predator 4 cannot

This simple protocol lets predators with reduced FOV find the prey earlier
than predators without communication do, and this turns into an improvement in
the average number of cycles needed to capture the prey. The results supporting
this are shown and explained in section 4 (see figure 3).

3.2 NEAT Coordination Protocol (NECool)

Inside PDP, collisions occur when two or more predators move to the same
cell on the same timestep. As long as predators decide where to move in a
concurrent fashion, they have no opportunity of avoiding collisions unless they
establish an appropiate coordination protocol. One possibility to look for an
optimal coordination protocol is to evolve a neural network that decides the next
movement to do, taking into account the fitness values of the 9 possible cells to
go next. If the neural network of predator P receives as input the location of all
the other predators P i that are inside the FOV of P , then the neural network
will be able to output the next move that P should do to optimize the capture
of the prey without colliding with any P i.



Following this idea, algorithm 1 lets predators learn how to optimally coordi-
nate and improve their performance in capturing the prey. To make algorithm 1
understandable, it is necessary to clarify some insiders. First of all, the function
compressAllF itnesses(D) takes as argument a matrix with the 9 fitnesses as-
sociated to each one of the 9 adjacent cells where P 0 could move next. This is a
biyective function that transforms the matrix D into a real value in [−1, 1]. This
value is sent to other predators which use it as input to their neural networks.
The neural networks, having locations and compressed fitnesses of predators
as inputs, output a real value in [−1, 1]. This value is passed to the inverse
function of compressAllF itnesses, that is getNextCellT oMove(c). This last
function treats the output from the neural network as a new compressed fitness:
it ”decompresses” the value, reconstructing a 3x3 matrix of fitnesses, and then
it returns the number of the cell with best fitness value.

Algorithm 1 Coordinate decisions of predator P 0 with each P i decision

Require: P 0 = predator with a 3-to-1 recurrent neural network
1: Let P be a vector of predators
2: Let D be a 3x3 real matrix
3: Let F be a vector of real numbers
4: Let f, d be real numbers
5: if seesPrey(P 0) then

6: (Xp, Yp) ⇐ getPreyRelativeLocationTo(P 0)
7: else

8: (Xp, Yp) ⇐ (0, 0)
9: end if

10: P ⇐ getAllPredatorsInsideFOV Of(P 0)
11: for all ((x, y) | 1 ≤ x ≤ 3, 1 ≤ y ≤ 3) do

12: Dxy ⇐ calculateExtendedKorfF itness(x,y)
13: end for

14: f ⇐ compressAllF itnesses(D)
15: sendCompressedF itnessToOtherPredators(f,P )
16: F ⇐ receiveCompressedF itnessesOfPredators(P )
17: for all (P i ∈ P ) do

18: f ⇐ getCompressedF itnessOf(P i, F )
19: (x, y) ⇐ getLocationOfPredator(P i)
20: activateNeuralNetworkWithV alues(x, y, f)
21: end for

22: f ⇐ getCompressedF itnessOf(P 0, F )
23: (x, y) ⇐ getLocationOfPredator(P 0)
24: d ⇐ flushNeuralNetworkWithV alues(x, y, f)
25: c ⇐ getNextCellT oMoveTo(d)
26: movePredatorTo(P 0, c)

It is important to point some details. The functions compressAllF itnesses
and getNextCellT oMove do not directly compress the 9 fitness values into 1:
there is no biyective function to do that. But that is not a problem, because



the most relevant information for predators in order to coordinate their ac-
tions is not exactly the fitness itself, but the priority to choose each cell as
next movement. Therefore, compressAllF itnesses forms a unique number λ by
concatenating the numbers of the 9 cells ordered by their fitness. For example,
compressAllF itnesses could form the number λ = 854713269 meaning that the
cell number 8 is the best fitted one, while the cell number 9 is the poorly fitted
one. Then, as long as λ is a discrete integer value, it is now possible to asso-
ciate an α ∈ [−1, 1] though a biyective function. compressAllF itnesses finally
returns α, while getNextCellT oMove reconstructs λ from an α and returns the
first digit (8 in our previous example).

Regarding the neural networks, they are trained and evolved using Neu-
roevolution of Augmenting Topologies (NEAT [8]). Populations of predators are
created each epoch, and each predator has its own neural network. Each neural
network has 3 inputs and 1 output. The 3 inputs are designed to receive the
(x, y) location of a predator P i, scaled to [−1, 1] depending on the FOV, and
the compressed fitness value P i. The neural network is expected to sequentially
receive these 3 inputs from each of the predators inside the FOV o P 0, and to
activate all its neurons once for each triplet of inputs. Finally, the neural network
receives the 3 inputs related to P 0, activating and flushing the net to get its final
output value.

4 Results

To validate our approach we compared the results of the 3 methods (ExtKorf,
ExtKorf+CSN and ExtKorf+CSN+NECool) with the original of Korf in the
same environment conditions, but variating the FOV. We have measured preda-
tors against two different preys: a random moving prey, and an evading prey.
The second prey moves to the adjacent cell that is more distant from the closest
predator. These tests let us show the magnitude of the improvements and their
relative relevance. For running the simulations we used Kok&Vlassis’ Pursuit
Domain Package (PDP). Concretely, we used a 30x30 cells field, allowing agents
to move diagonal, with the prey starting on the center and predators starting
randomly placed. We lauched 4 predators to capture 1 prey, following capture
method 2 (4 predators orthogonally surrounding the prey, without touching it).
Finally, in case of collision, only predators colliding were penalized. Simulation
was always ran for 500 consecutive episodes, and we got the average results.

Our first comparative experiment was to measure the improvement in cycles
and collisions of the Extended Korf algorithm against original Korf’s. For this
experiment the results show an improvement of an order of magnitude in most
cases. In figure 2 we see that the improvement is much greater when the FOV
is more limited (3 is the minimum FOV considered). It is normal, though, that
the minimum improvement in cycles and collisions happens when agents have 15
cells of FOV (i.e. they can sense the whole world at once). In this case, agents
do not lose cycles in trying to find the prey, and they go straight to capture it.
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Fig. 2. Comparison between original and Extended Korf’s model with respect to av-
erage cycles per episode and total collisions in 500 episodes

As we stated in previous section, figure 2 clearly shows that there are two
major ways of improvement: more efficiently finding the prey and avoiding col-
lisions. We have made two proposals, each one to cover each of these two ways.
Our first proposal was about the CSN protocol, enabling predators to locate the
prey by using the indications got from other predators. In order to check the
relative improvement of using this protocol, we have compared Extended Korf’s
model against itself with and without CSN. Figure 3 shows the results of this
comparison. As expected, results suggest that there are plenty of situations in
which CSN saves cycles of exploration to the predators. So, CSN represents an
improvement which leads predators to earlier find the prey on average, and CSN
is more significant when FOV is minimal.
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Fig. 3. Comparison between Extended Korf’s model and Extended Korf’s model with
CSN with respect to average cycles per episode and total collisions in 500 episodes

However, CSN is not a definitive solution. CSN turns less effective when
dimensions of the world increase due to the necessity of predators to be inside
FOV of others to hear them. This limits the relative improvement that could be
achieved with CSN to a factor depending on the relation of FOV with the size



of the world. The less proportion of cells a predator is able to perceive, the more
difficult to find the prey and the more difficult to communicate with others.

Although these results suggest that CSN could be improved, it is not an easy
task because FOV restricts communication between agents. Therefore, other
way to globally improve performance is to reduce collissions between predators.
NECool addressed this issue. To test NECool we set up a training session of
250 generations, with a population of 100 predators. Each predator was tested
by 50 episodes against each type of prey, with 6000 cycles as maximum episode
time to capture it. The fitness function used to train predator was f = 6001

n+10c+1
,

which depends on the average number of cycles to capture the prey (n) and the
average number of collisions (c). All agents had 6 cells as FOV.

Once we had trained NECool predators, we run for them the same 500
episodes test we run earlier, but this time against ExtKorf+CSN predators. The
result (see figure 4) was a dramatic reduction in the number of total collisions,
and this reflected directly in an improvement in the average number of cycles to
capture the prey, by around 25− 35%. It is interesting to notice that predators
were trained with a FOV of 6 cells but tested with different FOVs.
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Fig. 4. Comparison between Extended Korf’s model with CSN and with CSN+NECool
with respect to average cycles per episode and total collisions in 500 episodes

5 Conclusions and Further Work

This paper describes a new proposal for improving cooperation between preda-
tors in the pursuit domain. This new proposal mixes the efficiency of greedy
approaches with Machine Learning techniques to get the best of both. The pro-
posal suggests to extend the greedy approach proposed by Korf (ExtKorf) and
to add two cooperatives strategies: Cascading Sight Notice (CSN) and NEAT
Coordination Protocol (NECool).

To validate this approach we compared the results of ExtKorf, ExtKorf+CSN
and ExtKorf+CSN+NECool between them pairwise and with Korf’s using Pur-
suit Domain Package (PDP) in more challenging environment conditions. Our



first experiment measured performance in cycles and collisions of Extended
Korf’s algorithm against Korf’s. Results shown an improvement of an order
of magnitude in most cases. Our second experiment demonstrated that CSN im-
proves the average cycles to capture the prey, but only significantly in few cases.
This was mainly due to the necessity of predators to be inside FOV of others to
communicate with them. Our third experiment added NECool and compared it
with ExtKorf+CSN. Results shown a dramatic reduction of total collisions be-
tween predators, which maps directly to a significant improvement (25 to 35%)
in average number of cycles to capture the prey.

Therefore, we conclude that mixing greedy and evolutive approaches is a
promising path to explore, as our experiments have shown. Our final algorithm,
ExtKorf+CSN+NECool achieved great results mainly due to its ability to make
predators collaborate in an efficient way to lower down collisions with minimum
impact in the greedy way to chase the prey. However, there remains room for
improvements. For instance, it is still needed a way to early find the prey, what
could be achieved if predators coordinate to explore the world, rather than ex-
ploring it randomly. Our future work will address this issue and it will also focus
on lowering down collisions to 0, with the minimum impact on chasing efficiency.
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