
H. Geffner et al. (Eds.): IBERAMIA 2008, LNAI 5290, pp. 432–441, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Genetic Programming for Predicting Protein Networks

Beatriz Garcia, Ricardo Aler, Agapito Ledezma, and Araceli Sanchis

Universidad Carlos III de Madrid, Computer Science Department
Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain
{beatrizg,aler,ledezma,masm}@inf.uc3m.es

Abstract. One of the definitely unsolved main problems in molecular biology is
the protein-protein functional association prediction problem. Genetic Pro-
gramming (GP) is applied to this domain. GP evolves an expression, equivalent
to a binary classifier, which predicts if a given pair of proteins interacts. We
take advantages of GP flexibility, particularly, the possibility of defining new
operations. In this paper, the missing values problem benefits from the defini-
tion of if-unknown, a new operation which is more appropriate to the domain
data semantics. Besides, in order to improve the solution size and the computa-
tional time, we use the Tarpeian method which controls the bloat effect of GP.
According to the obtained results, we have verified the feasibility of using GP
in this domain, and the enhancement in the search efficiency and interpretability
of solutions due to the Tarpeian method.

Keywords: Protein interaction prediction, genetic programming, data integra-
tion, bioinformatics, evolutionary computation, machine learning, classification,
control bloat.

1 Introduction

Nowadays, one of the challenges for molecular biology is to manage the huge
amounts of genomic and proteomic data, which are increasing exponentially. The
analysis of these data requires automatic methods in order to discover useful knowl-
edge, which is infeasible with manual (i.e. visual inspections) techniques.

A significant part of the biological diversity and complexity is coded in the func-
tional associations between molecules, such as the proteins [1]. Thus, understanding
the protein interaction networks is essential to identify, explain and regulate the bio-
logical process dynamics in living systems. Therefore, if it is known how the cells in
the organism work at molecular level, it will be possible to regulate certain processes,
intervening in the appropriate interaction.

Traditionally, physical interactions or functional associations are detected by
using experimental techniques [2] which are costly in resources and time. As a conse-
quence, in recent years, an increasing interest in computational prediction methods
which reduce these costs has arisen [3, 4, 5]. However no approach is the most suit-
able for each and every one of the protein pairs. Furthermore, the results about the
analysis of proteins and their interactions (both at experimental and computational
levels) are not unified; as well as, the information is distributed among multiple
databases [6].

1

Cita bibliográfica
Published in: Advances in Artificial Intelligence – IBERAMIA 2008, p. 432-441 (Lecture Notes in Computer Science, vol. 5290)

 Genetic Programming for Predicting Protein Networks 433

In addition, comparing and combining data from different sources is very compli-
cated, especially in protein-protein functional associations. This complexity is due to
the respective biases of each source [7]. Moreover, most of the methods which deter-
mine functional associations lead to a significant number of false positives. Also,
some methods have difficulties for retrieving particular types of interactions [7]. As a
consequence of the previous aspects, the overlap among the outputs of the different
methods is small. For this reason, the protein pairs predicted by these methods are
complementary to each other. In other words, each method covers only a subset of the
whole interaction network of the organism.

In this paper we intend to approach the problem of protein-protein functional asso-
ciation prediction, integrating the several available data sources, in order to centralize
the current predictions, as a binary classification problem. This problem can be tack-
led by traditional Machine Learning methods and indeed, we will test them in this
paper. But our long-term aim is to apply GP to this biological domain because of GP's
potential flexibility.

Genetic Programming (GP) is a technique to automatically evolve computer pro-
grams [8]. In this paper, GP will be used to obtain an equation equivalent to a binary
classifier. One of the reasons for choosing GP is that this technique allows the de-
signer to define the primitives according to the requirements of the application do-
main. For example, we define the if_unknown (if_?) operator (explained below) in
order to try to solve the missing values problem, which is a relevant question in this
biological domain, because there is a great deal of them in the data sets.

A missing value is a feature without a known value in some of the instances. The
most commonly used approaches to handle missing values in the Machine Learning
literature are: (1) ignoring the complete instance or (2) filling in with the mean value
for the feature. The first approach is appropriate when there are few missing values.
However, in our domain almost all the instances have some missing values, and if
these instances are ignored, the data is reduced considerably, down to less than
0.005%. The second approach gets a suitable approximation when there is noise while
the data are collected, and consequently some values are missed or forgotten. But this
is not our case, because it does not reflect the semantics of the actual data: most of our
missing values represent non-existing data in a particular database (as opposed to
unknown or forgotten). This is because the data sources (the output of several compu-
tational prediction methods) give an output only if all the method constraints are ful-
filled. Therefore, you can not suppose any mean value as valid. Then the best solution
is to manage missing values as special values.

Thus, in this paper we handle the non-existent values in a special way, with two
new approaches: (1) replacing non-existent values with a specific numerical flag or
(2) preserving the unknown in the data sets (represented by ‘?’). A drawback of the
first approach is that numerical values now have two different semantic interpreta-
tions: actual values and flags. However, using the second approach a more meaning-
ful representation is obtained in terms of biological interpretation. These new
approaches for handling missing values are evaluated in the results section.

Furthermore, it is well known that GP suffers from the bloat problem [9]. That is,
GP individuals tend to grow in size without apparent gain in fitness. Hence, to try to
improve the accuracy and readability of equations evolved by GP, we use the Tar-
peian bloat control mechanism, which biases evolution towards simple solutions [10].
We also expect that the Tarpeian method will speed-up the evolution of solutions.

2

434 B. Garcia et al.

This paper is organized as follows: Section 2 presents a brief introduction to the
GP. In Section 3, the application domain, with the used information sources, is ex-
plained. Section 4 describes how to design the problem to apply GP. Results for the
experimental phase are shown in Section 5. Finally, in Section 6, conclusions and
future work are summarized.

2 Genetic Programming

Genetic programming (GP) is an evolutionary paradigm which applies genetic algo-
rithms to breed computer programs automatically [8]. Each individual in the popula-
tion is traditionally represented like a tree structure, with terminals in the leaves and
operators or functions in the internal tree nodes. The fitness is determined by the indi-
vidual performance in the specific task.

Excessive tree growth or bloat often happens in GP, greatly slowing down the evo-
lution process [9]. Code bloat has three negative effects. First, individuals are difficult
to understand by human users. This aspect may be important in protein interactions, if
persons want to understand what GP learned after the evolution process. Second, it
makes the evolution process very slow, because it takes longer to evaluate oversized
individuals. And finally, and in the context of classification problems, oversized indi-
viduals may have a poor accuracy, because they tend to overfit the data.

The Tarpeian method [10], a well-founded bloat-control technique is applied in this
research. Briefly, this method will stochastically abort some individuals in the evolu-
tion process, if its tree size is bigger than the average (in nodes or depth) in the popu-
lation of the last generation. So, the solution size is limited in a flexible way and,
decreasing the tree size, will improve its interpretation. It also reduces the execution
time, since these individuals are not evaluated, and their fitness is the worst possible
value. In addition, in learning tasks, reducing tree size is akin to Occam’s Razor, and
may improve prediction accuracy.

3 Protein-Protein Functional Association Prediction Problem

A pair or set of proteins interacts if they are associated by the function carried out.
This is the definition of functional association used in this research. It means func-
tional interaction, instead of physical one.

In this work, the application domain for the prediction task is the proteome of a
specific procariota organism: Escherichia Coli (E.coli). It has 4,339 known proteins,
whose functional interactions have to be determined.

The five computational methods used in this research are based on different evi-
dences indicating if a pair of proteins physically or functionally interacts. The under-
lying fundamentals of every method are different [3].

The database sources where the 89,401 positive instances (without overlaps) are re-
trieved are BIND, DIP, IntAct, EcoCyc, KEGG, iHoP and Butland’s set [11]. The
number of pairs from each database is 58, 401, 2,684, 64,357, 20,860, 6,686, and
4,745, respectively. Each one contains information about evidence which indicates the
possibility of an interaction between pairs of proteins. These databases can be
grouped in several categories, according to the considered proof:

3

 Genetic Programming for Predicting Protein Networks 435

A) Pairs of proteins with a physical interaction, verified with experiments in a labo-
ratory. Sources: BIND, DIP and the Butland’s set.

B) Proteins belong to the same molecular complex. Sources: IntAct and EcoCyc
complex.

C) Databases which take into account the co-regulation and regulation processes in
the gene transcription. They include pairs of proteins (related with a specific
gene) expressed at the same time, or when a protein catalyses a chemical reaction
in order to the expression of the other gene to occur. Sources: EcoCyc regulated
and EcoCyc coregulated.

D) Pairs of proteins which appear in the same metabolic pathway. Sources: EcoCyc
functional associations and KEGG.

E) Databases with data retrieved from the scientific literature, using text mining
tools. Source: iHoP.

Before beginning the description, it must be noted that there are several difficulties
inherent to the nature of these biological data, which complicate solving successfully
this task with a Genetic Programming or Machine Learning approach. The most
important problems are: the intrinsic uncertainty in input data; the highly uneven
distribution between the number of instances in the positive and negative classes (in
general, the positive class means less than 1% instances); and the high percentage of
missing values in several attributes (only 82 instances over 2,665,180 have a known
value for the whole features).

4 Experimental Set Up

This section describes the necessary elements in order to apply GP to solve the pro-
tein-protein functional association prediction problem. lilgp 1.1 [12] is the GP tool
used in the experimental phase. It is based on the first two Koza's books [8].

4.1 Data Set Representation

The data are represented in attribute-value pairs in order to be able to apply both GP
and Machine Learning techniques. We define 9 features. On the one hand, 5 scores
from five prediction computational methods [3] based on different evidences. On the
other hand, 4 biological characteristics, the number of orthologous sequences and the
length sequence, for every protein in the pair; both are ordered as minimum and
maximum value for the pair.

The instances are divided in two classes: positive and negative class. The positive
class includes pairs of proteins which appear in some of the databases previously
mentioned.

The pairs of proteins in the negative class are extracted applying something similar
to the “Closed-World assumption”, which, in this domain, means that every pair of
proteins whose functional associations has not been reported explicitly (i.e., that pair
does not appear like a positive instance), is considered a pair which does not interact
(i.e., a negative instance). Thus, the number of negative instances is very high (a total
of 99% in all possible interactions set), due to the combinatorial explosion coming
from the 4,339 proteins in E.coli, resulting in 9,411,291 possible interaction pairs.

4

436 B. Garcia et al.

Therefore, filters are applied to reduce this high quantity of negative instances. One
filter only chooses the instances which have their two proteins belonging to pairs from
the positive class. Another one removes homodimers pairs. Also, the instances with-
out any known score are left out. To sum up briefly, the total number of available
instances is reduced to 264,752 (16,566 positive and 248,186 negative ones).

For experimental reasons, train and test set have 10,000 instances each one, ran-
domly chosen in each class among the available ones. The number of instances from
the positive class and from the negative class is the same (5,000) in order to avoid the
uneven distribution class problem (explained above).

4.2 Solution Coding

In GP, it is necessary to define the elements which are part of the trees that represent
the different individuals in the population (i.e., the terminals and the operators).

There are 10 terminals: the 9 attributes explained above and 1 ERC (Ephemeral
Random Constant) that represents any random numerical constant which can appear
several times along the evolution process. Its value range is [0, 1].

Operational closure is a typical requirement in GP. So, all the terminals should
have a value in any input instance. Therefore, the high quantity of missing values (or
rather non-existing values in our domain) must be handled in a special way. In a first
approach, we fill the non-existent values in with a specific flag: a numerical constant
very different from the rest of the feature value (0 or -1, according to the minimum
value reached in each terminal). Besides, all the terminals are normalized, in order to
homogenize the results.

The operators used are the arithmetical ones (+, -, * and protected /), the condi-
tional one [if (a>=b) then x else y], and finally one new specific operator, tailored for
this domain: if_? [if (k is unknown) then x else y]. This operator is defined as a second
approach in order to manage the missing values, doing the non-existing values very
different from the rest. So, when this operator is used, the missing values are pre-
served, without replacing them with any numerical constant (0 or -1). The rest of
operations are operationally closed always returning the unknown value ('?') if any of
their input values is '?'.

4.3 Evolutionary Process

Firstly, in order to predict functional association between two proteins (p1, p2), the
evolved individual f, is applied to them, and a threshold is used to give a positive or a
negative class. Hence, if (f >= threshold) then (p1, p2) functionally interact; else (p1,
p2) do not interact. In all the experiments presented in this work, the threshold is 0.5.

The fitness function in this work is the accuracy, it means, the percentage of cor-
rectly classified instances, in other words, fitness=(TP+TN)/(TP+TN+FP+FN), ac-
cording to the definition of True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN) in [13].

In the evolutionary process, there are many parameters which must be set, resulting
in different configurations for the experiments. A complete list, their meaning and a
detailed description appears in the lilgp manual [12]. In addition, a new parameter is
added to the lilgp tool: the Tarpeian factor. It is the probability of aborting an individ-
ual if its size is bigger than the average.

5

 Genetic Programming for Predicting Protein Networks 437

The main parameters have been tuned within the range of values shown in Table 1.
An appropriate configuration for the parameters has been found from a few prelimi-
nary experiments (see Table 2).

The parameters in the base configuration were obtained from our preliminary tests,
except for the maximum depth and individual selection method, which are the default
values in the aforementioned Koza work [8].

Table 1. Range of values of the main parame-
ters

Table 2. Values of the main parameters in the
base configuration, without bloat control

Parameter Range of values Parameter Value

Population size 1,000 - 25,000 Population size 1,000
No. generations 15 - 250 No. generations 50
Maximum depth 17 Maximum depth 17
Maximum no. nodes 25 - 300 Maximum no. nodes 200
Tree operators +, -, *, /, >=, if_? Tree operators +, -, *, /, >=

crossover (0.3 - 0.9) crossover (0.5)
reproduction (0.1 - 0.4) reproduction (0.1)

Genetic operators
(probability)

mutation (0.0 - 0.4)

Genetic operators
(probability)

mutation (0.4)
Individuals selection
method

tournament (size=7)
 Individuals selection

method
tournament (size=7)

Tarpeian factor 0.0 - 0.9 Tarpeian factor 0.0

5 Results

This section presents the results after applying GP to the protein-protein functional
association prediction problem. All the configurations displayed come from averaging
30 GP runs.

In the base configuration a test accuracy of 60.83% on average and 61.44% for the
best run are obtained, with a very low variance in both train and test.

5.1 Comparison with Other Machine Learning Techniques

Table 3 summarizes results from other Machine Learning techniques (from the Weka
[14]) in order to make a comparison. All the parameters follow default Weka options.

Table 3. Genetic Programming and Machine Learning: accuracy comparison

Algorithm % Train % Test % Test with
unknown values

Test
Sensitivity
TP/TP+FN

Test
Specificity
TN/TN+FP

GP
62.34 /
62.92

60.83 /
61.44

60.67 / 61.22 58.87 / 63.54 62.62 / 59.34

ADTree 61.28 60.02 60.35 64.56 55.48
AODE 62.48 61.32 58.99 48.60 74.04
KStar 98.86 61.60 58.92 60.24 62.96
MLP 58.85 58.22 60.00 20.40 96.06
PART 64.06 61.96 58.33 60.84 63.08
Simple Logistic 60.29 60.70 57.61 56.34 65.06
SMO 59.17 59.96 57.62 56.98 62.94

6

438 B. Garcia et al.

Train and test results (first and second columns in table 3) are very close; accord-
ingly we can assume that there is no overfitting. Table 3 shows that the accuracy in
both train and test is nearly the same in all classifiers, with values around 60-61% in
test (in GP, 60.83% on average and 61.44 for the best run). The single exception is
Kstar in train which reaches an accuracy of almost 99%, because it stores the whole
training set. In conclusion, GP gets accuracy about as high as most of traditional Ma-
chine Learning algorithms that we have tested.

Besides, the two last columns show sensitivity and specificity. Interpreting these
measures as performance by class, the former for the positive class and the latter for
the negative class, it can be noted that almost all algorithms get similar correct predic-
tions in both classes. The exceptions are AODE and MLP, which are biased towards
only the negative class, and the instances from the positive class are predicted worse
than random.

The mix of the different data sources, the several transformations in attributes and
the instances selection processes are very specific to this research. Therefore, it is
very difficult to make a comparison with other protein-protein functional association
prediction methods, which have their own biases.

5.2 Changing Significant Parameters: If_? Operator and the Tarpeian Method

This section describes what happens when a new operator is added to the existing
arithmetical and conditional ones: it is if_?. It tries to manage the missing values
problem which is very important in this domain due to its huge number in several
features, as it was mentioned above. In the same way, the effects derived from the
application of Tarpeian control bloat method are analyzed.

5.2.1 Missing Values Handling Comparison
Two different approaches for missing values handling are validated in this section.
The former fills them in with a specific numerical flag (base configuration). The latter
one preserves the missing values in the data, and each algorithm uses its own criteria
for processing them. For example, GP adds the new operator (if_?), and Weka algo-
rithms fill in with the mean or ignore the complete instance (see Introduction section
for a more detailed explanation about missing values in this domain).

The second and third columns in table 3 show the test accuracy corresponding to
the first and the second approach, respectively. Then, when the test accuracy column
(the second one) is analyzed PART is slightly better than GP. However, looking at the
third column, GP shows the highest value. It means, if unknown values are preserved
in the data set, GP outperforms the other Machine Learning algorithms.

5.2.2 Different Configurations Comparison
Table 4 and Figure 1 show how several measures (such as train and test accuracy, tree
size and execution time) change for six different experiment configurations. Base is
the best configuration found, without bloat control, whose parameters were mentioned
previously. Base without limit means the base configuration but without restricting the
maximum tree size. If_? refers to base configuration including this new operator (see
solution coding section for a description of if_? operator). Finally, Tarpeian configu-
ration includes this control bloat method and the without limit characteristic. if_? &

7

 Genetic Programming for Predicting Protein Networks 439

without limit and if_? & Tarpeian are configurations which includes the elements of
both of them.

In Figure 1, the Y-axis quantifies size (in number of nodes) and time (in seconds).
The scale is the same for both measures.

Table 4. Influence of if_? and Tarpeian:
train and test accuracy

Id Configuration % Train % Test

a base 62.34 60.83
b base without limit 62.40 60.93
c if_? 61.38 60.67
d if_? & without limit 61.33 60.65
e Tarpeian 60.89 60.43
f if_? & Tarpeian 60.53 60.27

a b c d e f
0

500

1000

1500

2000

2500

3000

3500
No.nodes

Time

configuration

si
ze

(n
o

d
e

s)
 &

 t
im

e
(s

e
cs

)

Fig. 1. Influence of if_? and Tarpeian: tree
size and time average

Table 4 shows that the test accuracy is almost constant in all configurations, around
60.5%; while the train accuracy slightly goes down, when the if_? operator or/and the
Tarpeian method are included. However, with reference to tree size (number of
nodes) and time (see Figure 1), the values for the configurations with the if_? operator
or the Tarpeian method are considerably lower than others. With the Tarpeian method
the reduction is bigger than with the if_? operator, and even more when both are used
together. From configuration ‘b’ to ‘f’, on average, the size decreases in more than
638 nodes and the time in almost 3000 seconds.

Moreover, when the if_? operator or the Tarpeian method is applied the solution
size (i.e. number of nodes) is quite shorter than in PART algorithm, which is the best
Machine Learning algorithm according to test accuracy (see previous section). In the
decision list from PART there are 250 nodes (operands and operators) and in GP
solution trees with ‘f’ configuration 38 nodes on average.

In conclusion, the if_? operator and the Tarpeian method reduce tree size and time,
dropping scarcely test accuracy.

To sum up, as discussed previously, decreasing the tree size, only implies a
scarcely lower accuracy than the base configuration. Nevertheless, the obtained trees
have an easier interpretation and a very much faster evolution process. Therefore, it
seems convenient to include in the solution both the if_? operator and the Tarpeian
method.

6 Conclusions and Further Work

In this paper, we have applied Genetic Programming (GP) to the protein-protein func-
tional association prediction problem. Our initial work shows that GP manages to

8

440 B. Garcia et al.

obtain accuracy results similar to other Machine Learning methods (around 61%).
The GP individual takes into account the intrinsic complexity which entails the bio-
logical nature of the data and its associated meaning. Besides, the predictor integrates
information from different sources related with protein functional association, exist-
ing until now.

We have taken advantage of the flexibility offered by GP to define primitives in
order to be closer to the real world problem conditions. We use a new operator (if_?)
that takes into account the large number of unknown values in the data. GP gets to
handle missing values slightly better than the rest of Machine Learning algorithms
tested, in the sense that classification accuracy does not decrease significantly when
missing values are used directly.

GP typically suffers from bloat, that is, the increase in size of the individuals with
no apparent gain in fitness. In this paper, we have managed to reduce bloat by means
of the if_? operator and the Tarpeian method. Some of the negative effects of bloat
are controlled in this domain. First, the tree size has been reduced, even with respect
to Machine Learning algorithms, therefore improving interpretation of the individuals.
Second, the execution time goes down, due to do not wasting evaluating excessive big
trees, improving the efficiency of the GP system. Both effects are achieved with al-
most no decrease in accuracy.

We believe that results could be improved further. The fitness function we have
used is straightforward and perhaps more elaborate functions could achieve better
results. In particular, our fitness functions measures only accuracy, but in this domain
true positives is more important than true negatives, and this could be addressed very
easily by GP. Extending the terminal and function set, and using ADFs [8] is also a
plausible option, as well as using recent improvements over the Tarpeian method
[9, 15]. Another interesting possibility would be to study if the output numerical value
is suitable as functional association likelihood.

Acknowledgments

Data used in these experiments has been obtained in support of the Structural Compu-
tational Biology Group in Spanish National Cancer Research Centre (CNIO).This
work has been supported by CICYT, TRA2007-67374-C02-02 project.

References

1. Rojas, A., Juan, D., Valencia, A.: Molecular interactions: Learning form protein com-
plexes. In: Leon, D., Markel, S. (eds.) Silico Technologies in Drug Target Identification
and Validation, vol. 6, pp. 225–244 (2006)

2. Causier, B.: Studying the Interactome with the Yeast Two-Hybrid System and Mass Spec-
trometry. Mass Spectrom. Rev. 23, 350–367 (2004)

3. Valencia, A., Pazos, F.: Computational Methods for the Prediction of Protein Interactions.
Curr. Opin. Struct. Biol. 12, 368–373 (2002)

4. Fraser, H.B., Hirsh, A.E., Wall, D.P., et al.: Coevolution of Gene Expression among Inter-
acting Proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 9033–9038 (2004)

9

 Genetic Programming for Predicting Protein Networks 441

5. Yu, H., Luscombe, N.M., Lu, H.X., et al.: Annotation Transfer between Genomes: Pro-
tein-Protein Interologs and Protein-DNA Regulogs. Genome Res. 14, 1107–1118 (2004)

6. Gómez, M., Alonso-Allende, R., Pazos, F., et al.: Accessible Protein Interaction Data for
Network Modeling. Structure of the Information and Available Repositories. Transactions
on Computational Systems Biology I, 1–13 (2005)

7. Mering, C.v., Krause, R., Snel, B., et al.: Comparative Assessment of Large-Scale Data
Sets of Protein-Protein Interactions. Nature 417, 399–403 (2002)

8. Koza, J.: Genetic programming II. MIT Press, Cambridge (1994)
9. Mahler, S., Robilliard, D., Fonlupt, C.: Tarpeian Bloat Control and Generalization Accu-

racy. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.)
EuroGP 2005. LNCS, vol. 3447, pp. 203–214. Springer, Heidelberg (2005)

10. Poli, R.: A Simple but Theoretically-Motivated Method to Control Bloat in Genetic Pro-
gramming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

11. Butland, G., Peregrin-Alvarez, J.M., Li, J., et al.: Interaction Network Containing Con-
served and Essential Protein Complexes in Escherichia Coli. Nature 433, 531–537 (2005)

12. Zongker, D., Punch, B.: Lil-Gp Genetic Programming System (1998),
http://garage.Cse.Msu.edu/software/lil-Gp/

13. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Research-
ers (2003)

14. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

15. Poli, R., Langdon, W., Dignum, S.: On the Limiting Distribution of Program Sizes in
Tree-Based Genetic Programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L.,
Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 193–204. Springer, Hei-
delberg (2007)

10

