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Abstract. One of the definitely unsolved main problems in molecular biology is 
the protein-protein functional association prediction problem. Genetic Pro-
gramming (GP) is applied to this domain. GP evolves an expression, equivalent 
to a binary classifier, which predicts if a given pair of proteins interacts. We 
take advantages of GP flexibility, particularly, the possibility of defining new 
operations. In this paper, the missing values problem benefits from the defini-
tion of if-unknown, a new operation which is more appropriate to the domain 
data semantics. Besides, in order to improve the solution size and the computa-
tional time, we use the Tarpeian method which controls the bloat effect of GP. 
According to the obtained results, we have verified the feasibility of using GP 
in this domain, and the enhancement in the search efficiency and interpretability 
of solutions due to the Tarpeian method.  

Keywords: Protein interaction prediction, genetic programming, data integra-
tion, bioinformatics, evolutionary computation, machine learning, classification, 
control bloat. 

1   Introduction 

Nowadays, one of the challenges for molecular biology is to manage the huge 
amounts of genomic and proteomic data, which are increasing exponentially. The 
analysis of these data requires automatic methods in order to discover useful knowl-
edge, which is infeasible with manual (i.e. visual inspections) techniques. 

A significant part of the biological diversity and complexity is coded in the func-
tional associations between molecules, such as the proteins [1]. Thus, understanding 
the protein interaction networks is essential to identify, explain and regulate the bio-
logical process dynamics in living systems. Therefore, if it is known how the cells in 
the organism work at molecular level, it will be possible to regulate certain processes, 
intervening in the appropriate interaction. 

Traditionally, physical interactions or functional associations are detected by  
using experimental techniques [2] which are costly in resources and time. As a conse-
quence, in recent years, an increasing interest in computational prediction methods 
which reduce these costs has arisen [3, 4, 5]. However no approach is the most suit-
able for each and every one of the protein pairs. Furthermore, the results about the 
analysis of proteins and their interactions (both at experimental and computational 
levels) are not unified; as well as, the information is distributed among multiple  
databases [6]. 
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In addition, comparing and combining data from different sources is very compli-
cated, especially in protein-protein functional associations. This complexity is due to 
the respective biases of each source [7]. Moreover, most of the methods which deter-
mine functional associations lead to a significant number of false positives. Also, 
some methods have difficulties for retrieving particular types of interactions [7]. As a 
consequence of the previous aspects, the overlap among the outputs of the different 
methods is small. For this reason, the protein pairs predicted by these methods are 
complementary to each other. In other words, each method covers only a subset of the 
whole interaction network of the organism. 

In this paper we intend to approach the problem of protein-protein functional asso-
ciation prediction, integrating the several available data sources, in order to centralize 
the current predictions, as a binary classification problem. This problem can be tack-
led by traditional Machine Learning methods and indeed, we will test them in this 
paper. But our long-term aim is to apply GP to this biological domain because of GP's 
potential flexibility. 

Genetic Programming (GP) is a technique to automatically evolve computer pro-
grams [8]. In this paper, GP will be used to obtain an equation equivalent to a binary 
classifier. One of the reasons for choosing GP is that this technique allows the de-
signer to define the primitives according to the requirements of the application do-
main. For example, we define the if_unknown (if_?) operator (explained below) in 
order to try to solve the missing values problem, which is a relevant question in this 
biological domain, because there is a great deal of them in the data sets. 

A missing value is a feature without a known value in some of the instances. The 
most commonly used approaches to handle missing values in the Machine Learning 
literature are: (1) ignoring the complete instance or (2) filling in with the mean value 
for the feature. The first approach is appropriate when there are few missing values. 
However, in our domain almost all the instances have some missing values, and if 
these instances are ignored, the data is reduced considerably, down to less than 
0.005%. The second approach gets a suitable approximation when there is noise while 
the data are collected, and consequently some values are missed or forgotten. But this 
is not our case, because it does not reflect the semantics of the actual data: most of our 
missing values represent non-existing data in a particular database (as opposed to 
unknown or forgotten). This is because the data sources (the output of several compu-
tational prediction methods) give an output only if all the method constraints are ful-
filled. Therefore, you can not suppose any mean value as valid. Then the best solution 
is to manage missing values as special values.  

Thus, in this paper we handle the non-existent values in a special way, with two 
new approaches: (1) replacing non-existent values with a specific numerical flag or 
(2) preserving the unknown in the data sets (represented by ‘?’). A drawback of the 
first approach is that numerical values now have two different semantic interpreta-
tions: actual values and flags. However, using the second approach a more meaning-
ful representation is obtained in terms of biological interpretation. These new 
approaches for handling missing values are evaluated in the results section. 

Furthermore, it is well known that GP suffers from the bloat problem [9]. That is, 
GP individuals tend to grow in size without apparent gain in fitness. Hence, to try to 
improve the accuracy and readability of equations evolved by GP, we use the Tar-
peian bloat control mechanism, which biases evolution towards simple solutions [10]. 
We also expect that the Tarpeian method will speed-up the evolution of solutions. 
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This paper is organized as follows: Section 2 presents a brief introduction to the 
GP. In Section 3, the application domain, with the used information sources, is ex-
plained. Section 4 describes how to design the problem to apply GP. Results for the 
experimental phase are shown in Section 5. Finally, in Section 6, conclusions and 
future work are summarized. 

2   Genetic Programming 

Genetic programming (GP) is an evolutionary paradigm which applies genetic algo-
rithms to breed computer programs automatically [8]. Each individual in the popula-
tion is traditionally represented like a tree structure, with terminals in the leaves and 
operators or functions in the internal tree nodes. The fitness is determined by the indi-
vidual performance in the specific task. 

Excessive tree growth or bloat often happens in GP, greatly slowing down the evo-
lution process [9]. Code bloat has three negative effects. First, individuals are difficult 
to understand by human users. This aspect may be important in protein interactions, if 
persons want to understand what GP learned after the evolution process. Second, it 
makes the evolution process very slow, because it takes longer to evaluate oversized 
individuals. And finally, and in the context of classification problems, oversized indi-
viduals may have a poor accuracy, because they tend to overfit the data. 

The Tarpeian method [10], a well-founded bloat-control technique is applied in this 
research. Briefly, this method will stochastically abort some individuals in the evolu-
tion process, if its tree size is bigger than the average (in nodes or depth) in the popu-
lation of the last generation. So, the solution size is limited in a flexible way and, 
decreasing the tree size, will improve its interpretation. It also reduces the execution 
time, since these individuals are not evaluated, and their fitness is the worst possible 
value. In addition, in learning tasks, reducing tree size is akin to Occam’s Razor, and 
may improve prediction accuracy.  

3   Protein-Protein Functional Association Prediction Problem 

A pair or set of proteins interacts if they are associated by the function carried out. 
This is the definition of functional association used in this research. It means func-
tional interaction, instead of physical one. 

In this work, the application domain for the prediction task is the proteome of a 
specific procariota organism: Escherichia Coli (E.coli). It has 4,339 known proteins, 
whose functional interactions have to be determined. 

The five computational methods used in this research are based on different evi-
dences indicating if a pair of proteins physically or functionally interacts. The under-
lying fundamentals of every method are different [3]. 

The database sources where the 89,401 positive instances (without overlaps) are re-
trieved are BIND, DIP, IntAct, EcoCyc, KEGG, iHoP and Butland’s set [11]. The 
number of pairs from each database is 58, 401, 2,684, 64,357, 20,860, 6,686, and 
4,745, respectively. Each one contains information about evidence which indicates the 
possibility of an interaction between pairs of proteins. These databases can be 
grouped in several categories, according to the considered proof: 
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A ) Pairs of proteins with a physical interaction, verified with experiments in a labo-
ratory. Sources: BIND, DIP and the Butland’s set. 

B ) Proteins belong to the same molecular complex. Sources: IntAct and EcoCyc 
complex. 

C ) Databases which take into account the co-regulation and regulation processes in 
the gene transcription. They include pairs of proteins (related with a specific 
gene) expressed at the same time, or when a protein catalyses a chemical reaction 
in order to the expression of the other gene to occur. Sources: EcoCyc regulated 
and EcoCyc coregulated. 

D ) Pairs of proteins which appear in the same metabolic pathway. Sources: EcoCyc 
functional associations and KEGG. 

E ) Databases with data retrieved from the scientific literature, using text mining 
tools. Source: iHoP. 

Before beginning the description, it must be noted that there are several difficulties 
inherent to the nature of these biological data, which complicate solving successfully 
this task with a Genetic Programming or Machine Learning approach. The most  
important problems are: the intrinsic uncertainty in input data; the highly uneven 
distribution between the number of instances in the positive and negative classes (in 
general, the positive class means less than 1% instances); and the high percentage of 
missing values in several attributes (only 82 instances over 2,665,180 have a known 
value for the whole features). 

4   Experimental Set Up 

This section describes the necessary elements in order to apply GP to solve the pro-
tein-protein functional association prediction problem. lilgp 1.1 [12] is the GP tool 
used in the experimental phase. It is based on the first two Koza's books [8]. 

4.1   Data Set Representation 

The data are represented in attribute-value pairs in order to be able to apply both GP 
and Machine Learning techniques. We define 9 features. On the one hand, 5 scores 
from five prediction computational methods [3] based on different evidences. On the 
other hand, 4 biological characteristics, the number of orthologous sequences and the 
length sequence, for every protein in the pair; both are ordered as minimum and 
maximum value for the pair. 

The instances are divided in two classes: positive and negative class. The positive 
class includes pairs of proteins which appear in some of the databases previously 
mentioned. 

The pairs of proteins in the negative class are extracted applying something similar 
to the “Closed-World assumption”, which, in this domain, means that every pair of 
proteins whose functional associations has not been reported explicitly (i.e., that pair 
does not appear like a positive instance), is considered a pair which does not interact 
(i.e., a negative instance). Thus, the number of negative instances is very high (a total 
of 99% in all possible interactions set), due to the combinatorial explosion coming 
from the 4,339 proteins in E.coli, resulting in 9,411,291 possible interaction pairs. 
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Therefore, filters are applied to reduce this high quantity of negative instances. One 
filter only chooses the instances which have their two proteins belonging to pairs from 
the positive class. Another one removes homodimers pairs. Also, the instances with-
out any known score are left out. To sum up briefly, the total number of available 
instances is reduced to 264,752 (16,566 positive and 248,186 negative ones). 

For experimental reasons, train and test set have 10,000 instances each one, ran-
domly chosen in each class among the available ones. The number of instances from 
the positive class and from the negative class is the same (5,000) in order to avoid the 
uneven distribution class problem (explained above). 

4.2   Solution Coding 

In GP, it is necessary to define the elements which are part of the trees that represent 
the different individuals in the population (i.e., the terminals and the operators). 

There are 10 terminals: the 9 attributes explained above and 1 ERC (Ephemeral 
Random Constant) that represents any random numerical constant which can appear 
several times along the evolution process. Its value range is [0, 1]. 

Operational closure is a typical requirement in GP. So, all the terminals should 
have a value in any input instance. Therefore, the high quantity of missing values (or 
rather non-existing values in our domain) must be handled in a special way. In a first 
approach, we fill the non-existent values in with a specific flag: a numerical constant 
very different from the rest of the feature value (0 or -1, according to the minimum 
value reached in each terminal). Besides, all the terminals are normalized, in order to 
homogenize the results. 

The operators used are the arithmetical ones (+, -, * and protected /), the condi-
tional one [if (a>=b) then x else y], and finally one new specific operator, tailored for 
this domain: if_? [if (k is unknown) then x else y]. This operator is defined as a second 
approach in order to manage the missing values, doing the non-existing values very 
different from the rest. So, when this operator is used, the missing values are pre-
served, without replacing them with any numerical constant (0 or -1). The rest of 
operations are operationally closed always returning the unknown value ('?') if any of 
their input values is '?'. 

4.3   Evolutionary Process 

Firstly, in order to predict functional association between two proteins (p1, p2), the 
evolved individual f, is applied to them, and a threshold is used to give a positive or a 
negative class. Hence, if (f >= threshold) then (p1, p2) functionally interact; else (p1, 
p2) do not interact. In all the experiments presented in this work, the threshold is 0.5. 

The fitness function in this work is the accuracy, it means, the percentage of cor-
rectly classified instances, in other words, fitness=(TP+TN)/(TP+TN+FP+FN), ac-
cording to the definition of True Positives (TP), True Negatives (TN), False Positives 
(FP) and False Negatives (FN) in [13]. 

In the evolutionary process, there are many parameters which must be set, resulting 
in different configurations for the experiments. A complete list, their meaning and a 
detailed description appears in the lilgp manual [12]. In addition, a new parameter is 
added to the lilgp tool: the Tarpeian factor. It is the probability of aborting an individ-
ual if its size is bigger than the average. 
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The main parameters have been tuned within the range of values shown in Table 1. 
An appropriate configuration for the parameters has been found from a few prelimi-
nary experiments (see Table 2). 

The parameters in the base configuration were obtained from our preliminary tests, 
except for the maximum depth and individual selection method, which are the default 
values in the aforementioned Koza work [8]. 

Table 1. Range of values of the main parame-
ters 

Table 2. Values of the main parameters in the 
base configuration, without bloat control 

Parameter Range of values  Parameter Value 

Population size 1,000 - 25,000  Population size 1,000 
No. generations 15 - 250  No. generations 50 
Maximum depth 17  Maximum depth 17 
Maximum no. nodes 25 - 300  Maximum no. nodes 200 
Tree operators +,  -,  *,  /,  >=, if_?  Tree operators +,  -,  *,  /,  >= 

crossover (0.3 - 0.9)  crossover (0.5) 
reproduction (0.1 - 0.4)  reproduction (0.1) 

Genetic operators 
(probability) 

mutation (0.0 - 0.4)  

Genetic operators 
(probability) 

mutation (0.4) 
Individuals selection 
method 

tournament (size=7) 
 Individuals selection 

method 
tournament (size=7) 

Tarpeian factor 0.0 - 0.9  Tarpeian factor 0.0 

5   Results 

This section presents the results after applying GP to the protein-protein functional 
association prediction problem. All the configurations displayed come from averaging 
30 GP runs. 

In the base configuration a test accuracy of 60.83% on average and 61.44% for the 
best run are obtained, with a very low variance in both train and test. 

5.1   Comparison with Other Machine Learning Techniques  

Table 3 summarizes results from other Machine Learning techniques (from the Weka 
[14]) in order to make a comparison. All the parameters follow default Weka options. 

Table 3. Genetic Programming and Machine Learning: accuracy comparison 

Algorithm % Train %  Test % Test with 
unknown values 

Test 
Sensitivity 
TP/TP+FN 

Test 
Specificity 
TN/TN+FP 

GP 
62.34 / 
62.92 

60.83 / 
61.44 

60.67 / 61.22 58.87 / 63.54 62.62 / 59.34 

ADTree 61.28 60.02 60.35 64.56 55.48 
AODE 62.48 61.32 58.99 48.60 74.04 
KStar 98.86 61.60 58.92 60.24 62.96 
MLP 58.85 58.22 60.00 20.40 96.06 
PART 64.06 61.96 58.33 60.84 63.08 
Simple Logistic 60.29 60.70 57.61 56.34 65.06 
SMO 59.17 59.96 57.62 56.98 62.94 
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Train and test results (first and second columns in table 3) are very close; accord-
ingly we can assume that there is no overfitting. Table 3 shows that the accuracy in 
both train and test is nearly the same in all classifiers, with values around 60-61% in 
test (in GP, 60.83% on average and 61.44 for the best run). The single exception is 
Kstar in train which reaches an accuracy of almost 99%, because it stores the whole 
training set. In conclusion, GP gets accuracy about as high as most of traditional Ma-
chine Learning algorithms that we have tested. 

Besides, the two last columns show sensitivity and specificity. Interpreting these 
measures as performance by class, the former for the positive class and the latter for 
the negative class, it can be noted that almost all algorithms get similar correct predic-
tions in both classes. The exceptions are AODE and MLP, which are biased towards 
only the negative class, and the instances from the positive class are predicted worse 
than random.  

The mix of the different data sources, the several transformations in attributes and 
the instances selection processes are very specific to this research. Therefore, it is 
very difficult to make a comparison with other protein-protein functional association 
prediction methods, which have their own biases. 

5.2   Changing Significant Parameters: If_? Operator and the Tarpeian Method 

This section describes what happens when a new operator is added to the existing 
arithmetical and conditional ones: it is if_?. It tries to manage the missing values 
problem which is very important in this domain due to its huge number in several 
features, as it was mentioned above. In the same way, the effects derived from the 
application of Tarpeian control bloat method are analyzed. 

5.2.1   Missing Values Handling Comparison 
Two different approaches for missing values handling are validated in this section. 
The former fills them in with a specific numerical flag (base configuration). The latter 
one preserves the missing values in the data, and each algorithm uses its own criteria 
for processing them. For example, GP adds the new operator (if_?), and Weka algo-
rithms fill in with the mean or ignore the complete instance (see Introduction section 
for a more detailed explanation about missing values in this domain). 

The second and third columns in table 3 show the test accuracy corresponding to 
the first and the second approach, respectively. Then, when the test accuracy column 
(the second one) is analyzed PART is slightly better than GP. However, looking at the 
third column, GP shows the highest value. It means, if unknown values are preserved 
in the data set, GP outperforms the other Machine Learning algorithms. 

5.2.2   Different Configurations Comparison 
Table 4 and Figure 1 show how several measures (such as train and test accuracy, tree 
size and execution time) change for six different experiment configurations. Base is 
the best configuration found, without bloat control, whose parameters were mentioned 
previously. Base without limit means the base configuration but without restricting the 
maximum tree size. If_? refers to base configuration including this new operator (see 
solution coding section for a description of if_? operator). Finally, Tarpeian configu-
ration includes this control bloat method and the without limit characteristic. if_? & 
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without limit and if_? & Tarpeian are configurations which includes the elements of 
both of them. 

In Figure 1, the Y-axis quantifies size (in number of nodes) and time (in seconds). 
The scale is the same for both measures. 

Table 4. Influence of if_? and Tarpeian: 
train and test accuracy 
  
Id Configuration % Train % Test 

a base 62.34 60.83 
b base without limit 62.40 60.93 
c if_? 61.38 60.67 
d if_? & without limit 61.33 60.65 
e Tarpeian 60.89 60.43 
f if_? & Tarpeian 60.53 60.27 
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Fig. 1. Influence of if_? and Tarpeian: tree  
size and time average 

Table 4 shows that the test accuracy is almost constant in all configurations, around 
60.5%; while the train accuracy slightly goes down, when the if_? operator or/and the 
Tarpeian method are included. However, with reference to tree size (number of 
nodes) and time (see Figure 1), the values for the configurations with the if_? operator 
or the Tarpeian method are considerably lower than others. With the Tarpeian method 
the reduction is bigger than with the if_? operator, and even more when both are used 
together. From configuration ‘b’ to ‘f’, on average, the size decreases in more than 
638 nodes and the time in almost 3000 seconds. 

Moreover, when the if_? operator or the Tarpeian method is applied the solution 
size (i.e. number of nodes) is quite shorter than in PART algorithm, which is the best 
Machine Learning algorithm according to test accuracy (see previous section). In the 
decision list from PART there are 250 nodes (operands and operators) and in GP 
solution trees with ‘f’ configuration 38 nodes on average. 

In conclusion, the if_? operator and the Tarpeian method reduce tree size and time, 
dropping scarcely test accuracy. 

To sum up, as discussed previously, decreasing the tree size, only implies a 
scarcely lower accuracy than the base configuration. Nevertheless, the obtained trees 
have an easier interpretation and a very much faster evolution process. Therefore, it 
seems convenient to include in the solution both the if_? operator and the Tarpeian 
method. 

6   Conclusions and Further Work 

In this paper, we have applied Genetic Programming (GP) to the protein-protein func-
tional association prediction problem. Our initial work shows that GP manages to 
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obtain accuracy results similar to other Machine Learning methods (around 61%). 
The GP individual takes into account the intrinsic complexity which entails the bio-
logical nature of the data and its associated meaning. Besides, the predictor integrates 
information from different sources related with protein functional association, exist-
ing until now. 

We have taken advantage of the flexibility offered by GP to define primitives in 
order to be closer to the real world problem conditions. We use a new operator (if_?) 
that takes into account the large number of unknown values in the data. GP gets to 
handle missing values slightly better than the rest of Machine Learning algorithms 
tested, in the sense that classification accuracy does not decrease significantly when 
missing values are used directly. 

GP typically suffers from bloat, that is, the increase in size of the individuals with 
no apparent gain in fitness. In this paper, we have managed to reduce bloat by means 
of the if_? operator and the Tarpeian method. Some of the negative effects of bloat 
are controlled in this domain. First, the tree size has been reduced, even with respect 
to Machine Learning algorithms, therefore improving interpretation of the individuals. 
Second, the execution time goes down, due to do not wasting evaluating excessive big 
trees, improving the efficiency of the GP system. Both effects are achieved with al-
most no decrease in accuracy. 

We believe that results could be improved further. The fitness function we have 
used is straightforward and perhaps more elaborate functions could achieve better 
results. In particular, our fitness functions measures only accuracy, but in this domain 
true positives is more important than true negatives, and this could be addressed very 
easily by GP. Extending the terminal and function set, and using ADFs [8] is also a 
plausible option, as well as using recent improvements over the Tarpeian method  
[9, 15]. Another interesting possibility would be to study if the output numerical value 
is suitable as functional association likelihood. 
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