Mining Unordered Distance-constrained Embedded
Subtrees

Fedja Hadzic', Henry Tan', and Tharam Dillon'

! DEBII, Curtin University of Technology, Perth, Australia
{f.hadzic, h.tan, t.dillon}@curtin.edu.au

Abstract. Frequent subtree mining is an important problem in the area of
association rule mining from semi-structured or tree structured documents,
often found in many commercial, web and scientific domains. This paper
presents the u3Razor algorithm, for mining unordered embedded subtrees
where the distance of nodes relative to the root of the subtree needs to be
considered. Mining distance-constrained unordered embedded subtrees will
have important applications in web information systems, conceptual model
analysis and more sophisticated knowledge matching. An encoding strategy is
presented to efficiently enumerate candidate unordered embedded subtrees
taking the distance of nodes relative to the root of the subtree into account. Both
synthetic and real-world datasets were used for experimental evaluation and
discussion.

1 Introduction

To express more complex and meaningful relationships between the data objects,
many organizations represent their domain knowledge using semi-structured
documents. Semi-structured documents such as XML possess a hierarchical document
structure, where an element may contain further embedded elements, and each
element can be attached with a number of attributes. It is therefore frequently
modeled using a rooted ordered labeled tree. To support effective and efficient data
analysis from tree structured documents algorithms have been developed to extract all
subtree patterns that occur in the database of ordered labeled trees as many times as
the user supplied support threshold. This is known as the frequent subtree mining
(FSM) problem and is the first and most important and complex problem to consider
when discovering useful associations among data objects from a tree structured
document [1,2,3]. In many biological data analysis tasks, the aim is to find frequent
structured patterns, such as frequent protein or chemical compound structures from
the data. For example, the work presented in [4] demonstrates the potential of the tree
mining algorithms for discovering substructures from Protein data that could be useful
for discovering interesting similarities and differences in protein datasets taken across
protein families and species. Tree mining has also been successfully applied in [5] for
the analysis of phylogenetic databases. Driven by different application needs many
algorithms have been developed that can mine different subtree types.
HybridTreeMiner [6], uFreqt [7], and uNot[8], mine induced unordered trees.

Treeminer [9] is an efficient algorithm for discovering all frequent embedded subtrees
in a forest using a data structure called the vertical scope-list. The SLEUTH [10]
algorithm extracts all frequent unordered embedded subtrees by using unordered
scope-list joins via the descendant and cousin tests. Our contribution to the area of
frequent subtree mining is the introduction of a tree model guided (TMG) candidate
subtree enumeration framework which was used for developing efficient algorithms
for mining of ordered induced/embedded [2], ordered distance-constrained embedded
subtrees [11] unordered induced [12] and unordered embedded [13] subtrees. TMG
ensures that only those subtrees are enumerated which conform to the underlying tree
structure of the document [3]. For a more extensive overview of the state-of-the-art of
tree mining please refer to [14].

In an ordered subtree the left-to right order among the sibling nodes needs to be
preserved while in an unordered subtree the order of the sibling nodes (and the
subtrees rooted at those nodes) can be exchanged and the resulting subtree is still
considered the same. This causes the enumeration and counting of unordered subtrees
more difficult, since each enumerated subtree needs to be ordered into one logical and
consistent form, so that all its variants that have different order among sibling nodes
are considered as the same subtree. An induced subtree preserves the parent-child
relationships from the original tree while in an embedded subtree the parent-child
relationship are allowed to be ancestor-descendant relationships in the original tree.
By mining embedded subtrees one can detect commonly occurring relationships
between data objects in spite of the difference in the level where the relationship in
the document occurred. Certain concepts may be represented in a more
specific/general way in certain documents. This specific information is often in the
form of additional child nodes of the concept, and hence, two general and related
concepts may be separated by a number of levels in the document tree. If the user is
only interested in the relationship between these two general concepts, such a
relationship could be directly found in an embedded subtree set, while if induced
subtrees were extracted, the information irrelevant to the user may be present in the
patterns of interest.

While mining of embedded subtrees is a generalization over induced subtrees,
one limitation is that the context information may be lost in some patterns. For
example, when analyzing a biomedical database containing patient records of
potential illness causing factors, one would be interested in common set of data object
properties that have frequently been associated with a particular disease. By allowing
ancestor-descendant relationships it may be possible to loose some information about
the context in which particular disease characteristic occurred. This is mainly due to
the fact that some attributes of the dataset may have a similar set of values and hence
indicating which value belonged to which particular attribute is necessary. There
appears to be a trade-off here and in this case allowing ancestor-descendant
relationships can result in unnecessary and misleading information, but in other cases,
it proves useful as it detects common patterns in spite of the difference in granularity
of the information presented. A difficulty with embedded subtrees appears then to be
that there is too much freedom allowed with respect to the difference in the distances
between the nodes. All occurrence of one particular relationship are considered the
same and valid even if the distance between the related data objects is so different that
it is possible that it occurred in a different context and has a different intended

meaning. One way to avoid this characteristic is to further distinguish the embedded
subtrees based upon the distance between the nodes. Making this distinction will have
important applications in web information systems, conceptual model analysis,
knowledge matching and for general knowledge management tasks by allowing for
more specialized queries.

In this study we extend our past work by developing the first algorithm that will
extract all unordered embedded subtrees with node distance information. It adds more
granularity to the problem as the occurrences of the embedded subtrees with different
distances among the nodes are now considered as different candidates (hence the
name distance-constrained). Overall, mining of unordered distance-constrained
subtrees is more expensive in terms of space and time required than when mining any
of other subtree types. In Section 2 we define some tree mining related concepts and
provide a motivating example for mining of unordered distance-constrained
embedded subtrees. The proposed u3Razor algorithm is described in Section 3
together with a suitable encoding strategy for enumerating unordered embedded
subtrees that take the node distance information from the database tree into account.
Section 4 presents some experiments to test the scalability of the approach and
compare with the results obtained by not imposing the distance constraint. Section 5
concludes the paper.

2 Problem definition and motivation

A tree T is an acyclic connected graph with the node at the top defined as the
root[T]. The Parent of node v (parent[v]) is defined as its predecessor. Two nodes
that share the same parent are referred to as sibling nodes. The fan-out or degree of a
node corresponds to the number of children of that node. A leaf node is a node
without a child; otherwise, it is an internal node. A path from vertex v, to v;, is defined
as the finite sequence of edges that connects v; to v, The length of a path p is the
number of edges in p. The distance between two nodes v;and v; can then be defined as
the length of the path connecting v; and v;. If p is an ancestor of g and g is a
descendant of p, then there exists a path from p to g. The rightmost path (RMP) of T
is defined as the (shortest) path connecting the rightmost leaf with the root node. The
Depth/level of a node is the length of the path from root to that node. The size of a
tree equals to the total number of nodes in the tree. In this paper, the term ‘k-subtree’
refers to a subtree that consists of k number of nodes. A tree can be denoted as
T(V,L,E), where (1) V is the set of vertices or nodes; (2) L is the set of labels of
vertices, for any vertex veV, L(v) is the label of v; and (4) E = {(x,y)| x,y € V}is the
set of edges in the tree. The problem of frequent subtree mining can be generally
stated as: Given a tree database T and minimum support (o) extract all candidate
subtrees that occur at least o times in 7.

Within the tree mining framework, two support definitions often used are
transaction-based and occurrence match support. When using the transaction-based
support definition, the transactional support of a subtree ¢, denoted as g,(?) in a tree
database Ty is equal to the number of transactions in 7y that contain at least one

occurrence of subtree 7. Let the notation #=k, denote the support of subtree ¢ by

transaction k, then =k = 1 whenever k contains at least one occurrence of 7, and 0

otherwise. Given N transactions k; to ky of tree in 7db, the a,(t) in T, is defined as
N

St<k, -

i=1

The occurrence-match support takes the repetition of items in a transaction into
account and counts the subtree occurrences in the database as a whole. Hence, the
occurrence-match support of a subtree ¢, denoted as o,.(?), in a tree database 7y is
equal to the total number of occurrences of ¢ in all transactions in 7. Let function
g(t,k) denote the total number of occurrences of subtree # in transaction . If there are

N transactions k; to ky of tree in 7T, 0,.(2) in T, can be defined as i g(t.k,)-
i=1

Next, we provide some formal definitions of commonly mined subtree types.

Given atree S = (Vs Ls Eg) and tree T = (V,Ly,Ep), S is an induced subtree of T,
iff (1) Vs< Vry(2) Ls< Ly and Lg(v)=L1(v); and (3) Es< Er.

Given atree S = (Vg LsEg) and tree T = (Vi Ly, Ep), S is an embedded subtree of T,
iff (1) Vs Vyy(2) Ls< Ly and Lg(v)=Ly(v); (3) if (v1,v2) € Egthen parent(v;) =v,;in S
and v, is ancestor of v, in T. Hence, the main difference between an induced and an
embedded subtree is that, while an induced subtree keeps the parent-child
relationships from the original tree, an embedded subtree allows a parent in the
subtree to be an ancestor in the original tree. All the definitions provided above do not
take into account the order among the sibling nodes. This is what makes them
unordered subtrees. In an ordered subtree the left to right ordering of sibling nodes in
the original tree is preserved. As mentioned in the introduction, when a distance
constraint is imposed on an embedded subtree, the distance information between the
nodes in the original subtree needs to be stored and used as an additional candidate
grouping criterion.

Given a tree S = (Vs,Ls,Es) and tree T = (Vp,L1,Er), S is an unordered distance-
constrained embedded subtree of T iff (1) Vs< Vr;(2) Ls< Ly and Lg(v)=Lz(v); (3) if
(v;,v;) € Egthen parent(v;) = v;in S and v, is ancestor of v, in T; and (4) V vE€ Vs
there is an integer stored indicating the distance between v and the root node of S in
the original tree 7.

For an ordered distance-constrained embedded subtree, in addition to the above
pre-conditions the left-to-right ordering among the sibling nodes in the original tree
would also need to be preserved [11]. To illustrate the difference in mining of
different subtree types please consider the example tree in Fig. 1 where the label of
each node is shown with its pre-order position on the left. In this paper, the term
‘occurrence coordinate(s) (oc)’ will be used to refer to the position(s) of a particular
node or a subtree in the tree database. In the case of a node, oc corresponds to the pre-
order position of that node in the tree database, whereas for a subtree, oc is a sequence
of ocs from nodes that belong to that particular subtree. If ordered or unordered
induced subtrees are mined st occurs only once in 7 with oc:01569, while for ordered
embedded subtrees it also occurs at oc:01589 since the ancestor-descendant
relationships between nodes ¢ (oc:5) and d (oc:8) are allowed. With unordered
embedded subtrees the order can also be exchanged and hence st also occurs at
0c:01587. If unordered distance constrained subtrees are mined each of the three
occurrences of s7 will be considered as a separate subtree depending on the distance of

the nodes to the root of the subtree as detected in 7 (i.e. st,, st, and st in Fig.1.). The
numbers next to the link indicates the distance between the nodes connected by that
link in 7. Hence, st; is a representative of the subtree with oc:01569, st, of 0c:01589
and st;0f 0c:01587.

Di trained var for

unordered embedded sz

Subtree sz £ stz stz
(b2 (B3 (b (oD
1 1 1 1 1 b 3
@ ¢ (R @ R & 6
2 2 3 2 3 3
OO @O ®©® ®®

Fig. 1. Example tree 7 and subtree s¢ with distance-constrained variants

For unordered subtrees the enumeration and counting phase is more difficult than
for the ordered case, since each enumerated subtree needs to be ordered into one
logical and consistent form, so that all its variants that have different order among
sibling nodes are considered as the same subtree. The group of possible trees obtained
by permuting the sibling nodes in all possible ways is referred to as the automorphism
group of a tree [10]. During the pre-order traversal of a database, ordered subtrees are
generated by default. It is necessary to identify which of these ordered subtrees form
an automorphism group of an unordered subtree. One tree needs to be selected to
uniquely represent the unordered tree. This selected tree is known as the canonical
form (CF) of an unordered tree. A canonical form (CF) of an entity is in general a
representative form (or a function) for which many equivalent variations of an entity
can be represented (mapped) into one standard, conventional, logical form in a
consistent manner [15]. The CF used by the proposed algorithm will be explained in
Section 3.

To conclude this section, we provide an example that illustrates a case where
adding the distance constraint is important for effective data analysis with respect to
the application needs. In Fig. 2, two example trees are displayed that indicate a part of
the ancestor family tree from two ill patients (the examples come from an image of a
disease family tree obtained from [16]. Such information is used for linkage analysis
of an illness by performing gene testing which can provide information about one
having a disease-related gene mutation. When looking for a disease gene, scientists
often start by studying DNA samples from family members over several generations
who have a number of relatives who have developed an illness [16].

[Mother, healthy | [Father, healthy | [Mother, healthy | [Father, healthy |

/\\
[Mother, healthy] iFather. healtny | [Father, healthy] [Mother, ill|
W ﬁ'ﬂ.] [Wioher, haatth:yi l;aiher. i

Fig. 2. Example ancestor representation of two ill patients (A and B)

For example, a scientist may want to discover how many ill relatives an ill patient
has had and to discover the number of generations that separates them. Using the
traditional embedded subtree definition, we can extract information only about the
number of ill relatives, but cannot have the information about the number of
generations that separate the patient and the relatives that have a common disease.
This is because the traditional embedded subtree definition does not have this kind of
expressive capability. In contrast, by utilizing the distance-constrained embedded
subtrees, we can find out exactly how many generations they are separated by, by
inspecting the distance information stored between the nodes. From Fig. 2, patient A
has only one diseased ancestor and it is her great-grandfather, while patient B has two
diseased ancestors, a grandmother and great-grandfather. Even though we do not have
such an example in the figure, it is worth noting that it could well be the case that an
ill patient will have two ancestors of the same gender that have the illness. In this
case, the traditional embedded subtree definition would group these subtree
occurrences as one candidate and indicate wrongly that there is only one ancestor with
a disease. On the other hand, by mining distance-constrained embedded subtrees, both
occurrences will be considered as separate entities due to the difference in the
distance to the root node which is used as an additional candidate grouping criterion.
Generally speaking, an algorithm for mining of unordered distance-constrained
embedded subtrees will have some important applications in analysis of biological
sequences, web information systems and conceptual model analysis.

3 u3Razor Algorithm

The steps taken by the u3Razor algorithm are presented in Fig. 3. The tree database
is first transformed into a database of rooted integer-labelled trees as hashing integer-
labelled trees is much faster than hashing of string-labelled trees. It is then ordered
into its canonical form (CF) to reduce the average number of candidate trees that need
to be ordered. Recursive List (RL) is constructed which is a global sequence of
encountered nodes in the pre-order traversal together with the necessary node
information. During this process the node labels are hashed to obtain the set of
frequent 1-subtrees (F7). TMG candidate generation using the RL structure takes
place and the string representatives of candidate subtrees with the distance
information between the nodes are hashed to the Ck hash table and their occurrences
are stored. Prior to hashing the string representation of each candidate subtree, it is
first ordered into its CF, if necessary. The process repeats until all frequent k-subtrees
are enumerated. To enable the mining of unordered distance constrained embedded
subtrees the major change to our general TMG framework [2, 3, 12, 13] took place in
the way that candidate subtrees are represented at the implementation level to take
into account the distance information and the CF used, which is explained next. We
then explain the RL structure and the TMG process for enumerating a complete set of
unordered distance-constrained embedded subtrees.

(Data Pra-procmingJ

CF ordering

‘I

Recursive Listand F1
construction

?

YES
h 4

»[Ck construction l

CF ordering

v
- [Fkconstruction |

No >4 Tominate)

Fig. 3. General description of the steps taken in the proposed approach

YES

B

Tree Representation and CF Ordering. Our work utilizes the pre-order string
encoding (@) as described in [2,9], which is a sequential representation of the nodes of
a tree as encountered during the pre-order traversal of that tree. The backtrack symbol
(‘") is used whenever moving up a node in the tree during the pre-order traversal. To
take the distance between the nodes into account, the encoding of a subtree is
obtained by reading the nodes in the pre-order traversal and for each node storing the
distance to the root of the subtree (node depth). The distance to the root is worked out
from the node levels stored in the RL structure, where the root of the subtree is
assigned the depth of 0 and all other nodes are assigned the difference between their
level and the original level of the new subtree root. Further modification of the
encoding consists in storing a number next to each backtrack ‘/> symbol indicating the
number of backtracks in the subtree, as opposed to storing each of those backtracks as
a separate symbol. This representation allows easier string manipulation due to
uniform block size. We denote encoding of a subtree 7 as ¢(7) and eg. from Fig. 1,
o(T): 0 al €2 /1 ¢2/2d1/1cld2e3/1d3/2€2/2°, p(stl): b0 al /1 cl d2/1e2/2’,
and @(st2): b0 al /1 c1 d3 /1 €2 /2°. The backtrack symbols can be omitted after the
last node eg. ¢(st3): “‘b0 al /1 c1 d3 /1 €3’.

The canonical form ordering occurs at the start where the whole tree database is
ordered into its canonical form and later where candidate subtrees are ordered so that
unordered subtrees are correctly enumerated. The canonical form according to which
we order the trees uses the idea of the DFCF [1] where the nodes are sorted at each
level of the subtree in a bottom up fashion (i.e. starting from the leaf nodes), and the
nodes with labels that sort lexicographically smaller are placed to the left of the
subtree. The ordering process is determined by the means used for comparing nodes
or subtrees so that they are placed at the right position in the tree. At the
implementation level the process can be formally explained as: given two trees T1
and T2, with root[T1] = rl and root[T2] = r2, let C(r1) and C(r2) denote the children
sets of rl and r2, respectively. Further, let ¢(Tx)x denote the k™ element of the pre-

order string encoding of tree Tx (x = 1 or 2)(this can be either a node label or the
special backtrack (‘/’) symbol which is considered smaller than any other label). In
case the node labels are the same the distance information associated with each node
will be considered so that the nodes with smaller distances to the root of the tree are
placed to the left. T1 is considered smaller than T2 iff either:

a.) L(r1) <L(r2), or

b.) L(r1) = L(r2) and either size(C(r1)) < size(C(r2)) and ¢(T1)x = ¢(T2)k for all 1 <

k < length(@(T1)), or @(T1) < @(T2)k for some 1 < k < length(¢(T1))

This ordering scheme will ensure that all the instances of unordered distance-
constrained embedded subtrees are correctly represented and counted.

Recursive List (RL) and F1 Construction. The tree database, 7, is scanned once
to create the global sequence RL in memory, through which nodes’ related
information can be directly accessed. Each node is stored following the pre-order
traversal of the 7. Position, label, scope, and level information are stored for each
node. The scope of a node refers to the position of its rightmost leaf node or its own
position if it is a leaf node itself [2,9] whereas the level refers here to the level in the
T tree, where this node occurs. An item in RL at position i is referred to as RL/i].
Every time a node is inserted into the RL, we generate a candidate 1-subtree. Based on
its label, we increment its support count in the C, hash table. If its support count is >
o (user-specified minimum support count), we insert the candidate 1-subtree to the
frequent 1-subtree set, F;. An example RL structure representing the tree 7" from Fig.
1 is displayed in Fig. 4. The pre-order position of a node in the tree database is equal
to the index of the RL at which that nodes is stored, and the label, scope and level are
shown in that order underneath the entry. All this information is necessary to
enumerate only valid subtree candidates and is accessed in the TMG candidate
enumeration process explained next.

0] 1] 21 531 41 51 i1 71 8] [°]
b,90 [a3.1]e22 [c32 [d41 [cH51 [d82 [e73 |[d83 |[e952

Fig. 4. Recursive List representation of tree T (Fig. 1)

A particular subtree, as defined by its encoding can be found at many places in the
database and these different occurrences need to be stored so that subsequent set of
candidates can be generated. We only store the occurrence coordinates of the nodes in
the right-most path of the subtree (referred to as RMP-oc). Within our framework, this
information is sufficient for enumerating candidate (k+1)-subtrees from a frequent k-
subtree. Given a k-subtree 7 with oc [ege), ...ex;], the RMP-oc of T, denoted by ¥(7),
is defined by [eg.e;,....e;] such that ¥(T) < oc(T); e; = e;;; and j < k-1 and the path
from e; to e, is the RMP of tree 7. Vertical Occurrence List (VOL) is used to store all
W(T) of a subtree T represented by its pre-order string encoding ¢(7), and to
determine the occurrence-match and transaction-based support. A transaction
identifier (tid) is stored for each ¥(7) so that the occurrence match of T equals to
|VOL| while the transaction-based support equals to the number of unique tids in VOL.

TMG Candidate Subtree Generation. TMG is a specialization of the right most
path extension method which has been reported to be complete and non-redundant
[2,9]. To enumerate all embedded k-subtrees from a (k-/)-subtree, the TMG
enumeration approach extends all the nodes in the RMP of a (k-I)-subtree, by one
node at a time. Hence, it is a breadth-first (BF) enumeration strategy. Suppose that
nodes in the RMP of a subtree are defined as extension points. The TMG can be
formulated as follows. Let #(T}.;):[ep e, ...e;] denote the RMP-oc of a frequent (k-1)-
subtree T}, and @ the scope of the root node e, TMG generates k-subtrees by
extending each extension point n e ¥(T}.;) with a node with oc t iff n <t < @ Suppose
that the encoding of 7)., is denoted by ¢(Ty;) and /(e;,) is a labeling function for
extending extension point n (i.e. ¢;) with a node at position ¢. ¢(7;) would be defined
as ¢(Ty.;)+1(e;t), where /(e;t) determines the number of backtrack symbols */* to be
appended before the label of the new node is added to ¢(7}). The number of
backtrack symbols is calculated as the shortest path length between the extension
point » and the right-most-node r, (notation p/(n,r)). To generate RMP at each step of
candidate generation, we utilize the computed number of backtrack symbols & that
need to be appended before the new node with oc ¢ is added to the encoding. Given
that the ¥(T}.,) is [esey,...,e;/, the RMP of the k-subtree (#(T})) is generated by
appending ¢ at position (j+1) — b of the (¥(7%,)) and removing any RMP-oc that
occur after ¢, thereby making 7 the right most node of 7;. This will make sure that at
each extension of (k-1)-subtree, RMP-oc of k-subtree are appropriately stored.

To provide an illustrative example let us say that we are extending the 7}.; subtree
from Fig. 5, with ¥(T}.;):[0,4,5] (0c:0145) and ¢(7T};):’a0 bl /1 bl c2’. The label,
level and scope information is obtained from the RL entries corresponding to the oc of
a node as is shown on the right of figure. For example at RL[10], we would have the
label ‘c’, scope 10 and level 2. If extending 7}, from extension point node ‘b’ (oc:4)
with node ‘e’ (oc:8) then /(5,8) will append one backtrack symbol (p/(4,5) = 1) and
the label ‘e’ to ¢(T}.;) together with the distance to the root node obtained from RL
(i.e. level of node ‘e’ - level of root node ‘a’, i.e. 3 — 0 = 3) . The new encoding ¢(7})
becomes ‘a0 bl /1 bl ¢2 /1 e3’, and ¥(T}):[0,4,8] (i.e. inserting 8 in entry (j+1) —b =
(3+1) - 1=3 of ¥(Ti.1)).

0%y

\:\4 T 1045]

0 fortd feye RL [W]TTIT3TATSTE] 71851 10])

"@3@5_:‘;\: < O [[15" 7
% @ @3

Fig. 5. TMG enumeration: extending (k-1)-subtree Ty, (where ¢(T\.;):a b / b ¢’ occurs at
position (0,1,4,5)) with nodes at positions 6, 7, 8, 9, and 10

In the case of unordered subtrees, the right-most-node may not always correspond
to the last node (tail position) in the encoding as it does for the ordered subtree case.
We refer to this case as non-tail expansion. A notion of pivot position ¢ is used to

denote the position in the subtree encoding that corresponds to the right-most-node.
Each RMP-OC of a subtree will store an integer indicating the pivot position ¢ in the
encoding for that particular occurrence of the subtree. Hence, for a non-tail expansion
of a subtree T}.;, if we are appending a new node with label / and OC ¢, rather than
appending the backtrack symbols (if any) and / to the last node in ¢(7},), it will be
appended to the pivot position ¢ by the function /(¢ #), in order to obtain ¢(7}). Please
note that if there are b backtrack symbols to be appended with / and there were
already some backtrack symbols after the pivot position ¢ in ¢(T), then / will be
appended after the 5" backtrack symbol. Furthermore, an additional backtrack symbol
will be appended after the position in the encoding where / has been appended. To
illustrate this please consider the subtree st3 from tree 7' in Fig. 1, with
0c:01587, ¥(st3):[0,5,8] and ¢(st3):’b0 al /1 c1 d3 /1 e3” As can be seen the right-
most node does not correspond to the last node ‘e’ in the encoding with oc:7, but
rather to node ‘d’ with oc:8. Therefore, if we are extending s¢3 from extension point
node ‘c’ (oc:5) with node ‘e’ (oc:9) then /(5,9) will append the label ‘e’ to ¢(st3) at
pivot position ¢ and add ‘/1” after *d’ (from pl(5,8). The new encoding becomes b0
al /1 c1d3/1e2/1e3’.]. Whenever a new candidate k-subtree is generated, full (k-1)
pruning [2,3,9] is performed where a k-subtree is pruned if at least one of its (k-1)-
subtree is infrequent. The whole process of TMG candidate enumeration is repeated
until all frequent k-subtrees are enumerated.

4 Experimental Results

The experiments were run on Intel Xeon E5345 at 2.33 GHz with 8 cores, 8 GB
RAM and 4MB Cashe Open SUSE 10.2. The purpose of the first experiment is to test
the scalability of the proposed u3Razor algorithm with respect to the increasing
number of transactions present in a database. An artificial database was created,
where the size of the transactions for each test was varied from 100,000, 500,000 to 1
million with minimum support 50, 250, and 500, respectively. Occurrence match
support definition was used and the result displayed in Fig. 6, shows that the time to
complete the task approximately scales linearly with the increase in transaction size.

120
100
80
60
40
20
0+

Time (seconds)

T100 T500 T1000
Transactions (in thousands)

Fig. 6. scalability — time performance / number of transactions

The second experiment was performed to examine compare the number of
frequent subtrees detected between the proposed algorithm and the UNI3 [12] and U3
[13] algorithms for mining of unordered induced and embedded subtrees,
respectively. Real world CSLogs data set [9] consisting of 32421 transactions was
used, and the transactional support definition was used. The number of frequent
subtrees detected by the u3Razor and UNI3 algorithms is equal for support thresholds
of 1000, 800 and 600 (Figure 7(a)). At these supports, the U3 algorithm detects
additional subtrees as frequent, which implies that those additional embedded subtrees
occur with a different distance among the nodes in the original tree. Otherwise, a
number of them would have been detected by the u3Razor algorithm, where the
distances have to be the same. It should be noted here that there may be some
embedded subtrees that occur with the same distance among the nodes but the number
of occurrences of such subtrees is not sufficient to be considered as frequent by the
u3Razor algorithm for the given support. Since there are no embedded levels among
the nodes in induced subtrees (i.e. the distance between all the nodes is equal to 1),
both u3Razor and UNI3 detect the same frequent subtrees in this scenario. For lower
support thresholds, more subtrees will be considered as frequent. The difference
between the number detected by u3Razor and UNI3 in Fig. 7(a) indicates that there
are some sufficient occurrences of embedded subtrees where the distance among the
nodes is different in the original tree. There are 4 such embedded subtrees for s400
and 39 for s200. For some applications it may be of interest to the user to analyze
such patterns to reveal some specific dataset characteristics. If the difference in the
level is caused by same information being stored differently then they can be
considered as valid patterns, while if the difference is due to the items with same
labels being used in different contexts then they should be considered invalid. They
are valid with respect to the support threshold. Fig. 7(b) shows the time taken by the
algorithms for completing this task. For most support thresholds, the u3Razor
algorithm takes slightly longer and this is due to the fact that the level information
needs to be stored for all the nodes of the enumerated subtrees. At s200, the U3
algorithm takes the longest which is explained by the additional 54 subtrees that it
considers as frequent in comparison with u3Razor (see Fig. 7(a)).

Ia u3Razor @ U3 OUNB | [_._ u3Razor —&— U3 UNG]

400 T 8 :

E 5 :‘ f i - X - : ; ~\k, : = %
H g | s 25— e
$ 2 e Do
g2 E 2= o

L2 200 : : . 815~ ; e
Eg - -~ : . 5. : L
32 | - o : B — - el
.E 100 - il é 0.5 +=—="x M
2 ot eE THY 0+ - —

1000 s800 s800 s400 s200 1000 s800 s600 s400 s200

Support Support

Fig. 7. (a) Number of frequent subtrees (b) time taken

5 Conclusions

In this paper we have discussed the motivation and some important applications for
mining of unordered distance-constrained embedded subtrees. The first algorithm that
solves this problem was presented as the extension to our general TMG candidate
subtree enumeration framework. A number of experiments were performed using both
synthetic and real-world datasets. The comparison of the results with the algorithms
mining traditional subtree types, indicate the potential for more specific data analysis
from tree-structured documents by considering the distance between the nodes.

References

1. Chi, Y., Yirong, Y. and Muntz, R. R. Canonical Forms for Labeled Trees and Their
Applications in Frequent Subtree Mining, Knowledge and Information Systems, 2004.

2. Tan, H., Dillon, T.S., Hadzic, F., Feng, L., Chang, E. IMB3-Miner: Mining
Induced/Embedded Subtrees by Constraining the Level of Embedding, PAKDD 06,
Singapore, 2006.

3. Tan, H., Hadzic, F., Dillon, T.S., Feng, L., Chang, E., 2007, ‘Tree Model Guided Candidate
Generation for Mining Frequent Subtrees from XML’, to appear in ACM Transactions on
Knowledge Discovery from Data (TKDD).

4. Hadzic, F., Dillon, T. S., Sidhu, A., Chang, E, and Tan, H. Mining Substructures in Protein
Data”, invited paper in [EEE ICDM DMB Workshop, 18-22 December, Hong Kong, 2006.

5. Shasha, D., Wang, J.T.L. and Zhang, S. Unordered Tree Mining with Applications to
Phylogeny, 20" International Conference on Data Engineering, 2004.

6. Chi, Y., Yang, Y., and Muntz, R. R. HybridTreeMiner: An efficient algorihtm for mining
frequent rooted trees and free trees using canonical forms. In Proc. of the 16th Int’l Conf. on
Scientific and Statistical Database Management, Santorini Island, Greece, 2004.

7. Nijssen, S. and Kok, J. N. Efficient discovery of frequent unordered trees. /nt'l Workshop on
Mining Graphs, Trees, and Sequences (MGTS-2003), Dubrovnik, Croatia, 2003.

8. Asai, T., Arimura, H., Uno, T. and Nakano, S. Discovering Frequent Substructures in Large
Unordered Trees. 6" Int'l Conf. on Discovery Science, 2003.

9. Zaki, M. J. Efficiently Mining Frequent Trees in a Forest: Algorithms and Applications. In
IEEE Transactions on Knowledge and Data Engineering, 17, 8, pp. 1021-1035, 2005.

10. Zaki, M. J. Efficiently Mining Frequent Embedded Unordered Trees. Fundamenta
Informaticae 65, 10S Press, pp. 1-20, 2005.

11. Tan, H., Dillon, T.S., Hadzic, F , and Chang, E. Razor: mining distance-constrained
embedded subtrees, Workshop on Ontology Mining and Knowledge Discovery from
Semistructured documents (MSD 2006), in conjunction with /CDM’06, Hong Kong, 28-22
December, 2006.

12. Hadzic, F., Tan, H., and Dillon, T.S. UNI3: efficient algorithm for mining unordered
induced subtrees using TMG candidate generation. JEEE Symposium on Computational
Intelligence and Data Mining (CIDM 2007), Honolulu, Hawaii, April 1-5, 2007.

13. Hadzic, F., Tan, H., Dillon, T.S. U3 — Mining Unordered Embedded Subtrees Using TMG
Candidate Generation. Submitted to ECML PKDD, 15-19 Sept., Antwerp, Belgium, 2008.
14. Tan, H., Hadzic, F., Dillon, T.S., Chang, E. State of the art of data mining of tree structured

information, International CSSE Journal, vol. 23, no 2, March, 2008.

15. Valentine, G. Algorithms on Trees and Graphs, Springer-Verlag, Berlin, 2002.

16. Access Excellence (@ the national health museum, Understanding gene testing: What does a
predictive gene tell you. http://www.accessexcellence.org/AE/AEPC/NIH/gene14.html.

