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Abstract. We consider a job shop problem with uncertain processing
times modelled as triangular fuzzy numbers and propose a methodology
to study solution robustness with respect to different perturbations in
the durations. This methodology is applied to obtain experimental re-
sults for several problem instances, using a hybrid genetic algorithm that
minimises the expected makespan. We conclude that taking into account
the uncertainty information provided by fuzzy numbers produces proac-
tive solutions, coping well with posterior changes in processing times.

1 Introduction

Scheduling problems form an important body of research since the late fifties,
with multiple applications in industry, finance and science [1]. Traditionally,
scheduling has been treated as a deterministic problem that assumes precise
knowledge of all data. However, modelling real-world problems usually involves
processing uncertainty and flexibility. In the literature we find different propos-
als for dealing with uncertainty in scheduling [2], either finding solutions which
adapt dynamically to changes or incorporating available knowledge about pos-
sible changes to the solution. Fuzzy scheduling comprises diverse approaches to
dealing with both uncertainty and flexibility, ranging from representing incom-
plete or vague states of information to using fuzzy priority rules with linguistic
qualifiers or preference modelling [3],[4].

The complexity of scheduling problems such as job shop means that practi-
cal approaches to solving them usually involve heuristic strategies [1]. Extending
these strategies to problems with uncertain durations represented as fuzzy num-
bers usually requires a significant reformulation of both the problem and solving
methods. Proposals from the literature include genetic algorithms [5],[6],[7], sim-
ulated annealing [8] and genetic algorithms hybridised with local search [9].

In the sequel, we concentrate on a job shop problem where uncertain task
durations are given as fuzzy numbers. Based on a semantics of fuzzy schedules
from the literature, we propose a new methodology to test the robustness of the



obtained schedule with respect to posterior changes in task durations. Following
this methodology, experimental results are obtained for modified benchmark
problems using a hybrid algorithm, illustrating how the use of fuzzy numbers
allows for robust proactive solutions.

2 Job Shop Scheduling with Uncertain Durations

The job shop scheduling problem, also denoted JSP, consists in scheduling a set
of jobs {Ji,...,J,} on a set of physical resources or machines {My,..., M, },
subject to a set of constraints. There are precedence constraints, so each job J;,
i=1,...,n, consists of m tasks {0;1, ..., 0, } to be sequentially scheduled. Also,
there are capacity constraints, whereby each task 0;; requires the uninterrupted
and exclusive use of one of the machines for its whole processing time. A solution
to this problem is a schedule (an allocation of starting times for all tasks) which,
besides being feasible, in the sense that precedence and capacity constraints hold,
is optimal according to some criteria, for instance, that the makespan is minimal.

2.1 Uncertain Durations

In real-life applications, it is often the case that the exact duration of a task,
i.e. the time it takes to be processed, is not known in advance, and only some
uncertain knowledge is available. Such knowledge can be modelled using a trian-
gular fuzzy number or TEN, given by an interval [n!, n?®] of possible values and
a modal value n? in it. For a TEFN N, denoted N = (n!,n?,n?), the membership
function takes the following triangular shape:
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In the job shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. These are obtained by extending the corresponding
operations on real numbers using the Fatension Principle. However, comput-
ing the resulting expression is cumbersome, if not intractable. For the sake
of simplicity and tractability of numerical calculations, we follow [8] and ap-
proximate the results of these operations, evaluating the operation only on the
three defining points of each TFN. It turns out that for any pair of TFNs M
and N, the approximated sum M + N a~ (m! + n',m? + n?, m® + n?) coin-
cides with the actual sum of TFNs; this may not be the case for the maximum
MV N =~ (m!tvnl,m?vn? m3vn3), although they have identical support and
modal value.

The membership function of a fuzzy number can be interpreted as a possibil-
ity distribution on the real numbers. This allows to define its expected value [10],
given for a TFN N by E[N] = 1(n' + 2n? 4+ n?). It coincides with the neutral
scalar substitute of a fuzzy interval and the centre of gravity of its mean value [3].
It induces a total ordering <z in the set of fuzzy numbers [8], where for any two
fuzzy numbers M, N M <g N if and only if E[M] < E[N].



2.2 Fuzzy Job Shop Scheduling

For a job shop problem instance of size n x m (n jobs and m machines), let p be
a duration matrix and let v be a machine matrix such that p;; is the processing
time of task 6;; and v;; is the machine required by 6;5,1=1,...,n,j=1,...,m.
Let o be a feasible task processing order, i.e., a lineal ordering of tasks which is
compatible with a processing order of tasks that may be carried out so that all
constraints hold. A feasible schedule may be derived from o using a semi-active
schedule builder: if S;;(o, p,v) and C;;(o, p, v) denote respectively the starting
and completion times of task ¢;;, these times are given by:
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where 0, is the task preceding 6;; in the machine according to the processing
order o, Cio(0o, p, V) is assumed to be zero and, analogously, C,.s(c, p,v) is taken
to be zero if 0;; is the first task to be processed in the corresponding machine.
The completion time of job J; will then be C;(o,p,v) = Cip(o, p,v) and the
makespan Chaq (0, p, V) is the maximum completion time of all jobs:

Cmam(oa p, V) = Vlgign (Ci(07pa V)) (4)

For the sake of a simpler notation, we may write Cy,q.(0) when the problem
(hence p and v) is fixed or even C,,4, when no confusion is possible.

If task processing times are TFNs, the resulting schedule is fuzzy in the sense
that starting and completion times and the makespan are TFNs. Each TFN can
be seen as a possibility distributions on the values that the time may take. Notice
however that there is no uncertainty regarding the task processing ordering o
that determines the schedule. To illustrate these ideas, consider a problem of 3
jobs and 2 machines with the following matrices for fuzzy processing times and
machine allocation:

(3,4,7) (1,2,3) 12
p=|(4,56)(234) |v=[21
(1,2,6) (1,2,4) 21

Figure 1 shows the Gantt chart (adapted to TFNs following [8]) of the schedule
given by the task order 611,021,031, 022,012, 032. For instance, for task 652 we
have Soo = Co1 V C11 = (4,5,7) and Cag = Sag + pas = (6,8,11), meaning that
022 completion time will be between 6 and 11, with 8 as most pausible value.

Since we may build a feasible schedule from a feasible task processing order,
we restate the goal of the job shop problem as that of finding an optimal task
processing order, in the sense that the makespan for the derived schedule is op-
timal. It is not trivial to optimise a fuzzy makespan, since neither the maximum
nor its approximation define a total ordering in the set of TFNs. Following [9],
we use the total ordering provided by the expected value and consider that the
objective is to minimise the expected makespan E[Cqz(0, P, V)].
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Fig. 1. Gantt chart of the schedule represented by 611,021, 631,022, 612, 032

2.3 A Hybrid Algorithm

Evolutionary strategies have been shown to perform well in presence of uncer-
tainty [11]. In particular, hybrid methods combining a genetic algorithm (GA)
with local search (LS) have proved successful for the fuzzy flow shop problem [12]
and the fuzzy job shop problem [9]. For the latter, experimental results show a
clear synergy between the GA and the LS, with the hybrid method also com-
paring favourably with other heuristic methods from the literature [8], [5].

The genetic algorithm proposed in [9] uses permutations with repetition as
chromosomes. These are decodified using an extension of G&T algorithm to fuzzy
durations, with the fitness function being the expected makespan of the obtained
schedule. Pairs of chromosomes are selected using tournament and mated using
job order crossover (JOX) to obtain two offsprings; acceptance consists in select-
ing the best individuals from both parents and their offsprings. JOX operator
has an implicit mutation effect and therefore, no explicit mutation operator is
actually introduced, with the consequent simplification of parameter setting, as
crossover and mutation probabilities being 1 and 0 respectively.

The local search procedure is applied to every chromosome immediately after
its generation. Starting from this given processing order, its neighbourhood is
calculated and neighbours are evaluated using the aforementioned semiactive
schedule builder in the search of an improving solution. The selection criterion
is steepest descent hill-climbing, i.e. all neighbours are evaluated, selecting the
best one, which replaces the original solution if it is an improving neighbour (with
a smaller E[Ciuq.]). Local search starts again from that improving neighbour,
so the procedure finishes when no neighbour satisfies the acceptance criterion.
In [9] it is proposed that the neighbourhood structure be an extension of that
defined for the crisp job shop in [13]. Here, a move for a feasible task processing
order o is defined as the change in the order of a pair of consecutive tasks (z,y)
in a critical block. The neighbourhood of o, denoted H (o), is defined as the set
of processing orders obtained from ¢ after applying all possible moves.

A key aspect then for the neighbourhood is the definition of critical block in
the fuzzy case. In general, a job shop problem instance may be represented by a
directed graph G = (V, AU D), where each node in the set V represents a task
of the problem, except for the dummy nodes start and end, representing tasks



with null processing times. Arcs in A, or conjunctive arcs, represent precedence
constraints (including arcs from node start to the first task of each job and arcs
form the last task of each job to node end). Arcs in D, called disjunctive arcs,
represent capacity constraints: set D is partitioned into subsets D;, where D;
corresponds to machine M; and includes an arc for each pair of tasks requiring
that machine. Each arc is weighted with the processing time of the task at the
source node (a TFN in our case).

A feasible task processing order o is represented by a solution graph, an
acyclic subgraph of G, G(¢) = (V, AUR(0)), where R(0) = U;=1..mRi(0), Ri(0)
being a hamiltonian selection of D;. In the fuzzy case, from G(o) we obtain the
parallel solution graphs G'(c), i = 1,2,3, which are identical to G (o) except for
the cost of arc (z,y) € AU R(0), which for graph G*(o) will be the i-th defining
point of p,, that is, p’. Each parallel solution graph G*(o) is a disjunctive graph
with crisp arc weights, so in each of them a critical path is the longest path
from node start to node end. For the fuzzy solution graph G(o), a path will be
considered to be critical if and only if it is critical in some G*(o). Nodes and arcs
in a critical path are termed critical and a critical path is naturally decomposed
into critical blocks By, ..., B, where a critical block is a maximal subsequence
of operations of a critical path requiring the same machine.

3 Robustness of Processing Orders

According to a classification of the most representative situations of uncertainty
in optimisation problems given in [11], the uncertainty addressed in the fuzzy job
shop problem lies in the robustness category, where design variables are subject
to perturbations or changes after the optimal solution has been determined. A
common requirement in this case is that a solution should still work satisfactorily
when the design variables change slightly, for instance, due to manufacturing tol-
erances. Solutions fulfilling this requirement are termed robust solutions. Several
methods have been proposed to deal with duration uncertainty in the framework
of scheduling problems ([4], [8], [5]) but less effort has been dedicated to analyse
the robustness of solutions ([14], [6]). Here, we propose a new method to study
robustness for the fuzzy job shop problem, based on a numerical analysis and
inspired by the semantics for fuzzy schedules from [7].

3.1 Semantics of Fuzzy Schedules

In [7] solutions to the fuzzy job shop are interpreted as a-priori solutions, found
when the duration of tasks is not exactly known. In this setting, it is impossi-
ble to predict what the exact time-schedule will be, because it depends on the
realisation of the task’s durations, which is not known yet. Each fuzzy schedule
corresponds to a crisp ordering of tasks and it is not until tasks are executed
according to this ordering that we know their real duration and, hence, know
the exact schedule, the a-posteriori solution with crisp job completion times and
makespan. The practical interest of a solution to the fuzzy job shop would lie



in the ordering of tasks that it provides a priori using the available incomplete
information, which should yield good schedules in the moment of its practical
use. Its behaviour could therefore be evaluated on a family of NV crisp job shop
problems, representing a posteriori realisations of the fuzzy problem. Such pos-
sible realisations are simulated by generating an exact duration for each task
at random according to a probability distribution which is coherent with the
fuzzy duration (namely the possibility distribution it provides normalised so the
additivity axiom holds).

Given a solution to the fuzzy job shop, consider the task processing order
it provides op. For a crisp version of the problem, let n be the matrix of crisp
durations, such that n;;, the a-posteriori duration of task 6;; is coherent with
the constraint imposed by the fuzzy duration p;;. The ordering or can be used
by an algorithm of semiactive schedule building as presented above, using the
exact durations n instead of fuzzy ones, to obtain a time-schedule with a crisp
makespan Cr,q.(0r,m,v). If instead of a single crisp instance we consider the
whole family of N crisp problems, each with a duration matrix, we obtain NV
makespan values, and its average gives a measure of the overall performance of
the fuzzy solution across the family of N crisp problems.

3.2 A Methodology for Robustness Analysis

In [2], the authors distinguish between five approaches to dealing with uncer-
tainty in a scheduling environment where the evolution structure of the prece-
dence network is deterministic: reactive scheduling, stochastic scheduling, sched-
uling under fuzziness, proactive (robust) scheduling, and sensitivity analysis. The
fuzzy job shop approach falls clearly into the third category. However, we shall
argue that it also falls in the proactive or robust scheduling category. Proactive
scheduling constructs a predictive schedule that accounts for statistical knowl-
edge of uncertainty, used to make the predictive schedule more robust, i.e., in-
sensitive to disruptions. Even if the information about the uncertainty is not
of stochastic nature, the fuzzy job shop approach is still proactive in the sense
that the built schedule (the obtained task processing order) also accounts for the
uncertain knowledge available and should therefore be less sensitive to perturba-
tions in task durations. Hence we propose to test such robustness in comparison
to a simpler approach which does not take into account the available albeit
uncertain knowledge.

The uncertainty in processing times is modelled using TFNs with a single
modal value. Provided that the membership function is symmetric, this value co-
incides with the TFN’s expected value. This suggests reducing the fuzzy problem
to a crisp one where task durations are given by their most typical value. This
approach, based on defuzzification, is pretty standard and has the advantage of
reducing the problem to a less complex and better known one. It also has the
potential disadvantage of losing some information, which may reflect in a loss of
robustness.

Let o and o¢ denote feasible task processing orders obtained respectively
for the fuzzy job shop problem and the crisp one where each task is allocated



its most typical duration. We propose to compare both orderings in terms of
robustness, when durations are subject to perturbations, independently of the
method of resolution used. The comparison will take place under four different
situations. The first one corresponds to the above semantics, testing their per-
formance on a set T} of N crisp instances (possible realisations) obtained as
a random sample of the probability distributions derived from the TFNs. The
remaining situations correspond to “extreme” crisp instances, modelling situa-
tions where, either the expert has been very conservative when estimating the
most typical duration, so the actual processing time is in general lower, or the
expert has been too optimistic, so there are significant delays w.r.t. the most
typical duration. First, we generate a set T» of N crisp instances where, for each
task with fuzzy duration (p',p?,p?), its realisation (crisp duration) is selected
at random from the interval [p!,p! + 0.25(p3 — p!)] (i.e. the first “quarter” of
all possible durations). Analogously, another set T3 of N crisp instances is gen-
erated so, for each task, its possible crisp duration is selected at random from
[pt40.75(p® —p'), p3]. A final set Ty of N crisp instances is obtained as a mixture
of conservative and optimistic estimations, with each task duration selected at
random from [p!,p! + 0.25(p> — p!)] U [p* + 0.75(p® — p'), p?]. For every crisp
instance, both task orderings o and oo can be applied to obtain a makespan
value; the average and standard deviation of these values across each set of IV
crisp instances will provide a means of comparing both orderings. If the use of
TFNs throughout the solving process is an adequate approach to taking into ac-
count uncertain information, then solution op should behave better when faced
with these perturbations than o¢ and, hence, it would be considered robust.

4 Experimental Results

For the experimental results, we consider 12 well-known benchmark problems
for job shop: FT10 (size 10 x 10), FT20 (20 x 5), La21, La24 and La25 (15 x 10),
La27 and La29 (20 x 10), La38 and La40 (15 x 15), and ABZ7, ABZ8 and ABZ9
(20 x 15). Fuzzy versions of each benchmark are generated following [8] and [9],
so task durations become symmetric TFNs where the modal value is the original
duration, ensuring that the optimal solution to the crisp problem provides a
lower bound for the fuzzified version. The hybrid genetic algorithm is run 30
times for each of the 12 fuzzy job shop instances with population size 100 and
for 200 generations. Another 30 runs are performed for each of the 12 crisp
job shop instances, with the same population size and an extended number of
generations to obtain equivalent CPU times and allow for comparisons.

Table 1 presents a first comparison between both approaches, showing the
fuzzy makespan values Cryoz (05, P) and Cpaz(0f, p) obtained with both order-
ings on the problem with fuzzy durations. It illustrates the convergence of the hy-
brid algorithm minimising the expected makespan, since the solution found with
this method for the fuzzy problem (c}) does obtain lower expected makespan
than a different ordering o, even if in some cases the most typical makespan

value C2,,. is greater for o}, than for of..



Table 1. Initial comparison between o7 and o&

Problem| Craz(05,P)  E[Cmaz(07,DP)]| Cmaz(08,P)  El|Cmaz(cé, D)
FT10 | (874, 935, 1003) 936.7 (893, 930, 999) 038.0
FT20 |(1090,1165,1241) 1165.2 (1094,1165,1243) 1166.7
La2l |(988,1052,1130) 1055.5 (992,1053,1135) 1058.2
La24 | (872,939,1012) 940.5 (894,938,1007) 944.2
La25 | (919,977,1059) 983 (923,977,1076) 988.2
La27 [(1171,1249,1340) 1252.2 (1176,1254,1362) 1261.5
La29 [(1107,1183,1262) 1183.7 (1112,1175,1264) 1181.5
La38 |(1135,1215,1303) 1217 (1148,1215,1312) 1222.5
Lad0 [(1145,1233,1324) 1233.7 (1160,1228,1328) 1236
ABZ7 | (645, 675, 715) 677.5 (646, 680, 732) 684.5
ABZ8 | (652,684,728) 687 (656,688,731) 690.7
ABZ9 | (672,704,742) 705.5 (669,704,749) 706.5

Following the proposed methodology, for each fuzzy problem instance and
each execution of the algorithm, the obtained task processing order o is tested
on the four sets 17 to Ty of perturbations, with N = 1000. We proceed analo-
gously, for the ordering o¢ for the corresponding crisp problem. Figure 2 presents
a boxplot of the makespan values obtained using both o and ¢ on each set
of 1000 perturbations for instance ABZ9, averaged across the 30 runs of the
hybrid algorithm. It shows that o compares favourably to o¢. Similar plots are
obtained for all large problems.

760
750
740
730
%
720 % %
710
700

——
690 +

Cnax (05, T1) Ciax (0c,T1)  Cmax(0r,T2)  Cmax(9c,T2) Cmax(0r.Ts)  Cmax(0c.Ts)  Crmax(0rTa)  Crmax(0c,Ts)

680

Fig. 2. Boxplot of crisp makespan values obtained with o and o¢ on the four sets of
possible perturbations of ABZ9.

Table 2 contains a summary of results obtained with both processing orders
or and o¢ for each of the twelve problems with the average and standard de-
viation of makespan values across each set of 1000 perturbations, also averaged



Table 2. Results for the robustness analysis

l

Ty

T

T3

Ty

FT10 op

ac
FT20 op

ac
La2l op
ac
La24 op
oc
La25 op
oc
La27 ofF
ac
La29 or
ac
La38 op
ac
Lad0 op
oc
ABZ7 oF

oc
ABZ8 oF

ac
ABZ9 or

oc

943.8+5.34
941.6£4.70

1178.9£6.29
1179.44+5.84

1064.0+6.22
1064.6+6.15

951.4+4.47
955.7£3.99

990.1+£5.32
991.6+6.06

1269.6+3.37
1274.44+5.48

1205.7+5.13
1211.645.27

1235.14+6.19
1239.245.44

1246.01+5.68
1247.945.09

687.6+£2.35
690.2+2.06

701.4+2.17
704.14+2.12

717.6+1.82
720.24+1.93

891.7+0.41
901.3£0.39

1117.3+0.50
1117.94+0.50

1003.3+0.51
1008.51+0.43

901.2+0.45
906.9+0.41

941.24+0.47
945.940.43

1193.84+0.58
1203.0+0.48

1145.6+0.46
1153.3+0.42

1170.6+0.56
1177.440.50

1173.5+0.53
1179.740.52

655.4+0.23
661.3£0.20

671.9£0.23
677.0£0.20

690.3£0.22
693.5+0.21

960.8+1.37
988.5£0.60

1198.8+1.40
1234.3+0.56

1114.84+0.57
1118.84+0.66

967.7£1.16
1000.040.52

1038.7+0.60
1045.8+0.69

1337.2+0.67
1345.1+0.72

1261.3+0.58
1272.1+0.69

1293.44+0.39
1301.3+0.52

1306.41+0.59
1313.61+0.71
717.6+0.27
721.3+0.28

729.3£0.33
733.6+0.33

743.84+0.25
747.91+0.28

951.0+2.21
949.5£2.00

1185.44+2.38
1186.6+2.38

1073.9+2.30
1075.3+2.31

959.0+1.86
964.0+1.84

999.8+2.23
1000.6+2.30

1280.91+2.36
1286.3+2.26

1215.842.11
1222.64+2.14

1245.84+2.56
1251.6+2.53

1256.942.19
1260.1+2.26

692.2+1.00
695.2+0.98

706.4£1.01
709.9+0.97

722.3+£0.91
725.240.92

across the 30 runs of the hybrid algorithm. Overall, it is clear that the task order-
ing produced using fuzzy durations, o, performs better than the task ordering
oc found when only the most typical duration was considered.

By using TFNs, the hybrid algorithm, makes a joint search effort, trying to
optimise makespan values across the three solution graphs G*(¢) in parallel. In
some problem instances (such as ABZ or La29), the consequence is that the
value of E[Cpqz(0F)] is lower than the crisp makespan Cyq.(0¢) obtained with
the defuzzified problem. In other instances (FT20, La21, La38), this is not the
case; it could be thought that optimising three components in parallel penalises
the global solution when compared to optimising only the most likely duration.
In the first case, the improvement in terms of robustness of the solution when
TFNs are used instead of crisp defuzzified durations is clear. Most interestingly,
in the second case the experimental results in Table 2 show that the effort in
maintaining an equilibrium among the three components of the TFNs has trans-
lated in greater robustness compared to the solution offered by the defuzzified
problem.



5 Conclusions

We have considered a job shop problem with uncertain durations modelled as
TFNs and have proposed to analyse the robustness of the solution based on
its sensitivity to posterior perturbations in task durations. We have proposed a
methodology based on a numerical analysis of the performance of the solution
subject to different types of changes in task durations. This methodology has
been applied to obtain experimental results on twelve problem instances. The
results show that using fuzzy numbers to represent task durations and taking
into account this information about uncertainty in the solving process produces
proactive solutions, robust to possible changes in task processing times.
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